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Abstract

Constraint Programs and Mixed Integer Programs are closely re-
lated optimization problems originating from different scientific areas.
Today’s state-of-the-art algorithms of both fields have several strategies
in common, in particular the branch-and-bound process to recursively
divide the problem into smaller subproblems. On the other hand, the
main techniques to process each subproblem are different, and it was
observed that they have complementary strengths.

We present the programming framework Scip that integrates tech-
niques from both fields in order to exploit the strengths of both, Con-
straint Programming and Mixed Integer Programming. In contrast
to other proposals of recent years to combine both fields, Scip does
not focus on easy implementation and rapid prototyping, but is tai-
lored towards expert users in need of full, in-depth control and high
performance.

Keywords: Mixed Integer Programming, MIP, Constraint Program-
ming, CP, branch-and-bound

1 Introduction

In recent years, it was shown that combining techniques from Constraint
Programming and Integer Programming can help to solve problems, that
were intractable with either of the two methods. For example, Timpe ap-
plied a hybrid approach to solve chemistry industry planning problems that
include lot-sizing, assignment, and sequencing as subproblems [49]. He used
the Chip C++ library [18] for the CP part and Dash’s XPress-MP li-
brary [17] for the IP part. Other examples of successful integration include
the assembly line balancing problem [12] and the parallel machine scheduling
problem [29].

There are already different approaches to integrate Constraint and Inte-
ger Programming into a single framework. Bockmayr and Kasper developed
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the framework Coupe [11], that unifies CP and IP by observing that both
techniques rely on branching and inference. In this setting, cutting planes
and domain propagation are just specific types of inference. Althaus et al.
propose the system Scil, which introduces symbolic constraints on top of
mixed integer programming solvers [4]. Aron et al. developed Simpl [6],
a system for integrated modelling and solution. They view both, CP and
IP, as a special case of an infer-relax-restrict cycle in which CP and IP
techniques closely interact at any stage.

This paper introduces the Constraint Integer Programming framework
Scip, which is is oriented towards the needs of Constraint and Mathematical
Programming experts who want to have total control of the solution process
and access to detailed information down to the guts of the solver. It includes
the following features:

• It is a framework for branching, cutting, pricing and propagation.

• It is highly flexible through many possible user plugins:

– constraint handlers to implement arbitrary constraints,

– variable pricers to dynamically create problem variables,

– domain propagators to apply constraint independent domain prop-
agations,

– cut separators to apply cutting planes on the LP relaxation,

– relaxators to provide relaxations and dual bounds in addition to
the LP relaxation,

– primal heuristics to search for feasible solutions with specific sup-
port for probing and diving,

– node selectors to guide the search,

– branching rules to split the problem into subproblems,

– presolvers to simplify the solved problem,

– file readers to parse different input file formats,

– event handlers to be informed on specific events, e. g., when a
node was solved, a specific variable changed its bounds, or a new
primal solution was found,

– display handlers to create additional columns in the solver’s out-
put.

– dialog handlers to extend the included command shell.

• Every existing unit is implemented as a plugin, leading to an interface
flexible enough to meet the needs of most additional user extensions.

• A dynamic cut pool management is included.

2



• The user may mix preprocessed and active problem variables in expres-
sions: they are automatically transformed onto corresponding active
problem variables.

• Arbitrarily many children per node can be created, and the different
children can be arbitrarily defined.

• It has open LP solver support (currently supporting CPlex [27],
SoPlex [51], and CLP [21]),

• The LP relaxation need not to be solved at every single node (it can
even be turned off completely, mimicing a pure Constraint Solver).

• Additional relaxations (e. g., semidefinite relaxations or Lagrangian
relaxations) can be included, working in parallel or interleaved.

• Conflict analysis can be applied to learn from infeasible subproblems.

• Dynamic memory management reduces the number of operation sys-
tem calls with automatic memory leakage detection in debug mode.

