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Abstract

We investigate the impact of hop-limited routing paths on the total cost of a telecom-
munication network. For different survivability settings (dedicated protection, link and
path restoration), the optimal network cost without restrictions on the admissible path
set is compared to the results obtained with two strategies to impose hop limits on routing
paths.

In a thorough computational study on optimal solutions for nine real-world based
problem instances, we show that hop limits should be avoided if the technology allows
it and network cost is a major planning issue. In this case, column generation should
be employed to deal with all routing paths. If hop-limits are required, these should be
defined for each demand individually and as large as possible.

Keywords: survivable network design, hop limits, routing, restoration, branch-and-cut
algorithm, mixed-integer programming
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1 Introduction

In telecommunication network design, it is well-established to use short paths for routing
communication demands. This approach is some cases motivated by the underlying routing
protocol, such as OSPF, IS-IS, or BGP in IP-networks, or by technological restrictions, such
as degradation of signal quality in WDM networks or transmission delay in ATM networks.
In other cases, the purpose of a restriction to short routing paths is to reduce the planning
complexity.

Each individual demand consumes the least bandwidth in the network if it is routed on
a shortest path. However, a shortest path routing is not necessarily cost minimal as soon as
modular link capacities are taken into account. Furthermore, the reduction of the solution
space caused by a restricted path set potentially increases network cost. The question is: how
much additional cost is incurred by a restriction to short paths? It is often assumed that
a small, well-chosen set of short routing paths is sufficient to reliably obtain near-optimal
solutions. However, no published computational study evaluates the necessary additional
investment based on provably optimal solutions for different survivability mechanisms. This
is the gap we fill with this paper.

On nine real-world based problem instances, we compare the optimal network cost with
different kinds of admissible path sets: without any restrictions, with demand-independent
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hop limits, and with demand-dependent hop limits. Each of these path sets is tested with
different survivability settings (dedicated protection, link restoration and path restoration),
and with different hop limits. The main conlusions drawn from our experiments are the
following:

• Refrain from setting hop limits unless there is a technological reason for using short
paths only. A restriction to short paths can lead to infeasibility of the planning problem
or to very high network cost on practical instances. On the other hand, it is possible to
cope with all routing paths computationally with a column generation approach.

• With demand-independent hop limits, paths with at least 6 links are needed for networks
with 10–20 nodes to reliably obtain a solution which is at most 10% more expensive
than an optimal solution with respect to all routing paths.

• If hop limits are really needed, they should be demand-dependent, e.g., based on the
shortest path length between the two end nodes of the demand. However, at least 4
hops should be allowed in addition to the shortest hop count for a particular demand.
With smaller hop limits, it is not possible to reliably obtain solutions with at most 10%
additional cost compared to an optimal solution with respect to all routing paths. In
particular, a shortest path routing can cause up to 161% percent additional cost on
practical planning instances.

Many publications on survivable network design present a mathematical model with a
path-flow formulation (also called arc-path formulation) to tackle the arising multicommodity
flow subproblems. Compared to an edge-flow (also called node-arc) formulation, a path-flow
formulation has the main advantage that restrictions on the admissible path set can be more
easily modeled. The drawback of such a formulation is a possibly exponential number of path
variables.

To cope with the large number of variables and to reduce calculation times, some authors
apply column generation techniques [3,9,12,14], while other authors feed a fixed, precalculated
set of routing paths into an LP or MIP solver. For the latter approach, several ways of defining
the admissible path set have been proposed. In [5,15], a fixed global hop limit is imposed on
the routing paths for all demands. In [7], a demand-dependent hop limit is considered, defined
by the length of a shortest hop path for a given demand plus some fixed additional number
of hops. Eventually, [4] employs a demand-dependent hop limit, which is iteratively raised
until a specified number of paths has been found for each demand. We now briefly present
the problems investigated in these papers, together with the employed solution approach.

Murakami [9] uses a path-flow formulation to compare the cost of path restoration with
stub release and link restoration under a single link failure scenario. The author considers
both minimization of continuous spare capacities with respect to a given shortest working
path routing, and joint optimization of working and spare capacities. Column generation
is applied to generate working and restoration paths only when needed, using a (quadratic)
shortest path algorithm.

