Zuse Institute Berlin

Daniel Rehfeldt ©, Thorsten Koch

Implications, conflicts, and reductions for Steiner trees

Zuse Institute Berlin
Takustr. 7
14195 Berlin
Germany
Telephone: +49 30-84185-0
Telefax: +49 30-84185-125
E-mail: bibliothek@zib.de
URL: http://www.zib.de
ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

Implications, conflicts, and reductions for Steiner trees

Daniel Rehfeldt (10), Thorsten Koch
TU Berlin, Chair of Software and Algorithms for Discrete Optimization, Str. des 17. Juni 135, 10623 Berlin, Germany
Zuse Institute Berlin,
Takustr. 7, 14195 Berlin, Germany
\{rehfeldt,koch\}@zib.de

Oktober 3, 2021

Abstract

The Steiner tree problem in graphs (SPG) is one of the most studied problems in combinatorial optimization. In the last 10 years, there have been significant advances concerning approximation and complexity of the SPG. However, the state of the art in (practical) exact solution of the SPG has remained largely unchallenged for almost 20 years. While the DIMACS Challenge 2014 and the PACE Challenge 2018 brought renewed interest into Steiner tree problems, even the best new SPG solvers cannot match the state of the art on the vast majority of benchmark instances.

The following article seeks to once again advance exact SPG solution. The article is based on a combination of three concepts: Implications, conflicts, and reductions. As a result, various new SPG techniques are conceived. Notably, several of the resulting techniques are (provably) stronger than well-known methods from the literature, used in exact SPG algorithms. Finally, by integrating the new methods into a branch-and-cut algorithm we obtain an exact SPG solver that is not only competitive with, but even outperforms the current state of the art on a large collection of benchmark sets. Furthermore, we can solve several instances for the first time to optimality.

1 Introduction

Given an undirected connected graph $G=(V, E)$, edge costs $c: E \rightarrow \mathbb{Q}_{>0}$ and a set $T \subseteq V$ of terminals, the Steiner tree problem in graphs (SPG) is to find a tree $S \subseteq G$ with $T \subseteq V(S)$ such that $c(E(S))$ is minimized. The SPG is a classic $\mathcal{N} \mathcal{P}$-hard problem [23], and one of the most studied problems in combinatorial optimization. Part of its theoretical appeal might be attributed to the fact that the SPG generalizes two other classic combinatorial optimization problems: Shortest paths, and minimum spanning trees. On the practical side, many applications can be modeled as SPG or closely related problems, see e.g. [5, 27.

The SPG has seen numerous theoretical advances in the last 10 years, bringing forth significant improvements in complexity and approximability. See e.g. 4, 15] for approximation, and [24, 29,

46 for complexity results. However, when it comes to (practical) exact algorithms, the picture is significantly more bleak. After flourishing in the 1990s and early 2000s, algorithmic advances came to a staggering halt with the (joint) PhD theses of Polzin and Vahdati Daneshmand almost 20 years ago [31, 45]. They introduced a wealth of new results and algorithms for SPG, and combined them in an exact solver that drastically outperformed all previous results from the literature. Their work is also published in a series of articles [32, 33, 34, 35, 36. However, their solver is not publicly available.

The 11th DIMACS Challenge in 2014, dedicated to Steiner tree problems, brought renewed interest to the field of exact algorithms. In the wake of the challenge, several new exact SPG solvers were introduced in the literature [13, 14, 17, 30]. Overall, the 11th DIMACS Challenge brought notable progress on the solution of notoriously hard SPG instances that had been designed to defy known solution techniques, see [26, 40]. Several of these instances could be solved for the first time to optimality. However, on the vast majority of instances from the literature, [31, 45] (whose solver did not compete at the DIMACS Challenge) stayed out of reach: For many benchmark instances, their solver is even two orders of magnitude or more faster, and it can furthermore solve substantially more instances to optimality -including those introduced at the DIMACS Challenge 37. In 2018, the 3rd PACE Challenge [3] took place, dedicated to fixed-parameter tractable algorithms for SPG. Thus, the PACE Challenge considered mostly instances with a small number of terminals, or with small tree-width. Solvers that successfully participated in the PACE Challenge are for example described in [18, 21]. Still, even for these special problem types, the solver by [31, 45] remained largely unchallenged, see e.g. [21].

The following article aims to once again advance the state of the art in exact SPG solution.

1.1 Contribution

This article is based on a combination of three concepts: Implications, conflicts, and reductions. As a result, various new SPG techniques are conceived. The main contributions are as follows.

- By using a new implication concept, a distance function is conceived that provably dominates the well-known bottleneck Steiner distance. As a result, several reduction techniques that are stronger than results from the literature can be designed.
- We show how to derive conflict information between edges from the above methods. Further, we introduce a new reduction operation whose main purpose is to introduce additional conflicts. Such conflicts can for example be used to generate cuts for the IP formulation.
- We introduce a more general version of the powerful so-called extended reduction techniques. We furthermore enhance this framework by using both the previously introduced new distance concept, and the conflict information.
- Finally, we integrate the components into a branch-and-cut algorithm. Besides preprocessing, domain propagation, and cuts, also primal heuristics can be improved (by using the new implication concept). The practical implementation is realized as an extension of the branch-and-cut solver SCIP-JACK [14].

The resulting exact SPG solver outperforms the current state-of-the-art solver from 31, 45] on many well-established benchmark sets from the literature. Furthermore, it can solve several instances for the first time to optimality.

1.2 Preliminaries and notation

We write $G:=(V, E)$ for an undirected graph, with vertices V and edges E. We set $n:=|V|$ and $m:=|E|$. We denote the vertices and edges of any subgraph $S \subseteq G$ by $V(S)$ and $E(S)$, respectively. For a walk W we likewise denote the set of vertices and the set of edges it contains by $V(W)$ and $E(W)$. For any $U \subseteq V$ we define the cut $\delta(U):=\{\{u, v\} \in E \mid u \in U, v \in V \backslash U\}$. We write $\delta_{G}(U)$ to emphasize that the cut is defined with respect to graph G. For $v \in V$ we write $\delta(v):=\delta(\{v\})$. For any $v \in V$ we define its neighborhood as $N(v):=\{w \in W \mid\{v, w\} \in \delta(v)\}$. Note that $v \notin N(v)$.

Given edge costs $c: E \mapsto \mathbb{Q}_{\geq 0}$, the triplet (V, E, c) is referred to as network. By $d(v, w)$ we denote the cost of a shortest path (with respect to c) between vertices $v, w \in V$. For any (distance) function $\tilde{d}:\binom{V}{2} \mapsto \mathbb{Q}_{\geq 0}$, and any $U \subseteq V$ we define the \tilde{d}-distance graph on U as the network

$$
\begin{equation*}
D_{G}(U, \tilde{d}):=\left(U,\binom{U}{2}, \tilde{c}\right), \tag{1}
\end{equation*}
$$

with $\tilde{c}(\{v, w\}):=\tilde{d}(v, w)$ for all $v, w \in U$. If \tilde{d} is the standard distance (i.e. $\tilde{d}=d$), we write $D_{G}(U)$ instead of $D_{G}(U, d)$. Note that we write usually $\tilde{d}(v, w)$ instead of $\tilde{d}(\{v, w\})$.

2 From implications to reductions

Reduction techniques have been a key ingredient in exact SPG solvers, see e.g. [9, 25, 44, 33]. Among these techniques, the bottleneck Steiner distance introduced in [12] is arguably the most important one, being the backbone of several powerful reduction methods. This section introduces a (provably) stronger distance concept, and discusses several applications for improved reduction methods.

2.1 The bottleneck Steiner distance

Let P be a simple path with at least one edge. The bottleneck length [12] of P is

$$
\begin{equation*}
b l(P):=\max _{e \in E(P)} c(e) . \tag{2}
\end{equation*}
$$

Let $v, w \in V$. Let $\mathcal{P}(v, w)$ be the set of all simple paths between v and w. The bottleneck distance [12] between v and w is defined as

$$
\begin{equation*}
b(v, w):=\inf \{b l(P) \mid P \in \mathcal{P}(v, w)\}, \tag{3}
\end{equation*}
$$

with the common convention that $\inf \emptyset=\infty$. Note that $b(v, w)$ is equal to the bottleneck length of the path between v and w on any minimum spanning tree of (G, c), as observed in 8].

Now consider the distance graph $D:=D_{G}(T \cup\{v, w\})$. Let b_{D} be the bottleneck distance in D. Define the bottleneck Steiner distance or special distance 12 between v and w as

$$
\begin{equation*}
s(v, w):=b_{D}(v, w) \tag{4}
\end{equation*}
$$

The arguably best known bottleneck Steiner distance reduction method is based on the following criterion, which allows for edge deletion [12].

Theorem 1. Let $e=\{v, w\} \in E$. If $s(v, w)<c(e)$, then no minimum Steiner tree contains e.

Note the analogy between bottleneck distance applied to the minimum spanning tree (MST) problem, and bottleneck Steiner distance applied to the SPG: Any edge $e=\{v, w\}$ that satisfies $b(v, w)<c(e)$ cannot be part of an MST. Otherwise, e could be replaced by an edge of cost at most $b(v, w)$ to obtain a spanning tree of smaller cost. Any edge $e=\{v, w\}$ that satisfies $s(v, w)<c(e)$ cannot be part of a minimum Steiner tree. Otherwise, e could be replaced by a path in G corresponding to an edge in $D=D_{G}(T \cup\{v, w\})$ with cost at most $b_{D}(v, w)$. In this case, one would obtain a Steiner tree of smaller cost. We also point out that bottleneck Steiner distances can be computed in polynomial time, but in practice (heuristic) approximations are used. See [33] for a state-of-the-art algorithm.

2.2 A stronger bottleneck concept

In the following, we describe a generalization of the bottleneck Steiner distance. Initially, for an edge $e=\{v, w\}$ define the restricted bottleneck distance $\bar{b}(e)$ [33] as the bottleneck distance between v and w on ($V, E \backslash\{e\}, c)$.

The basis of the new bottleneck Steiner concept is formed by a node-weight function that we introduce in the following. For any $v \in V \backslash T$ and $F \subseteq \delta(v)$ define

$$
\begin{equation*}
p^{+}(v, F):=\max \{0, \sup \{\bar{b}(e)-c(e) \mid e \in F, e \cap T \neq \emptyset\}\} . \tag{5}
\end{equation*}
$$

We call $p^{+}(v, F)$ the F-implied profit of v. The following observation motivates the subsequent usage of the implied profit. Assume that $p^{+}(v,\{e\})>0$ for an edge $e \in \delta(v)$. If a Steiner tree S contains v, but not e, then there is a Steiner tree S^{\prime} with $e \in E\left(S^{\prime}\right)$ such that $c\left(E\left(S^{\prime}\right)\right)+$ $p^{+}(v,\{e\}) \leq c(E(S))$.

Let $v, w \in V$. Consider a finite walk $W=\left(v_{1}, e_{1}, v_{2}, e_{2}, \ldots, e_{r-1}, v_{r}\right)$ with $v_{1}=v$ and $v_{r}=w$. We say that W is a (v, w)-walk. For any $k, l \in \mathbb{N}$ with $1 \leq k \leq l \leq r$ define the subwalk $W(k, l):=\left(v_{k}, e_{k}, v_{k+1}, e_{k+1}, \ldots, e_{l-1}, v_{l}\right) . W$ will be called Steiner walk if $V(W) \cap T \subseteq\{v, w\}$ and v, w are contained exactly once in W (the latter condition could be omitted, but has been added for ease of presentation). The set of all Steiner walks from v to w will be denoted by $\mathcal{W}_{T}(v, w)$. With a slight abuse of notation we define $\delta_{W}(u):=\delta(u) \cap E(W)$ for any walk W and any $u \in V$. Define the implied Steiner cost of a Steiner walk $W \in \mathcal{W}_{T}(v, w)$ as

$$
\begin{equation*}
c_{p}^{+}(W):=\sum_{e \in E(W)} c(e)-\sum_{u \in V(W) \backslash\{v, w\}} p^{+}\left(u, \delta(u) \backslash \delta_{W}(u)\right) . \tag{6}
\end{equation*}
$$

Further, set

$$
\begin{equation*}
P_{W}^{+}:=\left\{u \in V(W) \mid p^{+}\left(u, \delta(u) \backslash \delta_{W}(u)\right)>0\right\} \cup\{v, w\} . \tag{7}
\end{equation*}
$$

Define the implied Steiner length of W as

$$
\begin{equation*}
l_{p}^{+}(W):=\max \left\{c_{p}^{+}\left(W\left(v_{k}, v_{l}\right)\right) \mid 1 \leq k \leq l \leq r, v_{k}, v_{l} \in P_{W}^{+}\right\} . \tag{8}
\end{equation*}
$$

To understand the usage of the implied Steiner length, consider the SPG instance segment shown in Figure 1. Assume that edge $\left\{v_{1}, v_{4}\right\}$ is part of Steiner tree S. Removing this edge from S results in two trees S^{\prime} and $S^{\prime \prime}$ with $v_{1} \in V\left(S^{\prime}\right), v_{4} \in V\left(S^{\prime \prime}\right)$. Consider the Steiner walk $W:=\left(v_{1},\left\{v_{1}, v_{2}\right\}, v_{2},\left\{v_{2}, v_{3}\right\}, v_{3},\left\{v_{2}, v_{3}\right\}, v_{2},\left\{v_{2}, v_{4}\right\}, v_{4}\right)$. Note that $p^{+}\left(v_{3}, \delta\left(v_{3}\right) \backslash \delta_{W}\left(v_{3}\right)\right)=3$, and thus $l_{p}^{+}(W)=4$. We claim that S^{\prime} and $S^{\prime \prime}$ can be reconnected to a Steiner tree \tilde{S} that is of smaller weight than S by using only edges from W. First, assume v_{3} is contained in either S^{\prime} or $S^{\prime \prime}$. In this case, we can use the edges $\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\}$ (if $v_{3} \in V\left(S^{\prime \prime}\right)$) or the edges $\left\{v_{2}, v_{3}\right\},\left\{v_{2}, v_{4}\right\}$ (if $v_{3} \in V\left(S^{\prime}\right)$) to reconnect S^{\prime} and $S^{\prime \prime}$. Second, assume that v_{3} is neither contained in S^{\prime} nor in $S^{\prime \prime}$. In this case, also the edge $\left\{v_{3}, t_{1}\right\}$ cannot be contained in S^{\prime} or
$S^{\prime \prime}$: Because S is a Steiner tree, we have $t_{1} \in V\left(S^{\prime \prime}\right)$. Indeed, also $\left\{t_{1}, v_{4}\right\} \in E\left(S^{\prime \prime}\right)$ holds. Reconnect S^{\prime} and $S^{\prime \prime}$ by adding all edges of W that are neither in S^{\prime} nor in $S^{\prime \prime}$. This procedure results in a Steiner tree \tilde{S}. Next, add edge $\left\{v_{3}, t_{1}\right\}$ and remove edge $\left\{t_{1}, v_{4}\right\}$ from \tilde{S}. This exchange reduces the weight of \tilde{S} by $p^{+}\left(v_{3}, \delta\left(v_{3}\right) \backslash \delta_{W}\left(v_{3}\right)\right)$. Thus, the final Steiner tree \tilde{S} satisfies $c(E(\tilde{S})) \leq c(E(S))-1$.

Figure 1: Segment of an SPG instance. Terminals are drawn as squares.
With the above discussion in mind, define the implied Steiner distance between v and w as

$$
\begin{equation*}
d_{p}^{+}(v, w):=\min \left\{l_{p}^{+}(W) \mid W \in \mathcal{W}_{T}(v, w)\right\} \tag{9}
\end{equation*}
$$

Note that $d_{p}^{+}(v, w)=d_{p}^{+}(w, v)$. At last, consider the distance graph $D^{+}:=D_{G}\left(T \cup\{v, w\}, d_{p}^{+}\right)$. Let $b_{D^{+}}$be the bottleneck distance in D^{+}. Define the implied bottleneck Steiner distance between v and w as

$$
\begin{equation*}
s_{p}(v, w):=b_{D^{+}}(v, w) \tag{10}
\end{equation*}
$$

Note that $s_{p}(v, w) \leq s(v, w)$ and that the inequality can be strict. Indeed, $\frac{s(v, w)}{s_{p}(v, w)}$ can become arbitrarily large. Thus, the following result provides a strictly stronger reduction criterion than Theorem 1

Theorem 2. Let $e=\{v, w\} \in E$. If $s_{p}(v, w)<c(e)$, then no minimum Steiner tree contains e.
Proof. Assume $s_{p}(v, w)<c(e)$ and let S be a Steiner tree with $e \in E(S)$. We will show the existence of a Steiner tree S^{\prime} with $e \notin E\left(S^{\prime}\right)$ such that $c\left(E\left(S_{\tilde{\prime}}^{\prime}\right)\right) \leq c(E(S))$, which concludes the proof. First, remove e from S to obtain a new subgraph \tilde{S}, which consists of exactly two connected components. Assume that each connected component contains at least one terminal (otherwise the proof is already finished). In the following, we will use a Steiner walk to reconnect \tilde{S}. First, we show the existence of such a reconnecting Steiner walk that has an implied Steiner length (8) smaller than $c(e)$. Second, we add the edges of this walk to \tilde{S}, obtaining a Steiner tree. Third, we follow the same underlying idea as in the discussion for Figure 1, and apply edge-exchange operations for each vertex of positive implied profit on the Steiner walk. In this way, the weight of \tilde{S} is reduced.

Consider a (v, w)-path P in D^{+}such that $b l_{D^{+}}(P)=b_{D^{+}}(v, w)$. Let $\{t, u\}$ be an edge on P such that t and u are in different connected components of \tilde{S} (where t and u are considered in the original SPG). Let \tilde{S}^{t} and \tilde{S}^{u} be the connected components of \tilde{S} such that $t \in V\left(\tilde{S}^{t}\right)$ and $u \in V\left(\tilde{S}^{u}\right)$. By the definition of the bottleneck length it holds that

$$
\begin{equation*}
d_{p}^{+}(t, u) \leq s_{p}(v, w) \tag{11}
\end{equation*}
$$

Let $W \in \mathcal{W}_{T}(t, u)$ such that

$$
\begin{equation*}
l_{p}^{+}(W)=d_{p}^{+}(t, u) \tag{12}
\end{equation*}
$$

Assume that W is given as $W=\left(v_{1}, e_{1}, \ldots, e_{r-1}, v_{r}\right)$. Define $b:=\min \left\{k \in\{1, \ldots, r\} \mid v_{k} \in\right.$ $\left.V\left(\tilde{S}^{u}\right)\right\}$ and $a:=\max \left\{k \in\{1, \ldots, b\} \mid v_{k} \in V\left(\tilde{S}^{t}\right)\right\}$. Further, define $x:=\max \left\{k \in\{1, \ldots, a\} \mid v_{k} \in\right.$ $\left.P_{W}^{+}\right\}$and $y:=\min \left\{k \in\{b, \ldots, r\} \mid v_{k} \in P_{W}^{+}\right\}$. By definition, $x \leq a<b \leq y$ and furthermore:

$$
\begin{equation*}
\sum_{e \in E(W(a, b))} c(e)-\sum_{v \in V(W(a, b)) \backslash\left\{v_{x}, v_{y}\right\}} p^{+}\left(v, \delta(v) \backslash \delta_{W(x, y)}\right) \leq c_{p}^{+}(W(x, y)) . \tag{13}
\end{equation*}
$$

Reconnect \tilde{S}^{t} and \tilde{S}^{u} by $W(a, b)$, which yields a connected subgraph S_{0}^{\prime} with $T \subseteq V\left(S_{0}^{\prime}\right)$. Assume that S_{0}^{\prime} is a tree (otherwise remove any redundant edges) ${ }_{-}^{1}$ It holds that

$$
\begin{equation*}
\sum_{e \in E\left(S_{0}^{\prime}\right)} c(e) \leq \sum_{e \in E(S)} c(e)+\sum_{e \in E(W(a, b))} c(e)-c(\{v, w\}) . \tag{14}
\end{equation*}
$$

Let $v_{1}^{+}, v_{2}^{+}, \ldots, v_{z}^{+}$be the vertices in $P_{W(a, b)}^{+} \backslash\left\{v_{a}, v_{b}\right\}$. Choose for each $i=1, \ldots, z$ an edge $e_{i}^{+} \in \delta\left(v_{i}^{+}\right) \backslash \delta_{W(x, y)}\left(v_{i}^{+}\right)$such that $e_{i}^{+} \cap T \neq \emptyset$ and

$$
\begin{equation*}
\bar{b}\left(e_{i}^{+}\right)-c\left(e_{i}^{+}\right)=p^{+}\left(v_{i}^{+}, \delta\left(v_{i}^{+}\right) \backslash \delta_{W(x, y)}\right) . \tag{15}
\end{equation*}
$$

Note that all e_{i}^{+}are pairwise disjoint (just as the v_{i}^{+}).
We will construct Steiner trees S_{i}^{\prime} for $i \in\{1, \ldots, z\}$ that satisfy

$$
\begin{equation*}
\sum_{e \in E\left(S_{i}^{\prime}\right)} c(e) \leq \sum_{e \in E\left(S_{0}^{\prime}\right)} c(e)-\sum_{k=1}^{i} p^{+}\left(v_{k}^{+}, \delta(v) \backslash \delta_{W(x, y)}\right) \tag{16}
\end{equation*}
$$

as well as

$$
\begin{equation*}
\bigcup_{k=i+1}^{z}\left\{e_{k}^{+}\right\} \cap E\left(S_{i}^{\prime}\right)=\emptyset \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
V\left(S_{i}^{\prime}\right)=V\left(S_{0}^{\prime}\right) \tag{18}
\end{equation*}
$$

One readily verifies that S_{0}^{\prime} satisfies (16)-(18). Let $i \in\{1, \ldots, z\}$ and assume that (16)-(18) hold for S_{i-1}^{\prime}. Thus, $e_{i}^{+} \notin E\left(S_{i-1}^{\prime}\right)$. Let P_{i} be the (unique) path in S_{i-1}^{\prime} between v_{i}^{+}and the terminal t_{i} with $\left\{t_{i}\right\}=e_{i}^{+} \cap T$. Choose any $\tilde{e}_{i} \in E\left(P_{i}\right)$ with $c\left(\tilde{e}_{i}\right)=b l\left(P_{i}\right)$. Define the tree S_{i}^{\prime} by $V\left(S_{i}^{\prime}\right):=V\left(S_{i-1}^{\prime}\right)$ and $E\left(S_{i}^{\prime}\right):=\left(E\left(S_{i-1}^{\prime}\right) \backslash\left\{\tilde{e}_{i}\right\}\right) \cup\left\{e_{i}^{+}\right\}$. We claim that S_{i}^{\prime} satisfies 16)-(18). Equality (17) follows from the fact that all e_{i}^{+}are disjoint. And 18 follows from the construction of S_{i}^{\prime}. For (16), observe that by definition of the bottleneck distance it holds that $c\left(\tilde{e}_{i}\right) \geq \bar{b}\left(e_{i}^{+}\right)$ and therefore

$$
\begin{equation*}
\bar{b}\left(e_{i}^{+}\right)-c\left(e_{i}^{+}\right) \leq c\left(\tilde{e}_{i}\right)-c\left(e_{i}^{+}\right) \tag{19}
\end{equation*}
$$

Thus, equation 15 implies that S_{i}^{\prime} satisfies 16 .

