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Abstract

The Steiner tree problem in graphs (SPG) is one of the most studied problems in combi-
natorial optimization. In the last 10 years, there have been significant advances concerning
approximation and complexity of the SPG. However, the state of the art in (practical) exact
solution of the SPG has remained largely unchallenged for almost 20 years. While the DI-
MACS Challenge 2014 and the PACE Challenge 2018 brought renewed interest into Steiner
tree problems, even the best new SPG solvers cannot match the state of the art on the vast
majority of benchmark instances.

The following article seeks to once again advance exact SPG solution. The article is based
on a combination of three concepts: Implications, conflicts, and reductions. As a result,
various new SPG techniques are conceived. Notably, several of the resulting techniques
are (provably) stronger than well-known methods from the literature, used in exact SPG
algorithms. Finally, by integrating the new methods into a branch-and-cut algorithm we
obtain an exact SPG solver that is not only competitive with, but even outperforms the
current state of the art on a large collection of benchmark sets. Furthermore, we can solve
several instances for the first time to optimality.

1 Introduction

Given an undirected connected graph G = (V, E), edge costs ¢ : E — Qsp and aset T C V
of terminals, the Steiner tree problem in graphs (SPG) is to find a tree S C G with T' C V/(5)
such that ¢(F(S)) is minimized. The SPG is a classic N’P-hard problem [23], and one of the
most studied problems in combinatorial optimization. Part of its theoretical appeal might be
attributed to the fact that the SPG generalizes two other classic combinatorial optimization
problems: Shortest paths, and minimum spanning trees. On the practical side, many applications
can be modeled as SPG or closely related problems, see e.g. [5l 27].

The SPG has seen numerous theoretical advances in the last 10 years, bringing forth significant
improvements in complexity and approximability. See e.g. [4} [I5] for approximation, and [24], [29]
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46) for complexity results. However, when it comes to (practical) exact algorithms, the picture
is significantly more bleak. After flourishing in the 1990s and early 2000s, algorithmic advances
came to a staggering halt with the (joint) PhD theses of Polzin and Vahdati Daneshmand almost
20 years ago [3I, 45]. They introduced a wealth of new results and algorithms for SPG, and
combined them in an exact solver that drastically outperformed all previous results from the
literature. Their work is also published in a series of articles [32] [33] [34) [35] [36]. However, their
solver is not publicly available.

The 11th DIMACS Challenge in 2014, dedicated to Steiner tree problems, brought renewed
interest to the field of exact algorithms. In the wake of the challenge, several new exact SPG
solvers were introduced in the literature [13] 14 [17, 30). Overall, the 11th DIMACS Challenge
brought notable progress on the solution of notoriously hard SPG instances that had been de-
signed to defy known solution techniques, see [26, [40]. Several of these instances could be solved
for the first time to optimality. However, on the vast majority of instances from the litera-
ture, [31, 45] (whose solver did not compete at the DIMACS Challenge) stayed out of reach:
For many benchmark instances, their solver is even two orders of magnitude or more faster, and
it can furthermore solve substantially more instances to optimality—including those introduced
at the DIMACS Challenge [37]. In 2018, the 3rd PACE Challenge [3] took place, dedicated
to fixed-parameter tractable algorithms for SPG. Thus, the PACE Challenge considered mostly
instances with a small number of terminals, or with small tree-width. Solvers that successfully
participated in the PACE Challenge are for example described in [I8] [21]. Still, even for these
special problem types, the solver by [31] [45] remained largely unchallenged, see e.g. [21].

The following article aims to once again advance the state of the art in exact SPG solution.

1.1 Contribution

This article is based on a combination of three concepts: Implications, conflicts, and reductions.
As a result, various new SPG techniques are conceived. The main contributions are as follows.

e By using a new implication concept, a distance function is conceived that provably domi-
nates the well-known bottleneck Steiner distance. As a result, several reduction techniques
that are stronger than results from the literature can be designed.

e We show how to derive conflict information between edges from the above methods. Fur-
ther, we introduce a new reduction operation whose main purpose is to introduce additional
conflicts. Such conflicts can for example be used to generate cuts for the IP formulation.

e We introduce a more general version of the powerful so-called extended reduction tech-
niques. We furthermore enhance this framework by using both the previously introduced
new distance concept, and the conflict information.

e Finally, we integrate the components into a branch-and-cut algorithm. Besides preprocess-
ing, domain propagation, and cuts, also primal heuristics can be improved (by using the
new implication concept). The practical implementation is realized as an extension of the
branch-and-cut solver SCIP-JAcK [I4].

The resulting exact SPG solver outperforms the current state-of-the-art solver from [31 [45]
on many well-established benchmark sets from the literature. Furthermore, it can solve several
instances for the first time to optimality.



1.2 Preliminaries and notation

We write G := (V, E) for an undirected graph, with vertices V and edges E. We set n := |V
and m := |E|. We denote the vertices and edges of any subgraph S C G by V(S) and E(S),
respectively. For a walk W we likewise denote the set of vertices and the set of edges it contains
by V(W) and E(W). For any U C V we define the cut §(U) := {{u,v} € E|ue Uwv e V\U}.
We write 6 (U) to emphasize that the cut is defined with respect to graph G. For v € V we write
d(v) := 6({v}). For any v € V we define its neighborhood as N(v) := {w € W | {v,w} € 6(v)}.
Note that v ¢ N(v).

Given edge costs ¢ : E — Qxo, the triplet (V, E,c) is referred to as network. By d(v,w)
we denote the cost of a shortest path (with respect to ¢) between vertices v,w € V. For any
(distance) function d: (‘2/) — Q>0, and any U C V we define the d-distance graph on U as the
network

De(U,d) = (U, (g)c) (1)

with ¢({v,w}) := d(v,w) for all v,w € U. If d is the standard distance (i.e. d = d), we write
D¢(U) instead of D (U, d). Note that we write usually d(v, w) instead of d({v,w}).

2 From implications to reductions

Reduction techniques have been a key ingredient in exact SPG solvers, see e.g. [9, 25] [44] [33].
Among these techniques, the bottleneck Steiner distance introduced in [12] is arguably the most
important one, being the backbone of several powerful reduction methods. This section intro-
duces a (provably) stronger distance concept, and discusses several applications for improved
reduction methods.

2.1 The bottleneck Steiner distance
Let P be a simple path with at least one edge. The bottleneck length [12] of P is

bl(P) := eglEa%) c(e). (2)

Let v,w € V. Let P(v,w) be the set of all simple paths between v and w. The bottleneck
distance [12] between v and w is defined as

b(v,w) :=inf{bl(P) | P € P(v,w)}, (3)

with the common convention that inf () = co. Note that b(v,w) is equal to the bottleneck length
of the path between v and w on any minimum spanning tree of (G, ¢), as observed in [g].

Now consider the distance graph D := Dg(T U {v,w}). Let bp be the bottleneck distance in
D. Define the bottleneck Steiner distance or special distance [12] between v and w as

s(v,w) = bp(v,w). (4)

The arguably best known bottleneck Steiner distance reduction method is based on the fol-
lowing criterion, which allows for edge deletion [12].

Theorem 1. Let e = {v,w} € E. If s(v,w) < c(e), then no minimum Steiner tree contains e.



Note the analogy between bottleneck distance applied to the minimum spanning tree (MST)
problem, and bottleneck Steiner distance applied to the SPG: Any edge e = {v, w} that satisfies
b(v,w) < c¢(e) cannot be part of an MST. Otherwise, e could be replaced by an edge of cost
at most b(v,w) to obtain a spanning tree of smaller cost. Any edge e = {v,w} that satisfies
s(v,w) < c(e) cannot be part of a minimum Steiner tree. Otherwise, e could be replaced by a
path in G corresponding to an edge in D = Dg(T U {v,w}) with cost at most bp (v, w). In this
case, one would obtain a Steiner tree of smaller cost. We also point out that bottleneck Steiner
distances can be computed in polynomial time, but in practice (heuristic) approximations are
used. See [33] for a state-of-the-art algorithm.

2.2 A stronger bottleneck concept

In the following, we describe a generalization of the bottleneck Steiner distance. Initially, for
an edge e = {v,w} define the restricted bottleneck distance b(e) [33] as the bottleneck distance
between v and w on (V, E'\ {e}, ¢).

The basis of the new bottleneck Steiner concept is formed by a node-weight function that we
introduce in the following. For any v € V\ T and F C §(v) define

p* (v, F) := max {0,sup{b(e) — c(e) | e € F,eNT # 0} }. (5)

We call p* (v, F) the F-implied profit of v. The following observation motivates the subsequent
usage of the implied profit. Assume that p*(v,{e}) > 0 for an edge e € §(v). If a Steiner tree
S contains v, but not e, then there is a Steiner tree S’ with e € E(S’) such that ¢(E(S")) +
p* (v, {e}) < o(B(S)).

Let v,w € V. Consider a finite walk W = (v1, 1, v2, €3, ..., €1, v,.) with v1 = v and v, = w.
We say that W is a (v,w)-walk. For any k,l € N with 1 < k < [ < r define the subwalk
W (k1) := (g, €k, Vkt1, €kt1s - €1—1, V7). W will be called Steiner walk if V(W)NT C {v,w}
and v,w are contained exactly once in W (the latter condition could be omitted, but has been
added for ease of presentation). The set of all Steiner walks from v to w will be denoted by
Wr (v, w). With a slight abuse of notation we define dw (v) := d(u) N E(W) for any walk W and
any u € V. Define the implied Steiner cost of a Steiner walk W € Wy (v, w) as

G)i= Y - Y () \ (). (6)

ee E(W) weV(W)\{v,w}
Further, set
Py = {u € V(W) | p* (u,6(u) \ dw () > 0} U {v,w}. (7)
Define the implied Steiner length of W as
LE (W) := max{c; (W (vp, 1)) | 1 <k <1<, vp,0 € P} (8)

To understand the usage of the implied Steiner length, consider the SPG instance segment
shown in Figure Assume that edge {v1,v4} is part of Steiner tree S. Removing this edge
from S results in two trees S’ and S” with v; € V(S’), vg € V(S”). Consider the Steiner walk
W = (v, {v1,v2}, v2, {v2, v3}, v3, {v2,v3}, va, {v2,v4},v4). Note that pT (vs, d(v3) \ ow (v3)) = 3,
and thus [f (W) = 4. We claim that S’ and S” can be reconnected to a Steiner tree S that is
of smaller weight than S by using only edges from W. First, assume v3 is contained in either
S’ or S”. In this case, we can use the edges {vy,va}, {ve,v3} (if v3 € V(S”)) or the edges
{va,v3}, {va,v4} (if v3 € V(S’)) to reconnect S’ and S”. Second, assume that vs is neither
contained in S’ nor in S”. In this case, also the edge {vs,#1} cannot be contained in S’ or



S”: Because S is a Steiner tree, we have t; € V(S”). Indeed, also {t1,v4} € E(S”) holds.
Reconnect S’ and S” by adding all edges of W that are neither in S’ nor in S”. This procedure
results in a Steiner tree S. Next, add edge {vs,t;} and remove edge {t;,v4} from S. This
exchange reduces the weight of S by pt (vs,d(vs) \ dw(vs)). Thus, the final Steiner tree S

satisfies c¢(E(S5)) < c¢(E(S)) — 1.

Figure 1: Segment of an SPG instance. Terminals are drawn as squares.

With the above discussion in mind, define the implied Steiner distance between v and w as
df (v, w) := min{l7 (W) | W € Wp(v,w)}. 9)

Note that d} (v,w) = d}f (w,v). At last, consider the distance graph D* := Dg(T U {v, w},d;}).

Let bp+ be the bottleneck distance in DT. Define the implied bottleneck Steiner distance between
v and w as

sp(v,w) 1= bp+ (v, w). (10)

s(v,w)

7 sp(v,w)

arbitrarily large. Thus, the following result provides a strictly stronger reduction criterion than
Theorem [

can become

Note that s, (v, w) < s(v,w) and that the inequality can be strict. Indeed

Theorem 2. Let e = {v,w} € E. If s,(v,w) < c(e), then no minimum Steiner tree contains e.

Proof. Assume s,(v,w) < c(e) and let S be a Steiner tree with e € E(S). We will show the
existence of a Steiner tree S’ with e ¢ E(S’) such that ¢(E(S’)) < ¢(E(S)), which concludes
the proof. First, remove e from S to obtain a new subgraph S, which consists of exactly two
connected components. Assume that each connected component contains at least one terminal
(otherwise the proof is already finished). In the following, we will use a Steiner walk to reconnect
S. First, we show the existence of such a reconnecting Steiner walk that has an implied Steiner
length smaller than c(e). Second, we add the edges of this walk to S, obtaining a Steiner
tree. Third, we follow the same underlying idea as in the discussion for Figure |1} and apply
edge-exchange operations for each vertex of positive implied profit on the Steiner walk. In this
way, the weight of S is reduced.

Consider a (v, w)-path P in DT such that blp+(P) = bp+ (v, w). Let {¢t,u} be an edge on P
such that t and u are in different connected components of S (where t and u are considered in
the original SPG). Let S* and S* be the connected components of S such that ¢ € V(5*) and
u € V(S*). By the definition of the bottleneck length it holds that

df (t,u) < sp(v,w). (11)



Let W € Wr(¢,u) such that
LEW) =df (t,u). (12)

Assume that W is given as W = (vy,eq,...,€,—1,0,). Define b := min{k € {1,....,r} | v €

V(S*)} and a := max{k € {1,...,b} | v € V(S*)}. Further, define x := max{k € {1,....a} | v €
Pi} and y := min{k € {b,...,7} | vx € P;j;}. By definition, < a < b < y and furthermore:

S ele) - S 0,00\ dwey) <cf (Wiay).  (13)

e€E(W(a,b)) veV (W (a,b))\{ve,vy }

Reconnect S* and S* by W (a,b), which yields a connected subgraph Sy with T C V(S().
Assume that S is a tree (otherwise remove any redundant edges)ﬂ It holds that

Yoo D e+ Yo ele) —e({v,w}). (14)

ecE(S)) e€E(S) e€cE(W (a,b))

Let vy, vy, ...,vF be the vertices in P b \ {va,vp}. Choose for each i = 1,...,z an edge
€ 6(v;")\ dw(sy)(v]) such that e OT # () and

B(Bj_) - C(e:r) p ( F 6( )\5W wy)) (15)

Note that all e are pairwise disjoint (just as the v;").
We will construct Steiner trees S for ¢ € {1, ..., z} that satisfy

Z C(e) < Z Zp vka \5W(m,y)) (16)

e€E(S]) e€B(S})
as well as B}
U {efrnES) =0, (17)
k=i+1
and
V(Si) = V(Sp) (18)

One readily verifies that S satisfies (16)-(18). Let i € {1, ..., 2} and assume that (16)-(I8) hold
for S;_,. Thus, e+ ¢ E(S!_,). Let P, be the (unique) path in S]_; between v;" and the terminal
t; with {t;} = e; NT. Choose any & € FE(P;) with c(é;) = bl(P;). Define the tree S! by
V(S!) := V(Sl’fl) and E(S)) := (E(S/_y) \ {&}) U{e}. We claim that S satisfies (16)-(T8).
Equality (7)) follows from the fact that all e are disjoint. And follows from the construction
of S.. Fo, observe that by definition of the bottleneck distance it holds that c(&;) > b(e]")

and therefore
blei") — cle; ) < c(@) —clef). (19)

K3
Thus, equation implies that S} satisfies .

1Because we assume all edges to be of positive cost, S, will in fact always be a tree.




Finally, set S’ := S.. Because of it holds that T' C V(S”). Furthermore, one obtains:

(X6)) z
Yoocle) =D ele) =Y pT (o 8(0) \ dwiay) (20)
e€E(S") e€E(S)) k=1
19 z
< > e+ Y dde)—cfo,wh) =D pt 0w \ Swiay)  (21)
e€cE(S) e€c E(W (a,b)) k=1
< Y o) —e({v,w}) + ¢f (W(a,y)) (22)
e€E(S)
< c(e) = c({v,w}) + 1 (W) (23)
ecE(S)
(L1
< c(e) = c({v, w}) + sp(v, w) (24)
ecE(S)
< cle), (25)
e€E(S)
where the last inequality follows from the initial assumptions. O

Furthermore, we define the restricted implied bottleneck Steiner distance 3,(v,w) between
any v,w € V as the implied bottleneck Steiner distance between v and w in the SPG (V, E \
{{v,w}},c). One obtains the following corollary.

Corollary 3. Let e = {v,w} € E. If5,(v,w) < c(e), then at least one minimum Steiner tree

does not contain e.

1
|
|
1.5, 1 2
1
|
| 1

.

Figure 2: Segment of a Steiner tree instance. Terminals are drawn as squares. The dashed edge
can be deleted by employing Theorem

Figure[2|shows a segment of an SPG instance for which Theorem [2 allows for the deletion of an
edge, but Theorem [I]does not. The implied bottleneck Steiner distance between the endpoints of
the dashed edge is 1—corresponding to a walk along the four non-terminal vertices. The edge can
thus be deleted. In contrast, the (standard) bottleneck Steiner distance between the endpoints
is 1.5 (corresponding to the edge itself). Unfortunately, already computing the implied Steiner
distance is hard, as the following proposition shows.