Dahl and Stoer [3, 13] formulate the problem of installing discrete link capacities for
the survivability models reservation and diversification with so-called metric inequalities [8].
These inequalities are generated at runtime using a path-flow formulation with routing paths
in all operating states, which is solved using column generation.
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Poppe and Demeester [12] use a similar model to formulate the problem of installing
continuous spare capacities for link and path restoration based on a given shortest working
path routing. Column generation is used to identify missing restoration paths.

Wessäly [14] determines discrete working and spare capacities using a path-flow formu-
lation for the survivability models reservation, diversification, and path restoration. This
path-flow LP is solved by generating working and restoration paths only when needed.

Herzberg and Bye [5] is the only paper known to us in which cost effects of hop limits are
investigated. The authors consider the spare capacity assignment problem with respect to a
given working path routing. The network is designed for a single link failure scenario with
link restoration. A path-flow formulation with integer capacities is presented. Computational
results are presented on one small but well connected test instance (11 nodes, 23 links) with
integer capacities. The effect of hop limits is tested by enumerating all restoration paths up
to a given number of hops, which varies between 3 and 7. On the investigated test instance,
the optimal solution values for hop limits 5, 6 and 7 were identical. The authors state having
observed similar results on other test instances as well.

Xiong and Mason [15] use a path-flow formulation for path restoration without stub release
and for link restoration under a single link failure scenario. A set of working and restoration
paths is precalculated, which contains at most 40 paths per demand. A path length restriction
of 6 and 10 hops is imposed for the two small and the two larger test instances, respectively.

Iraschko, MacGregor, and Grover [7] compare the cost of link and path restoration (with
or without stub release) for single link failures both with a predefined shortest path routing
and with joint working and spare capacity optimization. Capacities and flow variables in
the path-flow model are allowed to take any integer value. For each demand, the authors
enumerate all paths up to a given hop limit, which is the length of a shortest hop path for
this demand plus a fixed number of additional hops. This path set is complemented by a small
set of link disjoint paths to guarantee a solution. Due to the resulting large path set, the
authors report on very long calculation times even on small test instances as soon as working
and spare capacities are optimized together (9 hours for link restoration, 2.7 days for path
restoration without stub release on an instance with 10 nodes, 22 links, and 45 demands).

Doucette and Grover [4] compare several protection and restoration mechanisms for net-
works of varying density. The authors use a path-flow formulation with integer capacities and
a predetermined path set. All paths up to an iteratively adapted hop limit are enumerated
until at least 5, 10, or 20 paths have been found for each demand (the exact number depends
on the considered problem).

A column generation approach combined with a branch-and-cut algorithm provides a lower
bound and thus a quality guarantee for solutions if the pricing problem (i.e., the problem of
identifying missing path variables) is exactly solvable. For instance, if the admissible path
set is not restricted at all or by hop limits only, the pricing problem is exactly solvable in
polynomial time and this approach can be used to compute provably optimal solutions.

On the other hand, if the pricing problem is not solved exactly (e.g., because it is NP-
hard), the column generation approach no longer provides a valid lower bound. Hence, this
approach does not yield a quality guarantee, but can still be used as a good heuristic.

The main advantage of a predefined path set is the fact that “wild” path set restrictions
can be incorporated in the model. In practice, however, a restricted path set often consists
simply of all paths up to a given number of hops (which may be demand-dependent or not),
sometimes complemented by a small set of paths which guarantees a solution. The drawback
of a predefined path set is that this approach only leads to heuristic solutions without a lower
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bound.
This paper is structured as follows: after a description of our mathematical model and a

brief sketch of our algorithmic approach in Section 2, we report on our computational tests
in Section 3. Eventually, we conclude with Section 4.

2 Model and Algorithm

We investigate network design problems dealing with an integrated planning of

• a topology,

• modular link capacities,

• a routing during normal operation, and

• a routing in all single link and node failure states.

The mathematical model is derived from the mixed-integer linear programming formulation
described in [10], which also covers hardware requirements imposed by network elements and
interface cards. These and other extensions (e.g., the possibility to respect existing parts of
a network) are implemented in our network planning tool discnet [1].

