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Abstract

A new method for noise removal of arbitrary surfaces
meshes is presented which focuses on the preservation
and sharpening of non-linear geometric features such
as curved surface regions and feature lines. Our method
uses a prescribed mean curvature flow (PMC) for sim-
plicial surfaces which is based on three new contribu-
tions: 1. the definition and efficient calculation of a
discrete shape operator and principal curvature proper-
ties on simplicial surfaces that is fully consistent with
the well-known discrete mean curvature formula, 2. an
anisotropic discrete mean curvature vector that com-
bines the advantages of the mean curvature normal with
the special anisotropic behaviour along feature lines of
a surface, and 3. an anisotropic prescribed mean curva-
ture flow which converges to surfaces with an estimated
mean curvature distribution and with preserved non-
linear features. Additionally, the PMC flow prevents
boundary shrinkage at constrained and free boundary
segments.

1 Introduction

Noise is an omnipresent artifact in 2d and 3d meshes
due to resolution problems in mesh acquisition pro-
cesses. For example, meshes extracted from image data
or supplied by laser scanning devices often carry high-
frequency noise in the position of the vertices. Many
filtering techniques have been suggested in recent years,
among them Laplace smoothing is the most prominent
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example. In practice, denoising is still a delicate task
and left to the hands of a user who carefully chooses
different filtering algorithms.

Anisotropic denoising concentrates on the preserva-
tion of important surface features like sharp edges and
corners by applying direction dependent smoothing.
For example, a sharp edge remains sharp when smooth-
ing is avoided to happen across the edge.

In geometry, different notions of curvature have been
established to detect and measure the bending and the
geometric disturbance of a shape. One approach to de-
noise a shape therefore concentrates on the removal of
unwanted curvature peaks while a feature preservation
simultaneously tries to keep certain curvature distribu-
tions, for example, the high curvature along sharp cor-
ners. Anisotropic mean curvature flow addresses this
problem by constraining the isotropic mean curvature
flow to preserve features encountered in a shape.

A good knowledge of curvature is an eminent pre-
requisite for constrained mesh smoothing. Especially
for feature constrained denoising the computation of
principal curvatures on simplicial surfaces is important
since it measures the individual bending of a surface
in different directions. The results of this paper are
based on the novel definition and explicit calculation of
a shape operator and principal curvature information on
a simplicial surface. These definitions rely on a small-
est possible stencil for curvature calculations and are
still fully consistent with the known vertex-based dis-
crete mean curvature formulas. We incorporate these
operators in new kinds of diffusion algorithms for the
feature preserving denoising of meshes.

1.1 Related Work

On simplicial surfaces the definition of discrete versions
of the various curvature notions has a long history. The
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discrete Gauß curvature defined as angle defect at a ver-
tex played a major role in the work of Alexandrov [1].
The simplicial mean curvature defined as gradient of the
simplicial surface area has a simple intrinsic description
as the sum of the weighted edges emanating from a ver-
tex, and led to several algorithms for the computation of
minimal and constant mean curvature surfaces, see [22]
for an overview.

Different approaches have been made to calculate the
principal curvature directions of a simplicial surface. A
common adhoc approach uses a quadratic surface to es-
timate a pair of principal curvatures at the center of a
triangle. Here the quadric is the unique surface which
interpolates the six vertices of a triangle and its three
neighbors. The principal curvatures of this quadric are
evaluated at the point corresponding to the barycenter
of the triangle and assigned as constant discrete princi-
pal curvatures of the inner triangle. Taubin [28] uses an
approximation of a formula known from the theory of
smooth surfaces to compute the directional curvature.
An estimation of the shape operator at each vertex of
a surface is computed based on the directional curva-
ture of the emanating edges. Meyer et al. [16] combine
the scalar-valued simplicial Gauß and mean curvatures
to estimate principal curvature values with a formula
known from the smooth case. They derive principal di-
rections by a best quadratic fit of a pair of two orthogo-
nal tangent vectors. A relation of the obtained principal
curvature directions and the otherwise obtained discrete
mean curvature is not obvious. Cohen-Steiner and Mor-
van [5] define an integrated shape operator for subsets
of a simplicial surface in R

3 using the theory of nor-
mal cycles. For a special class of approximations of a
smooth surface S, namely restricted Delaunay triangu-
lation of a vertex sample of S, they derive bounds on the
error between the estimated and the smooth curvature.