The remaining part of the paper is organized as follows. Section 2 com-
pares the Constraint Programming and Mixed Integer Programming prob-
lems and the different techniques to solve them. An intermediate problem
class called Constraint Integer Program is defined. Section 3 introduces
the basic concepts of our CIP framework Scip and describes the different
types of external plugins that can be included to extend Scip’s functional-
ity. Section 4 illustrates the algorithmic design of Scip and describes how
the framework and the external plugins interact to solve a CIP instance.
Section 5 gives computational results on some MIP instances and compares
Scip with an academic and a state-of-the-art commercial MIP solver.

2 Comparison CP/MIP

In this section, we introduce the definitions of Constraint Programs and
Mixed Integer Programs and derive a problem class which we call Constraint
Integer Program. We briefly present and compare the basic solution strate-
gies of both fields and highlight the key ideas that make the two approaches
efficient in praxis.

2.1 Constraint Programming

The optimization version of a Constraint Program (CP) can be defined as
follows:
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Definition 2.1 (Constraint Program) A Constraint Program is a triple
CP = (C,D, f) and consists of solving

(CP) f? = min{f(x) | x ∈ D, C(x)}

with D = D1× . . .×Dn representing the domains of finitely many variables
xj ∈ Dj, j = 1, . . . , n, C = {C1, . . . , Cm} being a finite set of constraints
Ci : D → {0, 1}, i = 1, . . . ,m, and f : D → R being the objective function.
For x ∈ D we define C(x) :⇔ ∀i ∈ {1, . . . ,m} : Ci(x) = 1.

Note that there are no further restrictions on the constraint predicates
Ci ∈ C and the objective function f .

Existing Constraint (Logic) Programming solvers like Prolog III [15],
Clp(R) [28], Cal [3], Chip [18], or ILOG Solver [42], are usually re-
stricted to Finite Domain Constraint Programming (CP(FD)). In this set-
ting, all domains D1, . . . , Dm have to be finite.

To solve a CP(FD), the problem is recursively split into smaller sub-
problems (usually by splitting a single variable’s domain), thereby creating
a branching tree and implicitly enumerating all potential solutions. At each
subproblem (i. e., node in the tree) domain propagation is performed to ex-
clude further values from the variables’ domains. These domain reductions
are inferred by the single constraints (primal reductions) or by the objective
function and a feasible solution (dual reductions). If every variable’s domain
is thereby reduced to a single value, a new primal solution has been found.
If any of the variables’ domains gets empty, the subproblem is discarded and
a different leaf of the branching tree is selected to continue the search.

The key element for solving Constraint Programs in praxis is the effi-
cient implementation of domain propagation algorithms which exploit the
structure of the involved constraints. A CP solver usually includes a library
of constraint types with specifically tailored propagators.

Another important feature is the provided infrastructure for managing
the local domains and representing the subproblems in the tree. Currently,
two different techniques are used in existing software: trailing and copying
(see [46] for a comparison). For each node in the tree, trailing stores only
the differences of the node and its parent with respect to the variables’ do-
mains and the current set of active constraints. This reduces the memory
consumption with the cost of additional effort for switching between sub-
problems. On the other hand, copying physically duplicates the data of the
parent node to define the child nodes and applies the necessary modifications
to the child nodes afterwards. This can result in a large memory overhead
but allows for fast switching between subproblems.

2.2 Mixed Integer Programming

A Mixed Integer Program (MIP) is defined as:
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Definition 2.2 (Mixed Integer Program) Given a matrix A ∈ Rm×n,
vectors b ∈ Rm and c ∈ Rn, and a subset I ⊆ N = {1, . . . , n}, the Mixed
Integer Program MIP = (A, b, c, I) is to solve

(MIP) c? = min{cTx | Ax ≤ b, x ∈ ZI × RN\I}.