Sections 2 and 2 describe the parts of our model covering topology and link capacity
decisions, and routing planning, respectively.

The planning network consists of a set V of nodes and a set E of potential (undirected)
links between these nodes. For each link e ∈ E, a set D(e) of link designs (e.g., STM-N
capacities or a certain number of WDM wavelengths) is specified, out of which at most one
may be chosen. Every link design d installable on a given link e has a capacity Cd

e and a cost
value Kd

e assigned to it. The final topology consists of those links for which a link design is
chosen; all other links are omitted.

For every link e ∈ E and every link design d ∈ D(e), a binary variable xd
e ∈ {0, 1}

determines whether link design d is installed on link e or not. The condition that at most
one link design must be chosen on each link is expressed by∑

d∈D(e)

xd
e ≤ 1 e ∈ E (1)

For convenience of notation, the auxiliary variable

ye :=
∑

d∈D(e)

Cd
e xd

e (2)

denotes the capacity of the installed link design on link e ∈ E since at most one of the link
design variables is non-zero. In particular, choosing no link design implies ye = 0.

Our objective is to minimize the sum of all link capacity costs:

min
∑
e∈E

∑
d∈D(e)

Kd
e xd

e . (3)

In addition to the input for topology and capacity planning, a survivable routing has to be
determined. This section presents a path-flow formulation which also integrates survivability
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requirements for the concepts diversification (as a relaxation of 1+1 protection), link and
path restoration.

Apart from the normal operating state (NOS) where the whole network is operational, we
consider a set S of failure states where at least one link or node fails. In this paper, the set
S consists of all single link and node failures.

NOS routing Let D denote the set of all point-to-point demands. For each demand uv ∈ D,
a demand value duv must be routed between the end nodes u and v. We assume a bifurcated
routing, i.e., several paths may be used for each demand.

Let Puv be the set of admissible paths to route the demand uv ∈ D in the normal
operating state. These are all loopless paths between u and v satisfying a given hop limit.
Using non-negative continuous flow variables fuv(P ) ∈ R+ for all demands uv ∈ D and all
paths P ∈ Puv, the following demand constraints (4) and capacity constraints (5) formulate
a multicommodity flow problem with hop limits for the normal operating state:

ROUTING (NOS): ∑
P∈Puv

fuv(P ) = duv uv ∈ D (4)

∑
uv∈D

∑
P∈Puv :

e∈P

fuv(P ) ≤ ye e ∈ E (5)

1+1 protection and diversification With 1+1 protection, each demand is doubled at one
node and routed on two link- or node-disjoint paths to some target node, which chooses the
signal of better quality. In particular, if a single link (or node, respectively) fails, at least one
of the two paths remains operational since the two paths are disjoint. We approximate this
mechanism by diversification. This formulation has been introduced by Dahl and Stoer [3].

For every demand uv ∈ D, the diversification parameter δuv ∈ (0, 1] specifies the fraction
of demand uv which is allowed to fail in any considered failure state. This is expressed by
the diversification constraints∑

P∈P:
P fails in s

fuv(P ) ≤ δuvduv uv ∈ D, s ∈ S. (6)

and implies that the demand is routed on at least d 1
δuv
e paths. Setting the diversification

value δuv to 0.5 and doubling the demand value, constraints (6) ensure that at least the
original demand value duv survives in any considered failure state. Since every solution for
1+1 protection fulfills these constraints but not vice versa, this formulation is a relaxation of
1+1 protection. It can be used to formulate 1+1 protection exactly by splitting every demand
with value d into d demands with value 1, doubling these unit-demands and routing them
with diversification value δuv = 0.5 and integer flow variables. However, since this leads to
a very large set of demands and thus to a large integer program, we only use the relaxation
here.

Link and path restoration In contrast to 1+1 protection where backup capacity is pre-
configured and dedicated to a particular demand, link and path restoration share backup
capacity between the demands.
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With link restoration, each path affected by a failure is patched locally between the two
nodes on the path which are adjacent to the failing link or node.

With path restoration, every affected path is rerouted between the two end nodes of the
corresponding demand. In this paper, we consider only path restoration without stub release,
i.e., working capacity on operational links of a failing path is not released and cannot be used
for backup paths.

