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MARC C. STEINBACH

ABSTRACT. Unnecessarily conservative behavior of standard process control techniques
can be avoided by stochastic programming models when the distribution of random distur-
bances is known. In an earlier study we have investigated such an approach for tank level
constraints of a distillation process. Here we address techniques that have accelerated the
numerical solution of the large and expensive stochastic programs by a factor of six, and
then present a refined optimization model for the same application.

0. INTRODUCTION

In [3] we have proposed a multistage stochastic programming extension of model pre-
dictive control techniques to allow for the explicit incorporation of uncertainty via scenario
trees. As a concrete example, we have studied the separation of methanol and water in a
continuously running process where the inflow into a buffer tank is assumed to be ran-
dom with known distribution. The objective is to minimize the total energy consumption
over a given planning horizon under hard level constraints at the buffer tank; an alternative
approach with probabilistic level constraints has been studied in [5]. The model investi-
gated in [3] is a tracking problem that decouples uncertainty from the process dynamics:
the stochastic on-line problem minimizes the expected quadratic deviation from a nomi-
nal deterministic operation profile that is determined off-line. For the numerical solution
of the linear-quadratic multistage stochastic programs we rely on a primal-dual interior
method in combination with atree-sparse KKT solverfor the highly structured Newton
step subproblems [10].

The current paper presents two techniques that are crucial for maximum efficiency in
solving the stochastic on-line problem (and thus for future application to models with
higher complexity): a problem reformulation enforcing relatively complete recourse, and
a software tool generating custom code for the tree-sparse KKT solver, given a specific
problem class. Finally we discuss a natural replacement of the tracking approach by an
integrated optimization of uncertainty and process dynamics.

1. STOCHASTIC TRACKING MODEL

Consider a planning horizon ofT periods in discrete time,t = 0, 1, . . . , T , and a sce-
nario tree with vertex setV . Let Lt ⊆ V denote the level set of nodes at timet and
L ≡ LT the set of leaves. Further let0 ∈ L0 denote the root,j ∈ Lt the “current” node,
i ≡ π(j) ∈ Lt−1 its unique predecessor (ift > 0), andS(j) ⊆ Lt+1 its set of successors.
We also need setsV∗ = V \ {0} andVt =

⋃t
τ=0 Lτ, and finally the node probabilities

pj > 0, j ∈ V.
As in [3], letξt denote the tank inflow volume during(t − 1, t), f̂t the target extraction

during(t, t+1), andft the actual extraction. The decision variables,yt = (xt, ut), consist
of the tank filling volumext as state (with desired final valuêxT ), and the local tracking
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error as control,ut = ft − f̂t. These quantities are random variables with realizations
ξj, fj, yj in the scenario tree representation; onlyf̂t is deterministic. Lettinghj = ξj − f̂t,
the tracking model may then be written

minimize
y

∑

j∈V\L

1

2
pju

2
j(1)

subject to xj = xi − ui + hj ∀j ∈ V,(2)

xj ∈ [x−, x+] ∀j ∈ V∗,(3)

uj ∈ [u−
t , u+

t ] ∀j ∈ V \ L,(4)
∑

k∈S(j)

pk

pj
xk = x̂T ∀j ∈ LT−1 (cycling constraint).(5)

Herex0 = h0 is fixed, and the cycling constraint prescribesx̂T asconditional expectation
of the final tank filling. It is not possible to end witĥxT in every scenario since the extrac-
tion fT−1 must be chosen at timeT − 1 whereas the inflowξT−1 is only known at timeT .
In [3, §2.2] we have shown thatuT−1 is uniquely determined by the cycling constraint so
that the final stage can be eliminated completely. LettingVc := VT−1, Lc := LT−1, and
redefiningxj appropriately forj ∈ Lc, one obtains

minimize
y

∑

j∈Vc\Lc

1

2
pju

2
j +

∑

j∈Lc

1

2
pjx

2
j(6)

subject to xj = xi − ui + hj ∀j ∈ Vc,(7)

xj ∈ [x−
t , x+

t ] ∀j ∈ V∗c ,(8)

uj ∈ [u−
t , u+

t ] ∀j ∈ Vc \ Lc.(9)

2. RELATIVELY COMPLETE RECOURSE

A multistage stochastic program is said to haverelatively complete recourseif every
feasiblet-stage trajectoryyt = (yt

j )j∈Vt can be extended to a feasible (T -stage) trajectory.
In other words, if all local constraints up to timet can be satisfied, then it is possible
to satisfy the constraints in higher stagest + 1, . . . , T as well: a trajectoryyt cannot
“get stuck” later. The tracking problem under consideration does not have this desirable
property, due to the cycling constraint att = T .