Common restrictions of MIP are Integer Programs (IPs) with I = N and
Binary Programs (BPs) with I = N and 0 ≤ x ≤ 1. Note that in contrast
to CP, we are now restricted to

• linear constraints,

• a linear objective function, and

• integral or real-valued domains.

Despite the very restricted modelling capabilities of MIP, practical applica-
tions prove that MIP and even IP and BP can be successfully applied on
many real-word problems. However, it usually requires expert knowledge
to generate models that can be solved with current general purpose MIP
solvers. In many cases, it is even necessary to adapt the solving process
itself to the specific problem structure at hand. This can be done with the
help of a MIP framework.

Just like CP solvers, modern MIP solvers recursively split the problem
into smaller subproblems, thereby generating a branching tree. However,
the processing of the nodes is different. For each node of the tree, the LP
relaxation is solved, which can be constructed from the MIP by removing the
integrality conditions. The relaxation can be strengthened by cutting planes
which use the LP information and the integrality restrictions to derive valid
inequalities cutting off the optimal LP solution without removing integral
solutions. The LP provides a lower bound for the whole subtree, and if
this bound exceeds the value of the currently best primal solution, the node
and its subtree can be discarded. The LP relaxation usually gives a much
stronger bound than the simple dual propagation of CP solvers can provide.

The most important ingredients of a MIP solver implementation are
a fast and numerically stable LP solver, cutting plane separators, primal
heuristics, and presolving algorithms (see [10]). Additionally, the applied
branching rule is of major importance (see [2]). Necessary infrastructure
includes the management of subproblem modifications, LP warmstart infor-
mation, and a cut pool.

Modern MIP solvers like CBC [20], CPlex [27], Lindo [34], Minto [40,
39], Sip [36], Symphony [43], or XPress [17] offer a variety of different
general purpose separators, that can be activated for solving the prob-
lem instance at hand (see [7]). It is also possible to add problem specific
cuts through callback mechanisms, thus providing some of the flexibility a
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full MIP framework offers. These mechanisms are in many cases sufficient
to solve a given problem instance. With the help of modelling tools like
Ampl [22], Gams [13], or Zimpl [30] it is sometimes even possible to for-
mulate the model in a mathematical fashion, automatically transform the
model and data into solver input and solve the instance within reasonable
time. In this setting, the user does not need to know the internals of the
MIP solver, which is used as black box tool.

Unfortunately, this rapid mathematical prototyping chain (see [31]) does
not yield results in acceptable solving time for every problem class, some-
times not even for small instances. For these problem classes, the user has to
develop special purpose code with problem specific algorithms. To provide
him with the necessary infrastructure like the branching tree and LP man-
agement, or to support him with standard general purpose algorithms like
LP based cutting plane separators or primal heuristics, he can use a MIP
framework like Abacus [48] or the tools provided by the Coin project [14].

2.3 Constraint Integer Programming

As described in the previous sections, current solvers for Constraint Pro-
gramming and Mixed Integer Programming share the idea of dividing the
problem into smaller subproblems and implicitly enumerating all potential
solutions. They differ in the way of processing the subproblems. Because
MIP is a very specific restriction of CP, MIP solvers can apply sophisticated
problem specific algorithms, that operate on the subproblem as a whole, in
particular the simplex algorithm [16] to solve the LP relaxations, and cutting
plane separators like the Gomory cut separator [23].

In contrast, due to the unrestricted definition of CPs, CP solvers cannot
take such a global perspective. They have to rely on the constraint prop-
agators, each of them exploiting the structure of a single constraint class.
Usually, the only communication between the individual constraints takes
place via the variables’ domains. However, an advantage of CP is the possi-
bility to model the problem more directly, using very expressive constraints
which contain a lot of structure. Transforming those constraints into linear
inequalities can conceal their structure from a MIP solver, and therefore
lessen the solver’s ability to draw valuable conclusions about the instance
or to make the right decisions during the search.