The most common techniques for fairing and denois-
ing of surfaces are based on Laplace smoothing. This
can be modeled as a solution of the diffusion equa-
tion ∂tF = ∆MF where F is the parametrization of
the surface and ∆M is the Laplace-Beltrami operator.
On surfaces the Laplace smoothing is equivalent to the
mean curvature flow since the Laplace-Beltrami opera-
tor equals the mean curvature vector. Many improve-
ments and extensions of the Laplace smoothing for sur-
face fairing and denoising have been proposed. Taubin
[29] developed a fast and simple iterative scheme to in-
tegrate the diffusion equation and designed a low pass
filter by alternating the sign in the Laplace smoothing.
Desbrun et al. [7] suggested to use an implicit integra-

tion scheme to allow larger time-steps and to stabilize
the flow. To compensate shrinkage of the surface and to
additionally avoid undesired deformations of the shape,
Liu et al. [15] proposed a method that keeps the vol-
ume of each star of a vertex, and Vollmer et al. [31]
suggested a method that is based on the idea to push
the vertices back to their previous positions. Ohtake et
al. [17] extended the Laplace smoothing by combining
it with mesh regularization. Kuriyama and Tachibana
[14] and Rumpf et al. [9] connected surface fairing to
subdivision. In order to get smoothness at the bound-
ary Schneider and Kobbelt [26] propose a forth order
method that smoothes the surface based on mean cur-
vature values given at the boundary.

Anisotropic smoothing methods were developed to
preserve and enhance features like sharp edges or cor-
ners while denoising the surface. The main difference
to isotropic schemes is the way how areas with highly
different principal curvatures are processed. Usually,
such areas contain significant shape information, i.e.
sharp edges have one large and one vanishing principal
curvature. An anisotropic scheme evolves the surface
in a way that the smaller principal curvature value is re-
duced and the larger value is kept. This produces sharp
edges. Unfortunately, the anisotropic smoothing tends
to converge against linear features like straight lines and
flat planes. One of the contributions of this paper is the
extension of this technique to allow non-linear curved
features as stable limits. Anisotropic scheme were first
introduced in image processing and later extended to
geometric problems, for example, by Desbrun et al. [8]
to smooth high fields and by Rumpf et al. [3] for sur-
faces, level sets [24] and to process textures [4] on the
surface as well. Bajaj and Xu [2] developed a scheme
to smooth higher order functions on surfaces while fair-
ing it. Other methods [30][27] use diffusion filters to
smooth the normal field and then integrate this to get the
smoother surface. Recently Fleishman et al. [10] de-
scribed a method that generalizes the bilateral filtering
approach known in image processing to meshes. The
basic idea is to regard a neighborhood of each vertex as
a distance graph over its tangent plane. Then the graph
corresponds to the gray level of an image. Large values
of the graph indicate surface features. The method can
preserve some kinds of features but fails to reconstruct
sharp edges, compare the results shown in their Fig. 6
with our Fig. 2.

Alternative methods use surface energies [6] [11]
like the total curvature [32][25], a membrane energy
[13] and more recently statistical measures [12] and a
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(a) (b) (c)

Figure 1: Noisy mesh with curved feature lines is smoothed using the anisotropic PMC flow. (a) Noisy surface. (b)
Surface after denoising. (c) The surface is colored by the absolute value of the predominating principal curvature.

Wiener filter to denoise surface meshes [18].

1.2 Contributions

The focus of our work targets three problems:

• A discrete shape operator and principal curvature
directions.