In what follows, we construct a reformulation that does have relatively complete re-
course (which is possible for every linearly constrained multistage stochastic program [8]).
To this end, we first perform an outward recursion over the tree to define setsYout

j that con-
tain the componentsyt

j of every feasiblet-stage trajectory. In an inward recursion we then
determineinduced constraintsto obtain setsY in

j whose elementsyj have feasible exten-
sions to all immediate successor nodesk ∈ S(j). This is sufficient for relatively complete
recourse since the tracking problem is Markovian:xj depends only on the immediately
preceding decisionyi. Given initial feasible sets

(10) Yj = Xj ×Uj = [x−
j , x+

j ]× [u−
j , u+

j ]

(whereX0 = {x0} andUj = {0} for j ∈ L), let Xout
0 := X0, Yout

0 := Y0, and forj ∈ V∗

define recursively the attainable feasible sets

(11) Xout
j := Xj ∩ (Xout

i − Ui + ξj), Yout
j := Xout

j ×Uj.

Here we use standard notation for sums and differences of subsets of a vector space,

A± B := { a± b : a ∈ A andb ∈ B },(12)

A± b := A± {b}, a± B := {a}± B.(13)
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For j ∈ L, let nowXin
j := Xout

j , Uin
j := Uj, andY in

j := Yout
j , to derive the induced feasible

sets recursively forj ∈ V \ L,

Xin
j := Xout

j ∩ (Uj + Din
j ), Uin

j := Uj ∩ (Xin
j − Din

j ),(14)

Y in
j := Yout

j ∩ { (xj, uj) : xj − uj ∈ Din
j },(15)

whereDin
j denotes induced sets of feasible differencesxj − uj,

(16) Din
j := { xj − uj : xj − uj + ξk ∈ Xin

k ∀k ∈ S(j) } =
⋂

k∈S(j)

(Xin
k − ξk).

Calculating the induced constraints for the tracking problem is particularly effective and
inexpensive because of the specific structure: the (scalar) states and controls are linked via
simple dynamic equations,xj = xi − ui + hj, they have lower and upper bounds, the
initial statex0 is fixed, and the cycling constraint yields narrow feasible intervals for the
final states.

The desired reformulation of the tracking problem is obtained simply by replacing the
inequality constraintsyj ∈ Yj with yj ∈ Y in

j . To see that it has indeed relatively complete
recourse, nothing needs to be shown forj ∈ L. Fori ∈ V \L and allj ∈ S(i), the transition
equation of nodej mapsY in

i into Xin
j by definition ofDin

i . But Xin
j contains precisely the

local statesxj for which a feasible extension exists,

(17) Xin
j = { xj ∈ Xout

j : ∃uj ∈ Uj : xj − uj ∈ Din
j }.

This proves relatively complete recourse. Moreover, feasibility of the problem is obviously
equivalent withXin

0 6= ∅ sinceXin
0 ⊆ X0 = {x0}. This condition is immediately checked in

the reformulation.
The construction shows that the principal restriction here is on the states,xj ∈ Xin

j . It
can further be shown thatUin

j contains precisely the local controlsuj that are instrumental
in extending somexj ∈ Xin

j to a feasible trajectory,

(18) Uin
j = {uj ∈ Uj : ∃xj ∈ Xin

j : xj − uj ∈ Din
j }.

Thus(xj, uj) ∈ Y in
j impliesxj ∈ Xin

j anduj ∈ Uin
j , so that

(19) Y in
j = (Xin

j ×Uin
j ) ∩ { (xj, uj) : xj − uj ∈ Din

j }.

In practice we wish to have simple bounds only, so we do not work withY in
j but rather

replaceXj and/orUj with Xin
j and/orUin

j .
To see which problem formulation performs best, we combinedXj or Xin

j with Uj or
Uin

j and tested all four combinations. A range of about1000 test problems was generated
by considering the setting in [3,§5] with various target profiles, random distributions, and
inflow and extraction bounds. The discretization has8 time periods and a scenario tree
with a branching factor of5, yielding57 = 78125 scenarios,117187 variables, and97656

constraints (plus bounds) for problem (6)–(7).
Interestingly, a speed-up by a factor of three was achieved withXin

j andUj, whereas
the performance was roughly equal with all other combinations—evenXin

j andUin
j . The

speed-up is caused by a reduced number of interior point iterations. On the test problems,
the number varies between 21 and 99 with the original formulation and between 6 and 36
with the reformulation. The solution times are reduced from14.7–68.7 seconds to4.2–25.3

seconds, at0.7 seconds per iteration on a1.5 GHz PC. The reformulation with relatively
complete recourse thus leads to significantly faster convergence.