The hope of combining CP and MIP techniques is to take advantage of
both strengths and to compensate for the different weaknesses. We propose
the following slight restriction of a CP:

Definition 2.3 (Constraint Integer Prograim) The Constraint Integer
Program CIP = (C, I, c) consists of solving

(CIP) c? = min{cTx | C(x), x ∈ ZI × RN\I}
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with a finite set C = {C1, . . . , Cm} of constraints Ci : ZI × RN\I → {0, 1},
i = 1, . . . ,m, a subset I ⊆ N = {1, . . . , n} of the variable index set, and an
objective function vector c ∈ Rn, and has to fulfill the following restriction:

∀xI ∈ ZI ∃(AxI , bxI ) : {xN | AxIxN ≤ bxI} = {xN | C(xI , xN )}. (1)

Restriction (1) ensures, that the remaining subproblem after fixing the
integral variables is always a Linear Program. This means, that the problem
can be completely solved by enumerating all values of the integral variables
and solving the corresponding LPs.1

The linearity restriction of the objective function can easily be compen-
sated by introducing an auxiliary objective variable that is linked to the
actual non-linear objective function with a non-linear constraint. We just
demand a linear objective function in order to simplify the derivation of
the LP relaxation. The same holds true for omitting the general variable
domains D, that exist in Definition 2.1 of the Constraint Program. They
can also be represented as additional constraints. Therefore, every CP that
meets condition (1) can be represented as Constraint Integer Program.

In the remaining part of the paper, we will describe Scip, a framework
to solve CIPs.

3 Basic Concepts of SCIP

Scip is a framework for Constraint Integer Programming and provides the
necessary infrastructure to implement algorithms for solving CIPs. It man-
ages the branching tree along with all subproblem data, it automatically up-
dates the LP relaxations, and handles all necesarry transformations due to
the preprocessing problem modifications. Additionally, a cut pool and pric-
ing store management and a SAT like conflict analysis mechanism (see [47])
is available. Scip provides an efficient memory allocation shell, which also
includes a simple leak detection if compiled in debug mode. Finally, a lot
of statistical output can be generated to support the user’s diagnosis of his
algorithms, in particular the branching tree can be visualized with the help
of VBC Tool [32].

Despite the infrastructure mentioned above, all the main algorithms are
part of external plugins. These are user defined callback objects that in-
teract with the framework through a very detailed interface. The current
distribution of Scip already contains necessary plugins to solve MIPs (see
Section 5 for computational results on some MIP instances). In the follow-
ing, we will describe the different plugin types and their role in solving a
CIP.

1Note that this does not forbid quadratic or even more involved expressions. Only the
remaining part after fixing (and thus eliminating) the integral variables must be linear in
the continuous variables.
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3.1 Constraint Handlers

Since a CIP consists of constraints, the central objects of Scip are the con-
straint handlers. Each constraint handler represents the semantics of a sin-
gle class of constraints and provides algorithms to handle constraints of the
corresponding type.

The primary task of a constraint handler is to check a given solution for
feasibility with respect to all constraints of its type existing in the problem
instance. This feasibility test already suffices to produce a correct algorithm
for solving CIPs with constraints of the supported type. However, the al-
gorithm would resemble a complete enumeration of all potential solutions,
because no additional primal information would be available.

To help pruning the search tree, constraint handlers may provide addi-
tional information about its constraints to the framework, namely

• presolving methods to simplify the problem’s representation,

• propagation methods to tighten the variables’ domains,

• a linear relaxation, which can be generated in advance or on the fly,
and which improve the dual bound of the LP, and

• branching decisions to split the problem into smaller subproblems,
using structural knowledge of the constraints in order to generate a
well-balanced branching tree.