We define an edge based shape operator and princi-
pal curvatures of simplicial surfaces explicitly in terms
of a discrete surface. The direct calculation avoids the
need of higher order interpolating surfaces, and effec-
tively simplifies and accelerates curvature calculations.
The small stencil of our operators also avoids smooth-
ing side-effects introduced when using higher order ap-
proximations.

• An anisotropic mean curvature vector and flow.

The small stencil of our shape operator is used to de-
velop an improved anisotropic diffusion algorithm with
a better feature recognition. Our anisotropic mean cur-
vature flow reproduces sharp features with very high
quality when compared to previous approaches.

• A smoothing algorithm based on a prescribed
mean curvature flow (PMC).

The anisotropic prescribed mean curvature flow
solves the problem of shrinkage and undesired defor-
mation of the surface for anisotropic smoothing. It
additionally extends the known anisotropic smoothing
techniques by allowing to correctly preserve non-linear
features like the sharp circular corner of a drilled hole.
Cylindrical shapes like those shown in Fig. 1 and 5 ap-
pear as stable limits of the flow.

1.3 Paper Organization

In Section 2 we derive a novel discrete shape opera-
tor for simplicial surfaces and explain its relation to the
known discrete mean curvature vector. Based on the
shape operator we define in Section 2.1 an anisotropic
mean curvature vector and an anisotropic mean curva-
ture flow. In Section 3 we introduce a discrete pre-
scribed mean curvature flow that solves the problem of
shrinkage of curved surface regions and allows curved
surfaces such as cylinders to appear as stable limits of
the smoothing. In Section 4 we incorporate anisotropy
into the PMC flow to denoise and sharpen non-linear
features like round edges which typically appear in
CAD models. Section 5 summarizes the experimental
results and discusses different integration schemes.

2 Discrete Shape Operator and
Principal Curvatures

The shape operator determines the principal curvature
values and directions on a surface. In this section we
derive a discrete shape operator based on the smallest
possible stencil consisting of two adjacent triangles. Es-
pecially the detection of sharp surface features requires
a curvature notion based on a small stencil to avoid blur-
ring of sharp features.

The well-known mean curvature vector
−→
H at a vertex

equals the gradient of the area functional whose explicit
representation

−→
H (p) =

1
2

∑
q∈link p

(cotαq + cotβq)(p − q) (1)
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was derived in the context of discrete minimal surfaces
[19]. This vertex based mean curvature can be reformu-
lated in terms of an edge based mean curvature vector

−→
H (e) = He

−→
N e (2)

which is the area gradient of a non-conforming mesh
[20]. If θe denotes the dihedral angle of the edge e

and
−→
N e = N1+N2

‖N1+N2‖ the edge normal, then He =
2 |e| cos θe

2 is the mean curvature at the edge. Following
[20] both mean curvature vectors (1) and (2) are related
by the equation

−→
H (p) =

1
2

∑
e=(p,q),q∈link p

−→
H (e). (3)

For smooth surfaces the shape operator S is a sym-
metric operator that applies to tangential vector fields.
In the discrete case we specify S(e) to be an operator

in R
3 that has the edge normal

−→
N e in its null space.

We base the operator on the following remarks. Let −→e
denote a unit vector in direction of the edge e. Since
the normal does not change along the edge e, −→e is in
the null space of S. For all other tangential directions v
the normal curvature 〈v, Sv〉 is either strictly positive,
strictly negative or zero. This means that each point on
an edge is parabolic or flat. As a consequence we see
that S has rank≤ 1, that −→e is an eigenvector with eigen-
value 0 and that −→e ×−→

N e is the non-trivial eigenvector.
The requirement traceS(e) = He determines the non-
trivial eigenvalue.