Proposition 4. Computing the implied Steiner distance is N'P-hard.

The proposition can for example be proved by a reduction from the Hamiltonian path prob-
lem, similar to a reduction for the prize-collecting Steiner distance concept in [43]. We note that
it would also be possible to use the implied Steiner distance concept introduced in this article to
generalize the Steiner distance concept used for the prize-collecting Steiner tree problem; see [38]
for a definition that dominates the original one from [43]. However, formulating and proving this
generalization is quite technical, and the computational benefit seems limited.

Finally, despite this A/P-hardness, one can devise heuristics that provide useful upper bounds
on s,. We will discuss one such heuristic in the next section.

2.3 Approximating the implied bottleneck Steiner distance

This section describes one of the heuristics we use to delete edges by using an approximation of
sp. Starting from a vertex v, the heuristic tries to delete several edges of §(vp) at once. Initially,
define a distance array d and a predecessor array pred as follows. For all u € V' \ ({vo} U N (v)):
d[u] := 0o and pred[u] := null. Forallu € N(vo): d[u] := c¢({vo,u}) and pred[u] := vy. Moreover,
set d[vo] := 0 and pred[vg] := vo. Finally, set @ := N (vo).

While @ # 0 let v := argmin,cq d[u]. For all {v,w} € d(v) proceed as follows. First, set
Pow :=max {pT(v,{e}) | e € 6(v) : w,pred[v] & e}. If

d[v] + e({v, w}) — min {e({v,w}), pow, dlv] } < dfw] (26)

then set d[w] to the left hand side of and add w to Q. Further, set predfw] := v. If
holds and w € N (vp), then we can delete edge {v,w}.

Note that on the left hand side of a possibly smaller value than p,,, is subtracted to
prevent the algorithm from circling. Furthermore, note that a terminal might be used more
than once for a profit calculation p,,, on one walk. However, since we subtract only a bounded
part of the profit from the distance value in , the algorithm still works correctly. Note
that one can extend the algorithm to cover the case of equality for edge deletion. In this case,
one also needs to check whether is satisfied with equality if w € N(vg). In practice, one
should bound the maximum number of visited edges. Additionally, one can abort the algorithm
if ming,eq du] > max.cgs,) c(e).

The above algorithm is also useful for finding a simple path between endpoints of an edge
that is not longer than the edge itself. Other authors, e.g. [19, B3], suggest to run a shortest
path algorithm from both endpoints of each edge of the given SPG for this purpose. However,
running the above algorithm from each vertex is usually considerably faster in practice.

2.4 Bottleneck Steiner reductions beyond edge deletion

This section discusses applications of the implied bottleneck Steiner distance that allow for
additional reduction operations: Edge contraction and node replacement. We start with the
former. For an edge e and vertices v, w define b.(v,w) as the bottleneck distance between v and
won (V, E\ {e}, c). With this definition, we define a generalization of the classic NSV reduction
test from [10].

Proposition 5. Let {v,w} € E and t;,ts € T\ t1 # to. If
Sp(vatl) + c({v,w}) + Sp(watZ) < b{v,w} (t17t2)7 (27)

then there is a minimum Steiner tree S with {v,w} € E(S).



Proof. Assume there is an optimal solution S such that {v,w} ¢ E(S). Remove from E(S) an
edge on the (unique) path between t; and ¢ in S of maximum cost. This operation results in
two disjoint trees: Sy with ¢, € S; and Sy with t, € S;. By definition of by, .,y (f1,%2) it holds
that

C(B(S1)) + e(F(S2)) + by (t1,12) < (F(S)). (28)

In the following, we will show how to reconnect S; and S to a Steiner tree S such that
{v,w} € E(S) and ¢(E(S)) < ¢(E(S)), which concludes the proof. We will proceed similarly
to the proof of Theorem [2} however, we will use two Steiner walks instead of one. Initially, we
define S := S; U Sy, and modify S in the following.

First, add edge {v,w} to S. Next, consider a (t;,v)-path P in Dt := Dg(T U {t1,v},d})
such that blp+(P) = bp+(t1,v). Let {¢,t'} be an edge on P such that t € V(S1) and ¢’ ¢ V(S1)
(where t and ¢’ are considered in the original SPG). Note that such an edge must exist because
t; € TNV(Sy). By the definition of the bottleneck length it holds that

df (t,t") < sp(ty,v). (29)

Let Wy € Wr(t1,v) such that
l;(Wl) = d:,'(tl, v). (30)

Assume that W7 is given as Wy = (v1, €1, ..., €r—1, vy). Define by := min{k € {1,...,r} | v € V(S\
S1)} and ay := max{k € {1,...,b1} | vy € V(S1)}. Further, define z; := max{k € {1,...,a1} |
v € PVTG} and y; := min{k € {by,...,r} | vy € Pﬁ}l}. By definition, x1 < a; < by < 3.

In a symmetric way (with respect to Sz and w), choose a walk Wy € Wr(t2, w) and indices
as,ba, xa,ys. Consider two cases.

First, assume that Wy (a1,b1) and Wa(ag, b2) do not have any vertices in common. In this
case, define, with a slight abuse of notation, W := Wj(ay,b;) U Wa(az,bs). Let vi, v, ..., vF
be the vertices in Py} \ {Va,, Vb, Va,, U, }. Choose for each i = 1,...,z an edge e; € §(v]") \
OWy (1,51)UW (2,50 (Vi) such that e} NT # () and

ble)") — e(e”) = p™ (v, 0(v;") \ oW (w4, ) UWa (2,92) )- (31)

Note that all e;r are pairwise disjoint. Thus, one can proceed as in Theorem [2| to reconnect S.
If {v,w} is not connected to another edge in S, remove it from S. However, in this case ,
7). and c({v, w}) > 0 imply

(B(S)) < e(B(S1)) + e(B(S2)) + sp(t1,0) + sp(ta, w) < c(E(S)). (32)
Otherwise, because of , and , we obtain
c(B(S)) < e(B(S1)) + c(E(S2)) + sp(t1,0) + sp(t2,w) + e({v,w}) < «(B(S)).  (33)

Second, assume that Wi(aj,b) and Wa(asg,bs) have at least one vertex in common. Let ¢
be the first vertex in Wi (aq,b1) such that ¢ € V(Ws(az,b2)). Build a new Steiner walk W3 by
appending the walks Wi (ay,q) and Ws(as, q). It holds that

LE(Ws) < LE(Wh) + LE(Wy). (34)

Now, we can use the Steiner walk W3 to connect S; and Ss as in the proof of Theorem [2| Let S
be the resulting Steiner tree. Because of , , , and c¢({v,w}) > 0 we obtain

c(E(8)) < e(E(S1)) + c(E(S2)) + sp(t1,0) + sp(t2,w) < c(E(S)), (35)

which concludes the proof. O



If criterion is satisfied, one can contract edge {v,w} and make the resulting vertex a
terminal. The original criterion from [I0] uses the standard distance in instead of the implied
bottleneck Steiner distance. We note that using the (standard) bottleneck Steiner distance in
does not improve the original test. However, using the implied bottleneck Steiner distance leads
to a strictly stronger criterion, as the example in Figure 3 shows. Note that by, ., (t1,%3) = 2
and sp(v1,t3) = 1. Thus, is satisfied for edge {t1,v;} and terminals ¢, t3.

[y
—

Figure 3: Segment of a Steiner tree instance. Terminals are drawn as squares. The dashed edge
can be contracted by employing Proposition El

The following proposition allows one to identify edges that are candidates for edge contraction.
Afterwards, the bottleneck distances can be computed for all these edges in O(m + nlogn)
amortized time [9].

Proposition 6. Let {v,w} € E and t;,t; € T,t; # t;. If holds, then there is a minimum
spanning tree Syrsr on (V, E,¢) such that {v,w} € E(SypsT).

Proof. Assume there is a spanning tree S such that {v,w} ¢ S. Remove from E(S) an edge on
the (unique) path between #; and t; in .S of maximum cost. By definition of by, ., (%, t;) it holds
that

c(E(5:)) + c(E(S))) + bpo,wy (ti, t5) < c(E(S)). (36)

This operation results in two disjoint trees: S; with ¢; € §; and S; with t; € S;. If v and w
are in different trees, one can add {v,w} to connect S; and S; and obtain a spanning tree of no
higher cost than S. Otherwise, assume that v,w € V(S;). Let W; be a Steiner walk from v to
t; with IF(W;) = s,(v,t;). There is at least one edge {p,q} € E(W;) such that p € V(S;) and
q € V(S;). By definition it holds that c({p,q}) < I,/ (W;). Thus, one can add both {p,q} and
{v,w} to S;, S; to obtain a connected spanning subgraph S’. Because of condition and
it holds that

c(E(S")) < c(E(9)). (37)
Delete any edge other than {v,w} on the cycle in E(S’) that includes {v,w}. In this way one
obtains a spanning tree S” of no higher cost than S. O

This section closes with a reduction criterion based on the standard bottleneck Steiner dis-
tance. Besides being a new technique, this result also serves to highlight the complications that
arise if one attempts to formulate similar conditions based on the implied bottleneck Steiner
distance.
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Proposition 7. Let D := Dg(T,d). Let Y be a minimum spanning tree in D. Write its
edges {e¥ ,ed ..., e‘YT‘fl} := E(Y) in non-ascending order with respect to their weight in D. Let
veV\T. If for all A C §(v) with |A| > 3 it holds that:

|Al-1

> de) <Y ele), (38)

ecA
then there is at least one minimum Steiner tree S such that |6g(v)| < 2.

If the conditions are satisfied for a vertex v € V'\ T, one can pseudo-eliminate [10] or
replace [31] vertex v, i.e., delete v and connect any two vertices u, w € N(v) by a new edge {u,w}
of weight c({v,u}) + c({v,w}).

The SPG depicted in Figure [] exemplifies why Proposition [7] cannot be formulated by using
the implied Steiner distance. The weight of the minimum spanning tree Y for D (T, d) is 4, but
the weight of a minimum spanning tree with respect to the implied bottleneck Steiner distance is
2. Similarly also the BD,,, reduction technique from [I0] cannot be directly formulated by using
the implied bottleneck distance. Still, it is possible to formulate a similar criterion that makes use
of the implied bottleneck distance. Unfortunately, both the result and the corresponding proof
are more involved than those of their edge elimination counterparts (see Theorem . Thus, we
omit the details here. The important point is to make sure that the selected Steiner walks do
not overlap at vertices with a positive implied profit. However, these techniques have not been
implemented yet.

[ O |

Figure 4: SPG instance. Terminals are drawn as squares

3 From reductions to conflicts

This section shows an additional advantage of the just introduced node replacement reduction:
The creation of conflicts between the newly inserted edges. Furthermore, a new replacement
operation is introduced. We say that a set £/ C E with |E’| > 2 is in conflict if no minimum
Steiner tree contains more than one edge of E’.

3.1 Node replacement

Unfortunately, this section requires some additional technicalities regarding reduction methods.
Recall that we have seen three types of reductions so far: Edge deletion, edge contraction, and
node replacement. For simplicity, we assume in the following that a reduction is only performed
if it retains all optimal solutions. E.g., we only delete an edge if we can show that there is no
minimum Steiner tree that contains this edge. We say that such a reduction is valid. We start
with an SPG instance I = (G, T, ¢), and consider a series of subsequent, valid reductions (of
one of the three above types) that are applied to I. In each reduction step ¢ > 0, the current
instance IV = (GO T ) is transformed to instance 10+ = (GU+D TG+ cG+1))  We
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set 1(®) := I. We define ancestor information for each i = 0,1,....k by I(¥) : E®) — P(E)
and H%)IX C E. We set IV(e) := {e} for all e € E, and Hg}x = (). Consider a reduced
instance 1), If we contract an edge e € E® we set T %) := 1) UTI® (e); otherwise, we set
H%Bl() = Hg)l - 1f we replace a vertex v € V(@ we set for each newly inserted edge {u, w}—with
u,w € N(v)—T0Y {u,w}) == T ({v,u}) UTTD ({v,w}). For all other remaining edges e we
set TIGHD () := TI) (e). Overall, one observes the following.

Observation 1. Let I be an SPG and let I'®) be the SPG obtained from performing a series of
k wvalid reductions on I. For any Steiner tree S*¥) for I'®) | the tree S with

k
ES)= |J n®(eund)y
ecE(k)

is a Steiner tree for I, and it holds that
c(B(S)) =™ (W (S®)) + ¢ (1))

Furthermore, if S%) is optimal for I®), then S is optimal for I.

[34] observed that two edges that originate from a common edge by a series of replacements
cannot both be contained in a minimum Steiner tree. Using the above notation, we can formulate
the condition as follows: If e1, e; € E®) satisfy TI*) (e, ) NTI*) (eg) # (), then there is no minimum
Steiner tree that contains both e; and e>. As we will see in Section @ such conflict information
can be used for further reductions.

In the following, we will introduce an edge conflict criterion that is strictly stronger than the
one from [34]. Initially, we define additional ancestor information for each i = 0,1, ..., k. Namely,
sets of replacement ancestors A : E@) — P(N), and A;@IX € P(N). We set A (e) := () for all

e € F, and A;?}X := (). Further, we define \(9) := 0. Consider a reduced instance IV, If we
contract an edge e € E® | we set A%Z;? = A%”IX U A®(e). If we replace a vertex v € V) we
set A1) := X() 1 1. Further, we define the replacement ancestors for each newly inserted edge

{u, w}, with u, w € N(v), as follows:
A ({u, w}) := AD ({o,u}) UAD {v,w}) U XD},
If no node replacement is performed, we set A0+ .= X\,

Proposition 8. Let I be an SPG and let I'®) be the SPG obtained from performing a series of
k walid reductions on I. Further, let ey, e € E®). If AF)(e) N AR (eq) # 0, then no minimum
Steiner tree S) for I'®) contains both e1 and es.

Proof. Suppose that there is a minimum Steiner tree S®*) with ej,ep € EF®)(S®). Let 2 €
AR () N AF) (e5). Let i be the first reduction iteration with A(¥) = z. We may assume that
i = 1. Otherwise, we can define additional ancestor information II and A starting from 70¢—1),
and perform the reductions from iteration i to iteration k. Let v be the vertex that is replaced
in iteration i = 1. Note that 2 = A1) = 1. From Observation [l we know that the tree §
defined by E(S) = U,cpm I (e) U H%CI)X is a minimum Steiner tree for I. However, because

of A1 € AR (er) N AF)(ey), we have that |(H(k)(el) UI®) (ey)) Nds(v)| > 3. This implies
however, that replacing v is not valid—a contradiction. O

Corollary 9. Let I, I*) as in Proposition@ and let e € E®) . If AR (e) N Agff)x # 0, then no
minimum Steiner tree S®) for I'®) contains e.

Note that any edge e as in Corollary [9] can be deleted.
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3.2 [Edge replacement

This subsection introduces a new replacement operation, whose primary benefit lies in the con-
flicts it creates. We start with a condition that allows us to perform this operation.

Proposition 10. Let e = {v,w} € F with e NT = (). Define
D:={AC (§(v)Ud(w))\{e} | ANdsw)#D,ANS(w) #0}.

For any A € D let
Uar :={ueV |{u,v} € AV{u,w} e A}.

If for all A € D with |A| > 3 the weight of a minimum spanning tree on Dg(Ua, s) is smaller
than c¢(A), then each minimum Steiner tree S satisfies |0s(v)| < 2 and |ds(w)| < 2.

The proposition can be proven by using Corollary [I2] which will be introduced in Section[d] If
the condition of Proposition [10]is successful, we can perform what we will call a path replacement
of e: We delete e and add for each pair p, ¢ € V withp € N(v)\{w}, ¢ € N(w))\{v}, p # g an edge
{p, q} with weight c({p,v}) + c({v,w}) + c({q,w}). At first glance, the apparent increase in the
number of edges by this operation seems highly disadvantageous. However, due to the increased
weight, the new edges can often be deleted by using the criterion from Theorem [2] Furthermore,
an edge does not need to be inserted if any two of the three edges it originates from have a
common replacement ancestor. Indeed, we only perform a path replacement if at most one of
the new edges needs to be inserted. The case that all new edges can be deleted is in principle
also covered by the extended reduction technique introduced in the next section (albeit being
potentially far more expensive). If exactly one new edge remains, we create new replacement
ancestors as follows: Let ¢ = {p, ¢} be the newly inserted edge. Initially, set At := X\() and
AGFD (@) = AD({p,v}) U AD ({v,w}) U AW ({v,q}). Next, for each ¢’ € (5(v)Ud(w)) \ {e
increment A1 and add A+ to AGHD (&) and A+Y(e). One can show that Proposition
remains valid if path replacement is added to the list of valid reduction operations.