[^0]Finally, set $S^{\prime}:=S_{z}^{\prime}$. Because of 18 it holds that $T \subseteq V\left(S^{\prime}\right)$. Furthermore, one obtains:

$$
\begin{align*}
& \sum_{e \in E\left(S^{\prime}\right)} c(e) \stackrel{16}{\leq} \sum_{e \in E\left(S_{0}^{\prime}\right)} c(e)-\sum_{k=1}^{z} p^{+}\left(v_{k}^{+}, \delta\left(v_{k}^{+}\right) \backslash \delta_{W(x, y)}\right) \tag{20}\\
& \stackrel{114}{\leq} \sum_{e \in E(S)} c(e)+\sum_{e \in E(W(a, b))} c(e)-c(\{v, w\})-\sum_{k=1}^{z} p^{+}\left(v_{k}^{+}, \delta\left(v_{k}^{+}\right) \backslash \delta_{W(x, y)}\right) \tag{21}\\
& \stackrel{13)}{\leq} \sum_{e \in E(S)} c(e)-c(\{v, w\})+c_{p}^{+}(W(x, y)) \tag{22}\\
& \tag{23}\\
& \tag{24}\\
& \leq \sum_{e \in E(S)} c(e)-c(\{v, w\})+l_{p}^{+}(W) \tag{25}\\
& \leq \sum_{e \in E(S)} c(e)-c(\{v, w\})+s_{p}(v, w) \\
& \leq
\end{align*}
$$

where the last inequality follows from the initial assumptions.
Furthermore, we define the restricted implied bottleneck Steiner distance $\bar{s}_{p}(v, w)$ between any $v, w \in V$ as the implied bottleneck Steiner distance between v and w in the $\operatorname{SPG}(V, E \backslash$ $\{\{v, w\}\}, c)$. One obtains the following corollary.
Corollary 3. Let $e=\{v, w\} \in E$. If $\bar{s}_{p}(v, w) \leq c(e)$, then at least one minimum Steiner tree does not contain e.

Figure 2: Segment of a Steiner tree instance. Terminals are drawn as squares. The dashed edge can be deleted by employing Theorem 2 .

Figure 2 shows a segment of an SPG instance for which Theorem 2 allows for the deletion of an edge, but Theorem 1 does not. The implied bottleneck Steiner distance between the endpoints of the dashed edge is 1 -corresponding to a walk along the four non-terminal vertices. The edge can thus be deleted. In contrast, the (standard) bottleneck Steiner distance between the endpoints is 1.5 (corresponding to the edge itself). Unfortunately, already computing the implied Steiner distance is hard, as the following proposition shows.

Proposition 4. Computing the implied Steiner distance is $\mathcal{N} \mathcal{P}$-hard.

The proposition can for example be proved by a reduction from the Hamiltonian path problem, similar to a reduction for the prize-collecting Steiner distance concept in 43. We note that it would also be possible to use the implied Steiner distance concept introduced in this article to generalize the Steiner distance concept used for the prize-collecting Steiner tree problem; see 38] for a definition that dominates the original one from 43]. However, formulating and proving this generalization is quite technical, and the computational benefit seems limited.

Finally, despite this $\mathcal{N} \mathcal{P}$-hardness, one can devise heuristics that provide useful upper bounds on s_{p}. We will discuss one such heuristic in the next section.

2.3 Approximating the implied bottleneck Steiner distance

This section describes one of the heuristics we use to delete edges by using an approximation of s_{p}. Starting from a vertex v_{0}, the heuristic tries to delete several edges of $\delta\left(v_{0}\right)$ at once. Initially, define a distance array \tilde{d} and a predecessor array pred as follows. For all $u \in V \backslash\left(\left\{v_{0}\right\} \cup N\left(v_{0}\right)\right)$: $\tilde{d}[u]:=\infty$ and $\operatorname{pred}[u]:=$ null. For all $u \in N\left(v_{0}\right): \widetilde{d}[u]:=c\left(\left\{v_{0}, u\right\}\right)$ and $\operatorname{pred}[u]:=v_{0}$. Moreover, set $\tilde{d}\left[v_{0}\right]:=0$ and $\operatorname{pred}\left[v_{0}\right]:=v_{0}$. Finally, set $Q:=N\left(v_{0}\right)$.

While $Q \neq \emptyset$ let $v:=\arg \min _{u \in Q} \tilde{d}[u]$. For all $\{v, w\} \in \delta(v)$ proceed as follows. First, set $p_{v w}:=\max \left\{p^{+}(v,\{e\}) \mid e \in \delta(v): w, \operatorname{pred}[v] \notin e\right\}$. If

$$
\begin{equation*}
\tilde{d}[v]+c(\{v, w\})-\min \left\{c(\{v, w\}), p_{v w}, \tilde{d}[v]\right\}<\tilde{d}[w] \tag{26}
\end{equation*}
$$

then set $\tilde{d}[w]$ to the left hand side of (26) and add w to Q. Further, set pred $[w]:=v$. If (26) holds and $w \in N\left(v_{0}\right)$, then we can delete edge $\{v, w\}$.

Note that on the left hand side of (26) a possibly smaller value than $p_{v w}$ is subtracted to prevent the algorithm from circling. Furthermore, note that a terminal might be used more than once for a profit calculation $p_{v w}$ on one walk. However, since we subtract only a bounded part of the profit from the distance value in (26), the algorithm still works correctly. Note that one can extend the algorithm to cover the case of equality for edge deletion. In this case, one also needs to check whether (26) is satisfied with equality if $w \in N\left(v_{0}\right)$. In practice, one should bound the maximum number of visited edges. Additionally, one can abort the algorithm if $\min _{u \in Q} \tilde{d}[u]>\max _{e \in \delta\left(v_{0}\right)} c(e)$.

The above algorithm is also useful for finding a simple path between endpoints of an edge that is not longer than the edge itself. Other authors, e.g. [19, 33, suggest to run a shortest path algorithm from both endpoints of each edge of the given SPG for this purpose. However, running the above algorithm from each vertex is usually considerably faster in practice.

2.4 Bottleneck Steiner reductions beyond edge deletion

This section discusses applications of the implied bottleneck Steiner distance that allow for additional reduction operations: Edge contraction and node replacement. We start with the former. For an edge e and vertices v, w define $b_{e}(v, w)$ as the bottleneck distance between v and w on $(V, E \backslash\{e\}, c)$. With this definition, we define a generalization of the classic NSV reduction test from [10].
Proposition 5. Let $\{v, w\} \in E$ and $t_{i}, t_{2} \in T, t_{1} \neq t_{2}$. If

$$
\begin{equation*}
s_{p}\left(v, t_{1}\right)+c(\{v, w\})+s_{p}\left(w, t_{2}\right) \leq b_{\{v, w\}}\left(t_{1}, t_{2}\right) \tag{27}
\end{equation*}
$$

then there is a minimum Steiner tree S with $\{v, w\} \in E(S)$.

Proof. Assume there is an optimal solution S such that $\{v, w\} \notin E(S)$. Remove from $E(S)$ an edge on the (unique) path between t_{1} and t_{2} in S of maximum cost. This operation results in two disjoint trees: S_{1} with $t_{1} \in S_{i}$ and S_{2} with $t_{2} \in S_{j}$. By definition of $b_{\{v, w\}}\left(t_{1}, t_{2}\right)$ it holds that

$$
\begin{equation*}
c\left(E\left(S_{1}\right)\right)+c\left(E\left(S_{2}\right)\right)+b_{\{v, w\}}\left(t_{1}, t_{2}\right) \leq c(E(S)) \tag{28}
\end{equation*}
$$

In the following, we will show how to reconnect S_{1} and S_{2} to a Steiner tree \tilde{S} such that $\{v, w\} \in E(\tilde{S})$ and $c(E(\tilde{S})) \leq c(E(S))$, which concludes the proof. We will proceed similarly to the proof of Theorem 2 however, we will use two Steiner walks instead of one. Initially, we define $\tilde{S}:=S_{1} \cup S_{2}$, and modify \tilde{S} in the following.

First, add edge $\{v, w\}$ to \tilde{S}. Next, consider a $\left(t_{1}, v\right)$-path P in $D^{+}:=D_{G}\left(T \cup\left\{t_{1}, v\right\}, d_{p}^{+}\right)$ such that $b l_{D^{+}}(P)=b_{D^{+}}\left(t_{1}, v\right)$. Let $\left\{t, t^{\prime}\right\}$ be an edge on P such that $t \in V\left(S_{1}\right)$ and $t^{\prime} \notin V\left(S_{1}\right)$ (where t and t^{\prime} are considered in the original SPG). Note that such an edge must exist because $t_{1} \in T \cap V\left(S_{1}\right)$. By the definition of the bottleneck length it holds that

$$
\begin{equation*}
d_{p}^{+}\left(t, t^{\prime}\right) \leq s_{p}\left(t_{1}, v\right) \tag{29}
\end{equation*}
$$

Let $W_{1} \in \mathcal{W}_{T}\left(t_{1}, v\right)$ such that

$$
\begin{equation*}
l_{p}^{+}\left(W_{1}\right)=d_{p}^{+}\left(t_{1}, v\right) \tag{30}
\end{equation*}
$$

Assume that W_{1} is given as $W_{1}=\left(v_{1}, e_{1}, \ldots, e_{r-1}, v_{r}\right)$. Define $b_{1}:=\min \left\{k \in\{1, \ldots, r\} \mid v_{k} \in V(\tilde{S} \backslash\right.$ $\left.\left.S_{1}\right)\right\}$ and $a_{1}:=\max \left\{k \in\left\{1, \ldots, b_{1}\right\} \mid v_{k} \in V\left(S_{1}\right)\right\}$. Further, define $x_{1}:=\max \left\{k \in\left\{1, \ldots, a_{1}\right\} \mid\right.$ $\left.v_{k} \in P_{W_{1}}^{+}\right\}$and $y_{1}:=\min \left\{k \in\left\{b_{1}, \ldots, r\right\} \mid v_{k} \in P_{W_{1}}^{+}\right\}$. By definition, $x_{1} \leq a_{1}<b_{1} \leq y_{1}$.

In a symmetric way (with respect to S_{2} and w), choose a walk $W_{2} \in \mathcal{W}_{T}\left(t_{2}, w\right)$ and indices $a_{2}, b_{2}, x_{2}, y_{2}$. Consider two cases.

First, assume that $W_{1}\left(a_{1}, b_{1}\right)$ and $W_{2}\left(a_{2}, b_{2}\right)$ do not have any vertices in common. In this case, define, with a slight abuse of notation, $W:=W_{1}\left(a_{1}, b_{1}\right) \cup W_{2}\left(a_{2}, b_{2}\right)$. Let $v_{1}^{+}, v_{2}^{+}, \ldots, v_{z}^{+}$ be the vertices in $P_{W}^{+} \backslash\left\{v_{a_{1}}, v_{b_{1}}, v_{a_{2}}, v_{b_{2}}\right\}$. Choose for each $i=1, \ldots, z$ an edge $e_{i}^{+} \in \delta\left(v_{i}^{+}\right) \backslash$ $\delta_{W_{1}\left(x_{1}, y_{1}\right) \cup W_{2}\left(x_{2}, y_{2}\right)}\left(v_{i}^{+}\right)$such that $e_{i}^{+} \cap T \neq \emptyset$ and

$$
\begin{equation*}
\bar{b}\left(e_{i}^{+}\right)-c\left(e_{i}^{+}\right)=p^{+}\left(v_{i}^{+}, \delta\left(v_{i}^{+}\right) \backslash \delta_{W_{1}\left(x_{1}, y_{1}\right) \cup W_{2}\left(x_{2}, y_{2}\right)}\right) . \tag{31}
\end{equation*}
$$

Note that all e_{i}^{+}are pairwise disjoint. Thus, one can proceed as in Theorem 2 to reconnect \tilde{S}. If $\{v, w\}$ is not connected to another edge in \tilde{S}, remove it from \tilde{S}. However, in this case (28), (27), and $c(\{v, w\})>0$ imply

$$
\begin{equation*}
c(E(\tilde{S})) \leq c\left(E\left(S_{1}\right)\right)+c\left(E\left(S_{2}\right)\right)+s_{p}\left(t_{1}, v\right)+s_{p}\left(t_{2}, w\right)<c(E(S)) \tag{32}
\end{equation*}
$$

Otherwise, because of 28), and 27), we obtain

$$
\begin{equation*}
c(E(\tilde{S})) \leq c\left(E\left(S_{1}\right)\right)+c\left(E\left(S_{2}\right)\right)+s_{p}\left(t_{1}, v\right)+s_{p}\left(t_{2}, w\right)+c(\{v, w\}) \leq c(E(S)) \tag{33}
\end{equation*}
$$

Second, assume that $W_{1}\left(a_{1}, b_{1}\right)$ and $W_{2}\left(a_{2}, b_{2}\right)$ have at least one vertex in common. Let q be the first vertex in $W_{1}\left(a_{1}, b_{1}\right)$ such that $q \in V\left(W_{2}\left(a_{2}, b_{2}\right)\right)$. Build a new Steiner walk W_{3} by appending the walks $W_{1}\left(a_{1}, q\right)$ and $W_{2}\left(a_{2}, q\right)$. It holds that

$$
\begin{equation*}
l_{p}^{+}\left(W_{3}\right) \leq l_{p}^{+}\left(W_{1}\right)+l_{p}^{+}\left(W_{2}\right) \tag{34}
\end{equation*}
$$

Now, we can use the Steiner walk W_{3} to connect S_{1} and S_{2} as in the proof of Theorem 2 Let \tilde{S} be the resulting Steiner tree. Because of (34), (28), 27), and $c(\{v, w\})>0$ we obtain

$$
\begin{equation*}
c(E(\tilde{S})) \leq c\left(E\left(S_{1}\right)\right)+c\left(E\left(S_{2}\right)\right)+s_{p}\left(t_{1}, v\right)+s_{p}\left(t_{2}, w\right)<c(E(S)) \tag{35}
\end{equation*}
$$

which concludes the proof.

If criterion (27) is satisfied, one can contract edge $\{v, w\}$ and make the resulting vertex a terminal. The original criterion from [10] uses the standard distance in (27) instead of the implied bottleneck Steiner distance. We note that using the (standard) bottleneck Steiner distance in (27) does not improve the original test. However, using the implied bottleneck Steiner distance leads to a strictly stronger criterion, as the example in Figure 3 shows. Note that $b_{\left\{t_{1}, v_{1}\right\}}\left(t_{1}, t_{3}\right)=2$ and $s_{p}\left(v_{1}, t_{3}\right)=1$. Thus, 27) is satisfied for edge $\left\{t_{1}, v_{1}\right\}$ and terminals t_{1}, t_{3}.

Figure 3: Segment of a Steiner tree instance. Terminals are drawn as squares. The dashed edge can be contracted by employing Proposition 5 .

The following proposition allows one to identify edges that are candidates for edge contraction. Afterwards, the bottleneck distances can be computed for all these edges in $O(m+n \log n)$ amortized time [9].

Proposition 6. Let $\{v, w\} \in E$ and $t_{i}, t_{j} \in T, t_{i} \neq t_{j}$. If 27) holds, then there is a minimum spanning tree $S_{M S T}$ on (V, E, c) such that $\{v, w\} \in E\left(S_{M S T}\right)$.

Proof. Assume there is a spanning tree S such that $\{v, w\} \notin S$. Remove from $E(S)$ an edge on the (unique) path between t_{i} and t_{j} in S of maximum cost. By definition of $b_{\{v, w\}}\left(t_{i}, t_{j}\right)$ it holds that

$$
\begin{equation*}
c\left(E\left(S_{i}\right)\right)+c\left(E\left(S_{j}\right)\right)+b_{\{v, w\}}\left(t_{i}, t_{j}\right) \leq c(E(S)) \tag{36}
\end{equation*}
$$

This operation results in two disjoint trees: S_{i} with $t_{i} \in S_{i}$ and S_{j} with $t_{j} \in S_{j}$. If v and w are in different trees, one can add $\{v, w\}$ to connect S_{i} and S_{j} and obtain a spanning tree of no higher cost than S. Otherwise, assume that $v, w \in V\left(S_{j}\right)$. Let W_{i} be a Steiner walk from v to t_{i} with $l_{p}^{+}\left(W_{i}\right)=s_{p}\left(v, t_{i}\right)$. There is at least one edge $\{p, q\} \in E\left(W_{i}\right)$ such that $p \in V\left(S_{i}\right)$ and $q \in V\left(S_{j}\right)$. By definition it holds that $c(\{p, q\}) \leq l_{p}^{+}\left(W_{i}\right)$. Thus, one can add both $\{p, q\}$ and $\{v, w\}$ to S_{i}, S_{j} to obtain a connected spanning subgraph S^{\prime}. Because of condition (27) and (36) it holds that

$$
\begin{equation*}
c\left(E\left(S^{\prime}\right)\right) \leq c(E(S)) \tag{37}
\end{equation*}
$$

Delete any edge other than $\{v, w\}$ on the cycle in $E\left(S^{\prime}\right)$ that includes $\{v, w\}$. In this way one obtains a spanning tree $S^{\prime \prime}$ of no higher cost than S.

This section closes with a reduction criterion based on the standard bottleneck Steiner distance. Besides being a new technique, this result also serves to highlight the complications that arise if one attempts to formulate similar conditions based on the implied bottleneck Steiner distance.

Proposition 7. Let $D:=D_{G}(T, d)$. Let Y be a minimum spanning tree in D. Write its edges $\left\{e_{1}^{Y}, e_{2}^{Y}, \ldots, e_{|T|-1}^{Y}\right\}:=E(Y)$ in non-ascending order with respect to their weight in D. Let $v \in V \backslash T$. If for all $\Delta \subseteq \delta(v)$ with $|\Delta| \geq 3$ it holds that:

$$
\begin{equation*}
\sum_{i=1}^{|\Delta|-1} d\left(e_{i}^{Y}\right) \leq \sum_{e \in \Delta} c(e) \tag{38}
\end{equation*}
$$

then there is at least one minimum Steiner tree S such that $\left|\delta_{S}(v)\right| \leq 2$.
If the conditions (38) are satisfied for a vertex $v \in V \backslash T$, one can pseudo-eliminate [10] or replace [31] vertex v, i.e., delete v and connect any two vertices $u, w \in N(v)$ by a new edge $\{u, w\}$ of weight $c(\{v, u\})+c(\{v, w\})$.

The SPG depicted in Figure 4 exemplifies why Proposition 7 cannot be formulated by using the implied Steiner distance. The weight of the minimum spanning tree Y for $D_{G}(T, d)$ is 4 , but the weight of a minimum spanning tree with respect to the implied bottleneck Steiner distance is 2. Similarly also the $B D_{m}$ reduction technique from [10] cannot be directly formulated by using the implied bottleneck distance. Still, it is possible to formulate a similar criterion that makes use of the implied bottleneck distance. Unfortunately, both the result and the corresponding proof are more involved than those of their edge elimination counterparts (see Theorem 22). Thus, we omit the details here. The important point is to make sure that the selected Steiner walks do not overlap at vertices with a positive implied profit. However, these techniques have not been implemented yet.

Figure 4: SPG instance. Terminals are drawn as squares

3 From reductions to conflicts

This section shows an additional advantage of the just introduced node replacement reduction: The creation of conflicts between the newly inserted edges. Furthermore, a new replacement operation is introduced. We say that a set $E^{\prime} \subseteq E$ with $\left|E^{\prime}\right| \geq 2$ is in conflict if no minimum Steiner tree contains more than one edge of E^{\prime}.