Therefore, we define the shape operator of a piece-
wise linear surface Mh in R

3 at the inner edges e of
Mh by

S(e) = He(−→e ×−→
N e)(−→e ×−→

N e)t. (4)

At a vertex p ∈ Mh the tangent space TpMh is given by
the two dimensional subspace orthogonal to the vertex
normal. Let

−→
t e denote the unit vector in the direction

of −→e × −→
N e projected onto TpMh. The representation

of the shape operator of Mh at a vertex p is

S(p) =
1
2

∑
e=(p,q),q∈link(p)

ωeHe
−→
t e

−→
t t

e, (5)

where ωe = 〈Np, Ne〉. Note that traceS(p) = Hp is
ensured by the choice of ω.

Using the theory of normal cycles Cohen-Steiner and
Morvan [5] define a similar integrated curvature opera-
tor for simplicial surfaces. On the star of an edge e their

operator differs from our operator only in second order
of the circumradius of the triangles adjacent to e. This
allows to apply their error estimates and convergence
analysis to our operator as well. Additionally our op-
erator fits well with other discrete differential operators
such as the discrete mean curvature vector (1).

2.1 Anisotropic Mean Curvature Vector

AnisotropicSmoothing (M, λ, s,
n)
for (steps=1... n)

∆λ = 0
for each edge e = (vi, vj)
compute He, Ne

∆λ[vi]− = (wλ(He)He) ∗ Ne

∆λ[vj ]− = (wλ(He)He) ∗ Ne

for each triangle t = (vi, vj , vk)
compute areat

areaStar[vi]+=areat

areaStar[vj]+=areat

areaStar[vk]+=areat

for each vertex v
v+ = 3s/(2areaStar[v]) ∗ ∆λ[v]

return M

Table 1: The explicit anisotropic mean curvature flow.
The parameters are: M a mesh, λ the feature detec-
tion parameter, the scaling factor s determines the step
width, and n is the number of explicit smoothing steps.

In the previous section we decomposed the mean cur-
vature vector into a sum of vectors of the form H e

−→
N e

located at the edges (3) and showed that the term He

measures the directional curvature of the surface in the
direction orthogonal to the edge. Now we obtain the
anisotropic mean curvature vector �HA at a vertex p as a
weighted sum over the contributions He

−→
N e at the edges

incident to a vertex p:

�HA(p) =
1
2

∑
e=pq,q∈link p

w(He)He
−→
N e. (6)

The choice of the weight function w determines the
anisotropic mean curvature vector. We use the function

wλ, r(a) =

{
1 for |a| ≤ λ

λ2

r(λ−|a|)2+λ2 for |a| > λ.
.
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(a) (b) (c) (d)

Figure 2: The anisotropic mean curvature flow preserves and sharpens linear features like edges and corners of
a surface. (a) Original surface. (b) Surface with normal and tangential noise. (c) Reconstructed surface after 25
steps of anisotropic mean curvature flow. (d) Distance of each vertex of the smoothed surface to the corresponding
vertex of the original mesh is indicated by a color, ranging from blue to red.

that provides a smooth transition between those areas
that are smoothed and those that are kept as features.
We call the parameter λ the feature detection parameter.
It is handed to the user and specified for each process
individually. The parameter r controls the width of the
transition. In our experiments we used r = 10 ensuring
that wλ,10(2λ) < 0.1.

2.2 Explicit Anisotropic Mean Curvature
Flow

In this section we present an explicit anisotropic mean
curvature flow that combines the advantages of the
mean curvature flow with the ability to preserve and
sharpen linear features like edges and corners of a sur-
face while removing noise. It can be seen as a dis-
cretization of the anisotropic geometric diffusion equa-
tion used by Rumpf et al. [3] although we solely rely
on intrinsic information of our discrete shape operator
and avoid the usage of any higher order interpolating
surfaces.

Here we integrate the flow of the anisotropic mean
curvature vector �HA with an explicit Euler method.
This leads to an algorithm that is easy to understand
and implement. The description of a semi-implicit in-
tegration scheme and a comparison of both methods is
given in Section 5.1.