Figure[5|illustrates an application of Proposition In this example, all but one replacement
edges can be deleted by using a simple alternative path argument. While the number of edges
remains unchanged, six new conflicts are created.

O O O O O O O O
2.5
oO——O0--—---- o——0 , Qe —0
Rk 4.5 I
o o o o o o o o)
(a) SPG instance segment (b) Segment after edge replacement

Figure 5: Segment of a Steiner tree instance (showing only non-terminals). All edges except for
the dashed ones have unit weight. The dashed edge in has been replaced in (5b). All edges
that are in conflict with the replacement edge in are drawn in bold.
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4 From Steiner distances and conflicts to extended reduc-
tion techniques

At the end of the last section we have seen a reduction method that inspects a number of trees
(of depth 3) that extend an edge considered for replacement. This section continues along this
path, based on the reduction concepts introduced so far.

Given a tree Y (e.g. a single edge), extended reduction techniques use an enumeration of trees
that contain Y to show that there is an optimal Steiner tree that does not contain Y. The trees
are built by iteratively enlarging or extending Y. During this process, reduction, conflict, and
implication techniques are employed to rule out these extensions of Y. In this way, extended
reduction techniques are loosely related to the concepts of probing and conflict (graph) analysis
for MIP, see e.g. [Il [41].

The idea of extension was first introduced in [47] for the rectilinear Steiner tree problem.
Later the idea was adopted by [44] for the SPG. The next advancement came in [II], where
backtracking was used, together with a number of new reduction criteria for the enumerated
trees. Finally, [34] introduced the up-to-now strongest extended reduction techniques, which
improved and complemented the previous results. The authors showed that their sophisticated
algorithm could drastically reduce the size of many benchmark SPG instances, and even allowed
for the solution of previously intractable instances.

In the following, we introduce new extended reduction algorithms that (provably) dominate
those by [34].

4.1 The framework

For a tree Y in G, let L(Y) C V(Y) be the set of its leafs. We start with several definitions
from [34]. Let Y’ be a tree with Y" C Y. The linking set between Y and Y is the set of all
vertices v € V(Y”) such that there is a path Q@ C Y from v to a leaf of Y with V(Q)NV (Y") = {v}.
Note that ) can consist of a single vertex. Y’ is peripherally contained in Y if the linking set
between Y and Y’ is L(Y”’). Figure |§| exemplifies this concept. To motivate those definitions,
consider a path @ without inner terminals between vertices v and w. For @ to not be peripherally
contained in a minimum Steiner tree it is sufficient that s(v,w) is smaller than the weight of Q.
However, this condition is not sufficient to show that () is not contained in a minimum Steiner
tree. However, if ) is indeed contained in a minimum Steiner tree, at least one of its inner
vertices needs to be of degree greater 2 in this tree. Thus, we can exploit this observation to
enumerate extensions of ) from those inner vertices and attempt to rule those extensions out.
Such kind of deductions are used in extended reduction techniques.

For any P C V(Y) with |P| > 1 let Yp be the union of the (unique) paths between any
v,w € PUV(Y) in Y. Note that Yp is a tree, and that Yp C Y holds. P is called pruning
set if it contains the linking set between Yp and Y. Additionally, we will use the following
new definition: P is called strict pruning set if it is equal to the linking set between Yp and
Y. Figure [7] provides an example of pruning and strict pruning sets. One readily verifies the
following property of pruning sets.

Observation 2. Let Y be a tree, and let Y' CY be a tree that is peripherally contained in'Y .
Further, let P C V(Y') . If P is a pruning set for Y', then P is also a pruning set for Y. If P
is a strict pruning set for Y', then P is also a strict pruning set for Y.

Additionally, we define a stronger, and new, inclusion concept. Consider a tree Y C G, and
a subtree Y'. Let P be a pruning set for Y. We say that Y’ is P-peripherally contained in Y
if P is a pruning set for Y. Now let P be a strict pruning set for Y’. We say that Y’ is strictly
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hah

(a) Peripherally contained tree (b) Not peripherally contained tree

Figure 6: Illustration of peripherally inclusion. The bold subtree is peripherally contained in the
entire tree in Figure[6a] but not in Figure [6b}

y

(a) Pruning set (b) Strict pruning set

Figure 7: Illustration of pruning and strict pruning sets. The filled vertices in Figure |[7a|form a
(non-strict) pruning set, whereas the filled vertices in Figure [7b| constitute a strict pruning set.

P-peripherally contained in Y if P is a strict pruning set for Y. From Observation [2] one obtains
the following important property.

Observation 3. Let Y C G be a tree, let Y CY be a subtree, and let P be a pruning set for
Y'. If Y’ is peripherally contained in'Y, then Y’ is also P-peripherally contained in'Y .

In fact, we will use the contraposition of the observation: If Y is not P-peripherally contained
in Y, then Y’ is not peripherally contained in Y. Note that an equivalent property holds for
strict pruning sets.

Given a tree Y and a set E/ C F, we write with a slight abuse of notation Y 4+ E’ for the
subgraph with the edge set E(Y)UE'. Algorithmshows a high level description of the extended
reduction framework used in this article. The framework is similar to the one introduced in [34],
but more generalﬂ Note that the algorithm is recursive.

A possible input for Algorithm [1] is an SPG instance together with a single edge. If the
algorithm returns true, the edge can be deleted. Besides EXTENSIONSETS, which is described in
Algorithm [2] the extended reduction framework contains the following subroutines:

2We note, however, that the framework presented in [34] is (slightly) erroneous.
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RULEDOUT(I,Y, P) is given an SPG I = (G,T,c), a tree Y C G, and a pruning set P
for Y such that V(Yp) NT C L(Yp). The routine returns ¢rue if ¥ is shown to not be
P-peripherally contained in any minimum Steiner tree. Otherwise, the routine returns
false.

RUuLEDOUTSTRICT(I,Y, P) is given an SPG I = (G,T,c¢), a tree Y C G, and a strict
pruning set P for Y such that V(Yp)NT C L(Yp). The routine returns true if Y is shown
to not be strictly P-peripherally contained in any minimum Steiner tree. Otherwise, the
routine returns false.

STRICTPRUNINGSETS(I,Y) is given an SPG I = (G,T,c), a tree Y C G. It returns a
subset of all strict pruning sets for Y. A typical strict pruning set is L(Y).

TRUNCATE(I,Y) is given an SPG I = (G,T,c), and a tree Y C G. The routine returns
true if no further extensions of Y should be performed; otherwise the routine returns false.

PROMISING(I,Y,v) is given an SPG I = (G, T,c), atree Y C G, and a vertex v € L(Y).
The routine returns true if further extensions of Y from v should be performed; otherwise
the routine returns false.

The usage of P-peripheral inclusion in RULEDOUT might appear somewhat awkward, but is

necessary for ruling-out not only trees (as in line of Algorithm, but also all possible extension
via a single edge (as in line [4f of Algorithm .

Algorithm 1: EXTENDED-RULEDOUT

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Data: SPG instance I = (G, T,c), tree Y with Y N T C L(Y)
Result: true if Y is shown to not be peripherally contained in any minimum Steiner

tree; false otherwise

foreach P € STRICTPRUNINGSETS(Z,Y) do

if RULEDOUTSTRICT(I,Y, P) then return true

end
if TRUNCATE(I,Y) then return false
foreach v € L(Y) do

if v €T or not PROMISING(],Y,v) then continue
success = true
foreach E' € EXTENSIONSETS(/,Y,v) do

if not EXTENDED-RULEDOUT(I,Y + E’) then

success := false
break
end
end
if success then return true
end
return false
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Algorithm 2: EXTENSIONSETS
Data: SPG instance I = (G, T,c), tree Y, vertex v € V(Y')
Result: Set I' C P(6(v)) such that for all non-empty v € P(6(v)) \ T, the tree Y + p is
not peripherally contained in any minimum Steiner tree.

Q=0

R:=0

foreach e := {v,w} € 6(v) \ E(Y) do

if RULEDOUT(I,Y + {e}, L(Y) U {w}) then

‘ continue

end

if RULEDOUTSTRICT(I,Y + {e}, L(Y) U{w}) then
R:= RU{e}
continue

© 0 N O A W N

end
Q:=QU{e}
end

return (P(Q)\0) UR

In Lines of Algorithm [I) we try to peripherally rule-out tree Y. If that is not possible,
we try to recursively extend Y in Lines Since (given positive edge weights) no minimum
Steiner tree has a non-terminal leaf, we can extend from any of the non-terminal leaves of
Y. Note that ruling-out all extensions along one single leaf is sufficient to rule-out Y. The
correctness of EXTENDED-RULEDOUT can be proven by induction (under the assumption that
the subroutines are correct). We also remark that it is under certain conditions possible to
replace the condition not peripherally contained in any minimum Steiner tree by the condition
not peripherally contained in at least one minimum Steiner tree. See also the discussion following
Theorem [I11

Although the extended reduction framework shown in Algorithm [I] looks simple, an efficient
realization is highly intricate. Not least, because the interaction of many different algorithmic
components needs to be taken into account. Also, the re-use of intermediate results obtained
during the tree extension (such as bottleneck Steiner distances) is non-trivial. Indeed, the imple-
mentation of extended reduction techniques for this article encompasses more than 20 000 lines
of C code. We just note here that we have only implemented extensions in a depth-first-search
manner. lL.e., we extend only from leaves that are farthest away from the initial tree Y. A
stronger, but potentially more expensive, alternative is to employ full backtracking, as partially
done in [34]. In the following, we concentrate on mathematical descriptions of the subroutines
for ruling-out enumerated trees.

-
= o

[
w N

4.2 Reduction criteria

In this section we introduce several elimination criteria used within RULEDOUT and RULED-
OUuTSTRICT. In fact, both of these routines consist of several subalgorithms that check different
criteria for eliminating the given tree. Note that any criterion that is valid for RULEDOUT is
also valid for RULEDOUTSTRICT. We also note that several of the criteria in this section are
similar to results from [311 B4], but are all stronger. Throughout this section we consider a graph
G = (V,E) and an SPG instance I = (G, T,c).

Consider a tree Y C G, and a pruning set P for Y such that V(Yp)NT C L(Yp). For each
p € Plet Y, C Y such that V(Y,) is exactly the set of vertices v € V(Y) that satisfy the
following: For any q € P\ {p} the (unique) path in Y from v to ¢ contains p. Note that when
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removing E(Yp) from Y, each non-trivial connected component equals one Y,. Further, note

that p € V(Y,,) for all p € P. Let Gy,p = (Vy,p, Ey,p) be the graph obtained from G = (V, E)
by contracting for each p € P the subtree Y, into p. For any parallel edges, we keep only one of
minimum weight. We identify the contracted vertices V(Y,) with the original vertex p. Overall,

we thus have Vy,p C V. Let cy p be the edge weights on Gy, p derived from c. Let
Ty,p = (Tﬂ Vy7p) U{peP|Tn V(Yp) # 0} (39)

Finally, let sy p be the bottleneck Steiner distance on (Gy,p, Ty p,cy,p). With these definitions
at hand, we are able to formulate a reduction criterion that generalizes a number of results from
the literature. See [I9] BI] for similar, but weaker, conditions.

Theorem 11. Let Y C G be a tree, and let P be a pruning set for Y such that V(Yp)NT C
L(Yp). Let Iy p be the SPG on the distance network Dg,. (Vy7p,5y7p) with terminal set P.
If the weight of a minimum Steiner tree for Iy p is smaller than c¢(E(Yp)), then Y is not P-
peripherally contained in any minimum Steiner tree for I.

Proof. Let S be a (not necessarily minimum) Steiner tree for I such that Y is P-peripherally

contained in S. Let Sy p be a minimum Steiner tree for Iy,p. The underlying idea of the proof

is as follows: First, we remove Yp from S. Next, we interconnect all vertices in P. Because of

the assumptions of the theorem, this procedure also reconnects S. To obtain a tree that is of

smaller weight than S, we use only edges for the reconnection that correspond to edges of Sy, p.
Let S C G be the forest defined as follows:

V(S):

(V(S)\V(Yp)) UV (Sy,p), (40)
E(S)\ E(Yp). (41)

Let C be the set of connected components of S. Further, let f : V — CU {0} such that f(v) = C
if v e V(C) for a C € C, and f(v) = 0 otherwise. Note that each C' € C contains at least
one vertex of P, and thus also at least one vertex of Sy, p. Also, f(v) # 0 for all v € V(Sy p).
Further, note that for each of the contracted subtrees ?p there is a C € C with ?p C C. In the
following, we will iteratively connect all the components in C.

While |C| > 1 proceed as follows. Choose a (v,w) € E(Sy p) with f(v) # f(w) such that
sy,p(v,w) is minimized. Let W be a (v, w)-walk in Gy p corresponding to sy p(v,w). Because
of f(v) # f(w), there is at least one subwalk Q = W(q,r) of W such that f(q), f(r) # 0,
f(q) # f(r), and f(u) =0 for all w € V(Q) \ {¢,r}. Note that ¢(E(Q)) < sy,p(v,w), because
f(t) # 0 for all t € T. As long as such a path Q exists, proceed as follows. Add @ to S, and
remove from E(Sy p) an (arbitrary) edge of the path between f(q) and f(r) in Sy p. Also,
update C and f. Note that the weight of the removed edge (with respect to sy p) is at most
sy,p(q,r).

Once |C~' | = 1, one notes that the summed up weight of all newly inserted paths (with respect
to ¢) does not exceed the weight of Sy p (with respect to sy p). Because the weight of Sy p is
smaller than ¢(E(Yp)), we obtain from the construction of S that

c(B(S)) < c(B(S)), (42)
which concludes the proof. O

In practice, one does not need to explicitly form Gy, p. Instead, one can use the (original)
bottleneck Steiner distances between the connected components of the graph induced by E(Y)\
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E(Yp). Note that one can also extend Theorem [11] to the case of equality if at least one vertex
of Yp is not contained in any of the paths corresponding to the s values used for edges of
Sy,p. However, in the context of extended reduction techniques one needs to be careful to not
discard all of several equivalent extensions. We omit the quite technical details, but merely note
that allowing for equality (and adding suitable checks) can have a significant impact for some
instances.
In practice, computing a minimum Steiner tree (or even an approximation) on DGY’ P (Vy) P, SY, p)

is often too expensive. In such cases, the following corollary provides a strong alternative.

Corollary 12. Let Y, P as in Theorem [11, Let (P',P") be a partition of P. Let F' be
a minimum spanning tree on Dgy , (P/7Sy7p), and let 2’ be the weight of F'. Let F" be a

2

minimum spanning tree m D¢y . (Ty,p, sy,p). Write {el" el . f;yp‘ 1} = Ey,p(F") such
that sy p(eF") > sy,p(el ") fori < j. Define

PARES Z sy.p(ef). (43)

If 2/ + 2" < ¢(E(Yp)), then Y is not P-peripherally contained in any minimum Steiner tree for
I.

Proof. First, note that if P = (), then the corollary follows directly from Theorem because
' is a lower bound on the weight of a minimum Steiner tree in Iy,p. Thus, we assume P” # {)
in the following.

Suppose there is a minimum Steiner tree S for I such that Y is P-peripherally contained in
S. Define S as in the proof of Theorem . Further, proceed as in the proof of Theorem [11} .
to reconnect all connected components of S that contain a vertex from P’. As a result, S has
at most |P”| + 1 connected components. Because S is assumed to be optimal, each connected
component of S contains at least one terminal. Thus, we can reconnect the remaining connected
components similarly to Theorem |11 ., by using paths corresponding to edges of F". . We need to
add at most |P | such paths. Overall, we have increased the weight of S by at most 2/ + 2"
From 2’ + 2z < ¢(E(Yp)) we obtain that

c(E(S)) < e(E(S)), (44)
which contradicts the optimality of S. O

As for Theorem the contractions in Corollary [I2] should only be performed implicitly in
practice. Furthermore, one requires a careful implementation to avoid a recomputation from
scratch of the two minimum spanning trees in Corollary for each enumerated tree in Algo-
rithm [

Next, let Y C G be a tree with pruning set P, and let v,w € V(Y) and let Q be the path
between v, w in Y. We define a pruned tree bottleneck between v and w as a subpath Q(a,b) of
@ that satisfies |0y (u)| =2 and u ¢ P for all u € V(Q(a, b))\ {a, b}, V(Q(a,b))NT C {a, b}, and
maximizes ¢(V(Q(a,b))). The weight ¢(V(Q(a,b))) of such a pruned tree bottleneck is denoted
by by p(v,w). Using this definition and the implied bottleneck Steiner distance, we obtain the
following result.

Proposition 13. Let Y be a tree, let P be a pruning set for Y, and let v,w € V(Y). If
sp(v,w) < by, p(v,w), then'Y is not P-peripherally contained in any minimum Steiner tree.
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The proposition can be proven in a similar way as Theorem [2| (and is indeed a generalization
of the latter).