3. CODE GENERATOR

The tree-sparse KKT solver used in [3] implements block-level operations based on the
BLAS and LAPACK linear algebra software libraries. Such an implementation is only
moderately efficient when the blocks are very small (as is the case here), and it becomes
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increasingly inefficient for sparse blocks of increasing size. Although a manual adaptation
of the KKT code for a specific problem structure is straightforward, it is also tedious and
error-prone—and hence impractical. To overcome these limitations, a software tool has
been developed in the diploma thesis [7] that generates custom code based on a high-level
description of the specific KKT structure. This is possible since the tree-sparse approach
leaves very little choice for pivot selection, and only on the sub-block level. On the block
level it employs a fixed elimination scheme that fully exploits the generic tree-sparse struc-
ture created by a natural classification of the constraints [10].

The code generator requires as input data the overall problem type (implicit, outgoing
control, or incoming control; see [10]), the dimensions of each matrix block, the entry po-
sitions within each bock, and a classification of each individual entry. The classification in-
dicates whether entry values are fixed per problem class (staticentry) or problem instance
(constantentry), or whether the values may differ among level setsLt (time dependent
entry) or nodesj (node dependent, or stochasticentry). The scenario tree is mostly inde-
pendent of the structural specification, except that a minimum (or fixed) number of stages
is given with the block specifications. (Currently the dimensions and entry positions and
types must be identical across a stage.)

From these data, the code generator determines the positions and classification of the
fill-in, then creates data structures and element-oriented (sparse) or block-oriented (dense)
node operations, as appropriate, and finally generates four output files. The four files
contain code implementing the KKT vector, matrix, inverse, and common structural infor-
mation, respectively, asC++ class templates. The code is human-legible and can be edited
manually. As we are working with very large scenario trees, the data structures are chosen
so as to minimize memory requirements. For further details see [7].

The code generator was used to generate custom code for the tracking model, which was
then slightly improved manually. With little effort, we have thus obtained an additional
speed-up by a factor of two: computation times for the test problems are now reduced to
2.05–12.5 seconds, or0.35 seconds per iteration.

4. INTEGRATED STOCHASTIC PROCESSMODEL

A natural replacement of the tracking model discussed so far is an integrated approach
where the dynamics of the distillation process are included in the stochastic optimiza-
tion model, so that the expected energy consumption can be minimized rather than the
expected deviation from a predetermined operation profile. This is clearly a substantial
benefit which, however, has to be paid for by running a copy of the process model in every
node of the scenario tree. As an example, consider an extended flash unit system consisting
of the tank, a reboiler and total condenser; see Fig. 1 and [2, 5, 6]:

Tank:

d
dtMF = ξ − F,(20)

Reboiler:

0 = F − VR − B,(21)

ML
R

d
dtX1R = FZ1 − VRY1R − BX1R,(22)

ML
R

d
dtHL

R = FHF − VRHV
R − BHL

R + Q,(23)

HL
R = X1RhL

1(TR) + X2RhL
2(TR),(24)

HV
R = Y1RhV

1 (TR) + Y2RhV
2 (TR),(25)

YiR = γi(TR, X1R, X2R)XiRP
vp
i (TR)/PR, i = 1, 2,(26)

1 = X1R + X2R, 1 = Y1R + Y2R,(27)
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FIGURE 1. Flowsheet of a flash unit system

Condenser:

PR − PC =
1

2
ζC

(Y1RM1 + Y2RM2)(Y1RV̄V
1 (TR) + Y2RV̄V

2 (TR))

(AFA
C )2

V2
R,(28)

0 = VR − D,(29)

ML
C

d
dtX1C = VRY1R − DX1C.(30)

Hereξ, F, B, D, VR denote molar liquid and vapor flow rates (tank inflow, feed, bottom, dis-
tillate, reboiler),Q is the reboiler heating power,MF,ML

R,ML
C are molar liquid holdups

(tank, reboiler, condenser),X1R, X1C, Y1R, Z1 andX2R, Y2R are the liquid and vapor mole
fractions of methanol and water, respectively,M1, M2 are their respective molar masses,
HF, HL

R, HV
R , hL

i , hV
i are molar liquid and vapor enthalpies,PR, PC are pressures,TR is the

reboiler temperature, and the remaining symbols denote constants and (empirical) func-
tions. The model is valid if the inflow mixture has constant composition and temperature,
the molar holdupsML

R,ML
C are constant, and the condenser reflux flowLC is zero.