In terms of its vertices P = {p1, ..., pm} an explicit
iteration step of the anisotropic mean curvature flow is
given by

Pj+1 = Pj − s M−1 �HA(Pj), (7)

where s is the adaptive size of the integration step and

M−1 is the inverse of the mass matrix M of the sur-
face M j

h. Here the mass matrix is used to convert the
integrated mean curvature vector into a piecewise lin-
ear vector field. For a simplicial surface Mh with m
vertices, M is the (m × m)-matrix with entries:

Mpq =

⎧⎨
⎩

1
6area(star p) if p = q
1
12area(star e) if there is an edge e = (p, q)

0 in all other cases
.

Computing a step of the flow (7) involves solving a lin-
ear system to invert the mass matrix. A problem here is
that the mass matrix can have a large condition number.
An adequate solution in our case is to use a diagonaliza-
tion of M with diagonal elements Mpp = 1

3area(star
p) called the lumped mass matrix. Then the integration
step for each vertex p is given by an explicit formula:

pj+1 = pj − 3s

area(star pj)
�HA(pj). (8)

The advantage of our explicit representation of the
anisotropic mean curvature vector is that the analytic
machinery of the resulting algorithm reduces to less
than 30 lines of code.

The smoothing process can be fine-tuned with two
parameters:

• The feature detection parameter λ determines the
weight function wλ, and hence the anisotropic
mean curvature vector. This provides control over
what is regarded as a feature and what will be pre-
served during the smoothing.

• The scaling factor s determines the amount of
smoothing done in a single step.
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(a) (b) (c)

Figure 3: The prescribed mean curvature flow is used to filter the dragon corrupted with noise. The features of the
surface are preserved and the shape of the features is kept. (a) The original surface. (b) The model corrupted with
noise. (c) The reconstructed dragon. (Mesh from Stanford University - 3D scanning repository.)

(a) (b)

Figure 4: Avoiding boundary shrinkage. The tangential
tension shown in the standard discrete Laplacian (a) is
clearly avoided in the modified Laplacian (b).

2.3 Smoothing Surfaces with Boundary

A common problem of smoothing algorithms is the ex-
tension of the method to the boundary of the surface.
For diffusion based methods this requires to extend the
definition of the Laplacian to the boundary in a consis-
tent way. At an inner vertex the Laplacian (1) is normal
to the surface such that it is often used to define the nor-
mal of a vertex. But at the boundary that Laplacian has
a strong tangential component since the outer edges are
missing to compensate the surface tension. For smooth-
ing algorithms the tension causes the problem of bound-
ary shrinkage. To compensate for this effect Taubin [30]
proposed to project the Laplacian of each boundary ver-
tex onto a normal vector that is computed by averaging
over the normals of the adjacent faces.

Computing the Laplacian as a weighted sum of edge

normals instead of edges, see (2) and (3), leads to the
same result at all inner vertices but differs at the bound-
ary. The sum of the edge normals can be interpreted as
a weighted sum of the face normals where the weights
are determined by the edge curvatures. Consequently
it avoids the tangential components and thus provides a
better definition of a normal at boundary vertices. The
problem of boundary shrinkage is efficiently reduced
by this operator without the need for a projection or
other extra treatment. Additionally this ensures that
the boundary is smoothed with the same speed as the
interior parts of a surface. The representation of the
mean curvature vector at the boundary generalizes to
the anisotropic mean curvature vector in a natural way.

3 Prescribed Mean Curvature
Flow

For surfaces, the Laplacian applied to the identity map
equals the area gradient at each vertex of the surface.
Hence, Laplacian smoothing is equivalent to minimiz-
ing surface area. Depending on the boundary con-
straints the limit is therefore a minimal surface, or a de-
generate situation like a singular point. For smoothing
this causes the problem of shrinkage of the surface. For
each region of the surface the speed of the shrinking de-
pends on the curvature in that part, i.e. areas with high
mean curvature shrink faster than others. This leads to
undesired deformations of the surface. The anisotropic
smoothing slows down the smoothing process in re-
gions with high curvature, hence suppresses the shrink-
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(a) (b) (c)

Figure 5: Starting with a noisy mesh (a) the anisotropic MC flow contracts the round feature lines and fails to
recover the curved edges (b). In contrast, the anisotropic PMC flow converges to a stable limit (c).

ing in these areas. This can cause even stronger defor-
mations of the surface or even degeneration of mesh, cf.
Fig. 5. To the authors knowledge no adequate method
to compensate the deformations for the anisotropic case
is known.