With each failure state s ∈ S, we associate a set Cs of failure commodities. These are
point-to-point demands to be satisfied in failure state s; their exact definition depends on the
type of failure and the restoration mechanism.

For instance, a single link failure of link e with link restoration leads to only one failure
commodity between the two end nodes of e, whose demand value is the total NOS flow on
e. Upon failure of a node v, a failure commodity is created between every pair u, w of nodes
adjacent to v, with a demand value equal to the NOS flow on the three-node-path u → v → w.
With path restoration, one failure commodity per failure state and failing demand is created,
whose demand value is the amount of failing flow for this demand.

In failure state s ∈ S, let Ps
c be the set of all admissible paths to route failure commodity

c ∈ Cs. These are all paths between the end nodes of the failure commodity cwhich do not
contain failing nodes or links and which satisfy given hop limits. For a given failure commodity
c, the set IPs

c consists of all interrupted paths which are restored by failure commodity c in
failure state s. The exact definition of this set again depends on the restoration mechanism
and the type of failure.

Using non-negative continuous path-flow variables fs
c (P ) ∈ R+ for all failure states s ∈ S,

all failure commodities c ∈ Cs and all admissible restoration paths P ∈ Ps
c , the following

constraints formulate both the link and path restoration problem, according to the choice of
parameters:

ROUTING (failure states):∑
c∈Cs

∑
P∈Ps

c :
e∈P

fs
c (P ) +

∑
uv∈D

∑
P∈Puv :

e∈P

fuv(P ) ≤ ye
s ∈ S,
e ∈ Es (7)

−
∑

P∈Ps
c

fs
c (P ) +

∑
uv∈D

∑
P∈Puv∩IPs

c

fuv(P ) ≤ 0
s ∈ S,
c ∈ Cs (8)

The capacity constraints (7) state that in any failure state, the sum of the total NOS
flow and the total restoration flow on a given link must not exceed its capacity. The failure
demand constraints (8) formulate that all failing flow must be restored.

The problem is solved with our network planning tool discnet [1] using Benders decom-
position [2]. The central algorithm is a branch-and-cut algorithm based on an LP relaxation
containing link design variables but no routing variables. The path flow formulation of the
routing constraints is used to test whether given link capacities allow for a feasible routing.
Either this test leads to a feasible solution, or generalizations [11,14] of metric inequalities [8]
are generated from the dual solution of the routing LP. These inequalities are added to the
LP relaxation in order to cut off the infeasible capacities. To solve the path flow formula-
tion, we use column generation for working and restoration paths. Figure 1 illustrates this
decomposition concept.

A more detailed description of this approach, further employed cutting planes, and the
methods used to identify missing paths can be found in [10, 11, 14]. The branch-and-bound
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feasible, 
solution found

branch−and−cut based
on link design variables

feasibility test using
routing LP generation

column

metric inequality
separation of a

link capacities
infeasible

Figure 1: Algorithmic approach

process together with the exact pricing provides us with a lower bound on the optimal network
cost and thus to a quality guarantee for obtained solutions. In particular, this lower bound
can be used to prove optimality of a solution.

3 Computational Results

In this section, we describe our computational tests to evaluate the effect of two kinds of
hop limits on the overall network cost. After a short presentation of our nine test instances
stemming from different planning scenarios, we show and discuss our results.

We present two test series, each of them for diversification, link and path restoration. In
the first series, a fixed global hop limit between 3 and 7 is imposed. In the second series,
demand-dependent hop limits are given by the shortest hop distance for a particular demand,
plus some fixed number of hops, which is then varied between 0 and 5. The hop limits are
applied to both working and backup paths. For diversification and path restoration, the
end-to-end backup paths are hop-limited, whereas for the local survivability mechanism link
restoration, the hop limits are applied to the local patching paths.

For each of our test instances, Table 1 shows the number of nodes, potential links, and
demands, respectively, together with the average node degree d̄ = 2|E|/|V | and the number
of available link designs (#ld), which is the same for all links of an instance.