Based on the SPG instance in Figure 8] we demonstrate the usage of the extended reduction
framework and the above reduction criteria in the following. We aim to replace (or pseudo-
eliminate) vertex vs. To show that this operation is valid, we prove that the tree Y with
V(Y) ={v3} UN(v3), E(Y) = §(v3) is not peripherally contained in any minimum Steiner tree.
We call Algorithm [T] with Y as defined above. We are neither able to rule out Y in Line[2] nor do
we truncate the search in Line[d] In Line{5] we consider vertex vs and mark it as promising. The
extension sets obtained from Algorithm [2]are: {{t2,v5}},{{vs,vs}}, and {{t2,vs}, {va,v5}}. We
(recursively) call Algorithm (1| for each of these three extensions in Line

First, we consider the extension via the edge {t3,v5}. The tree Y’ := Y + {{t3,v5}} with
pruning set P = {t1,t2,v2} can be shown to not be P-peripherally contained in any minimum
Steiner tree by using Proposition It holds s,(t1,t2) = 2 < 2.5 = by’ p(t1,t2), where the
pruned tree bottleneck corresponds to the edges {vs, vs} and {to,v5}.

Next, we consider the extension via the edge {v4,v5}. We are not able to rule out this
extension, and thus extend the tree Y’ := Y + {{vy,v5}} from vertex vy. The extension set
obtained from Algorithm [2|is just {{v4, vs}}, because any extension of Y’ via the edge {v2,v4}
would results in a cycle and can thus be discarded. However, the tree Y := Y’ + {{v4, v} } with
pruning set P = {t1,v2,v} can be ruled out by using Proposition It holds that s,(¢1,v6) =
2 < 3 = byn p(t1,vs), where the pruned tree bottleneck corresponds to the edges {vs,vs},
{v4,v5}, and {vq, vg}.

Finally, we consider the extension via the edge set {{t2,vs5}, {vs,v5}}. We are not able to rule
out this extension, and thus extend the tree Y’ := Y + {{t2,v5}, {vs4,v5}} from vertex vy. As
before, the extension set obtained from Algorithm 2]is {{v4,v}}. The tree Y := Y+ {{vs,v6}}
with pruning set P = {1, t2,v2,v6} can again be ruled out by using Corollary It holds that
c(E(Y§)) = 6.5, but the weight of an MST on Dg,,, ,. (P, syr p) is 6; the edges of the MST on
DGy,,’P (P, Sy//7p) are {t1,t2}, {t1,v2}, and {t2,v6}.

In summary, all extensions of the initial tree Y along vertex vs are ruled out in the first call
of Algorithm [I] Thus, the algorithm returns true, which implies that vertex vs can be replaced.

Figure 8: Segment of a Steiner tree instance. Terminals are drawn as squares. By using the
extended reduction framework, one can show that vertex vz can be replaced.

Another criterion can be devised by using the reduced costs of the well-known bidirected cut
formulation [49] for SPG. This formulation is based on the observation that any optimal Steiner
arborescence for the bidirected equivalent of a given SPG instance with arbitrary root r € T
corresponds to an optimal Steiner tree for the original SPG. Let D = (V, A) be the bidirected
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equivalent of G, and let r € T. Consider a dual solution for the bidirected cut formulation,
with reduced costs ¢, and with objective value L. Further, for any v,w € V, let d(v,w) be the
length for a shortest, directed path from v to w in A with respect to the reduced costs. From
the observation that an optimal Steiner arborescence cannot contain any cycles, we obtain the
following result with standard linear programming arguments:

Proposition 14. Let Y be a tree. Let P = {p1,...,pr} be a strict pruning set for Y such that
there is a k' < k with p; € T if and only if i > k'. Further, assume that V(Yp) N T C L(Yp),
and |P| < |T|. The weight of any Steiner tree that strictly P-peripherally contains Y is at least

L+ min max CZ’I", i)+ d iyti)}- 45
ie{l,..‘,k}{tl,..ti,l,tiﬂ,...,tk/}gT\V(Yp){( Di) j<kz/;# (pj ])} (45)

Given an upper bound on the cost of a minimum Steiner tree, this proposition can be used
in the RULEOUTSTRICT routine. In practice, we only use a lower bound on the max subterm
in .

Finally, another important reduction criteria is constituted by edge conflicts—this result
follows directly from Proposition

Corollary 15. Let I'®) be an SPG obtained from performing a series of k valid reductions on
an SPG I. Let Y C G be a tree, and let P a pruning set for Y. If there are distinct edges
e1,ea € EF(Y) such that A®) (e))NAF) (e3) # 0, then Y is not P-peripherally contained in any
minimum Steiner tree.

5 Exact solution

This section describes how to use the techniques introduced so far for the exact solution of
SPG. The new methods have been implemented as an extension of the branch-and-cut solver
SCIP-JAck [14].

5.1 Branch-and-cut

As shown in [33], reduction techniques are the most important ingredient in a state-of-the-art
SPG solver. While [33] uses linear programming and branch-and-bound mostly to trigger further
reductions, we employ a proper branch-and-cut approach, based on [14]. We enhance several vital
components of branch-and-cut algorithms. The most natural application of reduction methods
is within presolving. However, one can also use them within domain propagation, translating
the deletion of edges into variable fixings in the integer programming model. The edge conflicts
described in this article can be used for generating clique cuts, which are well-known for general
MIPs [2]. Finally, also primal heuristics are improved. First, the stronger reduction methods
enhance primal heuristics that involve the solution of auxiliary SPG instances, such as from the
combination of several Steiner trees. Second, the implication concept introduced in this article
can be used to directly improve a classic SPG heuristic, as shown in the following.

Implications and the shortest path heuristic

The simple 2-approximation for SPG introduced by [42] has been widely used in the literature
and is perhaps the best known primal heuristic for SPG. The algorithm starts with a tree S
consisting of a single vertex and iteratively connects S by a shortest path to a terminal closest to
S. As a simple postprocessing step, one can compute a minimum spanning tree on (V(S), E[S])
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and iteratively remove non-terminal leaves. An efficient implementation is given in [6]. This
section shows how to use the implication concept introduced in Section to (empirically)
improve the algorithm.

Let vo € V, and initially set S := {vg}. Define a distance array d and a predecessor array
pred by d[u] := co, pred[u] := null for all u € V' \ {vo}, and d[vg] := 0, pred[vg] := vo. Define for
allv e V\T:

p(v) := max {0,sup {b(e) — c(e) | e = {v,w} € 6(v),w € T\ V(S)}}. (46)

For all v € T set p(v) := 0. Essentially, is a weaker version of the implied profit from
Section Finally, set Q := {vg}.

While @ # 0 let v := argmin, ¢ ci[u] If v € T, add the path P from v to S, marked by
the predecessor array, to S, add V(P) to @, and set d[u] := 0 for all u € V(P). Furthermore,
update (46]). For all {v,w} € §(v) proceed as follows. If

dlo] + e({v, w}) — min {e({v, w}), 50), dfv] } < dlu], (47)

then set d[w] to the left hand side of ([@7), and add w to Q. Further, set pred[w] := v.

Note that provides a bias for paths computed by the heuristic to include vertices of
implied profit. In this way, the distance associated with a path also reflects the cost needed to
connect additional terminals later on. Note that the minimum spanning tree computed during
postprocessing will always contain the edge associated with each vertex of positive implied profit
contained in S. We use the value mincs(,)\ (e} ¢(€’) instead of b(e) for e = {v,w},w € T in
for two reasons: First, the value better represents the weight that can be saved when connecting
w via v (because the bottleneck edge corresponding to b(e) might already be part of the tree
computed by the heuristic so far). Second, this value is much faster to compute (and the primal
heuristic is executed often as a subroutine within our implementation).

Computational experiments on the benchmark instances from the next section have shown
that the above modifications improve the solution quality of the shortest path heuristic in a
surprisingly consistent manner: When run 100 times from different starting points after SPG
presolving (as is the default in SCIP-JACK), the solution quality of the heuristic is improved
for more than 85 % of the instances. We also note that the shortest path heuristic is used as a
subroutine in several more involved heuristics applied by SCIP-JACK, see [14].

5.2 Computational results

This section provides computational results for the new solver. In particular, we compare its
performance with the updated results of the solver by [3I) 45] published in [37]. The compu-
tational experiments were performed on Intel Xeon CPUs E3-1245 with 3.40 GHz and 32 GB
RAM. According to the DIMACS benchmark software [7], this computer is 1.59 times faster
than the machine used in [37]|ﬂ While the authors of the current article do not have access to
the machine used in [37], preliminary experiments on different machines have shown that the
DIMACS score is a good estimate for the performance of the new solver. Thus, we have scaled
the run-times reported in the following accordingly. We use the same LP solver as [37]: CPLEX
12.6 [20]. All results were obtained single-threaded.

For the comparison with the solver by [31] [45], we are restricted to the instances used in [37].
Still, the experiments in [37] include a large number of test-sets (both the STEINLIB and the
11th DIMACS Challenge collection). Thus, we only use test-sets with at least one instance that

30ur machine obtains a score of 488.993589 (with the same compiler as [37]).
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takes more than 10 seconds to be solved by [37] or our solver. There is one notable exception:
We do not consider the test-sets 1320 and 1640 from the STEINLIB; for the following reason:
[37] use specialized, non-default settings for several test-sets, including 1320 and 1640, where
they use only “(...) fast calculation of bounds (...)” during branch-and-bound. As we aim to
give an unbiased picture of the performance of our solver, we only use our default settings for all
instance sets. While we can achieve significant speed-ups on all tests-sets when using specialized
settings, the impact is by far strongest on the I instances—more than an order of magnitude for
the harder instances. We note, however, that we can match the results from [37] on 1320 and
1640 if we use dual-ascent bounds during branch-and-bound, instead of LP-based ones.

An overview of the test-sets is given in Table The second column gives the number of
instances per test-set. The third and fourth columns give the range of nodes and edges per
test-set. The fifth column states whether for all instances of the test-set optimal solutions are
known.

Name # \4 |E| Status Description

2R 27 2000 11600 solved 3-D cross grid graphs from STEINLIB.

VLSI 116 90 - 36711 135 - 68117 solved Grid graphs with holes (non-geometric)
from VLSI design [25].

vienna-s 85 1991 - 89596 3176 - 148583 solved Instances derived from telecommunication
network design, see [27],

vienna-a 85 160 - 34221 237 - 50301 solved Presolved versions of the above
network design instances.

ES10000 1 27019 39407 solved Originally rectilinear Steiner tree
instances. From STEINLIB.

TSPEFST 76 89-17127 104-27352 solved Originally rectilinear Steiner tree
instances. From TSPLIB [39].

GEO-org 23 42481 - 235686 52552 - 366093 solved Instances derived from telecommunication
network design. From [27].

GEO-a 23 7565 - 71184 11521 - 113616 solved Presolved versions of the above
GEO-org instances.

Cophagl4 21 16 - 15473 23 - 38928 solved Originally obstacle-avoiding rectilinear
instances. From 11th DIMACS Challenge.

WRP4 63 110 - 1898 188 - 3060 solved . . .
Instances derived from wire-routing

WRP3 62 84 - 3168 149 - 6220 solved } processing problems [16].

LIN 37 53 - 38418 80 - 71657 solved Grid graphs with holes (non-geometric)
from VLSI design. From STEINLIB.

SP 8 6 - 3997 9 - 10278 solved Constructed hard instances; combination of
odd-wheels and odd cycles. From STEINLIB.

PUC 50 64 - 4096 192 - 28512 unsolved Constructed hard instances; hypercubes,

and bipartite graphs [40].

Table 1: Details on SPG benchmark sets.

Impact of implied profit reductions

In the following, the impact of the s, based reduction methods on the preprocessing strength is
reported. For the reduced cost based reductions we use the dual-ascent heuristic from [49]. We
use seven benchmark sets from the literature; three from the DIMACS Challenge, three from
the STEINLIB, and one from [22]. Table 2| shows in the first column the name of the test-set,
followed by its number of instances. The next columns show the percentual average number of
nodes and edges of the instances after the preprocessing without (column three and four), and
with (columns five and six) the s, based methods. The last two columns report the percentual
relative change between the previous results.

It can be seen that the s, methods allow for a significant additional reduction of the problem
size. This behavior is rather remarkable, given the variety of other powerful reduction methods
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included in SCIP-JACK. Even if the percentage of remaining edges and nodes is already small
on average for the base processing (such as for VLST), there are for each of the seven test-sets at
least a few instances that are still of large size. These instances can often be significantly reduced
by the s, techniques. While no run times are reported in the table, we note that on each of the
seven test-sets the overall run time of the preprocessing (often significantly) decreases when the
s, based methods are used. Furthermore, even for other test-sets where the s, methods are less
(or not at all) successful, one does not observe an increase in the run time of the preprocessing
above 10 percent.

base preprocessing +sp techniques relative change
Test-set # nodes [%)] edges %) nodes [%)] edges [%)] nodes (%) edges [%)]
VLSI 116 0.4 0.4 0.1 0.1 -75.0 -75.0
vienna-s 85 3.3 3.0 2.0 1.8 -39.4 -40.0
WRP4 63 36.2 36.0 33.5 33.0 -7.5 -8.3
Copenhagl4 21 33.7 32.5 32.1 29.4 -4.7 -9.5
GEO-org 23 6.7 7.6 5.8 6.5 -13.4 -14.5
ES10000FST 1 24.1 27.1 15.1 16.8 -37.3 -38.0
ES-R50 15 17.5 22.8 12.6 16.6 -28.0 -27.2

Table 2: Average remaining nodes and edges after preprocessing.

Comparison with the state of the art

Next, we compare the solver by [31],[45] and the new solver SCIP-JACK with respect to the mean
time, the maximum time, and the number of solved instances. For the mean time we use the
shifted geometric mean with a shift of 10. We note that the use of an arithmetic mean would
bias strongly in favor of SCIP-JACK, which is especially faster on harder instances.

Table [3| provides the results for a time-limit of 24 hours (divided by 1.59 in the case of SCIP-
JACK), which is the same time-limit as used in the updated report [37]. The second column
shows the number of instances in the test-set. Column three gives the number of instances
solved by [37], column four the number of instances solved by SCIP-JACK. Column five shows
the mean time taken by [37], column six shows the mean time of SCIP-JACK. The next column
gives the relative speedup of SCIP-JACK. The next three columns provide the same information
for the maximum run-time.

It can be seen that SCIP-JACK consistently outperforms [37]—both with respect to mean and
maximum time. Also, SCIP-JACK solves on each test-set at least as many instances as [37]. The
only test-set where [37] prevail is VLSI. On this test-set the results of the extended reductions
reported in [31] are also stronger, which might be attributed to the use of full-backtracking,
which has not yet been implemented in SCIP-JACK.

On the other test-sets, the difference in the run-time is especially apparent for the maximum
run time. This behavior can be explained by the fact that most test-sets contain many instances
that can be solved very fast by both solvers—which brings the mean times closer together.
Prominent examples are the SP and Copenhagl/ test-sets, for which all instances can be solved
by SCIP-JACK within roughly one hour, whereas [37] leave several instances unsolved even after
24 hours.

As already mentioned, most test-sets in Table [3| contain a large number of instances that
can be solved by both [37] and our solver in well below one second. To mitigate the impact of
very easy instances on the average times, we group the instances according to their hardness
in the following experiment. We use instance groups [10¥,86400] for k = —o0,0,1,2,3. Any
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# solved mean time (sh. geo. mean) maximum time

Test-set # P&V. S-J. P&V.[§ S.-J.[s] speedup P.&V. [s] S.-J.[s] speedup
VLSI 116 116 116 0.5 0.8 0.63 53.9 81.9 0.66
TSPFST 76 76 76 1.5 1.1 1.36 1161.4 326.9 3.55
WRP4 62 62 62 3.2 2.4 1.33 106.1 95.2 1.11
2R 27 27 27 5.0 2.6 1.92 43.9 12.1 3.63
vienna-a 85 85* 85 7.2 5.0 1.44 441.3 57.1 7.73
vienna-s 85 85* 85 7.8 5.9 1.32 623.5 57.7 10.81
WRP3 63 63 63 22.8 13.4 1.70 6073.2 4568.1 1.33
GEO-a 23 23* 23 158.7 55.8 2.84 6476.5 852.4 7.60
GEO-org 23 23* 23 145.6 59.4 2.45 4385.0 834.4 5.26
ES10000 1 1 1 138.0 80.9 1.71 138.0 80.9 1.71
Cophagl4 21 20" 21 27.7 14.8 1.87 >86400 4182.7 >20.66
SP 8 6 8 159.4 30.2 5.28 >86400 1892.1 >45.66
LIN 37 35 36 31.3 15.3 2.05 >86400 >86400 1.00
PUC 50 17 18 14964.9 11568.3 1.29 >86400 >86400 1.00

Table 3: Computational comparison of the solver developed for this article (S.-J.) and the solver
described in [31], [45] (P.6V.). Times marked by a x were obtained by P.&V. with (specialized)
non-default settings.

group [10%,86400] contains each instance from Table |3| such that [37] or SCIP-JACK solves this
instance in not less than 10*, and at most 86400 seconds. If an instance can be solved by only
one solver within the time-limit, we consider the run-time of the other solver on this instance as
86400 seconds. Such groupings are commonly used in computational mathematical optimization
(also with the time lower bounds being powers of 10), see e.g. [28] [48]. In addition to the shifted
geometric mean, Table [4] also provides the arithmetic mean of the run-time for each group. As
before, we give the results for both [37] and SCIP-JACK, and report the respective speed-up of
SCIP-JACK.

shifted geometric mean time arithmetic mean time
Group # P.&V.[s] S.-J.[s] speedup P.&V. [s] S.-J.[s] speedup
[0, 86400] 644 12.2 7.9 1.54 1235.5 229.0 5.40
[1,86400] 342 34.5 19.5 1.77 2326.4 431.2 5.40
[10, 86400] 178 125.4 52.6 2.38 4466.6 825.5 5.41
[100, 86400] 66 1403.2 295.0 4.76 11999.0 2197.6 5.46
[1000, 86400] 30 8035.8 1099.0 7.31 25923.1 4653.8 5.57

Table 4: Computational comparison of the solver developed for this article (S.-J.) and the solver
described in [31} [45] (P.£&V.), with instance groups ordered by hardness.