3.1 Node replacement

Unfortunately, this section requires some additional technicalities regarding reduction methods. Recall that we have seen three types of reductions so far: Edge deletion, edge contraction, and node replacement. For simplicity, we assume in the following that a reduction is only performed if it retains all optimal solutions. E.g., we only delete an edge if we can show that there is no minimum Steiner tree that contains this edge. We say that such a reduction is valid. We start with an SPG instance $I=(G, T, c)$, and consider a series of subsequent, valid reductions (of one of the three above types) that are applied to I. In each reduction step $i \geq 0$, the current instance $I^{(i)}=\left(G^{(i)}, T^{(i)}, c^{(i)}\right)$ is transformed to instance $I^{(i+1)}=\left(G^{(i+1)}, T^{(\overline{i+1)}}, c^{(i+1)}\right)$. We
set $I^{(0)}:=I$. We define ancestor information for each $i=0,1, \ldots, k$ by $\Pi^{(i)}: E^{(i)} \rightarrow \mathcal{P}(E)$ and $\Pi_{F I X}^{(i)} \subseteq E$. We set $\Pi^{(0)}(e):=\{e\}$ for all $e \in E$, and $\Pi_{F I X}^{(0)}=\emptyset$. Consider a reduced instance $I^{(i)}$. If we contract an edge $e \in E^{(i)}$, we set $\Pi_{F I X}^{(i+1)}:=\Pi_{F I X}^{(i)} \cup \Pi^{(i)}(e)$; otherwise, we set $\Pi_{F I X}^{(i+1)}:=\Pi_{F I X}^{(i)}$. If we replace a vertex $v \in V^{(i)}$, we set for each newly inserted edge $\{u, w\}$-with $u, w \in N(v)-\Pi^{(i+1)}(\{u, w\}):=\Pi^{(i)}(\{v, u\}) \cup \Pi^{(i)}(\{v, w\})$. For all other remaining edges e we set $\Pi^{(i+1)}(e):=\Pi^{(i)}(e)$. Overall, one observes the following.
Observation 1. Let I be an $S P G$ and let $I^{(k)}$ be the $S P G$ obtained from performing a series of k valid reductions on I. For any Steiner tree $S^{(k)}$ for $I^{(k)}$, the tree S with

$$
E(S)=\bigcup_{e \in E^{(k)}} \Pi^{(k)}(e) \cup \Pi_{F I X}^{(k)}
$$

is a Steiner tree for I, and it holds that

$$
c(E(S))=c^{(k)}\left(E^{(k)}\left(S^{(k)}\right)\right)+c\left(\Pi_{F I X}^{(k)}\right) .
$$

Furthermore, if $S^{(k)}$ is optimal for $I^{(k)}$, then S is optimal for I.
[34] observed that two edges that originate from a common edge by a series of replacements cannot both be contained in a minimum Steiner tree. Using the above notation, we can formulate the condition as follows: If $e_{1}, e_{2} \in E^{(k)}$ satisfy $\Pi^{(k)}\left(e_{1}\right) \cap \Pi^{(k)}\left(e_{2}\right) \neq \emptyset$, then there is no minimum Steiner tree that contains both e_{1} and e_{2}. As we will see in Section 4 , such conflict information can be used for further reductions.

In the following, we will introduce an edge conflict criterion that is strictly stronger than the one from [34. Initially, we define additional ancestor information for each $i=0,1, \ldots, k$. Namely, sets of replacement ancestors $\Lambda^{(i)}: E^{(i)} \rightarrow \mathcal{P}(\mathbb{N})$, and $\Lambda_{F I X}^{(i)} \in \mathcal{P}(\mathbb{N})$. We set $\Lambda^{(0)}(e):=\emptyset$ for all $e \in E$, and $\Lambda_{F I X}^{(0)}:=\emptyset$. Further, we define $\lambda^{(0)}:=0$. Consider a reduced instance $I^{(i)}$. If we contract an edge $e \in E^{(i)}$, we set $\Lambda_{F I X}^{(i+1)}:=\Lambda_{F I X}^{(i)} \cup \Lambda^{(i)}(e)$. If we replace a vertex $v \in V^{(i)}$, we set $\lambda^{(i+1)}:=\lambda^{(i)}+1$. Further, we define the replacement ancestors for each newly inserted edge $\{u, w\}$, with $u, w \in N(v)$, as follows:

$$
\Lambda^{(i+1)}(\{u, w\}):=\Lambda^{(i)}(\{v, u\}) \cup \Lambda^{(i)}(\{v, w\}) \cup\left\{\lambda^{(i)}\right\}
$$

If no node replacement is performed, we set $\lambda^{(i+1)}:=\lambda^{(i)}$.
Proposition 8. Let I be an SPG and let $I^{(k)}$ be the SPG obtained from performing a series of k valid reductions on I. Further, let $e_{1}, e_{2} \in E^{(k)}$. If $\Lambda^{(k)}\left(e_{1}\right) \cap \Lambda^{(k)}\left(e_{2}\right) \neq \emptyset$, then no minimum Steiner tree $S^{(k)}$ for $I^{(k)}$ contains both e_{1} and e_{2}.
Proof. Suppose that there is a minimum Steiner tree $S^{(k)}$ with $e_{1}, e_{2} \in E^{(k)}\left(S^{(k)}\right)$. Let $x \in$ $\Lambda^{(k)}\left(e_{1}\right) \cap \Lambda^{(k)}\left(e_{2}\right)$. Let i be the first reduction iteration with $\lambda^{(i)}=x$. We may assume that $i=1$. Otherwise, we can define additional ancestor information $\bar{\Pi}$ and $\bar{\Lambda}$ starting from $I^{(i-1)}$, and perform the reductions from iteration i to iteration k. Let v be the vertex that is replaced in iteration $i=1$. Note that $x=\lambda^{(1)}=1$. From Observation 1 we know that the tree S defined by $E(S)=\bigcup_{e \in E^{(k)}} \Pi^{(k)}(e) \cup \Pi_{F I X}^{(k)}$ is a minimum Steiner tree for I. However, because of $\lambda^{(1)} \in \Lambda^{(k)}\left(e_{1}\right) \cap \Lambda^{(k)}\left(e_{2}\right)$, we have that $\left|\left(\Pi^{(k)}\left(e_{1}\right) \cup \Pi^{(k)}\left(e_{2}\right)\right) \cap \delta_{S}(v)\right| \geq 3$. This implies however, that replacing v is not valid-a contradiction.

Corollary 9. Let $I, I^{(k)}$ as in Proposition 8, and let $e \in E^{(k)}$. If $\Lambda^{(k)}(e) \cap \Lambda_{F I X}^{(k)} \neq \emptyset$, then no minimum Steiner tree $S^{(k)}$ for $I^{(k)}$ contains e.

Note that any edge e as in Corollary 9 can be deleted.

3.2 Edge replacement

This subsection introduces a new replacement operation, whose primary benefit lies in the conflicts it creates. We start with a condition that allows us to perform this operation.

Proposition 10. Let $e=\{v, w\} \in E$ with $e \cap T=\emptyset$. Define

$$
\mathcal{D}:=\{\Delta \subseteq(\delta(v) \cup \delta(w)) \backslash\{e\} \mid \Delta \cap \delta(v) \neq \emptyset, \Delta \cap \delta(w) \neq \emptyset\}
$$

For any $\Delta \in \mathcal{D}$ let

$$
U_{\Delta}:=\{u \in V \mid\{u, v\} \in \Delta \vee\{u, w\} \in \Delta\} .
$$

If for all $\Delta \in \mathcal{D}$ with $|\Delta| \geq 3$ the weight of a minimum spanning tree on $D_{G}\left(U_{\Delta}, s\right)$ is smaller than $c(\Delta)$, then each minimum Steiner tree S satisfies $\left|\delta_{S}(v)\right| \leq 2$ and $\left|\delta_{S}(w)\right| \leq 2$.

The proposition can be proven by using Corollary 12, which will be introduced in Section 4 . If the condition of Proposition 10 is successful, we can perform what we will call a path replacement of e : We delete e and add for each pair $p, q \in V$ with $p \in N(v) \backslash\{w\}, q \in N(w)) \backslash\{v\}, p \neq q$ an edge $\{p, q\}$ with weight $c(\{p, v\})+c(\{v, w\})+c(\{q, w\})$. At first glance, the apparent increase in the number of edges by this operation seems highly disadvantageous. However, due to the increased weight, the new edges can often be deleted by using the criterion from Theorem 2 Furthermore, an edge does not need to be inserted if any two of the three edges it originates from have a common replacement ancestor. Indeed, we only perform a path replacement if at most one of the new edges needs to be inserted. The case that all new edges can be deleted is in principle also covered by the extended reduction technique introduced in the next section (albeit being potentially far more expensive). If exactly one new edge remains, we create new replacement ancestors as follows: Let $\hat{e}=\{p, q\}$ be the newly inserted edge. Initially, set $\lambda^{(i+1)}:=\lambda^{(i)}$ and $\Lambda^{(i+1)}(\hat{e}):=\Lambda^{(i)}(\{p, v\}) \cup \Lambda^{(i)}(\{v, w\}) \cup \Lambda^{(i)}(\{v, q\})$. Next, for each $e^{\prime} \in(\delta(v) \cup \delta(w)) \backslash\{e\}$ increment $\lambda^{(i+1)}$, and add $\lambda^{(i+1)}$ to $\Lambda^{(i+1)}(\hat{e})$ and $\Lambda^{(i+1)}\left(e^{\prime}\right)$. One can show that Proposition 8 remains valid if path replacement is added to the list of valid reduction operations.

Figure 5 illustrates an application of Proposition 10. In this example, all but one replacement edges can be deleted by using a simple alternative path argument. While the number of edges remains unchanged, six new conflicts are created.

Figure 5: Segment of a Steiner tree instance (showing only non-terminals). All edges except for the dashed ones have unit weight. The dashed edge in (5a) has been replaced in (5bb). All edges that are in conflict with the replacement edge in (5b) are drawn in bold.

4 From Steiner distances and conflicts to extended reduction techniques

At the end of the last section we have seen a reduction method that inspects a number of trees (of depth 3) that extend an edge considered for replacement. This section continues along this path, based on the reduction concepts introduced so far.

Given a tree Y (e.g. a single edge), extended reduction techniques use an enumeration of trees that contain Y to show that there is an optimal Steiner tree that does not contain Y. The trees are built by iteratively enlarging or extending Y. During this process, reduction, conflict, and implication techniques are employed to rule out these extensions of Y. In this way, extended reduction techniques are loosely related to the concepts of probing and conflict (graph) analysis for MIP, see e.g. [1, 41].

The idea of extension was first introduced in 47] for the rectilinear Steiner tree problem. Later the idea was adopted by [44 for the SPG. The next advancement came in [11], where backtracking was used, together with a number of new reduction criteria for the enumerated trees. Finally, 34 introduced the up-to-now strongest extended reduction techniques, which improved and complemented the previous results. The authors showed that their sophisticated algorithm could drastically reduce the size of many benchmark SPG instances, and even allowed for the solution of previously intractable instances.

In the following, we introduce new extended reduction algorithms that (provably) dominate those by 34.

4.1 The framework

For a tree Y in G, let $L(Y) \subseteq V(Y)$ be the set of its leafs. We start with several definitions from 34]. Let Y^{\prime} be a tree with $Y^{\prime} \subseteq Y$. The linking set between Y and Y^{\prime} is the set of all vertices $v \in V\left(Y^{\prime}\right)$ such that there is a path $Q \subseteq Y$ from v to a leaf of Y with $V(Q) \cap V\left(Y^{\prime}\right)=\{v\}$. Note that Q can consist of a single vertex. Y^{\prime} is peripherally contained in Y if the linking set between Y and Y^{\prime} is $L\left(Y^{\prime}\right)$. Figure 6 exemplifies this concept. To motivate those definitions, consider a path Q without inner terminals between vertices v and w. For Q to not be peripherally contained in a minimum Steiner tree it is sufficient that $s(v, w)$ is smaller than the weight of Q. However, this condition is not sufficient to show that Q is not contained in a minimum Steiner tree. However, if Q is indeed contained in a minimum Steiner tree, at least one of its inner vertices needs to be of degree greater 2 in this tree. Thus, we can exploit this observation to enumerate extensions of Q from those inner vertices and attempt to rule those extensions out. Such kind of deductions are used in extended reduction techniques.

For any $P \subseteq V(Y)$ with $|P|>1$ let Y_{P} be the union of the (unique) paths between any $v, w \in P \cup V(Y)$ in Y. Note that Y_{P} is a tree, and that $Y_{P} \subseteq Y$ holds. P is called pruning set if it contains the linking set between Y_{P} and Y. Additionally, we will use the following new definition: P is called strict pruning set if it is equal to the linking set between Y_{P} and Y. Figure 7 provides an example of pruning and strict pruning sets. One readily verifies the following property of pruning sets.

Observation 2. Let Y be a tree, and let $Y^{\prime} \subseteq Y$ be a tree that is peripherally contained in Y. Further, let $P \subseteq V\left(Y^{\prime}\right)$. If P is a pruning set for Y^{\prime}, then P is also a pruning set for Y. If P is a strict pruning set for Y^{\prime}, then P is also a strict pruning set for Y.

Additionally, we define a stronger, and new, inclusion concept. Consider a tree $Y \subseteq G$, and a subtree Y^{\prime}. Let P be a pruning set for Y^{\prime}. We say that Y^{\prime} is P-peripherally contained in Y if P is a pruning set for Y. Now let P be a strict pruning set for Y^{\prime}. We say that Y^{\prime} is strictly

(a) Peripherally contained tree

(b) Not peripherally contained tree

Figure 6: Illustration of peripherally inclusion. The bold subtree is peripherally contained in the entire tree in Figure 6a, but not in Figure 6b.

(a) Pruning set

(b) Strict pruning set

Figure 7: Illustration of pruning and strict pruning sets. The filled vertices in Figure 7 a form a (non-strict) pruning set, whereas the filled vertices in Figure 7 b constitute a strict pruning set.
P-peripherally contained in Y if P is a strict pruning set for Y. From Observation 2 one obtains the following important property.

Observation 3. Let $Y \subseteq G$ be a tree, let $Y^{\prime} \subseteq Y$ be a subtree, and let P be a pruning set for Y^{\prime}. If Y^{\prime} is peripherally contained in Y, then Y^{\prime} is also P-peripherally contained in Y.

In fact, we will use the contraposition of the observation: If Y^{\prime} is not P-peripherally contained in Y, then Y^{\prime} is not peripherally contained in Y. Note that an equivalent property holds for strict pruning sets.

Given a tree Y and a set $E^{\prime} \subseteq E$, we write with a slight abuse of notation $Y+E^{\prime}$ for the subgraph with the edge set $E(Y) \cup E^{\prime}$. Algorithm 1 shows a high level description of the extended reduction framework used in this article. The framework is similar to the one introduced in 34, but more general $/ 2$ Note that the algorithm is recursive.

A possible input for Algorithm 1 is an SPG instance together with a single edge. If the algorithm returns true, the edge can be deleted. Besides ExtensionSets, which is described in Algorithm 2, the extended reduction framework contains the following subroutines:

[^1]- RuledOut (I, Y, P) is given an SPG $I=(G, T, c)$, a tree $Y \subseteq G$, and a pruning set P for Y such that $V\left(Y_{P}\right) \cap T \subseteq L\left(Y_{P}\right)$. The routine returns true if Y is shown to not be P-peripherally contained in any minimum Steiner tree. Otherwise, the routine returns false.
- RuledOutStrict (I, Y, P) is given an $\operatorname{SPG} I=(G, T, c)$, a tree $Y \subseteq G$, and a strict pruning set P for Y such that $V\left(Y_{P}\right) \cap T \subseteq L\left(Y_{P}\right)$. The routine returns true if Y is shown to not be strictly P-peripherally contained in any minimum Steiner tree. Otherwise, the routine returns false.
- $\operatorname{StrictPruningSets}(I, Y)$ is given an SPG $I=(G, T, c)$, a tree $Y \subseteq G$. It returns a subset of all strict pruning sets for Y. A typical strict pruning set is $L(Y)$.
- Truncate (I, Y) is given an $\operatorname{SPG} I=(G, T, c)$, and a tree $Y \subseteq G$. The routine returns true if no further extensions of Y should be performed; otherwise the routine returns false.
- Promising (I, Y, v) is given an $\operatorname{SPG} I=(G, T, c)$, a tree $Y \subseteq G$, and a vertex $v \in L(Y)$. The routine returns true if further extensions of Y from v should be performed; otherwise the routine returns false.

The usage of P-peripheral inclusion in RuledOut might appear somewhat awkward, but is necessary for ruling-out not only trees (as in line 2 of Algorithm 1), but also all possible extension via a single edge (as in line 4 of Algorithm 2).

```
Algorithm 1: Extended-RuledOut
    Data: SPG instance \(I=(G, T, c)\), tree \(Y\) with \(Y \cap T \subseteq L(Y)\)
    Result: true if \(Y\) is shown to not be peripherally contained in any minimum Steiner
                tree; false otherwise
    foreach \(P \in \operatorname{StrictPruningSets}(I, Y)\) do
        if RuledOutStrict \((I, Y, P)\) then return true
    end
    if Truncate \((I, Y)\) then return false
    foreach \(v \in L(Y)\) do
        if \(v \in T\) or not Promising \((I, Y, v)\) then continue
        success \(:=\) true
        foreach \(E^{\prime} \in \operatorname{ExtensionSets}(I, Y, v)\) do
            if not Extended-RuledOut \(\left(I, Y+E^{\prime}\right)\) then
                    success \(:=\) false
                    break
            end
        end
        if success then return true
    end
    return false
```

```
Algorithm 2: ExtensionSets
    Data: SPG instance \(I=(G, T, c)\), tree \(Y\), vertex \(v \in V(Y)\)
    Result: Set \(\Gamma \subseteq \mathcal{P}(\delta(v))\) such that for all non-empty \(\gamma \in \mathcal{P}(\delta(v)) \backslash \Gamma\), the tree \(Y+\rho\) is
                not peripherally contained in any minimum Steiner tree.
    \(Q:=\emptyset\)
    \(R:=\emptyset\)
    foreach \(e:=\{v, w\} \in \delta(v) \backslash E(Y)\) do
        if \(\operatorname{RuledOut}(I, Y+\{e\}, L(Y) \cup\{w\})\) then
                continue
        end
        if RuledOutStrict \((I, Y+\{e\}, L(Y) \cup\{w\})\) then
                \(R:=R \cup\{e\}\)
                continue
        end
        \(Q:=Q \cup\{e\}\)
    end
    return \((\mathcal{P}(Q) \backslash \emptyset) \cup R\)
```

In Lines 113 of Algorithm 11, we try to peripherally rule-out tree Y. If that is not possible, we try to recursively extend Y in Lines 515 Since (given positive edge weights) no minimum Steiner tree has a non-terminal leaf, we can extend from any of the non-terminal leaves of Y. Note that ruling-out all extensions along one single leaf is sufficient to rule-out Y. The correctness of Extended-RuledOut can be proven by induction (under the assumption that the subroutines are correct). We also remark that it is under certain conditions possible to replace the condition not peripherally contained in any minimum Steiner tree by the condition not peripherally contained in at least one minimum Steiner tree. See also the discussion following Theorem 11

Although the extended reduction framework shown in Algorithm 1 looks simple, an efficient realization is highly intricate. Not least, because the interaction of many different algorithmic components needs to be taken into account. Also, the re-use of intermediate results obtained during the tree extension (such as bottleneck Steiner distances) is non-trivial. Indeed, the implementation of extended reduction techniques for this article encompasses more than 20000 lines of C code. We just note here that we have only implemented extensions in a depth-first-search manner. I.e., we extend only from leaves that are farthest away from the initial tree Y. A stronger, but potentially more expensive, alternative is to employ full backtracking, as partially done in 34. In the following, we concentrate on mathematical descriptions of the subroutines for ruling-out enumerated trees.

4.2 Reduction criteria

In this section we introduce several elimination criteria used within Ruledout and RuledOutStrict. In fact, both of these routines consist of several subalgorithms that check different criteria for eliminating the given tree. Note that any criterion that is valid for RuledOut is also valid for RuledOutStrict. We also note that several of the criteria in this section are similar to results from [31, 34, but are all stronger. Throughout this section we consider a graph $G=(V, E)$ and an SPG instance $I=(G, T, c)$.

Consider a tree $Y \subseteq G$, and a pruning set P for Y such that $V\left(Y_{P}\right) \cap T \subseteq L\left(Y_{P}\right)$. For each $p \in P$ let $\bar{Y}_{p} \subset Y$ such that $V\left(\bar{Y}_{p}\right)$ is exactly the set of vertices $v \in V(Y)$ that satisfy the following: For any $q \in P \backslash\{p\}$ the (unique) path in Y from v to q contains p. Note that when
removing $E\left(Y_{P}\right)$ from Y, each non-trivial connected component equals one \bar{Y}_{p}. Further, note that $p \in V\left(\bar{Y}_{p}\right)$ for all $p \in P$. Let $G_{Y, P}=\left(V_{Y, P}, E_{Y, P}\right)$ be the graph obtained from $G=(V, E)$ by contracting for each $p \in P$ the subtree \bar{Y}_{p} into p. For any parallel edges, we keep only one of minimum weight. We identify the contracted vertices $V\left(\bar{Y}_{p}\right)$ with the original vertex p. Overall, we thus have $V_{Y, P} \subseteq V$. Let $c_{Y, P}$ be the edge weights on $G_{Y, P}$ derived from c. Let

$$
\begin{equation*}
T_{Y, P}:=\left(T \cap V_{Y, P}\right) \cup\left\{p \in P \mid T \cap V\left(\bar{Y}_{p}\right) \neq \emptyset\right\} . \tag{39}
\end{equation*}
$$

Finally, let $s_{Y, P}$ be the bottleneck Steiner distance on $\left(G_{Y, P}, T_{Y, P}, c_{Y, P}\right)$. With these definitions at hand, we are able to formulate a reduction criterion that generalizes a number of results from the literature. See [19, 31 for similar, but weaker, conditions.

Theorem 11. Let $Y \subseteq G$ be a tree, and let P be a pruning set for Y such that $V\left(Y_{P}\right) \cap T \subseteq$ $L\left(Y_{P}\right)$. Let $I_{Y, P}$ be the $S P G$ on the distance network $D_{G_{Y, P}}\left(V_{Y, P}, s_{Y, P}\right)$ with terminal set P. If the weight of a minimum Steiner tree for $I_{Y, P}$ is smaller than $c\left(E\left(Y_{P}\right)\right)$, then Y is not P peripherally contained in any minimum Steiner tree for I.