In all computational tests, we have assumed full restoration or protection of all failing flow
upon any single link or node failure. In order to be able to compare optimal solutions, we
have chosen relatively small networks with 10–20 nodes. Most of the test instances have been
provided to us by network operators. They are stemming from SDH-, WDM-, and leased
line planning problems and reflect the different cost structures and demand patterns arising
in these planning scenarios. In some of the instances, we have added a few links in order to
make sure that the network is still connected in any single link or node failure situation.

The longest computation time was about 36 hours. However, most instances could be
solved to proven optimality within an hour on a Linux machine with 1 GB of RAM and a
1.7 MHz processor. In fact, the algorithm often found good solutions after a short time,
spending most of the time on finding slightly better solutions and proving optimality. All
linear programs were solved using Cplex 9.0 [6].

The column generation approach proved to be well scalable. Whereas for small hop limits
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Table 1: Characteristics of the test instances

Name |V | |E| |D| d̄ #ld
g1 10 25 29 5.0 2
g2 12 19 27 3.2 4
g3 15 22 13 2.9 3
g4 15 24 105 3.2 7
g5 18 26 62 2.8 9
g6 18 32 62 3.6 9
g7 20 32 119 3.2 6
g8 14 21 91 3.0 5
g9 17 28 58 3.3 3

the computation time raised almost linearly, it was nearly constant for larger hop limits.
In contrast, enumerating all paths up to a given length leads to an exponential growth in
computation time.

In all presented figures, the solution values are scaled such that 100 corresponds to the
optimal network cost when all routing paths are allowed, regardless of their length. To
simplify the following interpretation of the results, we define an additional cost of 10% for a
hop-limited solution to be acceptable.

3.1 Global hop limit

For each of our nine test instances, Figure 2 shows the relative network cost with diversification
when a global hop limit between 3 (leftmost bar) and 7 (rightmost bar) is imposed on all
routing paths (note that the relative cost scale starts at 90, not at 0).

Figure 2 reveals that high hop limits are often needed to obtain a feasible solution at all.
In five out of the nine instances, there is a demand which needs a path of length at least 6,
and in another two instances, hop limit 5 is needed. These long paths are usually due to the
failure of a “central” node whose failure implies a long detour for some demands.

Another interesting observation is that whenever a feasible solution is found with paths of
length k, hop limit k+1 leads to an acceptable solution with our test instances. This leads to
a natural iterative algorithm: start with a small hop limit and raise it until a feasible solution
is found. Going one step further, chances are good to obtain an acceptable solution.

In a similar way, Figures 3 and 4 show the results for link and path restoration with a
global hop limit. The figures show that in many cases (five out of nine instances with link
restoration, four instances with path restoration), paths of length 6 are needed to obtain a
feasible solution at all. Other than with diversification, we have not observed any rule of
thumb which could give us a hint about the quality of a solution without calculating a lower
bound. Even high hop limits can lead to expensive solutions. In several cases, even paths of
length 7 are by far not sufficient to find an acceptable solution.

As these results indicate, global hop limits do not seem to be the ultimate method to
define a good set of routing paths. The problem is that a global hop limit does not use any
information on the network size or of the distance between given nodes. It can be expected
that for larger networks, the global hop limit which is needed to obtain a feasible solution
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Global hop limits, diversification
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Figure 2: Global hop limit, diversification

Global hop limits, link restoration
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Figure 3: Global hop limit, link restoration
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Global hop limits, path restoration
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Figure 4: Global hop limit, path restoration

will rise even more, unless the density of the network increases at the same time. Notice that
both a larger hop limit and increased density make it difficult if not impossible to enumerate
all routing paths.

3.2 Demand-dependent hop limit

Global hop limits do not reflect properties of the network such as its size or density. One
possibility to overcome this drawback is to define demand-dependent hop limits based on the
shortest hop distance between the end nodes of each demand. For a given value k, the hop
limit imposed on a particular demand is k plus the number of links in a shortest hop path
between the demand end nodes.

For diversification, the shortest hop distance in the NOS is used for all paths of a demand
since it is not known in advance which paths will be used for backup purposes. For restoration,
the hop limits for backup paths are defined with respect to the shortest hop distances in the
corresponding failure states.