In this section we introduce a fairing technique that
during the evolution of the surface smoothes its mean
curvature distribution rather than only reducing the sur-
face area. The method preserves the features of the
surface during the smoothing process and avoids the
deformations described above. It is applicable to the
anisotropic case, too. The algorithm is described in
two steps. First we extend the mean curvature flow
such that instead of converging to a surface with zero
mean curvature, the new flow allows to evolve the sur-
face towards a surface having a prescribed mean curva-
ture. We call this flow prescribed mean curvature flow
(PCM). Then instead of smoothing the surface directly,
we compute its mean curvature, smooth this scalar field
and use the PCM flow to evolve it towards a surface
with this smoothed mean curvature. We describe the
isotropic PMC flow in this section and generalize it to
the anisotropic case in the next section.

The design of the PMC flow is motivated by proper-
ties of surfaces of constant mean curvature. These are
known to be critical with respect to the area functional
for any variation that preserves the volume and fixes the
boundary. For discrete surfaces the same characteriza-
tion means that

∇p area = H ∇p vol (9)

is valid for all interior vertices p and a constant H [21].
The volume of a surface is the orientated volume en-

closed by the cone of the surface over the origin in R
3,

vol Mh =
1
6

∑
T=(p,q,r)∈Mh

< p, q × r > .

The gradient of vol Mh is

∇pvol =
1
6

∑
T=(p,q,r)∈Mh

q × r.

We define the isotropic prescribed mean curvature
flow of a simplicial surface Mh with vertices P =
{p1, ..., pm} and a function f(P) on the vertices of Mh

by

∂

∂t
P = −M−1(

−→
H (P) − f(P) · ∇pvol), (10)

where M is the mass matrix of Mh.
An explicit step of the isotropic smoothing algorithm

consists of two parts. First, compute the piecewise lin-
ear scalar mean curvature M−1H of the actual surface
Mh and smooth M−1H at each vertex p by averaging
over the neighbors of p. Secondly, compute a step of
the PMC flow of Mh using the smoothed M−1H as the
function f that prescribes the target curvature.

4 Denoising Non-Linear Surface
Features

A main characteristic of anisotropic smoothing, in com-
parison to isotropic methods, is the way sharp edges of
a surface are processed. Sharp edges are features char-
acterized by a large and a smaller principal curvature
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(a) (b) (c) (d)

Figure 6: Comparison of the anisotropic mean curvature flow and the PMC flow on the fandisk model that has
a vanishing ridge. Whereas the PMC flow preserves the ridge, the anisotropic flow flattens it. The models are
colored by the absolute of the predominant principal curvature. (a) Original model. (b) Noisy model. (c) Denoised
model using the anisotropic MC flow. (d) Best results with the anisotropic PMC flow. (Original mesh courtesy of
H. Hoppe.)

value. The anisotropic smoothing sharpens the edges,
this means that the smaller principal curvature is re-
duced until it vanishes. The results are sharp edges
that are part of a straight line. This works fine, un-
less the feature itself is curved. In this section we ex-
tend the PMC flow described in the last section to the
anisotropic mean curvature. This allows to denoise sur-
faces with sharp curved features like the curved bound-
ary of a hole.