Unsurprisingly, the ratio of the arithmetic mean stays largely unchanged with increasing
hardness of the groups. SCIP-JACK is more than a factor of 5 faster than the solver from [37] on
all groups. On the other hand, the performance difference with respect to the shifted geometric
mean significantly increases with the hardness of the instances. For instances that take more
than a thousand seconds to be solved by [37] or SCIP-JACK, the latter is even by a factor of
more than 7 faster.

25



Further results

Finally, we provide results for several large-scale Fuclidean Steiner tree problems. For solving
such problems, the bottleneck is usually the full Steiner tree concatanation [22]. This concata-
nation can also be solved as an SPG, however [35]. In Table |5 we give results for Euclidean
instances from [22] with 25 thousand (EST-25k), 50 thousand (EST-50k), and 100 thousand
(EST-100k) points in the plane. For EST-25k the mean and maximum times are between one
and two orders of magnitude faster than those of the well-known geometric Steiner tree solver
GEOSTEINER 5.1 [22]. Moreover, 7 of the 15 instances from EST-50k are solved for the first
time to optimality—in at most 197 seconds. On the other hand, GEOSTEINER cannot solve
these instances even after seven days of computation. For EST-100k, GEOSTEINER even leaves
12 of the 15 instances unsolved after one week of computation. In contrast, we solve all these
instances to optimality in less than 13 minutes. Overall, we solve 19 instances for the first time
to optimality.

Unfortunately, [37] does not report results for these instances. However, the solver by [30],
which won the heuristic SPG category at the 11th DIMACS Challenge, does not reach the upper
bounds from GEOSTEINER on any of the EST-25k, EST-50k, and EST-100k instances.

Test set # # solved mean time [s] maximum time [s]
EST-25k 15 15 43.2 54.6
EST-50k 15 15 128.2 196.5
EST-100k 15 15 477.9 729.7

Table 5: Results of SCIP-JAcK for Euclidean Steiner tree instances.

6 Conclusion and outlook

This article has described the combination of implication, conflict, and reduction concepts for the
SPG@G, with the aim of improving the state of the art in exact SPG solution. This combination has
spawned several new techniques that (provably) dominate well-known results from the literature,
such as the bottleneck Steiner distance. The integration of the new methods into the branch-and-
cut solver SCIP-JACK has shown a large impact on exact SPG solution. The new SCIP-JACK
could even outperform the long-reigning state-of-the-art solver by [31] [45].

Still, there are several promising routes for further improvement. First, one could improve the
newly introduced methods. For example, by using full-backtracking in the extended reduction
methods, by improving the approximation of the implied bottleneck Steiner distance, or by
adapting the latter for replacement techniques. Second, several powerful methods described
in [31], [45] could be added to the new solver, e.g. a stronger IP formulation realized via price-
and-cut, or additional reduction techniques via partitioning.

Unlike the solver by [31), 5], the new SCIP-JACK will be made freely available for academic
use—as part of the next SCIP Optimization Suite release.
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A Detailed computational results

This appendix provides detailed computational results on the problem instances discussed in this
article All following tables are structured as follows: First, the name of the respective instance is
given. The next three columns give the number of vertices, arcs (after the graph transformation
to bidirected SAP), and terminals of the instance. The subsequent segment, labelled ” Presolved”,
provides the size of the preprocessed problem along with the preprocessing time. The last segment
provides first the dual and primal bound, or the optimal solution value if the problem could be
solved to proven optimality. Moreover, the number of branch-and-bound nodes (N) and the total
run time is given. A time-out is signified by a “>” in front of the termination time. We stress
that the reported final execution times include both the preprocessing time and the reading time.

The time limit for the following instances is 54340 seconds. This corresponds to 24 hours on
the machine used by [37].

Table 6. Detailed computational results for SPG, test-set 2R.

Original Presolved
Instance \4 [A]| |T| 4 [A] |T| t[s] Optimum N t[s]
2r111 2000 11600 9 0 0 0 0.1 28000 1 0.1
2r112 2000 11600 9 0 0 0 0.1 32000 1 0.1
2r113 2000 11600 9 0 0 0 0.1 28000 1 0.1
2r121 2000 11532 9 0 0 0 0.1 28000 1 0.1
2r122 2000 11544 9 0 0 0 0.1 29000 1 0.1
2r123 2000 11508 9 0 0 0 0.1 25000 1 0.1
2r131 2000 11452 9 0 0 0 0.1 27000 1 0.1
2r132 2000 11450 9 636 5426 9 0.4 33000 1 0.4
2r133 2000 11458 9 0 0 0 0.1 29000 1 0.1
2r211 2000 11600 50 571 4988 34 2.8 89000 3 7.6
2r212 2000 11600 49 132 818 17 0.9 80000 1 1.1
2r213 2000 11600 48 279 2104 29 2.0 76000 1 2.4
2r221 2000 11528 50 0 0 0 1.1 83000 1 1.1
2r222 2000 11530 50 0 0 0 1.9 84000 1 1.9
2r223 2000 11540 49 562 4606 40 1.8 84000 1 4.6
2r231 2000 11474 50 0 0 0 2.3 86000 1 23
2r232 2000 11466 49 453 3358 37 2.0 87000 1 33
2r233 2000 11460 47 0 0 0 1.3 83000 1 1.3
2r311 2000 11600 95 372 2586 47 1.2 129000 1 2.0
2r312 2000 11600 92 482 3802 45 1.0 126000 1 2.2
2r313 2000 11600 97 306 2124 38 1.0 128000 1 1.3
2r321 2000 11542 92 0 0 0 0.3 125000 1 0.3
2r322 2000 11506 92 397 2784 43 1.6 130000 1 23
2r323 2000 11528 96 651 4856 64 1.7 142000 1 5.1
2r331 2000 11472 93 260 1584 40 1.8 134000 1 2.0
2r332 2000 11490 95 544 3820 50 1.7 136000 1 4.4
2r333 2000 11482 98 449 2938 54 21 143000 1 33

Table 7. Detailed computational results for SPG, test-set Copenhagenl4.
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Original Presolved
Instance V| |A] |T| \4 |A| |T| t[s] Optimum N t[s]
indl 18 62 10 0 0 0 0.0 604 1 0.0
ind2 31 114 10 0 0 0 0.0 9500 1 0.0
ind3 16 46 10 0 0 0 0.0 600 1 0.0
ind4 74 292 25 0 0 0 0.0 1086 1 0.0
ind5 114 456 33 0 0 0 0.0 1341 1 0.0
rc01 21 70 10 0 0 0 0.0 25980 1 0.0
rc02 87 352 30 2 2 1 0.0 41350 1 0.0
rc03 109 404 50 0 0 0 0.0 54160 1 0.0
rc04 121 394 70 0 0 0 0.0 59070 1 0.0
rc05 247 972 100 0 0 0 0.0 74070 1 0.0
rc06 2502 12488 100 1991 8880 90 1.1 79714 1 4.9
rc07 2740 13156 200 2001 8674 139 1.8 108740 7 7.2
rc08 7527 36340 200 6840 30894 186 4.8 112564 55 156.8
rc09 6128 30528 200 5290 24238 168 4.0 111005 1 86.3
rcl0 1572 6490 500 572 2078 163 0.8 164150 1 1.2
rcll 2858 11638 1000 1055 3676 337 2.7 230837 1 3.5
rt01 262 1480 10 0 0 0 0.0 2146 1 0.0
rt02 788 3876 50 0 0 0 0.3 45852 1 0.3
rt03 1725 8184 100 1430 6198 82 0.9 7964 5 2.7
rt04 9469 45486 100 9035 41352 94 4.2 9693 2717 736.1
rt05 15473 77856 200 14488 68570 190 7.2 51313 57 2630.6
Table 8. Detailed computational results for SPG, test-set ES10000FST.
Original Presolved
Instance V| |A] |T| \4 |A| |T| t[s] Optimum N t[s]
€s10000fst01 | 27019 78814 10000 | 4080 13246 1621 36.8 716174280 1 50.9
Table 9. Detailed computational results for ESMT, test-set ESMT-R25.
Original Presolved
Instance \4 |A| |T| \4 |A] |T| t[s] Optimum N t[s]
R25K01EFST 39277 94524 25000 92 294 40 34.7 98.9612134 1 40.1
R25K02EFST 39306 94978 25000 59 180 30 38.4 99.0370878 1 47.1
R25K03EFST 39549 96348 25000 3893 12466 1785 35.0 99.2157207 1 45.8
R25K04EFST 39555 96260 25000 84 274 37 38.0 98.9431392 1 47.6
R25K05EFST 39153 93806 25000 49 146 26 28.9 99.4912321 1 39.1
R25K06EFST 39438 95690 25000 5990 19160 2804 12.7 99.3728768 1 29.6
R25K07EFST 39900 98180 25000 47 140 24 38.4 99.5646105 1 51.6
R25K08EFST 39529 95920 25000 65 200 32 39.6 99.2662017 1 48.5
R25K09EFST 39732 97060 25000 3807 12238 1773 38.1 99.0968636 1 44.7
R25K10EFST 39248 94668 25000 48 136 23 28.1 99.1104801 1 35.7
R25K11EFST 39425 95470 25000 2661 8418 1239 421 99.1216345 1 47.5
R25K12EFST 39293 94888 25000 3434 10960 1593 37.3 99.1134447 1 45.5
R25K13EFST 39284 94770 25000 3328 10524 1566 26.4 99.4005526 1 33.0
R25K14EFST 40063 98534 25000 3957 12746 1795 38.9 99.2046414 1 46.1
R25K15EFST 39498 95704 25000 44 130 21 43.7 99.2521324 1 54.6
Table 10. Detailed computational results for ESMT, test-set ESMT-R50.
Original Presolved
Instance V| |A| |T| V| |A] |T| t[s] Optimum N t[s]
R50K01EFST 79505 194746 50000 9521 30346 4427 120.2 140.398764 1 139.8
R50K02EFST 78754 190726 50000 254 798 119 116.2 139.955781 1 145.3
R50K03EFST 78964 191358 50000 7198 23066 3325 126.2 140.006412 1 140.3
R50K04EFST 78983 191484 50000 56 174 28 1425 140.093852 1 154.3
R50K05EFST 79200 193418 50000 43 126 23 142.7 139.995235 1 196.5
R50K06EFST 79480 194744 50000 9705 31120 4495 133.9 140.348542 1 164.9
R50K07EFST 79046 192228 50000 13631 43506 6350 44.2 140.249582 1 86.0
R50K08EFST 79175 192822 50000 108 378 41 111.7 140.351147 1 126.8
R50K09EFST 78825 190952 50000 54 156 26 107.0 140.363481 1 120.6
R50K10EFST 78948 191740 50000 73 236 33 40.8 140.321093 1 80.0

cont. next page
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Original Presolved
Instance V| |A| |T| V| |A| |T| t[s] Optimum N t[s]
R50K11EFST 79121 192608 50000 8136 25928 3797 122.1 140.169756 1 139.6
R50K12EFST 79133 192768 50000 51 156 24 29.3 140.201234 1 57.7
R50K13EFST 78972 191348 50000 7654 24410 3562 116.3 140.03999 1 131.6
R50K14EFST 79326 193440 50000 51 156 24 135.7 140.209795 1 151.8
R50K15EFST 79483 194414 50000 66 224 25 156.4 140.447926 1 170.4
Table 11. Detailed computational results for ESMT, test-set ESMT-R100.
Original Presolved
Instance 4l [A] |T| 4 |A| |T| t[s] Optimum N t[s]
R100KO1EFST 157869 383172 100000 50 156 24 554.3 198.306705 1 631.7
R100KO2EFST 158031 383994 100000 71 244 26 156.6 197.970178 1 370.1
R100KO3EFST 158290 384990 100000 18337 58020 8630 477.9 198.022313 1 640.7
R100KO4EFST 158205 385292 100000 64 204 29 550.8 198.189607 1 612.3
R100KO5EFST 158587 386646 100000 47 146 22 123.6 198.153237 1 372.1
R100KO6EFST 158514 386086 100000 73 276 25 117.7 198.174481 1 328.3
R100KO7TEFST 157947 383296 100000 24847 79452 11545 112.4 197.878416 1 369.6
R100KO8EFST 157839 382404 100000 17086 54446 7977 471.3 197.994433 1 541.8
R100K09EFST 158069 383470 100000 26909 85924 12571 152.3 198.135832 1 391.4
R100K10EFST 158575 386344 100000 18012 57070 8424 448.3 198.039905 1 546.1
R100K11EFST 158265 385490 100000 25924 83376 11924 124.7 198.136332 1 368.6
R100K12EFST 157806 382352 100000 50 158 22 472.6 198.384696 1 570.0
R100K13EFST 157660 381462 100000 27619 87894 12879 151.4 198.053544 1 457.4
R100K14EFST 158516 386662 100000 50 162 22 510.5 198.226993 1 729.7
R100K15EFST 158033 384044 100000 27235 87188 12652 151.3 198.274048 1 460.0
Table 12. Detailed computational results for SPG, test-set LIN.
Original Presolved
Instance V| |A] |T| V| |A] |T| t[s] Dual Primal Gap % N t[s]
lin01 53 160 4 0 0 0 0.0 503 1 0.0
1in02 55 164 6 0 0 0 0.0 557 1 0.0
1in03 57 168 8 0 0 0 0.0 926 1 0.0
lin04 157 532 6 0 0 0 0.0 1239 1 0.0
lin05 160 538 9 0 0 0 0.0 1703 1 0.0
1in06 165 548 14 0 0 0 0.0 1348 1 0.0
lin07 307 1052 6 0 0 0 0.0 1885 1 0.0
1in08 311 1060 10 0 0 0 0.0 2248 1 0.0
1in09 313 1064 12 0 0 0 0.0 2752 1 0.0
lin10 321 1080 20 0 0 0 0.0 4132 1 0.0
lin1l 816 2920 10 0 0 0 0.0 4280 1 0.0
lin12 818 2924 12 47 144 8 0.0 5250 1 0.0
lin13 822 2932 16 0 0 0 0.0 4609 1 0.0
linl4 828 2944 22 0 0 0 0.0 5824 1 0.0
lin15 840 2968 34 0 0 0 0.0 7145 1 0.0
lin16 1981 7266 12 0 0 0 0.1 6618 1 0.1
linl7 1989 7282 20 0 0 0 0.1 8405 1 0.1
lin18 1994 7292 25 13 34 6 0.5 9714 1 0.5
lin19 2010 7324 41 105 350 11 0.1 13268 1 0.1
1in20 3675 13418 11 0 0 0 0.1 6673 1 0.1
lin21 3683 13434 20 129 422 9 0.2 9143 1 0.2
lin22 3692 13452 28 0 0 0 0.2 10519 1 0.2
lin23 3716 13500 52 84 278 17 0.8 17560 1 0.8
lin24 7998 29468 16 2970 10706 16 1.3 15076 1 15
lin25 8007 29486 24 931 3254 20 4.4 17803 1 4.4
1in26 8013 29498 30 0 0 0 3.4 21757 1 3.4
lin27 8017 29506 36 94 302 18 33 20678 1 3.3
1in28 8062 29596 81 354 1200 44 11.8 32584 1 12.0
1in29 19083 71272 24 1022 3714 19 11.9 23765 1 11.9
1in30 19091 71288 31 190 650 19 15.9 27684 1 15.9
lin31 19100 71306 40 6577 24148 37 39.9 31696 1 44.6
lin32 19112 71330 53 6902 25308 52 49.2 39832 1 67.0