Proof. Let S be a (not necessarily minimum) Steiner tree for I such that Y is P-peripherally contained in S. Let $S_{Y, P}$ be a minimum Steiner tree for $I_{Y, P}$. The underlying idea of the proof is as follows: First, we remove Y_{P} from S. Next, we interconnect all vertices in P. Because of the assumptions of the theorem, this procedure also reconnects S. To obtain a tree that is of smaller weight than S, we use only edges for the reconnection that correspond to edges of $S_{Y, P}$.

Let $\tilde{S} \subset G$ be the forest defined as follows:

$$
\begin{align*}
& V(\tilde{S}):=\left(V(S) \backslash V\left(Y_{P}\right)\right) \cup V\left(S_{Y, P}\right) \tag{40}\\
& E(\tilde{S}):=E(S) \backslash E\left(Y_{P}\right) \tag{41}
\end{align*}
$$

Let $\tilde{\mathcal{C}}$ be the set of connected components of \tilde{S}. Further, let $f: V \rightarrow \tilde{\mathcal{C}} \cup\{\emptyset\}$ such that $f(v)=\tilde{C}$ if $v \in V(\tilde{C})$ for a $\tilde{C} \in \tilde{\mathcal{C}}$, and $f(v)=\emptyset$ otherwise. Note that each $\tilde{C} \in \tilde{\mathcal{C}}$ contains at least one vertex of P, and thus also at least one vertex of $S_{Y, P}$. Also, $f(v) \neq \emptyset$ for all $v \in V\left(S_{Y, P}\right)$. Further, note that for each of the contracted subtrees \bar{Y}_{p} there is a $\tilde{C} \in \tilde{\mathcal{C}}$ with $\bar{Y}_{p} \subseteq \tilde{C}$. In the following, we will iteratively connect all the components in $\tilde{\mathcal{C}}$.

While $|\tilde{\mathcal{C}}|>1$ proceed as follows. Choose a $(v, w) \in E\left(S_{Y, P}\right)$ with $f(v) \neq f(w)$ such that $s_{Y, P}(v, w)$ is minimized. Let W be a (v, w)-walk in $G_{Y, P}$ corresponding to $s_{Y, P}(v, w)$. Because of $f(v) \neq f(w)$, there is at least one subwalk $Q=W(q, r)$ of W such that $f(q), f(r) \neq \emptyset$, $f(q) \neq f(r)$, and $f(u)=\emptyset$ for all $u \in V(Q) \backslash\{q, r\}$. Note that $c(E(Q)) \leq s_{Y, P}(v, w)$, because $f(t) \neq \emptyset$ for all $t \in T$. As long as such a path Q exists, proceed as follows. Add Q to \tilde{S}, and remove from $E\left(S_{Y, P}\right)$ an (arbitrary) edge of the path between $f(q)$ and $f(r)$ in $S_{Y, P}$. Also, update $\tilde{\mathcal{C}}$ and f. Note that the weight of the removed edge (with respect to $s_{Y, P}$) is at most $s_{Y, P}(q, r)$.

Once $|\tilde{\mathcal{C}}|=1$, one notes that the summed up weight of all newly inserted paths (with respect to c) does not exceed the weight of $S_{Y, P}$ (with respect to $s_{Y, P}$). Because the weight of $S_{Y, P}$ is smaller than $c\left(E\left(Y_{P}\right)\right)$, we obtain from the construction of \tilde{S} that

$$
\begin{equation*}
c(E(\tilde{S}))<c(E(S)) \tag{42}
\end{equation*}
$$

which concludes the proof.
In practice, one does not need to explicitly form $G_{Y, P}$. Instead, one can use the (original) bottleneck Steiner distances between the connected components of the graph induced by $E(Y) \backslash$
$E\left(Y_{P}\right)$. Note that one can also extend Theorem 11 to the case of equality if at least one vertex of Y_{P} is not contained in any of the paths corresponding to the s values used for edges of $S_{Y, P}$. However, in the context of extended reduction techniques one needs to be careful to not discard all of several equivalent extensions. We omit the quite technical details, but merely note that allowing for equality (and adding suitable checks) can have a significant impact for some instances.

In practice, computing a minimum Steiner tree (or even an approximation) on $D_{G_{Y, P}}\left(V_{Y, P}, s_{Y, P}\right)$ is often too expensive. In such cases, the following corollary provides a strong alternative.

Corollary 12. Let Y, P as in Theorem 11. Let $\left(P^{\prime}, P^{\prime \prime}\right)$ be a partition of P. Let F^{\prime} be a minimum spanning tree on $D_{G_{Y, P}}\left(P^{\prime}, s_{Y, P}\right)$, and let z^{\prime} be the weight of F^{\prime}. Let $F^{\prime \prime}$ be a minimum spanning tree in $D_{G_{Y, P}}\left(T_{Y, P}, s_{Y, P}\right)$. Write $\left\{e_{1}^{F^{\prime \prime}}, e_{2}^{F^{\prime \prime}}, \ldots, e_{\left|T_{Y, P}\right|-1}^{F^{\prime \prime}}\right\}:=E_{Y, P}\left(F^{\prime \prime}\right)$ such that $s_{Y, P}\left(e_{i}^{F^{\prime \prime}}\right) \geq s_{Y, P}\left(e_{j}^{F^{\prime \prime}}\right)$ for $i<j$. Define

$$
\begin{equation*}
z^{\prime \prime}:=\sum_{i=1}^{\left|P^{\prime \prime}\right|} s_{Y, P}\left(e_{i}^{F^{\prime \prime}}\right) \tag{43}
\end{equation*}
$$

If $z^{\prime}+z^{\prime \prime}<c\left(E\left(Y_{P}\right)\right)$, then Y is not P-peripherally contained in any minimum Steiner tree for I.

Proof. First, note that if $P^{\prime \prime}=\emptyset$, then the corollary follows directly from Theorem 11 , because z^{\prime} is a lower bound on the weight of a minimum Steiner tree in $I_{Y, P}$. Thus, we assume $P^{\prime \prime} \neq \emptyset$ in the following.

Suppose there is a minimum Steiner tree S for I such that Y is P-peripherally contained in S. Define \tilde{S} as in the proof of Theorem 11. Further, proceed as in the proof of Theorem 11 to reconnect all connected components of \tilde{S} that contain a vertex from P^{\prime}. As a result, \tilde{S} has at most $\left|P^{\prime \prime}\right|+1$ connected components. Because S is assumed to be optimal, each connected component of \tilde{S} contains at least one terminal. Thus, we can reconnect the remaining connected components similarly to Theorem 11, by using paths corresponding to edges of $F^{\prime \prime}$. We need to add at most $\left|P^{\prime \prime}\right|$ such paths. Overall, we have increased the weight of \tilde{S} by at most $z^{\prime}+z^{\prime \prime}$. From $z^{\prime}+z^{\prime \prime}<c\left(E\left(Y_{P}\right)\right)$ we obtain that

$$
\begin{equation*}
c(E(\tilde{S}))<c(E(S)) \tag{44}
\end{equation*}
$$

which contradicts the optimality of S.
As for Theorem 11, the contractions in Corollary 12 should only be performed implicitly in practice. Furthermore, one requires a careful implementation to avoid a recomputation from scratch of the two minimum spanning trees in Corollary 12 for each enumerated tree in Algorithm 1

Next, let $Y \subseteq G$ be a tree with pruning set P, and let $v, w \in V(Y)$ and let Q be the path between v, w in Y. We define a pruned tree bottleneck between v and w as a subpath $Q(a, b)$ of Q that satisfies $\left|\delta_{Y}(u)\right|=2$ and $u \notin P$ for all $u \in V(Q(a, b)) \backslash\{a, b\}, V(Q(a, b)) \cap T \subseteq\{a, b\}$, and maximizes $c(V(Q(a, b)))$. The weight $c(V(Q(a, b)))$ of such a pruned tree bottleneck is denoted by $b_{Y, P}(v, w)$. Using this definition and the implied bottleneck Steiner distance, we obtain the following result.

Proposition 13. Let Y be a tree, let P be a pruning set for Y, and let $v, w \in V(Y)$. If $s_{p}(v, w)<b_{Y, P}(v, w)$, then Y is not P-peripherally contained in any minimum Steiner tree.

The proposition can be proven in a similar way as Theorem 2 (and is indeed a generalization of the latter).

Based on the SPG instance in Figure 8, we demonstrate the usage of the extended reduction framework and the above reduction criteria in the following. We aim to replace (or pseudoeliminate) vertex v_{3}. To show that this operation is valid, we prove that the tree Y with $V(Y)=\left\{v_{3}\right\} \cup N\left(v_{3}\right), E(Y)=\delta\left(v_{3}\right)$ is not peripherally contained in any minimum Steiner tree. We call Algorithm 1 with Y as defined above. We are neither able to rule out Y in Line2, nor do we truncate the search in Line4. In Line-5, we consider vertex v_{5} and mark it as promising. The extension sets obtained from Algorithm 2 are: $\left\{\left\{t_{2}, v_{5}\right\}\right\},\left\{\left\{v_{4}, v_{5}\right\}\right\}$, and $\left\{\left\{t_{2}, v_{5}\right\},\left\{v_{4}, v_{5}\right\}\right\}$. We (recursively) call Algorithm 1 for each of these three extensions in Line 9 .

First, we consider the extension via the edge $\left\{t_{2}, v_{5}\right\}$. The tree $Y^{\prime}:=Y+\left\{\left\{t_{2}, v_{5}\right\}\right\}$ with pruning set $P=\left\{t_{1}, t_{2}, v_{2}\right\}$ can be shown to not be P-peripherally contained in any minimum Steiner tree by using Proposition 13. It holds $s_{p}\left(t_{1}, t_{2}\right)=2<2.5=b_{Y^{\prime}, P}\left(t_{1}, t_{2}\right)$, where the pruned tree bottleneck corresponds to the edges $\left\{v_{3}, v_{5}\right\}$ and $\left\{t_{2}, v_{5}\right\}$.

Next, we consider the extension via the edge $\left\{v_{4}, v_{5}\right\}$. We are not able to rule out this extension, and thus extend the tree $Y^{\prime}:=Y+\left\{\left\{v_{4}, v_{5}\right\}\right\}$ from vertex v_{4}. The extension set obtained from Algorithm 2 is just $\left\{\left\{v_{4}, v_{6}\right\}\right\}$, because any extension of Y^{\prime} via the edge $\left\{v_{2}, v_{4}\right\}$ would results in a cycle and can thus be discarded. However, the tree $Y^{\prime \prime}:=Y^{\prime}+\left\{\left\{v_{4}, v_{6}\right\}\right\}$ with pruning set $P=\left\{t_{1}, v_{2}, v_{6}\right\}$ can be ruled out by using Proposition 13 . It holds that $s_{p}\left(t_{1}, v_{6}\right)=$ $2<3=b_{Y^{\prime \prime}, P}\left(t_{1}, v_{6}\right)$, where the pruned tree bottleneck corresponds to the edges $\left\{v_{3}, v_{5}\right\}$, $\left\{v_{4}, v_{5}\right\}$, and $\left\{v_{4}, v_{6}\right\}$.

Finally, we consider the extension via the edge set $\left\{\left\{t_{2}, v_{5}\right\},\left\{v_{4}, v_{5}\right\}\right\}$. We are not able to rule out this extension, and thus extend the tree $Y^{\prime}:=Y+\left\{\left\{t_{2}, v_{5}\right\},\left\{v_{4}, v_{5}\right\}\right\}$ from vertex v_{4}. As before, the extension set obtained from Algorithm 2 is $\left\{\left\{v_{4}, v_{6}\right\}\right\}$. The tree $Y^{\prime \prime}:=Y^{\prime}+\left\{\left\{v_{4}, v_{6}\right\}\right\}$ with pruning set $P=\left\{t_{1}, t_{2}, v_{2}, v_{6}\right\}$ can again be ruled out by using Corollary 12 It holds that $c\left(E\left(Y_{P}^{\prime \prime}\right)\right)=6.5$, but the weight of an MST on $D_{G_{Y^{\prime \prime}, P}}\left(P, s_{Y^{\prime \prime}, P}\right)$ is 6 ; the edges of the MST on $D_{G_{Y^{\prime \prime}, P}}\left(P, s_{Y^{\prime \prime}, P}\right)$ are $\left\{t_{1}, t_{2}\right\},\left\{t_{1}, v_{2}\right\}$, and $\left\{t_{2}, v_{6}\right\}$.

In summary, all extensions of the initial tree Y along vertex v_{5} are ruled out in the first call of Algorithm 1. Thus, the algorithm returns true, which implies that vertex v_{3} can be replaced.

Figure 8: Segment of a Steiner tree instance. Terminals are drawn as squares. By using the extended reduction framework, one can show that vertex v_{3} can be replaced.

Another criterion can be devised by using the reduced costs of the well-known bidirected cut formulation 49 for SPG. This formulation is based on the observation that any optimal Steiner arborescence for the bidirected equivalent of a given SPG instance with arbitrary root $r \in T$ corresponds to an optimal Steiner tree for the original SPG. Let $D=(V, A)$ be the bidirected
equivalent of G, and let $r \in T$. Consider a dual solution for the bidirected cut formulation, with reduced costs \tilde{c}, and with objective value \tilde{L}. Further, for any $v, w \in V$, let $\tilde{d}(v, w)$ be the length for a shortest, directed path from v to w in A with respect to the reduced costs. From the observation that an optimal Steiner arborescence cannot contain any cycles, we obtain the following result with standard linear programming arguments:

Proposition 14. Let Y be a tree. Let $P=\left\{p_{1}, \ldots, p_{k}\right\}$ be a strict pruning set for Y such that there is a $k^{\prime} \leq k$ with $p_{i} \in T$ if and only if $i>k^{\prime}$. Further, assume that $V\left(Y_{P}\right) \cap T \subseteq L\left(Y_{P}\right)$, and $|P|<|T|$. The weight of any Steiner tree that strictly P-peripherally contains Y is at least

$$
\begin{equation*}
\tilde{L}+\min _{i \in\{1, \ldots, k\}\left\{t_{1}, . . t_{i-1}, t_{i+1}, \ldots, t_{k^{\prime}}\right\} \subseteq T \backslash V\left(Y_{P}\right)}\left\{\tilde{d}\left(r, p_{i}\right)+\sum_{j \leq k^{\prime}, j \neq i} \tilde{d}\left(p_{j}, t_{j}\right)\right\} \tag{45}
\end{equation*}
$$

Given an upper bound on the cost of a minimum Steiner tree, this proposition can be used in the RuleOutStrict routine. In practice, we only use a lower bound on the max subterm in (45).

Finally, another important reduction criteria is constituted by edge conflicts-this result follows directly from Proposition 8 .

Corollary 15. Let $I^{(k)}$ be an SPG obtained from performing a series of k valid reductions on an $S P G I$. Let $Y \subseteq G^{(k)}$ be a tree, and let P a pruning set for Y. If there are distinct edges $e_{1}, e_{2} \in E^{(k)}(Y)$ such that $\Lambda^{(k)}\left(e_{1}\right) \cap \Lambda^{(k)}\left(e_{2}\right) \neq \emptyset$, then Y is not P-peripherally contained in any minimum Steiner tree.

5 Exact solution

This section describes how to use the techniques introduced so far for the exact solution of SPG. The new methods have been implemented as an extension of the branch-and-cut solver SCIP-Jack [14].

5.1 Branch-and-cut

As shown in [33, reduction techniques are the most important ingredient in a state-of-the-art SPG solver. While 33 uses linear programming and branch-and-bound mostly to trigger further reductions, we employ a proper branch-and-cut approach, based on 14 . We enhance several vital components of branch-and-cut algorithms. The most natural application of reduction methods is within presolving. However, one can also use them within domain propagation, translating the deletion of edges into variable fixings in the integer programming model. The edge conflicts described in this article can be used for generating clique cuts, which are well-known for general MIPs 2. Finally, also primal heuristics are improved. First, the stronger reduction methods enhance primal heuristics that involve the solution of auxiliary SPG instances, such as from the combination of several Steiner trees. Second, the implication concept introduced in this article can be used to directly improve a classic SPG heuristic, as shown in the following.

Implications and the shortest path heuristic

The simple 2-approximation for SPG introduced by 42 has been widely used in the literature and is perhaps the best known primal heuristic for SPG. The algorithm starts with a tree S consisting of a single vertex and iteratively connects S by a shortest path to a terminal closest to S. As a simple postprocessing step, one can compute a minimum spanning tree on $(V(S), E[S])$
and iteratively remove non-terminal leaves. An efficient implementation is given in 6. This section shows how to use the implication concept introduced in Section 2.2 to (empirically) improve the algorithm.

Let $v_{0} \in V$, and initially set $S:=\left\{v_{0}\right\}$. Define a distance array \tilde{d} and a predecessor array pred by $\tilde{d}[u]:=\infty, \operatorname{pred}[u]:=$ null for all $u \in V \backslash\left\{v_{0}\right\}$, and $\tilde{d}\left[v_{0}\right]:=0, \operatorname{pred}\left[v_{0}\right]:=v_{0}$. Define for all $v \in V \backslash T$:

$$
\begin{equation*}
\tilde{p}(v):=\max \{0, \sup \{\bar{b}(e)-c(e) \mid e=\{v, w\} \in \delta(v), w \in T \backslash V(S)\}\} \tag{46}
\end{equation*}
$$

For all $v \in T$ set $\tilde{p}(v):=0$. Essentially, 46) is a weaker version of the implied profit from Section 2.2 Finally, set $Q:=\left\{v_{0}\right\}$.

While $Q \neq \emptyset$ let $v:=\arg \min _{u \in Q} \tilde{d}[u]$. If $v \in T$, add the path P from v to S, marked by the predecessor array, to S, add $V(P)$ to Q, and set $\tilde{d}[u]:=0$ for all $u \in V(P)$. Furthermore, update 46. For all $\{v, w\} \in \delta(v)$ proceed as follows. If

$$
\begin{equation*}
\tilde{d}[v]+c(\{v, w\})-\min \{c(\{v, w\}), \tilde{p}(v), \tilde{d}[v]\}<\tilde{d}[w] \tag{47}
\end{equation*}
$$

then set $\tilde{d}[w]$ to the left hand side of 47 , and add w to Q. Further, set $\operatorname{pred}[w]:=v$.
Note that 47) provides a bias for paths computed by the heuristic to include vertices of implied profit. In this way, the distance associated with a path also reflects the cost needed to connect additional terminals later on. Note that the minimum spanning tree computed during postprocessing will always contain the edge associated with each vertex of positive implied profit contained in S. We use the value $\min _{e^{\prime} \in \delta(w) \backslash\{e\}} c\left(e^{\prime}\right)$ instead of $\bar{b}(e)$ for $e=\{v, w\}, w \in T$ in (46) for two reasons: First, the value better represents the weight that can be saved when connecting w via v (because the bottleneck edge corresponding to $\bar{b}(e)$ might already be part of the tree computed by the heuristic so far). Second, this value is much faster to compute (and the primal heuristic is executed often as a subroutine within our implementation).

Computational experiments on the benchmark instances from the next section have shown that the above modifications improve the solution quality of the shortest path heuristic in a surprisingly consistent manner: When run 100 times from different starting points after SPG presolving (as is the default in SCIP-JACK), the solution quality of the heuristic is improved for more than 85% of the instances. We also note that the shortest path heuristic is used as a subroutine in several more involved heuristics applied by SCIP-JACK, see [14.

5.2 Computational results

This section provides computational results for the new solver. In particular, we compare its performance with the updated results of the solver by [31, 45] published in 37]. The computational experiments were performed on Intel Xeon CPUs E3-1245 with 3.40 GHz and 32 GB RAM. According to the DIMACS benchmark software 7, this computer is 1.59 times faster than the machine used in $[37]^{3}$. While the authors of the current article do not have access to the machine used in [37, preliminary experiments on different machines have shown that the DIMACS score is a good estimate for the performance of the new solver. Thus, we have scaled the run-times reported in the following accordingly. We use the same LP solver as 37: CPLEX 12.6 [20. All results were obtained single-threaded.

For the comparison with the solver by [31, 45, we are restricted to the instances used in 37. Still, the experiments in [37] include a large number of test-sets (both the SteinLib and the 11th DIMACS Challenge collection). Thus, we only use test-sets with at least one instance that

[^2]takes more than 10 seconds to be solved by [37] or our solver. There is one notable exception: We do not consider the test-sets 1320 and 1640 from the SteinLib; for the following reason: 37 use specialized, non-default settings for several test-sets, including I320 and I640, where they use only "(...) fast calculation of bounds (...)" during branch-and-bound. As we aim to give an unbiased picture of the performance of our solver, we only use our default settings for all instance sets. While we can achieve significant speed-ups on all tests-sets when using specialized settings, the impact is by far strongest on the I instances - more than an order of magnitude for the harder instances. We note, however, that we can match the results from 37] on I320 and I640 if we use dual-ascent bounds during branch-and-bound, instead of LP-based ones.

An overview of the test-sets is given in Table 1. The second column gives the number of instances per test-set. The third and fourth columns give the range of nodes and edges per test-set. The fifth column states whether for all instances of the test-set optimal solutions are known.

Name	$\#$	$\|V\|$	$\|E\|$	Status

Table 1: Details on SPG benchmark sets.

Impact of implied profit reductions

In the following, the impact of the s_{p} based reduction methods on the preprocessing strength is reported. For the reduced cost based reductions we use the dual-ascent heuristic from [49]. We use seven benchmark sets from the literature; three from the DIMACS Challenge, three from the SteinLib, and one from [22. Table 2 shows in the first column the name of the test-set, followed by its number of instances. The next columns show the percentual average number of nodes and edges of the instances after the preprocessing without (column three and four), and with (columns five and six) the s_{p} based methods. The last two columns report the percentual relative change between the previous results.