Figure 5 shows the relative cost for each instance with diversification, imposing demand-
dependent hop limits. Again, 100 corresponds to the optimal network cost when all routing
paths are allowed, i.e., the values are comparable to those in Figure 2. The leftmost bar for
each instance shows the result for k = 0, which implies that each demand is routed on one or
more shortest hop paths. The next bars represent the relative cost if k = 1, . . . , 5 additional
hops are allowed.

Again, we see that a high hop limit (k ≥ 4) is often needed for feasibility. This is again
due to nodes whose failure implies a detour for some demands which is much longer than a
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Demand-dependent hop limits, diversification
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Figure 5: Demand-dependent hop limit, diversification

shortest hop path in the NOS. On the other hand, the smallest feasible hop limit (i.e., the
smallest hop limit for which a feasible solution exists) leads to an acceptable solution in five
out of nine cases. With the smallest feasible hop limit plus 1, an acceptable solution is found
in all cases but one. In summary, the behavior of the network cost with respect to changing
hop limits is very similar to the one observed with global hop limits.

Figures 6 and 7 show the results for link and path restoration with demand-dependent
hop limits (note the different scale of the cost axis). The values are comparable with those
in Figures 3 and 4, respectively.

Contrary to diversification, a restriction to shortest paths always leads to a feasible solution
with restoration by definition of the restricted path set, provided that sufficiently large link
capacities are available. However, with both link and path restoration, high hop limits are
needed to obtain acceptable solutions. In four out of the nine instances, at least k ≥ 4 is
needed, and in two cases, even k = 5 still leads to more than 10% additional network cost.

A result that we had expected in its tendency but not to that extent is the cost of a shortest
path routing. It is always above 10% additional cost and can be up to 161% more expensive
than a solution where all paths are admissible! Both with link and path restoration, a shortest
path routing leads to more than 60% additional cost in four out of our nine instances. Notice
that we allowed the demands to be routed on more than one shortest path if several of them
existed; a restriction to a single shortest path routing would even aggravate the results.

In some of the instances (including g1), not all of the potential links are actually needed in
a cost optimal solution with respect to all paths. This partially explains the bad performance
of a shortest hop routing (as well a shortest length routing with respect to kilometer length
or any other metric link weights) since the direct link between the end nodes of a demand is
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Demand-dependent hop limit, link restoration
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Figure 6: Demand-dependent hop limit, link restoration

Demand-dependent hop limits, path restoration
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Figure 7: Demand-dependent hop limit, path restoration
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the unique shortest path if it exists. This leads to some positive capacity on most links and
consequently to high network cost.

4 Conclusion

In this paper, we have studied the impact of varying hop limits on the overall network cost in
the planning of a telecommunication network. Based on our mixed-integer linear programming
model, we have solved nine problem instances to optimality using a branch-and-cut framework
and column generation for working and restoration paths. For each of these instances, we
have considered three different classes of admissible path sets and three survivability concepts.

Based on optimal solutions, we have compared the overall network cost without restrictions
on the admissible paths to the network cost with hop-limited paths, either with demand-
dependent or with global hop limits.

As main conclusion, hop limits should be avoided if the technology allows it, and column
generation should be employed for dealing with all routing paths. For many of the instances
considered in our tests, a global hop limit of six links or a demand-dependent hop limit of
four links in addition to the shortest hop count are needed to obtain an acceptable solution;
enumerating all paths up to these hop limits can already exceed available time and memory
even for small, sparse networks.

If hop limits are technologically unavoidable or if they are desired for ease of management,
the suggested approach depends on the survivability concept: with dedicated protection, it
is possible to start with a shortest path routing and to raise the hop limit until a feasible
solution is found. Allowing one further link for each path typically leads to a solution which
is at most 10% more expensive than an optimal solution without path length restrictions. In
contrast to this, restoration requires sufficiently high demand-dependent hop limits (at least
four hops in addition to the shortest hop count) to obtain acceptable solutions. In particular,
neither global hop limits nor a shortest path routing should be employed.

In any case, the additional network cost caused by hop limits cannot be predicted in
advance. On our test instances, neither network size, nor density, the number of demands or
the number of installable link designs are reliable indicators.
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