cont. next page
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Original Presolved
Instance V| |A| |T| V| |A| |T| t[s] Dual Primal Gap % N t[s]
lin33 19177 71460 117 5711 20688 97 52.2 56061 1 1436.7
lin34 38282 143042 34 11461 42424 33 157.1 45018 1 158.2
lin35 38294 143066 45 14095 51962 45 99.1 50559 1 120.5
lin36 38307 143092 58 17931 66096 57 102.5 55608 1 263.1
lin37 38418 143314 172 23971 88916 169 128.7 97130.5673 99737 2.7 1 >54340
Table 13. Detailed computational results for SPG, test-set PUC.
Original Presolved
Instance 4l |A] |T| V| |A] T t[s] Dual Primal  Gap% N t[s]
bip42p 1200 7964 200 990 7234 200 0.2 24657 169521 20228.7
bip42u 1200 7964 200 989 7216 200 0.2 236 115338 11107.5
bip52p 2200 15994 200 1817 14650 200 0.4 24320.8464 24595 1.1 304769 >54340
bip52u 2200 15994 200 1818 14646 200 0.6 230.581893 234 15 302048 >54340
bip62p 1200 20004 200 1199 20000 200 0.3 22586.7321 22885 1.3 160340 >54340
bip62u 1200 20004 200 1199 20000 200 0.5 214.995514 220 2.3 175484 >54340
bipa2p 3300 36146 300 3139 35588 300 11 34784.9831 35333 1.6 80653 >54340
bipa2u 3300 36146 300 3138 35590 300 1.2 330.625186 340 2.8 113369 >54340
bipe2p 550 10026 50 550 10026 50 0.1 5616 1591 135.3
bipe2u 550 10026 50 550 10026 50 0.2 54 97 69.4
ccl0-2p 1024 10240 135 1024 10240 135 0.4 34533.385 35342 2.3 4204 >54340
ccl0-2u 1024 10240 135 1024 10240 135 0.8 334.807731 343 2.4 3412 >54340
ccll-2p 2048 22526 244 2048 22526 244 1.3 62133.2953 63640 2.4 2043 >54340
ccll-2u 2048 22526 244 2048 22526 244 1.9 602.532956 615 2.1 3182 >54340
ccl2-2p 4096 49148 473 4096 49148 473 4.3 118619.962 121523 2.4 151 >54340
ccl2-2u 4096 49148 473 4096 49148 473 4.3 1150.17905 1184 2.9 228 >54340
cc3-10p 1000 27000 50 1000 27000 50 0.6 12704.9214 12783 0.6 7733 >54340
cc3-10u 1000 27000 50 1000 27000 50 1.0 120.884585 126 4.2 419 >54340
cc3-11p 1331 39930 61 1331 39930 61 1.0 15464.6087 15596 0.8 5409 >54340
cc3-11u 1331 39930 61 1331 39930 61 1.1 144.648808 154 6.5 1 >54340
cc3-12p 1728 57024 74 1728 57024 74 1.5 18737.1085 18853 0.6 4468 >54340
cc3-12u 1728 57024 74 1728 57024 74 1.7 174.291838 186 6.7 24 >54340
cc3-4p 64 576 8 64 576 8 0.0 2338 1 0.0
cc3-4u 64 576 8 64 576 8 0.0 23 1 0.0
cc3-5p 125 1500 13 125 1500 13 0.0 3661 1 0.8
cc3-5u 125 1500 13 125 1500 13 0.0 36 1 0.8
cc5-3p 243 2430 27 243 2430 27 0.1 7299 1901 4362.0
cc5-3u 243 2430 27 243 2430 27 0.1 71 207 669.4
cc6-2p 64 384 12 64 384 12 0.0 3271 1 0.1
cc6-2u 64 384 12 64 384 12 0.0 32 1 0.2
cc6-3p 729 8736 76 729 8736 76 0.3 20193.3481 20286 0.5 22679 >54340
cc6-3u 729 8736 76 729 8736 76 0.6 197 56 10003.2
cc7-3p 2187 30616 222 2187 30616 222 1.7 55404.3712 57072 3.0 863 >54340
cc7-3u 2187 30616 222 2187 30616 222 1.8 536.675303 552 2.9 738 >54340
cc9-2p 512 4608 64 512 4608 64 0.2 16916.6425 17284 2.2 7586 >54340
cc9-2u 512 4608 64 512 4608 64 0.3 163.855778 168 25 6994 >54340
hcl0p 1024 10240 512 1024 10240 512 0.4 59287.7329 59777 0.8 41290 >54340
hcl0u 1024 10240 512 1024 10240 512 0.8 567.888889 575 1.3 53052 >54340
hcllp 2048 22528 1024 2048 22528 1024 1.2 117451.749 119854 2.0 14242 >54340
hcllu 2048 22528 1024 2048 22528 1024 2.1 1125.4 1164 3.4 13107 >54340
hcl2p 4096 49152 2048 4096 49152 2048 4.8 232919.332 236573 1.6 1533 >54340
hcl2u 4096 49152 2048 4096 49152 2048 7.6 2233.09091 2321 3.9 1 >54340
hcbp 64 384 32 64 384 32 0.0 4003 1589 175
hcbu 64 384 32 64 384 32 0.0 39 693 5.0
hc7p 128 896 64 128 896 64 0.0 7905 251863 2797.7
hc7u 128 896 64 128 896 64 0.1 7 599283 4081.1
hc8p 256 2048 128 256 2048 128 0.1 15322 304601 21378.1
hc8u 256 2048 128 256 2048 128 0.1 145.714286 148 1.6 1166252 >54340
hc9p 512 4608 256 512 4608 256 0.2 29983.7876 30247 0.9 158503 >54340
hc9u 512 4608 256 512 4608 256 0.3 287.125 292 1.7 395816 >54340

Table 14. Detailed computational results for SPG, test-set SP.
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Original Presolved
Instance V| |A| |T| V| |A| |T| t[s] Optimum N t[s]
antiwheel5 10 30 5 0 0 0 0.0 7 1 0.0
design432 8 40 4 0 0 0 0.0 9 1 0.0
oddcycle3 6 18 3 0 0 0 0.0 4 1 0.0
oddwheel3 7 18 4 0 0 0 0.0 5 1 0.0
se03 13 42 4 0 0 0 0.0 12 1 0.0
w13c29 783 4524 406 783 4524 406 0.4 507 6 37.3
w23c23 1081 6348 552 1081 6348 552 0.7 689 132 1190.0
w3c571 3997 20556 2284 3997 20556 2284 3.1 2854 1 321.6
Table 15. Detailed computational results for SPG, test-set TSPFST.
Original Presolved
Instance V| |A] |T| V| |A| |T| t[s] Optimum N t[s]
a280fst 313 656 279 0 0 0 0.0 2502 1 0.0
att48fst 139 404 48 58 186 23 0.0 30236 1 0.0
att532fst 1468 4304 532 270 854 103 0.4 84009 1 0.5
berlin52fst 89 208 52 0 0 0 0.0 6760 1 0.0
bier127fst 258 714 127 0 0 0 0.0 104284 1 0.0
d1291fst 1365 2012 1291 0 0 0 0.0 481421 1 0.0
d1655fst 1906 4166 1655 33 100 16 0.0 584948 1 0.0
d198fst 232 512 198 0 0 0 0.0 129175 1 0.0
d2103fst 2206 4544 2103 0 0 0 0.0 769797 1 0.0
d493fst 1055 2946 493 92 280 46 0.1 320137 1 0.1
d657fst 1416 3956 657 131 418 56 0.3 471589 1 0.7
dsj1000fst 2562 7310 1000 69 220 28 0.2 17564659 1 0.3
eil101fst 330 1076 101 166 550 56 0.1 605 1 0.2
eil51fst 181 578 51 114 376 39 0.0 409 1 0.1
eil 76fst 237 756 76 92 302 35 0.1 513 1 0.1
fl1400fst 2694 9092 1400 441 1648 221 0.5 17980523 1 7.8
fl1577fst 2413 6824 1577 94 320 48 0.1 19825626 1 0.3
fI3795fst 4859 13078 3795 444 1656 222 3.0 25529856 1 8.6
fl417fst 732 2168 417 124 438 52 0.1 10883190 1 0.2
fnl4461fst 17127 54704 4461 7720 25748 2484 22.3 182361 135 205.6
gil262fst 537 1446 262 34 104 22 0.0 2306 1 0.0
kroA100fst 197 500 100 0 0 0 0.0 20401 1 0.0
kroA150fst 389 1124 150 126 404 49 0.1 25700 1 0.1
kroA200fst 500 1428 200 0 0 0 0.0 28652 1 0.0
kroB100fst 230 626 100 0 0 0 0.0 21211 1 0.0
kroB150fst 420 1238 150 62 204 25 0.1 25217 1 0.1
kroB200fst 480 1340 200 102 330 45 0.1 28803 1 0.1
kroC100fst 244 674 100 45 146 18 0.0 20492 1 0.0
kroD100fst 216 576 100 12 34 7 0.0 20437 1 0.0
kroE100fst 226 612 100 46 140 21 0.0 21245 1 0.0
lin105fst 216 646 105 43 134 20 0.0 13429 1 0.0
lin318fst 678 2060 318 78 252 38 0.1 39335 1 0.1
linhp318fst 678 2060 318 78 252 38 0.1 39335 1 0.1
nrwl379fst 5096 16210 1379 2370 7936 751 3.8 56207 1 15.4
p654fst 77 1734 654 0 0 0 0.0 314925 1 0.0
pcb1173fst 1912 4446 1173 17 48 10 0.0 53301 1 0.0
pcb3038fst 5829 15104 3038 7 232 40 0.4 131895 1 0.4
pcb442fst 503 1062 442 0 0 0 0.0 47675 1 0.0
pla7397fst 8790 19630 7397 97 296 51 0.1 22481625 1 0.1
pr1002fst 1473 3430 1002 0 0 0 0.0 243176 1 0.0
pr107fst 111 220 107 0 0 0 0.0 34850 1 0.0
prl24fst 154 330 124 0 0 0 0.0 52759 1 0.0
pr136fst 196 500 136 0 0 0 0.0 86811 1 0.0
prl44fst 221 570 144 0 0 0 0.0 52925 1 0.0
pr152fst 308 862 152 0 0 0 0.0 64323 1 0.0
pr226fst 255 538 226 0 0 0 0.0 70700 1 0.0
pr2392fst 3398 7932 2392 0 0 0 0.0 358989 1 0.0
pr264fst 280 574 264 0 0 0 0.0 41400 1 0.0
pr299fst 420 1000 299 0 0 0 0.0 44671 1 0.0

cont. next page
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Original Presolved
Instance V| |A| |T| \4 |A] |T| t[s] Optimum N t[s]
pr439fst 572 1324 439 0 0 0 0.0 97400 1 0.0
pr76fst 168 494 76 33 94 16 0.0 95908 1 0.0
rat195fst 560 1740 195 182 594 70 0.2 2386 1 0.3
rat575fst 1986 6352 575 892 2940 319 1.6 6808 1 2.3
rat783fst 2397 7430 783 900 2976 338 1.7 8883 1 2.7
rat99fst 269 798 99 0 0 0 0.0 1225 1 0.0
rd100fst 201 506 100 0 0 0 0.0 764269099 1 0.0
rd400fst 1001 2838 400 161 514 65 0.1 1490972010 1 0.2
rl11849fst 13963 30630 11849 88 266 50 0.1 8779590 1 0.1
rl1304fst 1562 3388 1304 18 54 10 0.0 236649 1 0.0
rl1323fst 1598 3500 1323 0 0 0 0.0 253620 1 0.0
rl1889fst 2382 5348 1889 67 216 27 0.0 295208 1 0.0
rl5915fst 6569 13960 5915 34 102 19 0.0 533226 1 0.0
rI5934fst 6827 14730 5934 31 100 19 0.0 529890 1 0.0
st70fst 133 338 70 0 0 0 0.0 626 1 0.0
ts225fst 225 448 225 0 0 0 0.0 1120 1 0.0
tsp225fst 242 504 225 0 0 0 0.0 356850 1 0.0
ul060fst 1835 4858 1060 63 220 32 0.1 21265372 1 1.3
ul432fst 1432 2862 1432 0 0 0 0.0 1465 1 0.0
ul59fst 184 372 159 0 0 0 0.0 390 1 0.0
ulB17fst 1831 3692 1817 0 0 0 0.0 5513053 1 0.0
u2152fst 2167 4368 2152 0 0 0 0.0 6253305 1 0.0
u2319fst 2319 4636 2319 0 0 0 0.0 2322 1 0.0
ub74fst 990 2516 574 0 0 0 0.1 3509275 1 0.1
u724fst 1180 3074 724 11 32 7 0.0 4069628 1 0.1
vm1084fst 1679 4116 1084 26 80 15 0.1 2248390 1 0.1
vm1748fst 2856 7282 1748 191 612 85 0.4 3194670 1 0.5

Table 16. Detailed computational results for SPG, test-set vienna-geo-original.

Original Presolved
Instance \4 |A| |T| \4 |A| |T| t[s] Optimum N t[s]
G101 67966 164970 100 669 2544 66 4.7 3492405 1 5.2
G102 111707 321008 2052 9285 30744 1592 20.0 15187538 1 67.4
G103 135543 403606 3033 12804 42348 2277 26.9 19938744 1 120.7
G104 158212 480044 3914 16492 54266 2929 36.7 26165528 1 211.7
G105 79244 202378 550 3103 10712 409 8.6 12507877 1 25.0
G106 204621 636272 5556 1379 4618 233 70.1 44547208 1 469.7
G107 85568 228226 938 1177 3824 247 7.5 7325530 1 9.8
G201 44624 112410 190 775 2588 123 3.4 3484028 1 3.8
G202 62174 175124 1015 1773 5766 357 7.5 6849423 1 9.3
G203 88728 267250 2041 1817 5962 323 19.9 13155210 1 43.1
G204 50002 130406 386 905 2916 181 4.9 5313548 1 5.2
G205 120866 374624 3224 3873 12768 639 31.7 24819583 1 179.4
G206 60446 165880 803 254 834 56 7.8 9175622 1 10.7
G207 42481 105104 97 0 0 0 1.8 2265834 1 1.8
G301 80736 197500 191 1313 4932 152 6.7 4797441 1 8.0
G302 117756 330306 1879 354 1112 91 13.8 13300990 1 23.4
G303 147718 428352 2992 10545 33992 1853 35.0 27941456 1 68.0
G304 86413 217744 419 77 242 24 6.7 6721180 1 6.8
G305 172687 511650 3902 2540 8404 421 42.6 40632152 1 126.7
G306 196404 600072 4937 2329 7616 425 49.4 33949874 1 381.3
G307 235686 732186 6313 3647 12044 610 79.3 51219090 1 524.8
G308 78834 191464 88 1120 4464 72 6.5 4699474 3 11.0
G309 97928 257264 902 576 1872 127 12.1 11256303 1 14.8

Table 17. Detailed computational results for SPG, test-set vienna-geo-advanced.