It can be seen that the s_{p} methods allow for a significant additional reduction of the problem size. This behavior is rather remarkable, given the variety of other powerful reduction methods
included in SCIP-JaCk. Even if the percentage of remaining edges and nodes is already small on average for the base processing (such as for $V L S I$), there are for each of the seven test-sets at least a few instances that are still of large size. These instances can often be significantly reduced by the s_{p} techniques. While no run times are reported in the table, we note that on each of the seven test-sets the overall run time of the preprocessing (often significantly) decreases when the s_{p} based methods are used. Furthermore, even for other test-sets where the s_{p} methods are less (or not at all) successful, one does not observe an increase in the run time of the preprocessing above 10 percent.

Test-set	\#	base preprocessing		$+s_{p}$ techniques		relative change	
		nodes [\%]	edges [\%]	nodes [\%]	edges [\%]	nodes [\%]	edges [\%]
VLSI	116	0.4	0.4	0.1	0.1	-75.0	-75.0
vienna-s	85	3.3	3.0	2.0	1.8	-39.4	-40.0
WRP4	63	36.2	36.0	33.5	33.0	-7.5	-8.3
Copenhag14	21	33.7	32.5	32.1	29.4	-4.7	-9.5
GEO-org	23	6.7	7.6	5.8	6.5	-13.4	-14.5
ES10000FST	1	24.1	27.1	15.1	16.8	-37.3	-38.0
ES-R50	15	17.5	22.8	12.6	16.6	-28.0	-27.2

Table 2: Average remaining nodes and edges after preprocessing.

Comparison with the state of the art

Next, we compare the solver by [31, 45] and the new solver SCIP-JACK with respect to the mean time, the maximum time, and the number of solved instances. For the mean time we use the shifted geometric mean with a shift of 10 . We note that the use of an arithmetic mean would bias strongly in favor of SCIP-JACK, which is especially faster on harder instances.

Table 3 provides the results for a time-limit of 24 hours (divided by 1.59 in the case of SCIPJaCK), which is the same time-limit as used in the updated report 37. The second column shows the number of instances in the test-set. Column three gives the number of instances solved by [37], column four the number of instances solved by SCIP-JACK. Column five shows the mean time taken by [37], column six shows the mean time of SCIP-Jack. The next column gives the relative speedup of SCIP-JACK. The next three columns provide the same information for the maximum run-time.

It can be seen that SCIP-JACK consistently outperforms 37-both with respect to mean and maximum time. Also, SCIP-JACK solves on each test-set at least as many instances as 37. The only test-set where [37] prevail is VLSI. On this test-set the results of the extended reductions reported in 31 are also stronger, which might be attributed to the use of full-backtracking, which has not yet been implemented in SCIP-JACK.

On the other test-sets, the difference in the run-time is especially apparent for the maximum run time. This behavior can be explained by the fact that most test-sets contain many instances that can be solved very fast by both solvers-which brings the mean times closer together. Prominent examples are the $S P$ and Copenhag14 test-sets, for which all instances can be solved by SCIP-JACK within roughly one hour, whereas [37] leave several instances unsolved even after 24 hours.

As already mentioned, most test-sets in Table 3 contain a large number of instances that can be solved by both 37] and our solver in well below one second. To mitigate the impact of very easy instances on the average times, we group the instances according to their hardness in the following experiment. We use instance groups [$10^{k}, 86400$] for $k=-\infty, 0,1,2,3$. Any

Test-set	\#	\# solved		mean time (sh. geo. mean)			maximum time		
		P.\&V.	S.-J.	P.\&V. [s]	S.-J. [s]	speedup	P.\&V. [s]	S.-J. [s]	speedup
VLSI	116	116	116	0.5	0.8	0.63	53.9	81.9	0.66
TSPFST	76	76	76	1.5	1.1	1.36	1161.4	326.9	3.55
WRP4	62	62	62	3.2	2.4	1.33	106.1	95.2	1.11
2R	27	27	27	5.0	2.6	1.92	43.9	12.1	3.63
vienna-a	85	85^{\star}	85	7.2	5.0	1.44	441.3	57.1	7.73
vienna-s	85	85*	85	7.8	5.9	1.32	623.5	57.7	10.81
WRP3	63	63	63	22.8	13.4	1.70	6073.2	4568.1	1.33
GEO-a	23	23^{\star}	23	158.7	55.8	2.84	6476.5	852.4	7.60
GEO-org	23	23^{\star}	23	145.6	59.4	2.45	4385.0	834.4	5.26
ES10000	1	1	1	138.0	80.9	1.71	138.0	80.9	1.71
Cophag14	21	20^{\star}	21	27.7	14.8	1.87	>86400	4182.7	>20.66
SP	8	6	8	159.4	30.2	5.28	>86400	1892.1	>45.66
LIN	37	35	36	31.3	15.3	2.05	>86400	>86400	1.00
PUC	50	17^{\star}	18	14964.9	11568.3	1.29	>86400	>86400	1.00

Table 3: Computational comparison of the solver developed for this article (S.-J.) and the solver described in [31, 45] (P. $\mathcal{G V}$.). Times marked by a \star were obtained by P.\&V. with (specialized) non-default settings.
group [$10^{k}, 86400$] contains each instance from Table 3 such that [37] or SCIP-JACK solves this instance in not less than 10^{k}, and at most 86400 seconds. If an instance can be solved by only one solver within the time-limit, we consider the run-time of the other solver on this instance as 86400 seconds. Such groupings are commonly used in computational mathematical optimization (also with the time lower bounds being powers of 10), see e.g. [28, 48]. In addition to the shifted geometric mean, Table 4 also provides the arithmetic mean of the run-time for each group. As before, we give the results for both [37] and SCIP-JACK, and report the respective speed-up of SCIP-JACK.

		shifted geometric mean time				arithmetic mean time		
Group	$\#$	P.\&V. $[\mathrm{s}]$	S.-J. $[\mathrm{s}]$	speedup		P.\&V. $[\mathrm{s}]$	S.-J. $[\mathrm{s}]$	speedup
$[0,86400]$	644		12.2	7.9	$\mathbf{1 . 5 4}$		1235.5	229.0
$[1,86400]$	342		34.5	19.5	$\mathbf{1 . 7 7}$		2326.4	431.2
$[10,86400]$	178	125.4	52.6	$\mathbf{2 . 3 8}$		4466.6	825.5	$\mathbf{5 . 4 0}$
$[100,86400]$	66	1403.2	295.0	$\mathbf{4 . 7 6}$		11999.0	2197.6	$\mathbf{5 . 4 1}$
$[1000,86400]$	30	8035.8	1099.0	$\mathbf{7 . 3 1}$		25923.1	4653.8	$\mathbf{5 . 4 6}$

Table 4: Computational comparison of the solver developed for this article (S.-J.) and the solver described in 31, 45] ($P . \mathcal{E}^{2} V$.), with instance groups ordered by hardness.

Unsurprisingly, the ratio of the arithmetic mean stays largely unchanged with increasing hardness of the groups. SCIP-JACK is more than a factor of 5 faster than the solver from [37] on all groups. On the other hand, the performance difference with respect to the shifted geometric mean significantly increases with the hardness of the instances. For instances that take more than a thousand seconds to be solved by [37] or SCIP-JACK, the latter is even by a factor of more than 7 faster.

Further results

Finally, we provide results for several large-scale Euclidean Steiner tree problems. For solving such problems, the bottleneck is usually the full Steiner tree concatanation [22]. This concatanation can also be solved as an SPG, however [35]. In Table 5 we give results for Euclidean instances from [22] with 25 thousand (EST-25k), 50 thousand (EST-50k), and 100 thousand (EST-100k) points in the plane. For EST-25k the mean and maximum times are between one and two orders of magnitude faster than those of the well-known geometric Steiner tree solver GeoSteiner 5.1 [22]. Moreover, 7 of the 15 instances from EST-50k are solved for the first time to optimality - in at most 197 seconds. On the other hand, GeoSteiner cannot solve these instances even after seven days of computation. For EST-100k, GEoSteiner even leaves 12 of the 15 instances unsolved after one week of computation. In contrast, we solve all these instances to optimality in less than 13 minutes. Overall, we solve 19 instances for the first time to optimality.

Unfortunately, 37 does not report results for these instances. However, the solver by 30, which won the heuristic SPG category at the 11th DIMACS Challenge, does not reach the upper bounds from GEoSteiner on any of the EST-25k, EST-50k, and EST-100k instances.

Test set	$\#$	\# solved	mean time [s]	maximum time [s]
EST-25k	15	15	43.2	54.6
EST-50k	15	15	128.2	196.5
EST-100k	15	15	477.9	729.7

Table 5: Results of SCIP-JACK for Euclidean Steiner tree instances.

6 Conclusion and outlook

This article has described the combination of implication, conflict, and reduction concepts for the SPG, with the aim of improving the state of the art in exact SPG solution. This combination has spawned several new techniques that (provably) dominate well-known results from the literature, such as the bottleneck Steiner distance. The integration of the new methods into the branch-andcut solver SCIP-Jack has shown a large impact on exact SPG solution. The new SCIP-Jack could even outperform the long-reigning state-of-the-art solver by 31, 45.

Still, there are several promising routes for further improvement. First, one could improve the newly introduced methods. For example, by using full-backtracking in the extended reduction methods, by improving the approximation of the implied bottleneck Steiner distance, or by adapting the latter for replacement techniques. Second, several powerful methods described in [31, 45] could be added to the new solver, e.g. a stronger IP formulation realized via price-and-cut, or additional reduction techniques via partitioning.

Unlike the solver by 31, 45, the new SCIP-JACK will be made freely available for academic use - as part of the next SCIP Optimization Suite release.

7 Acknowledgements

The work for this article has been conducted within the Research Campus MODAL funded by the German Federal Ministry of Education and Research (fund number 05M14ZAM), and has also been supported by the DFG Cluster of Excellence MATH+.

References

[1] Tobias Achterberg. Conflict analysis in mixed integer programming. Discrete Optimization, $4(1): 4-20,2007$.
[2] Tobias Achterberg. Constraint Integer Programming. PhD thesis, Technische Universität Berlin, 2007.
[3] Édouard Bonnet and Florian Sikora. The PACE 2018 Parameterized Algorithms and Computational Experiments Challenge: The Third Iteration. In Christophe Paul and Michal Pilipczuk, editors, 13th International Symposium on Parameterized and Exact Computation (IPEC 2018), volume 115 of Leibniz International Proceedings in Informatics (LIPIcs), pages 26:1-26:15, Dagstuhl, Germany, 2019. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
[4] Jaroslaw Byrka, Fabrizio Grandoni, Thomas Rothvoß, and Laura Sanità. Steiner Tree Approximation via Iterative Randomized Rounding. The Journal of the ACM, 60(1):6, 2013.
[5] Xiuzhen Cheng and Ding-Zhu Du. Steiner trees in industry, volume 11. Springer Science \& Business Media, 2004.
[6] Marcus Poggi de Aragão and Renato F. Werneck. On the Implementation of MST-based Heuristics for the Steiner Problem in Graphs. In Proceedings of the 4th International Workshop on Algorithm Engineering and Experiments, pages 1-15. Springer, 2002.
[7] DIMACS. 11th DIMACS Challenge. http://dimacs11.zib.de/, 2015. Accessed: January 10. 2020.
[8] S. E. Dreyfus and R. A. Wagner. The Steiner problem in graphs. Networks, 1(3):195-207, 1971.
[9] C. Duin. Steiner Problems in Graphs. PhD thesis, University of Amsterdam, 1993.
[10] C. W. Duin and A. Volgenant. Reduction tests for the Steiner problem in graphs. Networks, 19(5):549-567, 1989.
[11] Cees Duin. Preprocessing the Steiner Problem in Graphs, pages 175-233. Springer US, Boston, MA, 2000.
[12] C.W. Duin and A. Volgenant. An edge elimination test for the Steiner problem in graphs. Operations Research Letters, 8(2):79-83, 1989.
[13] Matteo Fischetti, Markus Leitner, Ivana Ljubić, Martin Luipersbeck, Michele Monaci, Max Resch, Domenico Salvagnin, and Markus Sinnl. Thinning out Steiner trees: a node-based model for uniform edge costs. Mathematical Programming Computation, 9(2):203-229, Jun 2017.
[14] Gerald Gamrath, Thorsten Koch, Stephen Maher, Daniel Rehfeldt, and Yuji Shinano. SCIPJack - A solver for STP and variants with parallelization extensions. Mathematical Programming Computation, $9(2): 231-296,2017$.
[15] Michel X. Goemans, Neil Olver, Thomas Rothvoß, and Rico Zenklusen. Matroids and Integrality Gaps for Hypergraphic Steiner Tree Relaxations. In Proceedings of the FortyFourth Annual ACM Symposium on Theory of Computing, STOC '12, page 11611176, New York, NY, USA, 2012. Association for Computing Machinery.
[16] Chinmay Hegde, Piotr Indyk, and Ludwig Schmidt. A fast, adaptive variant of the goemanswilliamson scheme for the prize-collecting Steiner tree problem. In Workshop of the 11th DIMACS Implementation Challenge. Workshop of the 11th DIMACS Implementation Challenge, 2014.
[17] Stefan Hougardy, Jannik Silvanus, and Jens Vygen. Dijkstra meets Steiner: a fast exact goal-oriented Steiner tree algorithm. Mathematical Programming Computation, 9(2):135202, 2017.
[18] Radek Hušek, Dušan Knop, and Tomáš Masařík. Approximation algorithms for Steiner tree based on star contractions: A unified view. arXiv preprint arXiv:2002.03583, 2020.
[19] F.K. Hwang, D.S. Richards, and P. Winter. The Steiner Tree Problem. Annals of Discrete Mathematics. Elsevier Science, 1992.
[20] IBM. Cplex, 2020.
[21] Yoichi Iwata and Takuto Shigemura. Separator-Based Pruned Dynamic Programming for Steiner Tree. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 1520-1527, 2019.
[22] Daniel Juhl, David M Warme, Pawel Winter, and Martin Zachariasen. The GeoSteiner software package for computing Steiner trees in the plane: an updated computational study. Mathematical Programming Computation, 10(4):487-532, 2018.
[23] R. Karp. Reducibility among combinatorial problems. In R. Miller and J. Thatcher, editors, Complexity of Computer Computations, pages 85-103. Plenum Press, 1972.
[24] Sándor Kisfaludi-Bak, Jesper Nederlof, and Erik Jan van Leeuwen. Nearly ETH-tight algorithms for planar Steiner tree with terminals on few faces. ACM Transactions on Algorithms (TALG), 16(3):1-30, 2020.
[25] Thorsten Koch and Alexander Martin. Solving Steiner tree problems in graphs to optimality. Networks, 32:207-232, 1998.
[26] Thorsten Koch, Alexander Martin, and Stefan Voß. SteinLib: An updated library on Steiner tree problems in graphs. In D.-Z. Du and X. Cheng, editors, Steiner Trees in Industries, pages 285-325. Kluwer, 2001.
[27] M. Leitner, I. Ljubic, M. Luipersbeck, M. Prossegger, and M. Resch. New Real-world Instances for the Steiner Tree Problem in Graphs. Technical report, ISOR, Uni Wien, 2014.
[28] Benjamin Müller, Felipe Serrano, and Ambros Gleixner. Using two-dimensional projections for stronger separation and propagation of bilinear terms. SIAM Journal on Optimization, 30(2):1339-1365, 2020.
[29] Jesper Nederlof. Fast polynomial-space algorithms using Möbius inversion: Improving on Steiner tree and related problems. In International Colloquium on Automata, Languages, and Programming, pages 713-725. Springer, 2009.
[30] Thomas Pajor, Eduardo Uchoa, and Renato F. Werneck. A robust and scalable algorithm for the Steiner problem in graphs. Mathematical Programming Computation, Sep 2017.
[31] Tobias Polzin. Algorithms for the Steiner problem in networks. PhD thesis, Saarland University, 2003.
[32] Tobias Polzin and Siavash Vahdati Daneshmand. A comparison of Steiner tree relaxations. Discrete Applied Mathematics, 112(1-3):241-261, 2001.
[33] Tobias Polzin and Siavash Vahdati Daneshmand. Improved Algorithms for the Steiner Problem in Networks. Discrete Applied Mathematics, 112(1-3):263-300, September 2001.
[34] Tobias Polzin and Siavash Vahdati Daneshmand. Extending Reduction Techniques for the Steiner Tree Problem, pages 795-807. Springer Berlin Heidelberg, Berlin, Heidelberg, 2002.
[35] Tobias Polzin and Siavash Vahdati Daneshmand. On Steiner trees and minimum spanning trees in hypergraphs. Operations Research Letters, 31(1):12-20, 2003.
[36] Tobias Polzin and Siavash Vahdati Daneshmand. Practical Partitioning-Based Methods for the Steiner Problem. In Carme Àlvarez and María Serna, editors, Experimental Algorithms, pages 241-252, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.
[37] Tobias Polzin and Siavash Vahdati-Daneshmand. The Steiner Tree Challenge: An updated Study. Unpublished manuscript at http://dimacs11.cs.princeton.edu/downloads.html, 2014.
[38] Daniel Rehfeldt and Thorsten Koch. On the exact solution of prize-collecting Steiner tree problems. Technical Report 20-11, ZIB, Takustr. 7, 14195 Berlin, 2020.
[39] Gerhard Reinelt. TSPLIB-a traveling salesman problem library. ORSA Journal on Computing, 3(4):376-384, 1991.
[40] Isabel Rosseti, Marcus Poggi de Aragão, Celso C. Ribeiro, Eduardo Uchoa, and Renato F. Werneck. New Benchmark Instances for The Steiner Problem in Graphs, pages 601-614. Springer US, Boston, MA, 2004.
[41] M. W. P. Savelsbergh. Preprocessing and probing techniques for mixed integer programming problems. ORSA Journal on Computing, 6(4):445-454, 1994.
[42] H. Takahashi and A. Matsuyama. An approximate solution for the Steiner problem in graphs. Mathematica Japonicae, 24:573-577, 1980.
[43] Eduardo Uchoa. Reduction tests for the prize-collecting Steiner problem. Operations Research Letters, 34(4):437-444, 2006.
[44] Eduardo Uchoa, Marcus Poggi de Arago, and Celso C. Ribeiro. Preprocessing Steiner problems from VLSI layout. Networks, 40(1):38-50, 2002.
[45] Siavash Vahdati Daneshmand. Algorithmic approaches to the Steiner problem in networks. PhD thesis, Universität Mannheim, 2004.
[46] Jens Vygen. Faster algorithm for optimum Steiner trees. Information Processing Letters, 111(21):1075-1079, 2011.
[47] Pawel Winter. Reductions for the rectilinear Steiner tree problem. Networks, 26(4):187-198, 1995.
[48] Jakob Witzig and Ambros Gleixner. Conflict-driven heuristics for mixed integer programming. INFORMS Journal on Computing, 2020. epub ahead of print.
[49] R.T. Wong. A dual ascent approach for Steiner tree problems on a directed graph. Mathematical Programming, 28:271-287, 1984.

A Detailed computational results

This appendix provides detailed computational results on the problem instances discussed in this article All following tables are structured as follows: First, the name of the respective instance is given. The next three columns give the number of vertices, arcs (after the graph transformation to bidirected SAP), and terminals of the instance. The subsequent segment, labelled "Presolved", provides the size of the preprocessed problem along with the preprocessing time. The last segment provides first the dual and primal bound, or the optimal solution value if the problem could be solved to proven optimality. Moreover, the number of branch-and-bound nodes (N) and the total run time is given. A time-out is signified by a " $>$ " in front of the termination time. We stress that the reported final execution times include both the preprocessing time and the reading time.

The time limit for the following instances is 54340 seconds. This corresponds to 24 hours on the machine used by 37.

Table 6. Detailed computational results for SPG, test-set 2R.

Instance	Original			Presolved						
	$\|V\|$	$\|A\|$	$\|T\|$	$\|V\|$	$\|A\|$	$\|T\|$	t [s]	Optimum	N	t [s]
2 r 111	2000	11600	9	0	0	0	0.1	28000	1	0.1
2 r 112	2000	11600	9	0	0	0	0.1	32000	1	0.1
2 r 113	2000	11600	9	0	0	0	0.1	28000	1	0.1
2 r 121	2000	11532	9	0	0	0	0.1	28000	1	0.1
2 r 122	2000	11544	9	0	0	0	0.1	29000	1	0.1
2 r 123	2000	11508	9	0	0	0	0.1	25000	1	0.1
2 r 131	2000	11452	9	0	0	0	0.1	27000	1	0.1
2 r 132	2000	11450	9	636	5426	9	0.4	33000	1	0.4
2 r 133	2000	11458	9	0	0	0	0.1	29000	1	0.1
2r211	2000	11600	50	571	4988	34	2.8	89000	3	7.6
2 r 212	2000	11600	49	132	818	17	0.9	80000	1	1.1
2 r 213	2000	11600	48	279	2104	29	2.0	76000	1	2.4
2 r 21	2000	11528	50	0	0	0	1.1	83000	1	1.1
2 r 222	2000	11530	50	0	0	0	1.9	84000	1	1.9
2 r 223	2000	11540	49	562	4606	40	1.8	84000	1	4.6
2 r 231	2000	11474	50	0	0	0	2.3	86000	1	2.3
2r232	2000	11466	49	453	3358	37	2.0	87000	1	3.3
2 r 233	2000	11460	47	0	0	0	1.3	83000	1	1.3
2 r 311	2000	11600	95	372	2586	47	1.2	129000	1	2.0
2 r 312	2000	11600	92	482	3802	45	1.0	126000	1	2.2
2 r 313	2000	11600	97	306	2124	38	1.0	128000	1	1.3
2 r 321	2000	11542	92	0	0	0	0.3	125000	1	0.3
2 r 322	2000	11506	92	397	2784	43	1.6	130000	1	2.3
2 r 323	2000	11528	96	651	4856	64	1.7	142000	1	5.1
2 r 331	2000	11472	93	260	1584	40	1.8	134000	1	2.0
2 r 332	2000	11490	95	544	3820	50	1.7	136000	1	4.4
2 r 333	2000	11482	98	449	2938	54	2.1	143000	1	3.3

Table 7. Detailed computational results for SPG, test-set Copenhagen14.