Analog to the isotropic case the anisotropic PMC
flow is defined by

∂

∂t
P = −M−1(

−→
HA(P) − f(P) · −→V A(P)), (11)

where
−→
HA is the anisotropic mean curvature vector de-

fined in Section 2.1 and f is a function, that prescribes
the anisotropic mean curvature. The term

−→
V A is an

anisotropic analog of the volume gradient. We call the
vertices p with

−→
HA(p) �= −→

H (p) the feature vertices and

set
−→
V A(p) = ∇pvol for all non-feature vertices p. For

the other vertices we set
−→
V A(p) = sign(〈−→e HA(p),∇pvol〉)−→e HA(p)

where −→e HA is the unit vector field of
−→
H s

A and we get−→
H s

A by performing a simple smoothing step on
−→
HA. In

our experiments we used

−→
H s

A(p) =
1
2
(
−→
HA(p) +

1∑
q∈link p

ωq

∑
q∈linkp

ωq
−→
HA(q))

−→e HA(p) =
−→
H s

A(p)/
∥∥∥−→H s

A(p)
∥∥∥ .

where ωq is the sum of the vertex angles at p in the
triangles adjacent to the edge pq.

An explicit integration step of the PMC flow consists
of two parts. First, compute f = M−1HA and smooth
this scalar field. Second, compute the new positions of
the vertices by using the iterative formula

pj+1 = pj− 3s

area(star(pj))
(
−→
HA(pj)−f(pj)·−→V A(pj))

for each vertex pj of M j
h. When smoothing the

anisotropic scalar mean curvature, we must take care
to keep the sharp features. Analog to the isotropic case,
we smooth M−1HA(p) by averaging over the neigh-
bor vertices of p. But to preserve the sharp edges, at
each feature vertex p we only average over those neigh-
bor vertices that are feature vertices as well. To avoid
solving a linear equations system in each step, in our
experiment we have used the term HA(pj)/||−→V A(pj)||
instead of M−1HA(pj).

The thresholds to control the method are the same as
those for the anisotropic mean curvature flow in Section
2.1, namely the feature detection parameter λ to deter-
mine what is regarded as a feature and the scaling factor
s to control the magnitude of the smoothing steps. Ad-
ditionally the control of the amount of smoothing done
to the function M−1HA that prescribes the curvature
can be handed to the user.
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(a) (b) (c) (d)

Figure 7: Application of the anisotropic mean curvature flow to the venus head corrupted with noise. The features
of the surfaces are preserved, while the noise is removed. Models are colored by the absolute of the predomi-
nant principal curvature. (a) Original mesh consisting of 260k triangles. (b) Noisy head. (c) Anisotropic mean
curvature flow is used to remove the noise and (d) to additionally smooth the model. (Mesh from Cyberware
Incoporated.)

5 Experimental Results

We demonstrate our results in Fig. 1-3 and 5-9.
The models in Fig. 2 and 7 are smoothed with the
anisotropic smoothing introduced in Section 2.1 and
2.2, and the other models with the prescribed mean cur-
vature flow described in Section 3 and 4. A comparison
of the anisotropic and the prescribed smoothing is given
in Fig. 5 and 6.

Model Fig. #Vert. Method
Armadillo 9 173k Prescr.
Bearing 1 6k Prescr.
Bone 8 137k Prescr.

Dragon 3 125k Prescr.
Fandisk 6 6k both

Octahedron 2 4k Aniso.
Ring 5 6k both
Venus 7 130k Aniso.

Table 2: The table lists the models used in our experi-
ments.

Fig. 2 shows an example of the anisotropic smooth-
ing applied to recover the surface of an octahedron, that
has been corrupted with noise. Due to the explicit mea-
surement of curvature based only on quantities of the
simplicial mesh, the detection and sharpening of the
features is very precise. The recovering of the edges
therefore has a high quality, especially when compared

to other approaches using interpolating higher order
surfaces to measure curvature. An application of the
anisotropic mean curvature flow to a noisy higher reso-
lution model is shown in Fig 7.