Original Presolved
Instance \4 [A]| |T| 4 [A]| |T| t[s] Optimum N t[s]
G101a 10734 32690 96 286 1050 44 43 3492405 1 45
G102a 27896 87850 2003 8975 20614 1543 222 15187538 1 64.1
G103a 36270 114740 2930 5448 17926 970 26.7 19938744 1 102.2
G104a 44251 140058 3776 16048 52674 2830 37.8 26165528 1 223.0
G105a 14586 44900 525 3029 10410 402 7.6 12507877 1 22.5
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Original Presolved
Instance V| |A] |T| V| |A] |T| t[s] Optimum N t[s]
G106a 62618 200134 5373 1380 4618 233 62.8 44547208 1 506.1
G107a 15536 47716 893 1181 3850 247 6.2 7325530 1 8.8
G201a 8286 25234 188 772 2580 124 3.2 3484028 1 3.6
G202a 14028 43220 985 1771 5752 360 6.6 6849423 1 8.7
G203a 25651 81220 1999 1803 5910 320 18.2 13155210 1 40.9
G204a 9939 30498 376 868 2806 176 2.8 5313548 1 3.2
G205a 37398 118646 3146 3815 12590 624 28.2 24819583 1 152.0
G206a 13688 42394 789 294 974 60 6.8 9175622 1 9.7
G207a 7565 23042 98 2 2 1 1.7 2265834 1 1.7
G301a 13291 40522 181 952 3484 125 6.3 4797441 1 6.8
G302a 24951 77294 1797 403 1274 101 125 13300990 1 21.7
G303a 37085 115422 2915 1308 4250 231 29.5 27941456 1 77.3
G304a 15213 46658 403 117 380 30 5.7 6721180 1 5.7
G305a 47016 147722 3809 14024 45076 2425 46.7 40632152 1 127.6
G306a 55423 175558 4766 2329 7614 425 50.4 33949874 1 369.2
G307a 71184 227232 6107 3648 12048 610 68.8 51219090 1 536.1
G308a 13298 40702 86 702 2740 67 6.3 4699474 1 7.3
G309a 18704 57702 868 2259 7478 402 11.3 11256303 1 13.4
Table 18. Detailed computational results for SPG, test-set vienna-i-simple.
Original Presolved
Instance 4 [A| |T| 4 |A| |T| t[s] Optimum N t[s]
1001 30190 95496 1184 211 646 75 2.0 253921201 1 21
1002 49920 155742 1665 642 1940 186 5.9 399809303 1 6.7
1003 44482 146838 3222 443 1342 126 9.1 788774494 1 12.3
1004 5556 17104 570 0 0 0 0.1 279512692 1 0.1
1005 10284 31960 1017 0 0 0 0.2 390876350 1 0.2
1006 31754 105750 2202 544 1640 175 6.8 504526035 1 10.3
1007 15122 48742 737 136 400 42 0.9 177909660 1 1.0
1008 15714 51134 871 136 404 46 1.8 201788202 1 1.9
1009 33188 104014 1262 297 902 100 2.3 275558727 1 25
1010 29905 94914 943 151 450 58 1.3 207889674 1 13
1011 25195 82596 1428 734 2258 207 23 317589880 1 3.1
1012 12355 39924 503 32 98 16 0.3 118893243 1 0.3
1013 18242 57952 891 66 188 32 1.3 193190339 1 1.3
1014 12715 41264 475 10 26 5 0.3 105173465 1 0.3
1015 48833 159974 2493 424 1330 123 7.0 592240832 1 8.1
1016 72038 230110 4391 742 2290 207 16.3 1110914620 1 18.1
1017 15095 48182 478 76 234 21 0.5 109739695 1 0.5
1018 31121 102226 1898 982 2914 274 4.5 463887832 1 6.1
1019 25946 83290 866 320 970 90 1.7 217647693 1 1.9
1020 21808 69842 594 98 308 35 0.9 146515460 1 1.0
1021 16013 50538 392 17 46 7 0.5 106470644 1 0.5
1022 16224 51382 437 54 156 19 0.7 106799980 1 0.7
1023 22805 70614 582 92 294 31 0.7 131044872 1 0.7
1024 68464 217464 3001 275 848 79 10.3 758483415 1 11.6
1025 23412 75904 945 474 1488 153 3.4 232790758 1 35
1026 47429 158614 3334 1420 4372 409 10.8 928032223 1 12.4
1027 85085 277776 3954 1166 3564 291 16.0 976812226 1 17.2
1028 72701 230860 1790 176 546 59 15.8 384053191 1 15.8
1029 69988 223608 2162 349 1100 93 12.4 492193565 1 12.7
1030 33188 107360 1263 148 450 39 3.2 321646787 1 3.3
1031 54351 176422 2182 155 482 42 5.2 578284709 1 5.2
1032 56023 182798 3017 800 2404 244 6.2 773096651 1 7.2
1033 18555 59460 636 59 174 25 15 134461857 1 15
1034 22311 71032 735 64 186 21 1.8 165115148 1 1.8
1035 30585 100908 1704 129 386 49 3.5 414440370 1 4.0
1036 37208 120712 1411 125 402 36 6.1 375260864 1 6.6
1037 13694 44252 427 13 36 7 1.2 105720727 1 1.2
1038 18747 61278 967 679 2106 169 1.8 255767543 1 25
1039 8755 28898 347 88 258 38 0.6 85566290 1 0.6
1040 40389 131640 1762 398 1236 121 5.8 431498867 1 6.0
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Original Presolved
Instance V| |A| |T| V| |A] |T| t[s] Optimum N t[s]
1041 47197 150614 1193 181 554 65 5.3 301914840 1 5.3
1042 51896 171100 2171 131 394 39 6.8 532131412 1 6.9
1043 10398 33574 367 108 328 41 0.9 95722094 1 0.9
1044 68905 227778 3358 352 1082 90 10.7 804532332 1 135
1045 14685 46932 421 80 234 26 0.5 105944062 1 0.6
1046 70843 234418 3598 172 516 50 12.1 925470052 1 13.4
1047 28524 92502 2354 2176 6606 622 5.5 695163406 1 8.4
1048 13189 42438 358 0 0 0 0.5 91509264 1 0.5
1049 30857 99182 990 159 468 51 2.6 294811505 1 2.6
1050 43073 142552 2868 3449 10540 920 10.4 792599114 1 18.9
1051 27028 90812 1524 137 406 42 4.7 357230839 1 5.5
1052 2363 7522 40 0 0 0 0.0 13309487 1 0.0
1053 3224 10570 126 19 52 8 0.1 30854904 1 0.1
1054 3803 12426 38 0 0 0 0.0 15841596 1 0.0
1055 13332 43160 570 112 338 46 0.7 144164924 1 0.8
1056 1991 6352 51 0 0 0 0.0 14171206 1 0.0
1057 33231 110298 1569 112 340 40 3.2 412746415 1 3.9
1058 23527 79256 1256 169 538 42 1.2 305024188 1 1.3
1059 9287 29950 363 49 134 22 0.2 107617854 1 0.2
1060 42008 135144 1242 160 504 54 5.7 337290460 1 5.7
1061 39160 127318 1458 171 532 46 7.1 363042722 1 7.7
1062 66048 220982 3343 122 374 43 7.2 792941137 1 7.6
1063 26840 87322 1645 T 2366 214 3.7 459801704 1 4.4
1064 63158 214690 3458 6440 20058 1597 19.7 863103567 1 36.3
1065 3898 12712 144 12 36 9 0.2 32965718 1 0.2
1066 15038 49192 551 70 212 28 0.4 174219813 1 0.4
1067 20547 66460 627 403 1256 121 15 175540750 1 1.7
1068 33118 110254 1553 353 1066 100 2.7 420730046 1 2.9
1069 9574 32416 543 258 804 71 0.9 135161583 1 1.0
1070 15079 49216 550 123 364 48 1.7 136700139 1 1.8
1071 33203 108854 1494 233 684 70 2.9 382539099 1 3.1
1072 26948 88388 993 110 338 24 2.0 289019226 1 2.0
1073 21653 70342 1847 115 336 44 2.8 663004987 1 3.5
1074 13316 44066 653 17 50 9 0.7 165573383 1 0.7
1075 57551 190762 2973 110 336 33 8.0 815404026 1 8.5
1076 14023 45790 598 71 208 31 0.9 166249692 1 0.9
1077 20856 68474 1787 3514 10400 882 45 472503150 1 10.8
1078 13294 43896 835 86 244 37 1.1 185525490 1 1.1
1079 19867 62542 565 757 2598 213 2.5 150506933 1 29
1080 18695 59416 548 313 966 92 1.7 164299652 1 1.9
1081 25081 81478 888 53 154 27 2.4 247527679 1 2.5
1082 15592 49576 515 0 0 0 0.9 147407632 1 1.0
1083 89596 297166 4991 65 202 21 11.8 1405593860 1 133
1084 44934 147454 2319 95 318 26 4.7 627187559 1 6.8
1085 9113 28982 301 98 340 29 0.4 80628079 1 0.4
Table 19. Detailed computational results for SPG, test-set vienna-i-advanced.
Original Presolved
Instance V| |A| |T| \4 |A| |T| t[s] Optimum N t[s]
1001a 14675 44110 941 212 638 72 1.8 253921201 1 1.9
1002a 23800 71516 1282 635 1918 186 4.6 399809303 1 5.5
1003a 16270 47838 2336 440 1332 125 7.6 788774494 1 10.7
1004a 867 2476 263 19 48 11 0.1 279512692 1 0.1
1005a 1677 4860 491 0 0 0 0.1 390876350 1 0.1
1006a 13339 39064 1842 104 316 28 5.6 504526035 1 9.6
1007a 6873 20598 599 128 370 42 0.8 177909660 1 0.8
1008a 6522 19258 708 101 296 33 15 201788202 1 1.6
1009a 14977 44870 1053 306 924 101 1.8 275558727 1 2.0
1010a 13041 39090 782 156 470 59 0.9 207889674 1 0.9
1011a 9298 27370 1202 709 2172 200 2.2 317589880 1 2.9
1012a 3500 10428 387 0 0 0 0.1 118893243 1 0.1
1013a 7147 21216 670 67 192 33 1.0 193190339 1 1.0
1014a 3577 10622 364 0 0 0 0.1 105173465 1 0.1
1015a 20573 61082 2119 407 1270 120 5.9 592240832 1 7.2
1016a 27214 79648 3434 507 1548 154 11.6 1110914620 1 14.0
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Original Presolved
Instance V| |A| |T| \4 |A| |T| t[s] Optimum N t[s]
1017a 7571 23142 386 0 0 0 0.3 109739695 1 0.3
1018a 12258 36028 1549 992 2942 276 3.3 463887832 1 4.8
1019a 11693 35248 732 278 846 79 1.3 217647693 1 1.4
1020a 6405 19128 508 58 180 18 0.5 146515460 1 0.5
1021a 5195 15722 295 102 306 27 0.2 106470644 1 0.2
1022a 8869 27102 356 64 188 24 0.5 106799980 1 0.5
1023a 13724 41726 403 222 672 64 0.5 131044872 1 0.5
1024a 32357 96500 2511 73 214 28 8.8 758483415 1 9.5
1025a 10055 29922 833 73 228 28 2.8 232790758 1 3.0
1026a 18155 53136 2661 1687 5180 496 8.4 928032223 1 10.2
1027a 40772 121110 3490 109 346 33 14.7 976812226 1 16.3
1028a 43690 132922 1597 255 790 85 14.8 384053191 1 14.9
1029a 32979 99254 1946 270 856 73 9.2 492193565 1 9.4
1030a 12941 38558 1093 151 460 39 2.2 321646787 1 2.3
1031a 21054 62820 1832 156 484 42 3.6 578284709 1 3.6
1032a 21345 62706 2454 344 1058 90 5.3 773096651 1 6.2
1033a 8500 25400 548 252 770 76 1.0 134461857 1 1.1
1034a 9128 27336 606 142 412 48 1.1 165115148 1 1.2
1035a 13129 38840 1428 118 352 47 2.8 414440370 1 3.1
1036a 17036 50964 1258 318 984 74 5.2 375260864 1 5.8
1037a 5886 17738 392 60 180 21 0.8 105720727 1 0.8
1038a 7733 22956 798 693 2152 180 1.3 255767543 1 1.9
1039a 3719 11066 306 34 104 10 0.4 85566290 1 0.4
1040a 18837 56312 1501 165 512 49 5.6 431498867 1 5.7
1041a 22466 67736 1014 92 272 36 2.9 301914840 1 29
1042a 23925 71612 1923 116 346 34 5.4 532131412 1 5.6
1043a 4511 13480 335 99 288 35 0.7 95722094 1 0.7
1044a 31500 93514 2954 1327 4108 296 9.1 804532332 1 11.5
1045a 6775 20454 378 83 244 26 0.4 105944062 1 0.4
1046a 32376 96108 3154 163 482 50 9.3 925470052 1 11.0
1047a 10622 30880 1791 1365 4126 392 7.7 695163406 1 8.6
1048a 4920 14712 320 0 0 0 0.3 91509264 1 0.3
1049a 15045 45426 821 157 460 51 2.2 294811505 1 2.3
1050a 17787 52352 2232 3357 10250 902 9.2 792599114 1 17.3
1051a 12130 35784 1337 146 440 43 3.9 357230839 1 4.8
1052a 160 474 23 0 0 0 0.0 13309487 1 0.0
1053a 693 2046 102 26 72 13 0.0 30854904 1 0.0
1054a 540 1634 25 0 0 0 0.0 15841596 1 0.0
1055a 4701 13958 483 100 284 45 0.5 144164924 1 0.5
1056a 290 878 34 0 0 0 0.0 14171206 1 0.0
1057a 13078 38736 1346 178 546 64 2.8 412746415 1 3.4
1058a 7877 23314 997 156 494 39 0.9 305024188 1 1.0
1059a 2800 8314 286 31 86 11 0.1 107617854 1 0.1
1060a 18991 57072 1158 191 582 70 4.6 337290460 1 4.6
1061a 20958 62930 1337 153 464 49 5.8 363042722 1 6.3
1062a 23714 70610 2812 94 280 30 6.2 792941137 1 6.5
1063a 9600 28084 1291 950 2898 255 3.1 459801704 1 3.9
1064a 31712 93422 3182 6460 20152 1609 18.3 863103567 1 35.9
1065a 1185 3512 119 62 194 26 0.1 32965718 1 0.1
1066a 4551 13642 417 59 182 24 0.3 174219813 1 0.3
1067a 10318 31176 579 407 1272 123 1.3 175540750 1 1.5
1068a 12191 36046 1302 321 976 91 1.9 420730046 1 2.2
1069a 3508 10312 452 269 844 73 0.7 135161583 1 0.8
1070a 6739 20128 511 147 438 52 1.4 136700139 1 1.4
1071a 12772 37772 1281 117 362 36 2.2 382539099 1 2.4
1072a 11628 34822 851 92 268 38 1.1 289019226 1 1.1
1073a 7510 21746 1337 1069 3244 324 2.5 663004987 1 3.1
1074a 4441 13124 548 37 110 13 0.3 165573383 1 0.3
1075a 23195 68724 2498 102 300 33 6.3 815404026 1 6.7
1076a 4909 14536 498 20 54 11 0.6 166249692 1 0.6
1077a 9153 26726 1490 3509 10388 880 4.1 472503150 1 11.0
1078a 5864 17324 692 168 486 58 1.0 185525490 1 1.0
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Original Presolved