Instance	$\|V\|$	Original $\|A\|$	$\|T\|$	$\|V\|$	Pres $\|A\|$	$\|T\|$	t [s]	Optimum	N	t [s]
ind1	18	62	10	0	0	0	0.0	604	1	0.0
ind2	31	114	10	0	0	0	0.0	9500	1	0.0
ind3	16	46	10	0	0	0	0.0	600	1	0.0
ind4	74	292	25	0	0	0	0.0	1086	1	0.0
ind5	114	456	33	0	0	0	0.0	1341	1	0.0
rc01	21	70	10	0	0	0	0.0	25980	1	0.0
rc02	87	352	30	2	2	1	0.0	41350	1	0.0
rc03	109	404	50	0	0	0	0.0	54160	1	0.0
rc04	121	394	70	0	0	0	0.0	59070	1	0.0
rc05	247	972	100	0	0	0	0.0	74070	1	0.0
rc06	2502	12488	100	1991	8880	90	1.1	79714	1	4.9
rc07	2740	13156	200	2001	8674	139	1.8	108740	7	7.2
rc08	7527	36340	200	6840	30894	186	4.8	112564	55	156.8
rc09	6128	30528	200	5290	24238	168	4.0	111005	1	86.3
rc10	1572	6490	500	572	2078	163	0.8	164150	1	1.2
rc11	2858	11638	1000	1055	3676	337	2.7	230837	1	3.5
rt01	262	1480	10	0	0	0	0.0	2146	1	0.0
rt02	788	3876	50	0	0	0	0.3	45852	1	0.3
rt03	1725	8184	100	1430	6198	82	0.9	7964	5	2.7
rt04	9469	45486	100	9035	41352	94	4.2	9693	2717	736.1
rt05	15473	77856	200	14488	68570	190	7.2	51313	57	2630.6

Table 8. Detailed computational results for SPG, test-set ES10000FST.

Instance	Original			Presolved						
	$\|V\|$	$\|A\|$	$\|T\|$	$\|V\|$	$\|A\|$	$\|T\|$	t [s]	Optimum	N	t [s]
es10000fst01\|	27019	78814	10000 \|	4080	13246	1621	36.8 \|	716174280	1	50.9

Table 9. Detailed computational results for ESMT, test-set ESMT-R25.

Instance	Original			Presolved				Optimum	N	t [s]
	$\|V\|$	$\|A\|$	$\|T\|$ \|	$\|V\|$	$\|A\|$	$\|T\|$	t [s]			
R25K01EFST	39277	94524	25000	92	294	40	34.7	98.9612134	1	40.1
R25K02EFST	39306	94978	25000	59	180	30	38.4	99.0370878	1	47.1
R25K03EFST	39549	96348	25000	3893	12466	1785	35.0	99.2157207	1	45.8
R25K04EFST	39555	96260	25000	84	274	37	38.0	98.9431392	1	47.6
R25K05EFST	39153	93806	25000	49	146	26	28.9	99.4912321	1	39.1
R25K06EFST	39438	95690	25000	5990	19160	2804	12.7	99.3728768	1	29.6
R25K07EFST	39900	98180	25000	47	140	24	38.4	99.5646105	1	51.6
R25K08EFST	39529	95920	25000	65	200	32	39.6	99.2662017	1	48.5
R25K09EFST	39732	97060	25000	3807	12238	1773	38.1	99.0968636	1	44.7
R25K10EFST	39248	94668	25000	48	136	23	28.1	99.1104801	1	35.7
R25K11EFST	39425	95470	25000	2661	8418	1239	42.1	99.1216345	1	47.5
R25K12EFST	39293	94888	25000	3434	10960	1593	37.3	99.1134447	1	45.5
R25K13EFST	39284	94770	25000	3328	10524	1566	26.4	99.4005526	1	33.0
R25K14EFST	40063	98534	25000	3957	12746	1795	38.9	99.2046414	1	46.1
R25K15EFST	39498	95704	25000	44	130	21	43.7	99.2521324	1	54.6

Table 10. Detailed computational results for ESMT, test-set ESMT-R50.

Instance	Original			Presolved				Optimum	N	t [s]
	$\|V\|$	$\|A\|$	$\|T\|$	$\|V\|$	$\|A\|$	$\|T\|$	t [s]			
R50K01EFST	79505	194746	50000	9521	30346	4427	120.2	140.398764	1	139.8
R50K02EFST	78754	190726	50000	254	798	119	116.2	139.955781	1	145.3
R50K03EFST	78964	191358	50000	7198	23066	3325	126.2	140.006412	1	140.3
R50K04EFST	78983	191484	50000	56	174	28	142.5	140.093852	1	154.3
R50K05EFST	79200	193418	50000	43	126	23	142.7	139.995235	1	196.5
R50K06EFST	79480	194744	50000	9705	31120	4495	133.9	140.348542	1	164.9
R50K07EFST	79046	192228	50000	13631	43506	6350	44.2	140.249582	1	86.0
R50K08EFST	79175	192822	50000	108	378	41	111.7	140.351147	1	126.8
R50K09EFST	78825	190952	50000	54	156	26	107.0	140.363481	1	120.6
R50K10EFST	78948	191740	50000	73	236	33	40.8	140.321093	1	80.0
cont. next page										

	$\|V\|$	Original						$\|A\|$	$\|T\| \mid$	$\|V\|$
Instance	$\|A\|$	$\|A\|$	$\|T\|$	$\mathrm{t}[\mathrm{s}] \mid$	Optimum	N	$\mathrm{t}[\mathrm{s}]$			
R50K11EFST	79121	192608	50000	8136	25928	3797	$122.1 \mid$	$\mathbf{1 4 0 . 1 6 9 7 5 6}$	1	139.6
R50K12FFST	79133	192768	50000	51	156	24	29.3	$\mathbf{1 4 0 . 2 0 1 2 3 4}$	1	57.7
R50K13EFST	78972	191348	50000	7654	24410	3562	116.3	$\mathbf{1 4 0 . 0 3 9 9 9}$	1	131.6
R50K14EFST	79326	193440	50000	51	156	24	135.7	$\mathbf{1 4 0 . 2 0 9 7 9 5}$	1	151.8
R50K15EFST	79483	194414	50000	66	224	25	156.4	$\mathbf{1 4 0 . 4 4 7 9 2 6}$	1	170.4

Table 11. Detailed computational results for ESMT, test-set ESMT-R100.

Instance	$\|V\|$	Original $\|A\|$	$\|T\|$	$\|V\|$		$\|T\|$	t [s]	Optimum	N	t [s]
R100K01EFST	157869	383172	100000	50	156	24	554.3	198.306705	1	631.7
R100K02EFST	158031	383994	100000	71	244	26	156.6	197.970178	1	370.1
R100K03EFST	158290	384990	100000	18337	58020	8630	477.9	198.022313	1	640.7
R100K04EFST	158205	385292	100000	64	204	29	550.8	198.189607	1	612.3
R100K05EFST	158587	386646	100000	47	146	22	123.6	198.153237	1	372.1
R100K06EFST	158514	386086	100000	73	276	25	117.7	198.174481	1	328.3
R100K07EFST	157947	383296	100000	24847	79452	11545	112.4	197.878416	1	369.6
R100K08EFST	157839	382404	100000	17086	54446	7977	471.3	197.994433	1	541.8
R100K09EFST	158069	383470	100000	26909	85924	12571	152.3	198.135832	,	391.4
R100K10EFST	158575	386344	100000	18012	57070	8424	448.3	198.039905	1	546.1
R100K11EFST	158265	385490	100000	25924	83376	11924	124.7	198.136332	1	368.6
R100K12EFST	157806	382352	100000	50	158	22	472.6	198.384696	1	570.0
R100K13EFST	157660	381462	100000	27619	87894	12879	151.4	198.053544	1	457.4
R100K14EFST	158516	386662	100000	50	162	22	510.5	198.226993	1	729.7
R100K15EFST	158033	384044	100000	27235	87188	12652	151.3	198.274048	1	460.0

Table 12. Detailed computational results for SPG, test-set LIN.

Instance	Original			Presolved				Dual	Primal	Gap \%	N	t [s]
	$\|V\|$	$\|A\|$	$\|T\|$	$\|V\|$	$\|A\|$	$\|T\|$	t [s]					
lin01	53	160	4	0	0	0	0.0		503		1	0.0
lin02	55	164	6	0	0	0	0.0		557		1	0.0
lin03	57	168	8	0	0	0	0.0		926		1	0.0
lin04	157	532	6	0	0	0	0.0		1239		1	0.0
lin05	160	538	9	0	0	0	0.0		1703		1	0.0
lin06	165	548	14	0	0	0	0.0		1348		1	0.0
lin07	307	1052	6	0	0	0	0.0		1885		1	0.0
lin08	311	1060	10	0	0	0	0.0		2248		1	0.0
lin09	313	1064	12	0	0	0	0.0		2752		1	0.0
lin10	321	1080	20	0	0	0	0.0		4132		1	0.0
$\operatorname{lin} 11$	816	2920	10	0	0	0	0.0		4280		1	0.0
$\operatorname{lin} 12$	818	2924	12	47	144	8	0.0		5250		1	0.0
lin13	822	2932	16	0	0	0	0.0		4609		1	0.0
lin14	828	2944	22	0	0	0	0.0		5824		1	0.0
$\operatorname{lin} 15$	840	2968	34	0	0	0	0.0		7145		1	0.0
lin16	1981	7266	12	0	0	0	0.1		6618		1	0.1
$\operatorname{lin} 17$	1989	7282	20	0	0	0	0.1		8405		1	0.1
lin18	1994	7292	25	13	34	6	0.5		9714		1	0.5
lin19	2010	7324	41	105	350	11	0.1		13268		1	0.1
lin20	3675	13418	11	0	0	0	0.1		6673		1	0.1
lin21	3683	13434	20	129	422	9	0.2		9143		1	0.2
$\operatorname{lin} 22$	3692	13452	28	0	0	0	0.2		10519		1	0.2
lin23	3716	13500	52	84	278	17	0.8		17560		1	0.8
lin24	7998	29468	16	2970	10706	16	1.3		15076		1	1.5
$\operatorname{lin} 25$	8007	29486	24	931	3254	20	4.4		17803		1	4.4
lin26	8013	29498	30	0	0	0	3.4		21757		1	3.4
lin27	8017	29506	36	94	302	18	3.3		20678		1	3.3
lin28	8062	29596	81	354	1200	44	11.8		32584		1	12.0
lin29	19083	71272	24	1022	3714	19	11.9		23765		1	11.9
lin30	19091	71288	31	190	650	19	15.9		27684		1	15.9
lin31	19100	71306	40	6577	24148	37	39.9		31696		1	44.6
lin32	19112	71330	53	6902	25308	52	49.2		39832		1	67.0

cont. next page

Instance	Original			Presolved				Dual	Primal	Gap \%	N	t [s]
	$\|V\|$	$\|A\|$	$\|T\|$	$\|V\|$	$\|A\|$	$\|T\|$	t [s]					
lin33	19177	71460	117	5711	20688	97	52.2		56061		1	1436.7
lin34	38282	143042	34	11461	42424	33	157.1		45018		1	158.2
lin35	38294	143066	45	14095	51962	45	99.1		50559		1	120.5
lin36	38307	143092	58	17931	66096	57	102.5		55608		1	263.1
lin37	38418	143314	172	23971	88916	169	128.7	97130.5673	99737	2.7	1	>54340

Table 13. Detailed computational results for SPG, test-set PUC.

Instance	Original			Presolved				Dual	Primal	Gap \%	N	t [s]
	$\|V\|$	$\|A\|$	$\|T\|$	$\|V\|$	\| A \|	$\|T\|$	t [s]					
bip42p	1200	7964	200	990	7234	200	0.2		24657		169521	20228.7
bip42u	1200	7964	200	989	7216	200	0.2		236		115338	11107.5
bip52p	2200	15994	200	1817	14650	200	0.4	24320.8464	24595	1.1	304769	>54340
bip52u	2200	15994	200	1818	14646	200	0.6	230.581893	234	1.5	302048	>54340
bip62p	1200	20004	200	1199	20000	200	0.3	22586.7321	22885	1.3	160340	>54340
bip62u	1200	20004	200	1199	20000	200	0.5	214.995514	220	2.3	175484	>54340
bipa2p	3300	36146	300	3139	35588	300	1.1	34784.9831	35333	1.6	80653	>54340
bipa2u	3300	36146	300	3138	35590	300	1.2	330.625186	340	2.8	113369	>54340
bipe2p	550	10026	50	550	10026	50	0.1		5616		1591	135.3
bipe2u	550	10026	50	550	10026	50	0.2		54		97	69.4
cc10-2p	1024	10240	135	1024	10240	135	0.4	34533.385	35342	2.3	4204	>54340
cc10-2u	1024	10240	135	1024	10240	135	0.8	334.807731	343	2.4	3412	>54340
cc11-2p	2048	22526	244	2048	22526	244	1.3	62133.2953	63640	2.4	2043	>54340
cc11-2u	2048	22526	244	2048	22526	244	1.9	602.532956	615	2.1	3182	>54340
cc12-2p	4096	49148	473	4096	49148	473	4.3	118619.962	121523	2.4	151	>54340
cc12-2u	4096	49148	473	4096	49148	473	4.3	1150.17905	1184	2.9	228	>54340
cc3-10p	1000	27000	50	1000	27000	50	0.6	12704.9214	12783	0.6	7733	>54340
cc3-10u	1000	27000	50	1000	27000	50	1.0	120.884585	126	4.2	419	>54340
cc3-11p	1331	39930	61	1331	39930	61	1.0	15464.6087	15596	0.8	5409	>54340
cc3-11u	1331	39930	61	1331	39930	61	1.1	144.648808	154	6.5	1	>54340
cc3-12p	1728	57024	74	1728	57024	74	1.5	18737.1085	18853	0.6	4468	>54340
cc3-12u	1728	57024	74	1728	57024	74	1.7	174.291838	186	6.7	24	>54340
cc3-4p	64	576	8	64	576	8	0.0		2338		1	0.0
cc3-4u	64	576	8	64	576	8	0.0		23		1	0.0
cc3-5p	125	1500	13	125	1500	13	0.0		3661		1	0.8
cc3-5u	125	1500	13	125	1500	13	0.0		36		1	0.8
cc5-3p	243	2430	27	243	2430	27	0.1		7299		1901	4362.0
cc5-3u	243	2430	27	243	2430	27	0.1		71		207	669.4
cc6-2p	64	384	12	64	384	12	0.0		3271		1	0.1
cc6-2u	64	384	12	64	384	12	0.0		32		1	0.2
cc6-3p	729	8736	76	729	8736	76	0.3	20193.3481	20286	0.5	22679	>54340
cc6-3u	729	8736	76	729	8736	76	0.6		197		56	10003.2
cc $7-3 \mathrm{p}$	2187	30616	222	2187	30616	222	1.7	55404.3712	57072	3.0	863	>54340
cc7-3u	2187	30616	222	2187	30616	222	1.8	536.675303	552	2.9	738	>54340
cc9-2p	512	4608	64	512	4608	64	0.2	16916.6425	17284	2.2	7586	>54340
cc9-2u	512	4608	64	512	4608	64	0.3	163.855778	168	2.5	6994	>54340
hc10p	1024	10240	512	1024	10240	512	0.4	59287.7329	59777	0.8	41290	>54340
hc10u	1024	10240	512	1024	10240	512	0.8	567.888889	575	1.3	53052	>54340
hc11p	2048	22528	1024	2048	22528	1024	1.2	117451.749	119854	2.0	14242	>54340
hc11u	2048	22528	1024	2048	22528	1024	2.1	1125.4	1164	3.4	13107	>54340
hc12p	4096	49152	2048	4096	49152	2048	4.8	232919.332	236573	1.6	1533	>54340
hc 12 u	4096	49152	2048	4096	49152	2048	7.6	2233.09091	2321	3.9	1	>54340
hc6p	64	384	32	64	384	32	0.0		4003		1589	17.5
hc6u	64	384	32	64	384	32	0.0		39		693	5.0
hc7p	128	896	64	128	896	64	0.0		7905		251863	2797.7
hc7u	128	896	64	128	896	64	0.1		77		599283	4081.1
hc8p	256	2048	128	256	2048	128	0.1		15322		304601	21378.1
hc8u	256	2048	128	256	2048	128	0.1	145.714286	148	1.6	1166252	>54340
hc9p	512	4608	256	512	4608	256	0.2	29983.7876	30247	0.9	158503	>54340
hc9u	512	4608	256	512	4608	256	0.3	287.125	292	1.7	395816	>54340

Table 14. Detailed computational results for SPG, test-set SP.

Instance	Original			Presolved				Optimum	N	
	$\|V\|$	$\|A\|$	$\|T\|$	$\|V\|$	$\|A\|$	$\|T\|$	t [s]			t [s]
antiwheel5	10	30	5	0	0	0	0.0	7	1	0.0
design432	8	40	4	0	0	0	0.0	9	1	0.0
oddcycle3	6	18	3	0	0	0	0.0	4	1	0.0
oddwheel3	7	18	4	0	0	0	0.0	5	1	0.0
se03	13	42	4	0	0	0	0.0	12	1	0.0
w13c29	783	4524	406	783	4524	406	0.4	507	6	37.3
w23c23	1081	6348	552	1081	6348	552	0.7	689	132	1190.0
w3c571	3997	20556	2284	3997	20556	2284	3.1	2854	1	321.6

Table 15. Detailed computational results for SPG, test-set TSPFST.

Instance	$\|V\|$	Original $\|A\|$	$\|T\|$ \|	$\|V\|$		$\|T\|$	t [s]	Optimum	N	t [s]
a280fst	313	656	279	0	0	0	0.0	2502	1	0.0
att48fst	139	404	48	58	186	23	0.0	30236	1	0.0
att532fst	1468	4304	532	270	854	103	0.4	84009	1	0.5
berlin52fst	89	208	52	0	0	0	0.0	6760	1	0.0
bier127fst	258	714	127	0	0	0	0.0	104284	1	0.0
d1291fst	1365	2912	1291	0	0	0	0.0	481421	1	0.0
d1655fst	1906	4166	1655	33	100	16	0.0	584948	1	0.0
d198fst	232	512	198	0	0	0	0.0	129175	1	0.0
d2103fst	2206	4544	2103	0	0	0	0.0	769797	1	0.0
d493fst	1055	2946	493	92	280	46	0.1	320137	1	0.1
d657fst	1416	3956	657	131	418	56	0.3	471589	1	0.7
dsj1000fst	2562	7310	1000	69	220	28	0.2	17564659	1	0.3
eil101fst	330	1076	101	166	550	56	0.1	605	1	0.2
eil51fst	181	578	51	114	376	39	0.0	409	1	0.1
eil76fst	237	756	76	92	302	35	0.1	513	1	0.1
fl1400fst	2694	9092	1400	441	1648	221	0.5	17980523	1	7.8
fl1577fst	2413	6824	1577	94	320	48	0.1	19825626	1	0.3
fl3795fst	4859	13078	3795	444	1656	222	3.0	25529856	1	8.6
fl417fst	732	2168	417	124	438	52	0.1	10883190	1	0.2
fnl4461fst	17127	54704	4461	7720	25748	2484	22.3	182361	135	205.6
gil262fst	537	1446	262	34	104	22	0.0	2306	1	0.0
kroA100fst	197	500	100	0	0	0	0.0	20401	1	0.0
kroA150fst	389	1124	150	126	404	49	0.1	25700	1	0.1
kroA200fst	500	1428	200	0	0	0	0.0	28652	1	0.0
kroB100fst	230	626	100	0	0	0	0.0	21211	1	0.0
kroB150fst	420	1238	150	62	204	25	0.1	25217	1	0.1
kroB200fst	480	1340	200	102	330	45	0.1	28803	1	0.1
kroC100fst	244	674	100	45	146	18	0.0	20492	1	0.0
kroD100fst	216	576	100	12	34	7	0.0	20437	1	0.0
kroE100fst	226	612	100	46	140	21	0.0	21245	1	0.0
lin105fst	216	646	105	43	134	20	0.0	13429	1	0.0
lin318fst	678	2060	318	78	252	38	0.1	39335	1	0.1
linhp318fst	678	2060	318	78	252	38	0.1	39335	1	0.1
nrw1379fst	5096	16210	1379	2370	7936	751	3.8	56207	1	15.4
p654fst	777	1734	654	0	0	0	0.0	314925	1	0.0
pcb1173fst	1912	4446	1173	17	48	10	0.0	53301	1	0.0
pcb3038fst	5829	15104	3038	77	232	40	0.4	131895	1	0.4
pcb442fst	503	1062	442	0	0	0	0.0	47675	1	0.0
pla7397fst	8790	19630	7397	97	296	51	0.1	22481625	1	0.1
pr1002fst	1473	3430	1002	0	0	0	0.0	243176	1	0.0
pr107fst	111	220	107	0	0	0	0.0	34850	1	0.0
pr124fst	154	330	124	0	0	0	0.0	52759	1	0.0
pr136fst	196	500	136	0	0	0	0.0	86811	1	0.0
pr144fst	221	570	144	0	0	0	0.0	52925	1	0.0
pr152fst	308	862	152	0	0	0	0.0	64323	1	0.0
pr226fst	255	538	226	0	0	0	0.0	70700	1	0.0
pr2392fst	3398	7932	2392	0	0	0	0.0	358989	1	0.0
pr264fst	280	574	264	0	0	0	0.0	41400	1	0.0
pr299fst	420	1000	299	0	0	0	0.0	44671	1	0.0

Instance	Original			Presolved				Optimum	N	t [s]
	$\|V\|$	$\|A\|$	$\|T\|$	$\|V\|$	$\|A\|$	$\|T\|$	t [s]			
pr439fst	572	1324	439	0	0	0	0.0	97400	1	0.0
pr76fst	168	494	76	33	94	16	0.0	95908	1	0.0
rat195fst	560	1740	195	182	594	70	0.2	2386	1	0.3
rat575fst	1986	6352	575	892	2940	319	1.6	6808	1	2.3
rat783fst	2397	7430	783	900	2976	338	1.7	8883	1	2.7
rat99fst	269	798	99	0	0	0	0.0	1225	1	0.0
rd100fst	201	506	100	0	0	0	0.0	764269099	1	0.0
rd400fst	1001	2838	400	161	514	65	0.1	1490972010	,	0.2
rl11849fst	13963	30630	11849	88	266	50	0.1	8779590	1	0.1
rl1304fst	1562	3388	1304	18	54	10	0.0	236649	,	0.0
rl1323fst	1598	3500	1323	0	0	0	0.0	253620	1	0.0
rl1889fst	2382	5348	1889	67	216	27	0.0	295208	1	0.0
rl5915fst	6569	13960	5915	34	102	19	0.0	533226	1	0.0
r15934fst	6827	14730	5934	31	100	19	0.0	529890	1	0.0
st70fst	133	338	70	0	0	0	0.0	626	1	0.0
ts225fst	225	448	225	0	0	0	0.0	1120	1	0.0
tsp225fst	242	504	225	0	0	0	0.0	356850	1	0.0
u1060fst	1835	4858	1060	63	220	32	0.1	21265372	1	1.3
u1432fst	1432	2862	1432	0	0	0	0.0	1465	1	0.0
u159fst	184	372	159	0	0	0	0.0	390	1	0.0
u1817fst	1831	3692	1817	0	0	0	0.0	5513053	1	0.0
u2152fst	2167	4368	2152	0	0	0	0.0	6253305	1	0.0
u2319fst	2319	4636	2319	0	0	0	0.0	2322	1	0.0
u574fst	990	2516	574	0	0	0	0.1	3509275	1	0.1
u724fst	1180	3074	724	11	32	7	0.0	4069628	1	0.1
vm1084fst	1679	4116	1084	26	80	15	0.1	2248390	1	0.1
vm1748fst	2856	7282	1748	191	612	85	0.4	3194670	1	0.5

Table 16. Detailed computational results for SPG, test-set vienna-geo-original.