Whereas the anisotropic MC flow can only recover
straight edges, the anisotropic PMC flow is able to
sharpen curved feature lines. We demonstrate this with
different examples. Fig. 5 shows the surface of a ring
that has been corrupted with noise. The PMC flow re-
covers the shape and removes the noise. The ring is
a stable limit of the flow. For comparison we have
processed the ring with the anisotropic MC flow, too.
This flow contracts the feature lines and fails to recover
the shape. While the ring surface has circular feature
lines the surface shown in Fig. 1, has different types of
curved feature lines, especially the curvature of some
feature lines varies strongly. The prescribed mean cur-
vature flow correctly sharpens the features. The fandisk
(Fig. 6) model is a model with a vanishing and curved
ridge. For comparison we tested it with both smoothing
methods. The PMC flow correctly preserves the ridge
while the anisotropic smoothing does not. We tested
the flows on surfaces that do not have such artificial and
regular feature lines but have different kinds of features,
cp. Fig. 3, 9 and 8. The PMC flow proved to be very
well suited to denoise the surfaces and to preserve the
surface features.

9



(a) (b) (c)

Figure 8: The anisotropic PMC flow is used to denoise the surface of a bone. Features of the surface are pre-
served. (a) Original model. (b) Model corrupted with noise. (c) Reconstructed surface. (Mesh from Cyberware
Incoporated.)

Model Octahedron Venus
#Steps 10 10

Ex. AMC flow 0.3s 13.7s
Im. AMC flow 0.9s 52.6s
Ex. PMC flow 1.8s 103.1s
Im. PMC flow 2.8s 152.4s

Table 3: Comparison of the computation time needed
for 10 steps of the different flows and integration meth-
ods. Time measured using our Java implementation on
a PC with a 1.6 GH Pentium 4 CPU.

5.1 Implicit Integration of the Flow

In Section 2.1 and 4 we have derived explicit integration
schemes for the anisotropic MC flow (8) and the PCM
flow (11), because explicit methods are simple to un-
derstand and to implement. Implicit methods stabilize
the flow and allow larger integration steps, but require
to set up and solve a system of equations. Desbrun et
al. [7] introduced a semi implicit scheme for the mean
curvature flow and Rumpf et al. [3] used a semi implicit
method to integrate the anisotropic diffusion equation.
In this section we describe an analog semi implicit inte-
gration scheme for the anisotropic MC flow and for the
PMC flow. The anisotropic mean curvature vector

−→
HA,

compare equation (6), can be represented by a matrix
KA defined by

−→
HA = KAP where P lists the coor-

dinates of all vertices of the surface Mh. An implicit

integration step of the anisotropic MC flow is the solu-
tion of the equation

(M j + s Kj
A)P j+1 = M j P j , (12)

where M j is the mass matrix of the surface M j
h and s a

scaling factor controlling the size of the step. The trick
that keeps this scheme linear and is that the mass ma-
trix and the matrix KA are still computed on the given
surface M j

h. To solve this system of linear equations
we use a preconditioned biconjugate gradient method
as described in [23].

To extend this scheme to the PMC flow (11) we add
the term f

−→
V A that prescribes the curvature. Since the

computation of this term already involves a smoothing
process, it varies only little compared to

−→
HA. Thus we

compute the term f
−→
V A on the surface M j

h. A step of
the semi implicit scheme for the PMC flow is given by

(M j + s Kj
A)P j+1 = M j P j + s f(P j) · −→V j

A. (13)

6 Conclusion

We presented a novel discrete shape operator whose
trace is fully consistent with the well-known discrete
mean curvature, and defined an anisotropic mean cur-
vature vector. The curvature operators were used for
feature preserving noise removal algorithms. Using
the computation technique for constant mean curvature
surfaces we modified the anisotropic mean curvature

10



(a) (b) (c)

Figure 9: The prescribed mean curvature flow is applied to denoise a surface with many different features. (a)
The original model. (b) The mesh corrupted with noise. (c) The reconstructed surface. (Mesh from Stanford
University - 3D scanning repository.)

flow such that it converges to a surface with prescribed
(anisotropic) mean curvature. This allows to sharpen
non-linear features such as cylindrical holes.
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