After eliminatingB,D, X2R, Y2R, HL
R, HV

R , PR in a stable way, the process model can
be formulated with four differential variables,x = (MF, X1R, X1C, TR), two algebraic
variables,z = (VR, Y1R), and two (physical) control variablesw = (F,Q), yielding a
semi-implicit DAE of index one with stochastic disturbance in the first differential equation
(the feed flow rate),

B(x) d
dtx = f(x, z, w) + ξe1, B(x) nonsingular,(31)

g(x, z) = 0,
∂g

∂z
(x, z) nonsingular.(32)

With piecewise constant control profiles and a suitable discretization of the DAE, the full
model is then formulated as a nonlinear multistage stochastic program on a scenario tree (a
tree-sparse NLP), which can be treated by suitable SQP or interior methods in combination
with a tree-sparse KKT solver.

Observe first that collocation isnot well suited for the DAE discretization: one cannot
afford fine time grids since scenario trees grow exponentially with the number of stages.
We therefore suggest a multiple shooting discretization with relaxed initial value problems
to account for inconsistent iterates [1, 9]. This means that local DAE initial value problems
of the following form have to be integrated numerically from nodei at physical timeτi to
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nodej at physical timeτj, for everyj ∈ V∗:

(x, z)(τi) = (xi, zi),(33)

B(x) d
dtx = f(x, z, w) + ξe1,(34)

g(x, z) = g(xi, zi)e
−β(τ−τi).(35)

Thus one obtains valuesx(τj−) = Fj(xi, zi, wi; ξj) that are needed for the continuity
conditions,x(τj−)−xj = 0, and valuesz(τj−) that are thrown away: discretized algebraic
equations are formulated pointwise asg(xj, zj) = 0, j ∈ V.

Defining the numerical control variables asuj := (zj, wj), the complete tree-sparse
NLP may be written:

minimize
(x,u)

∑

j∈V\L

pj(τj − τi)e
∗
4uj(36)

subject to x0 = x̂0,(37)

xj = Fj(xi, ui; ξj) ∀j ∈ V∗,(38)

g(xj, uj) = 0 ∀j ∈ V,(39)

xj ∈ [x−
j , x+

j ] ∀j ∈ V∗,(40)

uj ∈ [u−
j , u+

j ] ∀j ∈ V,(41)
∑

k∈S(j)

pk

pj
e∗1xk = M̂FT ∀j ∈ LT−1.(42)

From the tracking model (1)–(5), this problem differs mainly in the linear objective and the
nonlinear transition equations. As before, the cycling constraint can be used to determine a
control component: the feed extractionuj3, j ∈ L. Although the final stage is still needed
for the process model here (and thus not completely eliminated), it becomesdeterministic.
This means that no further branching is required in the scenario tree, yielding a substantial
reduction in size. Moreover, relatively complete recourse can be achieved with respect to
the tank level constraints, and their feasibility can be checked. The remaining constraints
are not amenable to such preprocessing, however, due to the nonlinear process model. In
particular, feasibility of the tank level constraints does not imply feasibility of the entire
process (although the converse holds).

Assuming the same discretization as before, the integrated model has78125 scenarios,
175781 nodes,1328123 variables, and976561 constraints. Even if the computational effort
increases by a factor of100, the stochastic NLP can be solved within10–12 minutes on
a 3 GHz PC—certainly an acceptable figure for real-time application to a relatively slow
separation process.

5. CONCLUSION

We have considered multistage stochastic programming as an enhanced approach to ro-
bust process control when the distributions of random disturbances are known. The results
demonstrate that this approach can yield very quick responses if the process dynamics are
excluded from the real-time optimization by means of a tracking approach. Furthermore,
our discussion indicates that the stochastic approach, although rather expensive in com-
parison to deterministic model predictive control, can even be feasible for an integrated
treatment of uncertainty and moderately complex process dynamics.
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