Instance V| |A| |T| V] |A| |T| t[s] Optimum N t[s]
1079a 7933 23614 497 732 2516 205 2.0 150506933 1 2.5
1080a 7589 22512 499 307 950 92 1.0 164299652 1 1.1
1081a 10747 32058 751 85 246 45 1.9 247527679 1 1.9
1082a 5850 17386 435 29 82 14 0.7 147407632 1 0.7
1083a 34221 100602 4138 326 1010 86 8.9 1405593860 1 10.3
1084a 17050 50402 1918 1265 3922 306 4.0 627187559 1 5.8
1085a 2780 8246 243 0 0 0 0.2 80628079 1 0.2
Table 20. Detailed computational results for SPG, test-set VLSI.
Original Presolved
Instance V| |A] |T| \4 |A| |T| t[s] Optimum N t[s]
alue2087 1244 3942 34 0 0 0 0.0 1049 1 0.0
alue2105 1220 3716 34 0 0 0 0.0 1032 1 0.0
alue3146 3626 11738 64 0 0 0 0.1 2240 1 0.1
alue5067 3524 11120 68 50 146 16 0.1 2586 1 0.1
alue5345 5179 16330 68 62 202 17 0.9 3507 1 0.9
alue5623 4472 13876 68 20 56 9 0.6 3413 1 0.6
alue5901 11543 36858 68 41 124 18 0.7 3912 1 0.7
alue6179 3372 10426 67 0 0 0 0.1 2452 1 0.1
alue6457 3932 12274 68 0 0 0 0.1 3057 1 0.1
alue6735 4119 13392 68 140 446 20 0.1 2696 1 0.1
alue6951 2818 8838 67 57 172 19 0.1 2386 1 0.1
alue7065 34046 109682 544 41 122 17 19.5 23881 1 19.5
alue7066 6405 20908 16 2281 7962 9 0.7 2256 1 0.7
alue7080 34479 110988 2344 862 2736 344 9.5 62449 1 9.9
alue7229 940 2948 34 0 0 0 0.0 824 1 0.0
alut0787 1160 4178 34 0 0 0 0.0 982 1 0.0
alut0805 966 3332 34 0 0 0 0.0 958 1 0.0
alut1181 3041 11386 64 0 0 0 0.2 2353 1 0.2
alut2010 6104 22022 68 52 162 13 0.3 3307 1 0.3
alut2288 9070 33190 68 0 0 0 0.9 3843 1 0.9
alut2566 5021 18110 68 32 96 14 0.7 3073 1 0.7
alut2610 33901 125632 204 119 408 9 41.4 12239 1 41.4
alut2625 36711 136234 879 2875 10224 426 44.6 35459 1 51.5
alut2764 387 1252 34 0 0 0 0.0 640 1 0.0
diw0234 5349 20172 25 0 0 0 0.1 1996 1 0.1
diw0250 353 1216 11 0 0 0 0.0 350 1 0.0
diw0260 539 1970 12 0 0 0 0.0 468 1 0.0
diw0313 468 1644 14 0 0 0 0.0 397 1 0.0
diw0393 212 762 11 0 0 0 0.0 302 1 0.0
diw0445 1804 6622 33 21 60 12 0.1 1363 1 0.1
diw0459 3636 13578 25 14 40 5 0.1 1362 1 0.1
diw0460 339 1158 13 0 0 0 0.0 345 1 0.0
diw0473 2213 8270 25 0 0 0 0.1 1098 1 0.1
diw0487 2414 8772 25 0 0 0 0.0 1424 1 0.0
diw0495 938 3310 10 0 0 0 0.0 616 1 0.0
diw0513 918 3368 10 0 0 0 0.0 604 1 0.0
diw0523 1080 4030 10 0 0 0 0.0 561 1 0.0
diw0540 286 930 10 0 0 0 0.0 374 1 0.0
diw0559 3738 14026 18 171 608 12 0.2 1570 1 0.2
diw0778 7231 27454 24 0 0 0 0.6 2173 1 0.6
diw0779 11821 45032 50 32 100 8 2.7 4440 1 2.7
diw0795 3221 11876 10 0 0 0 0.1 1550 1 0.1
diw0801 3023 11150 10 0 0 0 0.1 1587 1 0.1
diw0819 10553 40132 32 0 0 0 0.2 3399 1 0.2
diw0820 11749 44768 37 88 310 12 3.8 4167 1 3.8
dmxa0296 233 772 12 0 0 0 0.0 344 1 0.0
dmxa0368 2050 7352 18 16 40 10 0.1 1017 1 0.1
dmxa0454 1848 6572 16 0 0 0 0.0 914 1 0.0
dmxa0628 169 560 10 0 0 0 0.0 275 1 0.0
dmxa0734 663 2308 11 0 0 0 0.0 506 1 0.0
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Original Presolved
Instance V| |A] |T| V| |A| |T| t[s] Optimum N t[s]
dmxa0848 499 1722 16 0 0 0 0.0 594 1 0.0
dmxa0903 632 2174 10 0 0 0 0.0 580 1 0.0
dmxal010 3983 14216 23 0 0 0 0.1 1488 1 0.1
dmxall09 343 1118 17 0 0 0 0.0 454 1 0.0
dmxal200 770 2766 21 33 94 13 0.0 750 1 0.0
dmxal304 208 1006 10 0 0 0 0.0 311 1 0.0
dmxal516 720 2538 11 0 0 0 0.0 508 1 0.0
dmxal721 1005 3462 18 0 0 0 0.0 780 1 0.0
dmxal801 2333 8274 17 209 716 16 0.1 1365 1 0.1
gapl307 342 1104 17 0 0 0 0.0 549 1 0.0
gapl413 541 1812 10 0 0 0 0.0 457 1 0.0
gapl500 220 748 17 0 0 0 0.0 254 1 0.0
gapl810 429 1404 17 0 0 0 0.0 482 1 0.0
gapl904 735 2512 21 0 0 0 0.0 763 1 0.0
gap2007 2039 7096 17 0 0 0 0.0 1104 1 0.0
gap2119 1724 5950 29 0 0 0 0.0 1244 1 0.0
gap2740 1196 4168 14 0 0 0 0.0 745 1 0.0
gap2800 386 1306 12 0 0 0 0.0 386 1 0.0
gap2975 179 586 10 0 0 0 0.0 245 1 0.0
gap3036 346 1166 13 0 0 0 0.0 457 1 0.0
gap3100 921 3116 11 0 0 0 0.0 640 1 0.0
gap3128 10393 36086 104 0 0 0 0.2 4292 1 0.2
msm0580 338 1082 11 0 0 0 0.0 467 1 0.0
msm0654 1290 4540 10 0 0 0 0.0 823 1 0.0
msm0709 1442 4806 16 0 0 0 0.0 884 1 0.0
msm0920 752 2528 26 0 0 0 0.0 806 1 0.0
msm1008 402 1390 11 0 0 0 0.0 494 1 0.0
msm1234 933 3264 13 0 0 0 0.0 550 1 0.0
msm1477 1199 4156 31 0 0 0 0.0 1068 1 0.0
msm1707 278 956 11 0 0 0 0.0 564 1 0.0
msm1844 90 270 10 0 0 0 0.0 188 1 0.0
msm1931 875 3044 10 0 0 0 0.0 604 1 0.0
msm2000 898 3124 10 0 0 0 0.0 594 1 0.0
msm2152 2132 7404 37 0 0 0 0.1 1590 1 0.1
msm2326 418 1446 14 0 0 0 0.0 399 1 0.0
msm2492 4045 14188 12 0 0 0 0.1 1459 1 0.1
msm2525 3031 10478 12 0 0 0 0.1 1290 1 0.1
msm2601 2961 10200 16 0 0 0 0.1 1440 1 0.1
msm2705 1359 4916 13 0 0 0 0.0 714 1 0.0
msm2802 1709 5926 18 0 0 0 0.0 926 1 0.0
msm2846 3263 11566 89 52 162 22 0.3 3135 1 0.3
msm3277 1704 5982 12 0 0 0 0.0 869 1 0.0
msm3676 957 3108 10 0 0 0 0.0 607 1 0.0
msm3727 4640 16510 21 0 0 0 0.1 1376 1 0.1
msm3829 4221 14510 12 0 0 0 0.3 1571 1 0.3
msm4038 237 780 11 0 0 0 0.0 353 1 0.0
msm4114 402 1380 16 0 0 0 0.0 393 1 0.0
msm4190 391 1332 16 0 0 0 0.0 381 1 0.0
msm4224 191 604 11 0 0 0 0.0 311 1 0.0
msm4312 5181 17786 10 672 2332 10 0.5 2016 1 0.5
msm4414 317 952 11 0 0 0 0.0 408 1 0.0
msm4515 7 2716 13 0 0 0 0.0 630 1 0.0
taq0014 6466 22092 128 0 0 0 0.5 5326 1 0.5
taq0023 572 1926 11 0 0 0 0.0 621 1 0.0
taq0365 4186 14148 22 61 198 9 0.1 1914 1 0.1
taq0377 6836 23430 136 58 160 34 1.6 6393 1 1.7
taq0431 1128 3810 13 0 0 0 0.0 897 1 0.0
taq0631 609 1864 10 0 0 0 0.0 581 1 0.0
taq0739 837 2876 16 0 0 0 0.0 848 1 0.0
taq0741 712 2434 16 53 170 9 0.0 847 1 0.0
taq0751 1051 3582 16 0 0 0 0.0 939 1 0.0
taq0891 331 1120 10 0 0 0 0.0 319 1 0.0
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Original Presolved
Instance V| |A] |T| V| |A| |T| t[s] Optimum N t[s]
taq0903 6163 20980 130 0 0 0 1.4 5099 1 15
taq0910 310 1028 17 0 0 0 0.0 370 1 0.0
taq0920 122 388 17 0 0 0 0.0 210 1 0.0
taq0978 7 2478 10 0 0 0 0.0 566 1 0.0
Table 21. Detailed computational results for SPG, test-set WRP3.
Original Presolved
Instance \4 [A]| |T| \4 [A| |T| t[s] Optimum N t[s]
wrp3-11 128 454 11 0 0 0 0.0 1100361 1 0.0
wrp3-12 84 298 12 0 0 0 0.0 1200237 1 0.0
wrp3-13 311 1226 13 131 492 13 0.1 1300497 1 0.1
wrp3-14 128 494 14 108 422 13 0.0 1400250 1 0.0
wrp3-15 138 514 15 0 0 0 0.0 1500422 1 0.0
wrp3-16 204 748 16 0 0 0 0.0 1600208 1 0.0
wrp3-17 177 708 17 151 622 13 0.0 1700442 1 0.0
wrp3-19 189 706 19 0 0 0 0.0 1900439 1 0.0
wrp3-20 245 908 20 0 0 0 0.0 2000271 1 0.0
wrp3-21 237 888 21 0 0 0 0.0 2100522 1 0.0
wrp3-22 233 862 22 186 686 20 0.0 2200557 1 0.1
wrp3-23 132 460 23 0 0 0 0.0 2300245 1 0.0
wrp3-24 262 974 24 120 416 17 0.0 2400623 1 0.0
wrp3-25 246 936 25 0 0 0 0.0 2500540 1 0.0
wrp3-26 402 1560 26 0 0 0 0.0 2600484 1 0.0
wrp3-27 370 1442 27 58 202 14 0.2 2700502 1 0.2
wrp3-28 307 1118 28 2 2 1 0.0 2800379 1 0.0
wrp3-29 245 872 29 0 0 0 0.0 2900479 1 0.0
wrp3-30 467 1792 30 73 248 14 0.1 3000569 1 0.1
wrp3-31 323 1184 31 55 188 16 0.1 3100635 1 0.1
wrp3-33 437 1676 33 100 382 13 0.0 3300513 1 0.0
wrp3-34 1244 4948 34 1057 4206 32 2.4 3400646 1 3.6
wrp3-36 435 1636 36 99 332 15 0.4 3600610 1 0.4
wrp3-37 1011 4020 37 847 3356 37 3.2 3700485 1 4.7
wrp3-38 603 2414 38 437 1780 37 0.9 3800656 1 21
wrp3-39 703 3232 39 609 2822 38 2.3 3900450 1 4.2
wrp3-41 178 614 41 129 448 36 0.2 4100466 1 0.2
wrp3-42 705 2746 42 572 2214 41 0.8 4200598 1 13
wrp3-43 173 596 43 0 0 0 0.1 4300457 1 0.1
wrp3-45 1414 5626 45 1204 4786 45 2.9 4500860 1 33
wrp3-48 925 3476 48 491 1816 45 1.1 4800552 1 2.0
wrp3-49 886 3600 49 693 2798 46 1.8 4900882 1 9.3
wrp3-50 1119 4502 50 915 3716 49 2.5 5000673 1 4.3
wrp3-52 701 2704 52 581 2250 49 1.6 5200825 1 5.2
wrp3-53 775 2942 53 148 534 12 0.3 5300847 1 0.3
wrp3-55 1645 6372 55 1487 5844 55 2.1 5500888 1 68.8
wrp3-56 853 3180 56 590 2238 52 0.9 5600872 1 31
wrp3-60 838 3526 60 785 3300 60 2.2 6001164 1 29.9
wrp3-62 670 2632 62 586 2278 62 1.1 6201016 1 6.1
wrp3-64 1822 7220 64 1592 6402 59 3.4 6400931 1 9.7
wrp3-66 2521 9716 66 2269 8946 62 3.0 6600922 1 363.9
wrp3-67 987 3846 67 467 1848 36 1.8 6700776 1 3.7
wrp3-69 856 3242 69 447 1674 61 1.6 6900841 1 1.9
wrp3-70 1468 5862 70 964 3810 56 2.6 7000890 1 11.2
wrp3-71 1221 4828 71 947 3754 62 2.7 7101028 1 17.9
wrp3-73 1890 7226 73 1679 6534 63 2.2 7301207 1 36.9
wrp3-74 1019 3882 74 861 3326 65 11 7400759 1 131
wrp3-75 729 2790 75 551 2054 75 1.6 7501020 1 2.6
wrp3-76 1761 6740 76 1049 4066 46 31 7601028 1 4.6
wrp3-78 2346 9312 78 1993 7980 71 3.6 7801094 1 224.6
wrp3-79 833 3190 79 0 0 0 1.1 7900444 1 1.1
wrp3-80 1491 5662 80 1214 4650 75 3.6 8000849 1 34.3
wrp3-83 3168 12440 83 2061 11852 80 3.2 8300906 1 2873.0
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Original Presolved
Instance V| |A] |T| V| |A| |T| t[s] Optimum N t[s]
wrp3-84 2356 9094 84 1915 7600 73 3.4 8401094 1 18.5
wrp3-85 528 2034 85 509 1958 85 0.5 8500739 1 5.6
wrp3-86 1360 5214 86 1157 4444 86 2.9 86000746 1 43.9
wrp3-88 743 2818 88 390 1470 58 1.6 88001175 1 23
wrp3-91 1343 5188 91 873 3356 78 3.1 91000866 1 5.3
wrp3-92 1765 7226 92 1265 5254 70 3.5 92000764 1 35.6
wrp3-94 1976 7672 94 1504 6002 79 3.9 94001181 5 54.5
wrp3-96 2518 9970 96 2193 8800 87 3.8 96001172 1 204.1
wrp3-98 2265 9090 98 1893 7712 83 3.9 98001224 1 303.9
wrp3-99 2076 8144 99 1689 6612 94 2.0 99001097 1 121.1
Table 22. Detailed computational results for SPG, test-set WRP4.
Original Presolved
Instance % [A] | % [A] | t[s] Optimum N t[s]
wrp4-11 123 466 11 0 0 0 0.0 1100179 1 0.0
wrp4-13 110 376 13 0 0 0 0.0 1300798 1 0.0
wrp4-14 145 566 14 0 0 0 0.0 1400290 1 0.0
wrp4-15 193 738 15 0 0 0 0.0 1500405 1 0.0
wrp4-16 311 1158 16 0 0 0 0.0 1601190 1 0.0
wrp4-17 223 808 17 138 486 13 0.0 1700525 1 0.0
wrp4-18 211 760 18 0 0 0 0.0 1801464 1 0.0
wrp4-19 119 412 19 0 0 0 0.0 1901446 1 0.0
wrp4-21 529 2064 21 167 644 15 0.1 2103283 1 0.1
wrp4-22 294 1136 22 108 392 15 0.1 2200394 1 0.1
wrp4-23 257 1030 23 131 478 18 0.0 2300376 1 0.0
wrp4-24 493 1926 24 0 0 0 0.1 2403332 1 0.1
wrp4-25 422 1616 25 92 332 9 0.1 2500828 1 0.1
wrp4-26 396 1562 26 310 1224 26 0.5 2600443 1 1.7
wrp4-27 243 994 27 71 260 16 0.1 2700441 1 0.1
wrp4-28 272 1090 28 190 756 28 0.2 2800466 1 0.5
wrp4-29 247 1010 29 105 394 22 0.2 2900484 1 0.2
wrp4-30 361 1448 30 296 1190 29 0.1 3000526 1 1.8
wrp4-31 390 1572 31 318 1280 30 0.3 3100526 1 2.2
wrp4-32 311 1264 32 246 998 29 0.1 3200554 1 1.3
wrp4-33 304 1142 33 103 372 19 0.0 3300655 1 0.0
wrp4-34 314 1300 34 45 154 9 0.1 3400525 1 0.1
wrp4-35 471 1908 35 320 1240 35 0.3 3500601 1 1.1
wrp4-36 363 1500 36 310 1276 36 0.2 3600596 1 1.1
wrp4-37 522 2108 37 438 1726 37 0.4 3700647 1 3.5
wrp4-38 294 1236 38 0 0 0 0.1 3800606 1 0.1
wrp4-39 802 3106 39 163 600 14 0.1 3903734 1 0.1
wrp4-40 538 2176 40 440 1774 39 0.3 4000758 1 6.2
wrp4-41 465 1910 41 377 1540 41 0.4 4100695 1 3.4
wrp4-42 552 2262 42 502 2038 42 0.4 4200701 1 9.3
wrp4-43 596 2296 43 277 1054 33 0.1 4301508 1 0.2
wrp4-44 398 1576 44 153 576 27 0.3 4401504 39 0.6
wrp4-45 388 1630 45 0 0 0 0.3 4500728 1 0.3
wrp4-46 632 2574 46 583 2356 46 0.4 4600756 1 8.6
wrp4-47 555 2196 47 0 0 0 0.9 4701318 1 0.9
wrp4-48 451 1650 48 0 0 0 0.1 4802220 1 0.1
wrp4-49 557 2160 49 158 582 22 0.5 4901968 1 0.6
wrp4-50 564 2224 50 223 860 24 0.4 5001625 1 0.6
wrp4-51 668 2612 51 407 1592 45 1.3 5101616 1 1.6
wrp4-52 547 2230 52 70 240 20 0.4 5201081 1 0.4
wrp4-53 615 2464 53 351 1370 46 0.7 5301351 1 1.4
wrp4-54 688 2776 54 356 1398 40 0.6 5401534 1 1.4
wrp4-55 610 2402 55 403 1562 51 0.7 5501952 1 1.0
wrp4-56 839 3234 56 489 1902 47 0.8 5602299 1 1.5
wrp4-58 757 2986 58 367 1446 41 0.6 5801466 1 15
wrp4-59 904 3612 59 154 506 29 0.2 5901592 1 0.2
wrp4-60 693 2740 60 103 346 24 0.4 6001782 1 0.4
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Original Presolved

Instance V| |A] |T| \4 |A] |T| t[s] Optimum N t[s]
wrp4-61 775 3076 61 138 500 19 0.2 6102210 1 0.2
wrp4-62 1283 4986 62 313 1184 29 2.6 6202100 1 2.7
wrp4-63 1121 4454 63 943 3752 60 0.9 6301479 1 59.9
wrp4-64 632 2562 64 0 0 0 0.3 6401996 1 0.3
wrp4-66 844 3382 66 229 834 24 1.0 6602931 1 1.0
wrp4-67 1518 6120 67 208 770 28 2.5 6702800 1 2.6
wrp4-68 917 3700 68 793 3182 67 0.8 6801753 1 3.7
wrp4-69 574 2330 69 0 0 0 0.7 6902328 1 0.7
wrp4-70 637 2538 70 0 0 0 0.1 7003022 1 0.1
wrp4-71 802 3218 71 0 0 0 0.1 7102320 1 0.1
wrp4-72 1151 4548 72 538 2132 48 11 7202807 1 4.2
wrp4-73 1898 7232 73 1290 5112 73 1.9 7302643 1 27.7
wrp4-74 802 3240 74 610 2422 72 0.8 7402046 1 1.9
wrp4-75 938 3738 75 702 2784 75 1.1 7501712 1 2.0
wrp4-76 766 3070 76 140 504 30 0.5 7602040 1 0.6
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