Instance	Original			Presolved				Optimum	N	t [s]
	$\|V\|$		$\|T\|$	$\|V\|$	$\|A\|$	$\|T\|$	t [s]			
G101	67966	164970	100	669	2544	66	4.7	3492405	1	5.2
G102	111707	321008	2052	9285	30744	1592	20.0	15187538	1	67.4
G103	135543	403606	3033	12804	42348	2277	26.9	19938744	1	120.7
G104	158212	480044	3914	16492	54266	2929	36.7	26165528	1	211.7
G105	79244	202378	550	3103	10712	409	8.6	12507877	1	25.0
G106	204621	636272	5556	1379	4618	233	70.1	44547208	1	469.7
G107	85568	228226	938	1177	3824	247	7.5	7325530	1	9.8
G201	44624	112410	190	775	2588	123	3.4	3484028	1	3.8
G202	62174	175124	1015	1773	5766	357	7.5	6849423	1	9.3
G203	88728	267250	2041	1817	5962	323	19.9	13155210	1	43.1
G204	50002	130406	386	905	2916	181	4.9	5313548	1	5.2
G205	120866	374624	3224	3873	12768	639	31.7	24819583	1	179.4
G206	60446	165880	803	254	834	56	7.8	9175622	1	10.7
G207	42481	105104	97	0	0	0	1.8	2265834	1	1.8
G301	80736	197500	191	1313	4932	152	6.7	4797441	1	8.0
G302	117756	330306	1879	354	1112	91	13.8	13300990	1	23.4
G303	147718	428352	2992	10545	33992	1853	35.0	27941456	1	68.0
G304	86413	217744	419	77	242	24	6.7	6721180	1	6.8
G305	172687	511650	3902	2540	8404	421	42.6	40632152	1	126.7
G306	196404	600072	4937	2329	7616	425	49.4	33949874	1	381.3
G307	235686	732186	6313	3647	12044	610	79.3	51219090	1	524.8
G308	78834	191464	88	1120	4464	72	6.5	4699474	3	11.0
G309	97928	257264	902	576	1872	127	12.1	11256303	1	14.8

Table 17. Detailed computational results for SPG, test-set vienna-geo-advanced.

Instance	Original			Presolved						
	$\|V\|$		$\|T\|$	$\|V\|$	$\|A\|$	$\|T\|$	$\mathrm{t}[\mathrm{s}]$	Optimum	N	t [s]
G101a	10734	32690	96	286	1050	44	4.3	3492405	1	4.5
G102a	27896	87850	2003	8975	29614	1543	22.2	15187538	1	64.1
G103a	36270	114740	2930	5448	17926	970	26.7	19938744	1	102.2
G104a	44251	140058	3776	16048	52674	2830	37.8	26165528	1	223.0
G105a	14586	44900	525	3029	10410	402	7.6	12507877	1	22.5
cont. next page										

Instance	Original			Presolved				Optimum	N	t [s]
	$\|V\|$	$\|A\|$	$\|T\|$	$\|V\|$	$\|A\|$	$\|T\|$	t [s]			
G106a	62618	200134	5373	1380	4618	233	62.8	44547208	1	506.1
G107a	15536	47716	893	1181	3850	247	6.2	7325530	1	8.8
G201a	8286	25234	188	772	2580	124	3.2	3484028	1	3.6
G202a	14028	43220	985	1771	5752	360	6.6	6849423	1	8.7
G203a	25651	81220	1999	1803	5910	320	18.2	13155210	1	40.9
G204a	9939	30498	376	868	2806	176	2.8	5313548	1	3.2
G205a	37398	118646	3146	3815	12590	624	28.2	24819583	1	152.0
G206a	13688	42394	789	294	974	60	6.8	9175622	1	9.7
G207a	7565	23042	98	2	2	1	1.7	2265834	1	1.7
G301a	13291	40522	181	952	3484	125	6.3	4797441	1	6.8
G302a	24951	77294	1797	403	1274	101	12.5	13300990	1	21.7
G303a	37085	115422	2915	1308	4250	231	29.5	27941456	1	77.3
G304a	15213	46658	403	117	380	30	5.7	6721180	1	5.7
G305a	47016	147722	3809	14024	45076	2425	46.7	40632152	1	127.6
G306a	55423	175558	4766	2329	7614	425	50.4	33949874	1	369.2
G307a	71184	227232	6107	3648	12048	610	68.8	51219090	1	536.1
G308a	13298	40702	86	702	2740	67	6.3	4699474	1	7.3
G309a	18704	57702	868	2259	7478	402	11.3	11256303	1	13.4

Table 18. Detailed computational results for SPG, test-set vienna-i-simple.

Instance	Original			Presolved				Optimum	N	t [s]
	$\|V\|$	$\|A\|$	$\|T\|$	$\|V\|$	$\|A\|$	$\|T\|$	t [s]			
1001	30190	95496	1184	211	646	75	2.0	253921201	1	2.1
1002	49920	155742	1665	642	1940	186	5.9	399809303	1	6.7
1003	44482	146838	3222	443	1342	126	9.1	788774494	1	12.3
1004	5556	17104	570	0	0	0	0.1	279512692	1	0.1
1005	10284	31960	1017	0	0	0	0.2	390876350	1	0.2
1006	31754	105750	2202	544	1640	175	6.8	504526035	1	10.3
1007	15122	48742	737	136	400	42	0.9	177909660	1	1.0
1008	15714	51134	871	136	404	46	1.8	201788202	1	1.9
1009	33188	104014	1262	297	902	100	2.3	275558727	1	2.5
1010	29905	94914	943	151	450	58	1.3	207889674	1	1.3
1011	25195	82596	1428	734	2258	207	2.3	317589880	1	3.1
1012	12355	39924	503	32	98	16	0.3	118893243	1	0.3
1013	18242	57952	891	66	188	32	1.3	193190339	1	1.3
1014	12715	41264	475	10	26	5	0.3	105173465	1	0.3
1015	48833	159974	2493	424	1330	123	7.0	592240832	1	8.1
1016	72038	230110	4391	742	2290	207	16.3	1110914620	1	18.1
1017	15095	48182	478	76	234	21	0.5	109739695	1	0.5
1018	31121	102226	1898	982	2914	274	4.5	463887832	1	6.1
1019	25946	83290	866	320	970	90	1.7	217647693	1	1.9
1020	21808	69842	594	98	308	35	0.9	146515460	1	1.0
1021	16013	50538	392	17	46	7	0.5	106470644	1	0.5
1022	16224	51382	437	54	156	19	0.7	106799980	1	0.7
1023	22805	70614	582	92	294	31	0.7	131044872	1	0.7
1024	68464	217464	3001	275	848	79	10.3	758483415	1	11.6
1025	23412	75904	945	474	1488	153	3.4	232790758	1	3.5
1026	47429	158614	3334	1420	4372	409	10.8	928032223	1	12.4
1027	85085	277776	3954	1166	3564	291	16.0	976812226	1	17.2
1028	72701	230860	1790	176	546	59	15.8	384053191	1	15.8
1029	69988	223608	2162	349	1100	93	12.4	492193565	1	12.7
1030	33188	107360	1263	148	450	39	3.2	321646787	1	3.3
1031	54351	176422	2182	155	482	42	5.2	578284709	1	5.2
1032	56023	182798	3017	800	2404	244	6.2	773096651	1	7.2
1033	18555	59460	636	59	174	25	1.5	134461857	1	1.5
1034	22311	71032	735	64	186	21	1.8	165115148	1	1.8
1035	30585	100908	1704	129	386	49	3.5	414440370	1	4.0
1036	37208	120712	1411	125	402	36	6.1	375260864	1	6.6
1037	13694	44252	427	13	36	7	1.2	105720727	1	1.2
1038	18747	61278	967	679	2106	169	1.8	255767543	1	2.5
1039	8755	28898	347	88	258	38	0.6	85566290	1	0.6
1040	40389	131640	1762	398	1236	121	5.8	431498867	1	6.0

Instance	Original			Presolved				Optimum	N	t [s]
	$\|V\|$	$\|A\|$	$\|T\|$	$\|V\|$	$\|A\|$	$\|T\|$	$\mathrm{t}[\mathrm{s}]$			
1041	47197	150614	1193	181	554	65	5.31	301914840	1	5.3
1042	51896	171100	2171	131	394	39	6.8	532131412	1	6.9
1043	10398	33574	367	108	328	41	0.9	95722094	1	0.9
1044	68905	227778	3358	352	1082	90	10.7	804532332	1	13.5
1045	14685	46932	421	80	234	26	0.5	105944062	1	0.6
1046	70843	234418	3598	172	516	50	12.1	925470052	1	13.4
1047	28524	92502	2354	2176	6606	622	5.5	695163406	1	8.4
1048	13189	42438	358	0	0	0	0.5	91509264	1	0.5
1049	30857	99182	990	159	468	51	2.6	294811505	1	2.6
1050	43073	142552	2868	3449	10540	920	10.4	792599114	1	18.9
1051	27028	90812	1524	137	406	42	4.7	357230839	1	5.5
1052	2363	7522	40	0	0	0	0.0	13309487	1	0.0
1053	3224	10570	126	19	52	8	0.1	30854904	1	0.1
1054	3803	12426	38	0	0	0	0.0	15841596	1	0.0
1055	13332	43160	570	112	338	46	0.7	144164924	1	0.8
1056	1991	6352	51	0	0	0	0.0	14171206	1	0.0
1057	33231	110298	1569	112	340	40	3.2	412746415	1	3.9
1058	23527	79256	1256	169	538	42	1.2	305024188	1	1.3
1059	9287	29950	363	49	134	22	0.2	107617854	1	0.2
1060	42008	135144	1242	160	504	54	5.7	337290460	1	5.7
1061	39160	127318	1458	171	532	46	7.1	363042722	1	7.7
1062	66048	220982	3343	122	374	43	7.2	792941137	1	7.6
1063	26840	87322	1645	777	2366	214	3.7	459801704	1	4.4
1064	63158	214690	3458	6440	20058	1597	19.7	863103567	1	36.3
1065	3898	12712	144	12	36	9	0.2	32965718	1	0.2
1066	15038	49192	551	70	212	28	0.4	174219813	1	0.4
1067	20547	66460	627	403	1256	121	1.5	175540750	1	1.7
1068	33118	110254	1553	353	1066	100	2.7	420730046	1	2.9
1069	9574	32416	543	258	804	71	0.9	135161583	1	1.0
1070	15079	49216	550	123	364	48	1.7	136700139	1	1.8
1071	33203	108854	1494	233	684	70	2.9	382539099	1	3.1
1072	26948	88388	993	110	338	24	2.0	289019226	1	2.0
1073	21653	70342	1847	115	336	44	2.8	663004987	1	3.5
1074	13316	44066	653	17	50	9	0.7	165573383	1	0.7
1075	57551	190762	2973	110	336	33	8.0	815404026	1	8.5
1076	14023	45790	598	71	208	31	0.9	166249692	1	0.9
1077	20856	68474	1787	3514	10400	882	4.5	472503150	1	10.8
1078	13294	43896	835	86	244	37	1.1	185525490	1	1.1
1079	19867	62542	565	757	2598	213	2.5	150506933	1	2.9
1080	18695	59416	548	313	966	92	1.7	164299652	1	1.9
1081	25081	81478	888	53	154	27	2.4	247527679	1	2.5
1082	15592	49576	515	0	0	0	0.9	147407632	1	1.0
1083	89596	297166	4991	65	202	21	11.8	1405593860	1	13.3
1084	44934	147454	2319	95	318	26	4.7	627187559	1	6.8
1085	9113	28982	301	98	340	29	0.4	80628079	1	0.4

Table 19. Detailed computational results for SPG, test-set vienna-i-advanced.

Instance	Original			Presolved				Optimum	N	t [s]
	$\|V\|$		$\|T\|$	$\|V\|$	$\|A\|$	$\|T\|$	t [s]			
1001a	14675	44110	941	212	638	72	1.8	253921201	1	1.9
1002a	23800	71516	1282	635	1918	186	4.6	399809303	1	5.5
1003a	16270	47838	2336	440	1332	125	7.6	788774494	1	10.7
1004a	867	2476	263	19	48	11	0.1	279512692	1	0.1
1005a	1677	4860	491	0	0	0	0.1	390876350	1	0.1
1006a	13339	39064	1842	104	316	28	5.6	504526035	1	9.6
1007a	6873	20598	599	128	370	42	0.8	177909660	1	0.8
1008a	6522	19258	708	101	296	33	1.5	201788202	1	1.6
1009a	14977	44870	1053	306	924	101	1.8	275558727	1	2.0
1010a	13041	39090	782	156	470	59	0.9	207889674	1	0.9
1011a	9298	27370	1202	709	2172	200	2.2	317589880	1	2.9
1012a	3500	10428	387	0	0	0	0.1	118893243	1	0.1
1013a	7147	21216	670	67	192	33	1.0	193190339	1	1.0
1014a	3577	10622	364	0	0	0	0.1	105173465	1	0.1
1015a	20573	61082	2119	407	1270	120	5.9	592240832	1	7.2
1016a	27214	79648	3434	507	1548	154	11.6	1110914620	1	14.0

cont. next page

Instance	Original			Presolved				Optimum	N	t [s]
	$\|V\|$	A \|	$\|T\|$	$\|V\|$	$\|A\|$	$\|T\|$	t [s]			
1017a	7571	23142	386	0	0	0	0.3	109739695	1	0.3
1018a	12258	36028	1549	992	2942	276	3.3	463887832	1	4.8
1019a	11693	35248	732	278	846	79	1.3	217647693	1	1.4
1020a	6405	19128	508	58	180	18	0.5	146515460	1	0.5
1021a	5195	15722	295	102	306	27	0.2	106470644	1	0.2
1022a	8869	27102	356	64	188	24	0.5	106799980	1	0.5
1023a	13724	41726	403	222	672	64	0.5	131044872	1	0.5
1024a	32357	96500	2511	73	214	28	8.8	758483415	1	9.5
1025a	10055	29922	833	73	228	28	2.8	232790758	1	3.0
1026a	18155	53136	2661	1687	5180	496	8.4	928032223	1	10.2
1027a	40772	121110	3490	109	346	33	14.7	976812226	1	16.3
1028a	43690	132922	1597	255	790	85	14.8	384053191	1	14.9
1029a	32979	99254	1946	270	856	73	9.2	492193565	1	9.4
1030a	12941	38558	1093	151	460	39	2.2	321646787	1	2.3
1031a	21054	62820	1832	156	484	42	3.6	578284709	1	3.6
1032a	21345	62706	2454	344	1058	90	5.3	773096651	1	6.2
1033a	8500	25400	548	252	770	76	1.0	134461857	1	1.1
1034a	9128	27336	606	142	412	48	1.1	165115148	1	1.2
1035a	13129	38840	1428	118	352	47	2.8	414440370	1	3.1
1036a	17036	50964	1258	318	984	74	5.2	375260864	1	5.8
1037a	5886	17738	392	60	180	21	0.8	105720727	1	0.8
1038a	7733	22956	798	693	2152	180	1.3	255767543	1	1.9
1039a	3719	11066	306	34	104	10	0.4	85566290	1	0.4
1040a	18837	56312	1501	165	512	49	5.6	431498867	1	5.7
1041a	22466	67736	1014	92	272	36	2.9	301914840	1	2.9
1042a	23925	71612	1923	116	346	34	5.4	532131412	1	5.6
1043a	4511	13480	335	99	288	35	0.7	95722094	1	0.7
1044a	31500	93514	2954	1327	4108	296	9.1	804532332	1	11.5
1045a	6775	20454	378	83	244	26	0.4	105944062	1	0.4
1046a	32376	96108	3154	163	482	50	9.3	925470052	1	11.0
1047a	10622	30880	1791	1365	4126	392	7.7	695163406	1	8.6
1048a	4920	14712	320	0	0	0	0.3	91509264	1	0.3
1049a	15045	45426	821	157	460	51	2.2	294811505	1	2.3
1050a	17787	52352	2232	3357	10250	902	9.2	792599114	,	17.3
1051a	12130	35784	1337	146	440	43	3.9	357230839	1	4.8
1052a	160	474	23	0	0	0	0.0	13309487	1	0.0
1053a	693	2046	102	26	72	13	0.0	30854904	1	0.0
1054a	540	1634	25	0	0	0	0.0	15841596	1	0.0
1055a	4701	13958	483	100	284	45	0.5	144164924	1	0.5
1056a	290	878	34	0	0	0	0.0	14171206	1	0.0
1057a	13078	38736	1346	178	546	64	2.8	412746415	1	3.4
1058a	7877	23314	997	156	494	39	0.9	305024188	1	1.0
1059a	2800	8314	286	31	86	11	0.1	107617854	1	0.1
1060a	18991	57072	1158	191	582	70	4.6	337290460	1	4.6
1061a	20958	62930	1337	153	464	49	5.8	363042722	1	6.3
1062a	23714	70610	2812	94	280	30	6.2	792941137	1	6.5
1063a	9600	28084	1291	950	2898	255	3.1	459801704	1	3.9
1064a	31712	93422	3182	6460	20152	1609	18.3	863103567	1	35.9
1065a	1185	3512	119	62	194	26	0.1	32965718	1	0.1
1066a	4551	13642	417	59	182	24	0.3	174219813	1	0.3
1067a	10318	31176	579	407	1272	123	1.3	175540750	1	1.5
1068a	12191	36046	1302	321	976	91	1.9	420730046	1	2.2
1069a	3508	10312	452	269	844	73	0.7	135161583	1	0.8
1070a	6739	20128	511	147	438	52	1.4	136700139	1	1.4
1071a	12772	37772	1281	117	362	36	2.2	382539099	1	2.4
1072a	11628	34822	851	92	268	38	1.1	289019226	1	1.1
1073a	7510	21746	1337	1069	3244	324	2.5	663004987	1	3.1
1074a	4441	13124	548	37	110	13	0.3	165573383	1	0.3
1075a	23195	68724	2498	102	300	33	6.3	815404026	1	6.7
1076a	4909	14536	498	20	54	11	0.6	166249692	1	0.6
1077a	9153	26726	1490	3509	10388	880	4.1	472503150	1	11.0
1078a	5864	17324	692	168	486	58	1.0	185525490	1	1.0
									t.	page

Instance	Original			Presolved				Optimum	N	t [s]
	$\|V\|$	$\|A\|$	$\|T\|$	$\|V\|$	$\|A\|$	$\|T\|$	$\mathrm{t}[\mathrm{s}]$			
1079a	7933	23614	497	732	2516	205	2.0	150506933	1	2.5
1080a	7589	22512	499	307	950	92	1.0	164299652	1	1.1
1081a	10747	32058	751	85	246	45	1.9	247527679	1	1.9
1082a	5850	17386	435	29	82	14	0.7	147407632	1	0.7
1083a	34221	100602	4138	326	1010	86	8.9	1405593860	1	10.3
1084a	17050	50402	1918	1265	3922	306	4.0	627187559	1	5.8
1085a	2780	8246	243	0	0	0	0.2	80628079	1	0.2

Table 20. Detailed computational results for SPG, test-set VLSI.

Instance	Original			Presolved						
	$\|V\|$	$\|A\|$	$\|T\|$ \|	$\|V\|$	$\|A\|$	$\|T\|$	t [s]	Optimum	N	t [s]
alue2087	1244	3942	34	0	0	0	0.0	1049	1	0.0
alue2105	1220	3716	34	0	0	0	0.0	1032	1	0.0
alue3146	3626	11738	64	0	0	0	0.1	2240	1	0.1
alue5067	3524	11120	68	50	146	16	0.1	2586	1	0.1
alue5345	5179	16330	68	62	202	17	0.9	3507	1	0.9
alue5623	4472	13876	68	20	56	9	0.6	3413	1	0.6
alue5901	11543	36858	68	41	124	18	0.7	3912	1	0.7
alue6179	3372	10426	67	0	0	0	0.1	2452	1	0.1
alue6457	3932	12274	68	0	0	0	0.1	3057	1	0.1
alue6735	4119	13392	68	140	446	20	0.1	2696	1	0.1
alue6951	2818	8838	67	57	172	19	0.1	2386	1	0.1
alue7065	34046	109682	544	41	122	17	19.5	23881	1	19.5
alue 7066	6405	20908	16	2281	7962	9	0.7	2256	1	0.7
alue7080	34479	110988	2344	862	2736	344	9.5	62449	1	9.9
alue 7229	940	2948	34	0	0	0	0.0	824	1	0.0
alut0787	1160	4178	34	0	0	0	0.0	982	1	0.0
alut0805	966	3332	34	0	0	0	0.0	958	1	0.0
alut1181	3041	11386	64	0	0	0	0.2	2353	1	0.2
alut2010	6104	22022	68	52	162	13	0.3	3307	1	0.3
alut2288	9070	33190	68	0	0	0	0.9	3843	1	0.9
alut2566	5021	18110	68	32	96	14	0.7	3073	1	0.7
alut2610	33901	125632	204	119	408	9	41.4	12239	1	41.4
alut2625	36711	136234	879	2875	10224	426	44.6	35459	1	51.5
alut2764	387	1252	34	0	0	0	0.0	640	1	0.0
diw0234	5349	20172	25	0	0	0	0.1	1996	1	0.1
diw0250	353	1216	11	0	0	0	0.0	350	1	0.0
diw0260	539	1970	12	0	0	0	0.0	468	1	0.0
diw0313	468	1644	14	0	0	0	0.0	397	1	0.0
diw0393	212	762	11	0	0	0	0.0	302	1	0.0
diw0445	1804	6622	33	21	60	12	0.1	1363	1	0.1
diw0459	3636	13578	25	14	40	5	0.1	1362	1	0.1
diw0460	339	1158	13	0	0	0	0.0	345	1	0.0
diw0473	2213	8270	25	0	0	0	0.1	1098	1	0.1
diw0487	2414	8772	25	0	0	0	0.0	1424	1	0.0
diw0495	938	3310	10	0	0	0	0.0	616	1	0.0
diw0513	918	3368	10	0	0	0	0.0	604	1	0.0
diw0523	1080	4030	10	0	0	0	0.0	561	1	0.0
diw0540	286	930	10	0	0	0	0.0	374	1	0.0
diw0559	3738	14026	18	171	608	12	0.2	1570	1	0.2
diw0778	7231	27454	24	0	0	0	0.6	2173	1	0.6
diw0779	11821	45032	50	32	100	8	2.7	4440	1	2.7
diw0795	3221	11876	10	0	0	0	0.1	1550	1	0.1
diw0801	3023	11150	10	0	0	0	0.1	1587	1	0.1
diw0819	10553	40132	32	0	0	0	0.2	3399	1	0.2
diw0820	11749	44768	37	88	310	12	3.8	4167	1	3.8
dmxa0296	233	772	12	0	0	0	0.0	344	1	0.0
dmxa0368	2050	7352	18	16	40	10	0.1	1017	1	0.1
dmxa0454	1848	6572	16	0	0	0	0.0	914	1	0.0
dmxa0628	169	560	10	0	0	0	0.0	275	1	0.0
dmxa0734	663	2308	11	0	0	0	0.0	506	1	0.0

Instance	Original			Presolved				Optimum	N	t [s]
	$\|V\|$	$\|A\|$	$\|T\|$	$\|V\|$	$\|A\|$	$\|T\|$	$\mathrm{t}[\mathrm{s}]$			
dmxa0848	499	1722	16	0	0	0	0.0	594	1	0.0
dmxa0903	632	2174	10	0	0	0	0.0	580	1	0.0
dmxa1010	3983	14216	23	0	0	0	0.1	1488	1	0.1
dmxa1109	343	1118	17	0	0	0	0.0	454	1	0.0
dmxa1200	770	2766	21	33	94	13	0.0	750	1	0.0
dmxa1304	298	1006	10	0	0	0	0.0	311	1	0.0
dmxal516	720	2538	11	0	0	0	0.0	508	1	0.0
dmxal721	1005	3462	18	0	0	0	0.0	780	1	0.0
dmxa1801	2333	8274	17	209	716	16	0.1	1365	1	0.1
gap1307	342	1104	17	0	0	0	0.0	549	1	0.0
gap1413	541	1812	10	0	0	0	0.0	457	1	0.0
gap1500	220	748	17	0	0	0	0.0	254	1	0.0
gap1810	429	1404	17	0	0	0	0.0	482	1	0.0
gap1904	735	2512	21	0	0	0	0.0	763	1	0.0
gap2007	2039	7096	17	0	0	0	0.0	1104	1	0.0
gap2119	1724	5950	29	0	0	0	0.0	1244	1	0.0
gap2740	1196	4168	14	0	0	0	0.0	745	1	0.0
gap2800	386	1306	12	0	0	0	0.0	386	1	0.0
gap2975	179	586	10	0	0	0	0.0	245	1	0.0
gap3036	346	1166	13	0	0	0	0.0	457	1	0.0
gap3100	921	3116	11	0	0	0	0.0	640	1	0.0
gap3128	10393	36086	104	0	0	0	0.2	4292	1	0.2
msm0580	338	1082	11	0	0	0	0.0	467	1	0.0
msm0654	1290	4540	10	0	0	0	0.0	823	1	0.0
msm0709	1442	4806	16	0	0	0	0.0	884	1	0.0
msm0920	752	2528	26	0	0	0	0.0	806	1	0.0
msm1008	402	1390	11	0	0	0	0.0	494	1	0.0
msm1234	933	3264	13	0	0	0	0.0	550	1	0.0
msm1477	1199	4156	31	0	0	0	0.0	1068	1	0.0
msm1707	278	956	11	0	0	0	0.0	564	1	0.0
msm1844	90	270	10	0	0	0	0.0	188	1	0.0
msm1931	875	3044	10	0	0	0	0.0	604	1	0.0
msm2000	898	3124	10	0	0	0	0.0	594	1	0.0
msm2152	2132	7404	37	0	0	0	0.1	1590	1	0.1
msm2326	418	1446	14	0	0	0	0.0	399	1	0.0
msm2492	4045	14188	12	0	0	0	0.1	1459	1	0.1
msm2525	3031	10478	12	0	0	0	0.1	1290	1	0.1
msm2601	2961	10200	16	0	0	0	0.1	1440	1	0.1
msm2705	1359	4916	13	0	0	0	0.0	714	1	0.0
msm2802	1709	5926	18	0	0	0	0.0	926	1	0.0
msm2846	3263	11566	89	52	162	22	0.3	3135	1	0.3
msm3277	1704	5982	12	0	0	0	0.0	869	1	0.0
msm3676	957	3108	10	0	0	0	0.0	607	1	0.0
msm3727	4640	16510	21	0	0	0	0.1	1376	1	0.1
msm3829	4221	14510	12	0	0	0	0.3	1571	1	0.3
msm4038	237	780	11	0	0	0	0.0	353	1	0.0
msm4114	402	1380	16	0	0	0	0.0	393	1	0.0
msm4190	391	1332	16	0	0	0	0.0	381	1	0.0
msm4224	191	604	11	0	0	0	0.0	311	1	0.0
msm4312	5181	17786	10	672	2332	10	0.5	2016	1	0.5
msm4414	317	952	11	0	0	0	0.0	408	1	0.0
msm4515	777	2716	13	0	0	0	0.0	630	1	0.0
taq0014	6466	22092	128	0	0	0	0.5	5326	1	0.5
taq0023	572	1926	11	0	0	0	0.0	621	1	0.0
taq0365	4186	14148	22	61	198	9	0.1	1914	1	0.1
taq0377	6836	23430	136	58	160	34	1.6	6393	1	1.7
taq0431	1128	3810	13	0	0	0	0.0	897	1	0.0
taq0631	609	1864	10	0	0	0	0.0	581	1	0.0
taq0739	837	2876	16	0	0	0	0.0	848	1	0.0
taq0741	712	2434	16	53	170	9	0.0	847	1	0.0
taq0751	1051	3582	16	0	0	0	0.0	939	1	0.0
taq0891	331	1120	10	0	0	0	0.0	319	1	0.0
cont. next page										

Instance	Original			Presolved				Optimum	N	t [s]
	$\|V\|$	$\|A\|$	$\|T\|$	$\|V\|$	$\|A\|$	$\|T\|$	t [s]			
taq0903	6163	20980	130	0	0	0	1.4	5099	1	1.5
taq0910	310	1028	17	0	0	0	0.0	370	1	0.0
taq0920	122	388	17	0	0	0	0.0	210	1	0.0
taq0978	777	2478	10	0	0	0	0.0	566	1	0.0

Table 21. Detailed computational results for SPG, test-set WRP3.

Instance	Original			Presolved						
	$\|V\|$	$\|A\|$	$\|T\|$ \|	$\|V\|$	$\|A\|$	$\|T\|$	t [s]	Optimum	N	t [s]
wrp3-11	128	454	11	0	0	0	0.0	1100361	1	0.0
wrp3-12	84	298	12	0	0	0	0.0	1200237	1	0.0
wrp3-13	311	1226	13	131	492	13	0.1	1300497	1	0.1
wrp3-14	128	494	14	108	422	13	0.0	1400250	1	0.0
wrp3-15	138	514	15	0	0	0	0.0	1500422	1	0.0
wrp3-16	204	748	16	0	0	0	0.0	1600208	1	0.0
wrp3-17	177	708	17	151	622	13	0.0	1700442	1	0.0
wrp3-19	189	706	19	0	0	0	0.0	1900439	1	0.0
wrp3-20	245	908	20	0	0	0	0.0	2000271	1	0.0
wrp3-21	237	888	21	0	0	0	0.0	2100522	1	0.0
wrp3-22	233	862	22	186	686	20	0.0	2200557	1	0.1
wrp3-23	132	460	23	0	0	0	0.0	2300245	1	0.0
wrp3-24	262	974	24	120	416	17	0.0	2400623	1	0.0
wrp3-25	246	936	25	0	0	0	0.0	2500540	1	0.0
wrp3-26	402	1560	26	0	0	0	0.0	2600484	1	0.0
wrp3-27	370	1442	27	58	202	14	0.2	2700502	1	0.2
wrp3-28	307	1118	28	2	2	1	0.0	2800379	1	0.0
wrp3-29	245	872	29	0	0	0	0.0	2900479	1	0.0
wrp3-30	467	1792	30	73	248	14	0.1	3000569	1	0.1
wrp3-31	323	1184	31	55	188	16	0.1	3100635	1	0.1
wrp3-33	437	1676	33	100	382	13	0.0	3300513	1	0.0
wrp3-34	1244	4948	34	1057	4206	32	2.4	3400646	1	3.6
wrp3-36	435	1636	36	99	332	15	0.4	3600610	1	0.4
wrp3-37	1011	4020	37	847	3356	37	3.2	3700485	1	4.7
wrp3-38	603	2414	38	437	1780	37	0.9	3800656	1	2.1
wrp3-39	703	3232	39	609	2822	38	2.3	3900450	1	4.2
wrp3-41	178	614	41	129	448	36	0.2	4100466	1	0.2
wrp3-42	705	2746	42	572	2214	41	0.8	4200598	1	1.3
wrp3-43	173	596	43	0	0	0	0.1	4300457	1	0.1
wrp3-45	1414	5626	45	1204	4786	45	2.9	4500860	1	3.3
wrp3-48	925	3476	48	491	1816	45	1.1	4800552	1	2.0
wrp3-49	886	3600	49	693	2798	46	1.8	4900882	1	9.3
wrp3-50	1119	4502	50	915	3716	49	2.5	5000673	1	4.3
wrp3-52	701	2704	52	581	2250	49	1.6	5200825	1	5.2
wrp3-53	775	2942	53	148	534	12	0.3	5300847	1	0.3
wrp3-55	1645	6372	55	1487	5844	55	2.1	5500888	1	68.8
wrp3-56	853	3180	56	590	2238	52	0.9	5600872	1	3.1
wrp3-60	838	3526	60	785	3300	60	2.2	6001164	1	29.9
wrp3-62	670	2632	62	586	2278	62	1.1	6201016	1	6.1
wrp3-64	1822	7220	64	1592	6402	59	3.4	6400931	1	9.7
wrp3-66	2521	9716	66	2269	8946	62	3.0	6600922	1	363.9
wrp3-67	987	3846	67	467	1848	36	1.8	6700776	1	3.7
wrp3-69	856	3242	69	447	1674	61	1.6	6900841	1	1.9
wrp3-70	1468	5862	70	964	3810	56	2.6	7000890	1	11.2
wrp3-71	1221	4828	71	947	3754	62	2.7	7101028	1	17.9
wrp3-73	1890	7226	73	1679	6534	63	2.2	7301207	1	36.9
wrp3-74	1019	3882	74	861	3326	65	1.1	7400759	1	13.1
wrp3-75	729	2790	75	551	2054	75	1.6	7501020	1	2.6
wrp3-76	1761	6740	76	1049	4066	46	3.1	7601028	1	4.6
wrp3-78	2346	9312	78	1993	7980	71	3.6	7801094	1	224.6
wrp3-79	833	3190	79	0	0	0	1.1	7900444	1	1.1
wrp3-80	1491	5662	80	1214	4650	75	3.6	8000849	1	34.3
wrp3-83	3168	12440	83	2961	11852	80	3.2	8300906	1	2873.0

	Original						$\|V\|$	Presolved					
Instance	$\|V\|$	$\|A\|$	$\|T\|$	$\|V\|$	$\|A\|$	$\|T\|$	$\mathrm{t}[\mathrm{s}]$	Optimum	N	$\mathrm{t}[\mathrm{s}]$			
wrp3-84	2356	9094	84	1915	7600	73	3.4	$\mathbf{8 4 0 1 0 9 4}$	1	18.5			
wrp3-85	528	2034	85	509	1958	85	0.5	$\mathbf{8 5 0 0 7 3 9}$	1	5.6			
wrp3-86	1360	5214	86	1157	4444	86	2.9	$\mathbf{8 6 0 0 0 7 4 6}$	1	43.9			
wrp3-88	743	2818	88	390	1470	58	1.6	$\mathbf{8 8 0 0 1 1 7 5}$	1	2.3			
wrp3-91	1343	5188	91	873	3356	78	3.1	$\mathbf{9 1 0 0 0 8 6 6}$	1	5.3			
wrp3-92	1765	7226	92	1265	5254	70	3.5	$\mathbf{9 2 0 0 0 7 6 4}$	1	35.6			
wrp3-94	1976	7672	94	1504	6002	79	3.9	$\mathbf{9 4 0 0 1 1 8 1}$	5	54.5			
wrp3-96	2518	9970	96	2193	8800	87	3.8	$\mathbf{9 6 0 0 1 1 7 2}$	1	204.1			
wrp3-98	2265	9090	98	1893	7712	83	3.9	$\mathbf{9 8 0 0 1 2 2 4}$	1	303.9			
wrp3-99	2076	8144	99	1689	6612	94	2.0	$\mathbf{9 9 0 0 1 0 9 7}$	1	121.1			

Table 22. Detailed computational results for SPG, test-set WRP4.

Instance	Original			Presolved				Optimum	N	t [s]
	$\|V\|$	$\|A\|$	$\|T\|$	$\|V\|$	$\|A\|$	$\|T\|$	t [s]			
wrp4-11	123	466	11	0	0	0	0.0	1100179	1	0.0
wrp4-13	110	376	13	0	0	0	0.0	1300798	1	0.0
wrp4-14	145	566	14	0	0	0	0.0	1400290	1	0.0
wrp4-15	193	738	15	0	0	0	0.0	1500405	1	0.0
wrp4-16	311	1158	16	0	0	0	0.0	1601190	1	0.0
wrp4-17	223	808	17	138	486	13	0.0	1700525	1	0.0
wrp4-18	211	760	18	0	0	0	0.0	1801464	1	0.0
wrp4-19	119	412	19	0	0	0	0.0	1901446	1	0.0
wrp4-21	529	2064	21	167	644	15	0.1	2103283	1	0.1
wrp4-22	294	1136	22	108	392	15	0.1	2200394	1	0.1
wrp4-23	257	1030	23	131	478	18	0.0	2300376	1	0.0
wrp4-24	493	1926	24	0	0	0	0.1	2403332	1	0.1
wrp4-25	422	1616	25	92	332	9	0.1	2500828	1	0.1
wrp4-26	396	1562	26	310	1224	26	0.5	2600443	1	1.7
wrp4-27	243	994	27	71	260	16	0.1	2700441	1	0.1
wrp4-28	272	1090	28	190	756	28	0.2	2800466	1	0.5
wrp4-29	247	1010	29	105	394	22	0.2	2900484	1	0.2
wrp4-30	361	1448	30	296	1190	29	0.1	3000526	1	1.8
wrp4-31	390	1572	31	318	1280	30	0.3	3100526	1	2.2
wrp4-32	311	1264	32	246	998	29	0.1	3200554	1	1.3
wrp4-33	304	1142	33	103	372	19	0.0	3300655	1	0.0
wrp4-34	314	1300	34	45	154	9	0.1	3400525	1	0.1
wrp4-35	471	1908	35	320	1240	35	0.3	3500601	1	1.1
wrp4-36	363	1500	36	310	1276	36	0.2	3600596	1	1.1
wrp4-37	522	2108	37	438	1726	37	0.4	3700647	1	3.5
wrp4-38	294	1236	38	0	0	0	0.1	3800606	1	0.1
wrp4-39	802	3106	39	163	600	14	0.1	3903734	1	0.1
wrp4-40	538	2176	40	440	1774	39	0.3	4000758	1	6.2
wrp4-41	465	1910	41	377	1540	41	0.4	4100695	1	3.4
wrp4-42	552	2262	42	502	2038	42	0.4	4200701	1	9.3
wrp4-43	596	2296	43	277	1054	33	0.1	4301508	1	0.2
wrp4-44	398	1576	44	153	576	27	0.3	4401504	39	0.6
wrp4-45	388	1630	45	0	0	0	0.3	4500728	1	0.3
wrp4-46	632	2574	46	583	2356	46	0.4	4600756	1	8.6
wrp4-47	555	2196	47	0	0	0	0.9	4701318	1	0.9
wrp4-48	451	1650	48	0	0	0	0.1	4802220	1	0.1
wrp4-49	557	2160	49	158	582	22	0.5	4901968	1	0.6
wrp4-50	564	2224	50	223	860	24	0.4	5001625	1	0.6
wrp4-51	668	2612	51	407	1592	45	1.3	5101616	1	1.6
wrp4-52	547	2230	52	70	240	20	0.4	5201081	1	0.4
wrp4-53	615	2464	53	351	1370	46	0.7	5301351	1	1.4
wrp4-54	688	2776	54	356	1398	40	0.6	5401534	1	1.4
wrp4-55	610	2402	55	403	1562	51	0.7	5501952	1	1.0
wrp4-56	839	3234	56	489	1902	47	0.8	5602299	1	1.5
wrp4-58	757	2986	58	367	1446	41	0.6	5801466	1	1.5
wrp4-59	904	3612	59	154	506	29	0.2	5901592	1	0.2
wrp4-60	693	2740	60	103	346	24	0.4	6001782	1	0.4

Instance	Original			Presolved				Optimum	N	t [s]
	$\|V\|$	\| A \|	$\|T\|$	$\|V\|$	$\|A\|$	$\|T\|$	t [s]			
wrp4-61	775	3076	61	138	500	19	0.2	6102210	1	0.2
wrp4-62	1283	4986	62	313	1184	29	2.6	6202100	1	2.7
wrp4-63	1121	4454	63	943	3752	60	0.9	6301479	1	59.9
wrp4-64	632	2562	64	0	0	0	0.3	6401996	1	0.3
wrp4-66	844	3382	66	229	834	24	1.0	6602931	1	1.0
wrp4-67	1518	6120	67	208	770	28	2.5	6702800	1	2.6
wrp4-68	917	3700	68	793	3182	67	0.8	6801753	1	3.7
wrp4-69	574	2330	69	0	0	0	0.7	6902328	1	0.7
wrp4-70	637	2538	70	0	0	0	0.1	7003022	1	0.1
wrp4-71	802	3218	71	0	0	0	0.1	7102320	1	0.1
wrp4-72	1151	4548	72	538	2132	48	1.1	7202807	1	4.2
wrp4-73	1898	7232	73	1290	5112	73	1.9	7302643	1	27.7
wrp4-74	802	3240	74	610	2422	72	0.8	7402046	1	1.9
wrp4-75	938	3738	75	702	2784	75	1.1	7501712	1	2.0
wrp4-76	766	3070	76	140	504	30	0.5	7602040	1	0.6

[^0]: ${ }^{1}$ Because we assume all edges to be of positive cost, S_{0}^{\prime} will in fact always be a tree.

[^1]: ${ }^{2}$ We note, however, that the framework presented in [34] is (slightly) erroneous.

[^2]: ${ }^{3}$ Our machine obtains a score of 488.993589 (with the same compiler as [37]).