Example 3.1 (knapsack constraint handler) A knapsack constraint is a spe-
cialization of a linear constraint

aTx ≤ b (2)

with positive integral right hand side b ∈ Z+, positive integral coefficients aj ∈ Z+

and binary variables xj ∈ {0, 1}.
The feasibility test of the knapsack constraint handler is very simple: it only

adds up the coefficients aj of variables xj set to 1 in the given solution and compares
the result with the right hand side b. Presolving algorithms for knapsack constraints
include modifying the coefficients and right hand side in order to tighten the LP
relaxation, and fixing variables with aj > b to 0 (see [45]).

The propagation method fixes additional variables to 0, that would not fit into
the knapsack together with the variables that are already fixed to 1 in the current
subproblem.

The linear relaxation of the knapsack constraint initially consists of the knap-
sack inequality (2) itself. Additional cutting planes like lifted cover cuts [8, 9, 37] or
GUB cover cuts [50] are dynamically generated to enrich the knapsack’s relaxation
and cut off the current LP solution.

3.2 Presolvers

In addition to the constraint based (primal) presolving mechanisms provided
by the individual constraint handlers, additional presolving algorithms can
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be applied with the help of presolvers. They usually perform dual presolving
operations, taking the objective function into account.

For example, if the value of a variable xj can always be decreased without
rendering any constraint infeasible (an information, the constraint handlers
have to provide), and if the objective value cj of the variable is non-negative,
the dual fixing presolver fixes the variable to its lower bound. In the setting
of a MIP, this condition is satisfied, iff A·j ≥ 0 and cj ≥ 0.2

3.3 Cut Separators

In Scip, we distinct two different types of cutting planes. The first type
are the constraint based cutting planes, that are valid inequalities or even
facets of the polyhedron described by a single constraint or a subset of the
constraints. The may also be strengthened by lifting procedures that take
more information about the full problem into account. These cutting planes
are generated by the constraint handlers of the corresponding constraint
types. Prominent examples are the different types of knapsack cuts that are
generated in the knapsack constraint handler, or the cuts for TSP tours like
subtour elimination and comb inequalities [24, 25] that are separated by the
tour constraint handler.

The second type of cutting planes are general purpose cuts, which are us-
ing the current LP relaxation and the integrality conditions to generate valid
inequalities. Generating those cuts is the task of the cut separators. Exam-
ples are Gomory fractional cuts [23], complemented mixed integer rounding
cuts [35], and strong Chvátal-Gomory cuts [33].

3.4 Domain Propagators

Constraint based (primal) domain propagation algorithms are part of the
corresponding constraint handlers. For example, the alldifferent3 constraint
handler excludes certain values of the variables’ domains with the help of a
bipartite matching algorithm.

In contrast, domain propagators provide dual propagations, i. e., propa-
gations that can be applied due to the objective function and the currently
best known primal solution. An example is the simple objective function
propagator that tightens the variables’ domains with respect to the objective
bound

cTx < c̄

with c̄ being the objective value of the currently best primal solution.

2 with A·j being the j’th column of the coefficient matrix A
3 alldifferent(x1, . . . , xk) requires the integer variables x1, . . . , xk to take pairwise dif-

ferent values.
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3.5 Branching Rules

In Scip, even the integrality conditions are enforced by an external plugin,
the integrality constraint handler. However, they slightly differ from the
other constraints in the way, their data is stored (i. e., which variables should
take integral values): the integrality restriction is attached directly to the
variables and is therefore globally available to all algorithms.

The integrality constraint handler has to make sure, that no solution
is accepted which contains integral variables with fractional values. If the
current LP solution is fractional, the integrality restriction is enforced by
branching. This branching is performed by calling the branching rules.

A branching rule usually creates two subproblems by splitting a single
variable’s domain. If applied on a fractional LP solution, commonly an
integral variable xj with fractional value x̄j is selected, and the two branches
xj ≤ bx̄jc and xj ≥ dx̄je are created. The well known most infeasible,
pseudocost, reliability and strong branching rules are examples of this type
(see [2]). However, it is also possible to implement much more general
branching schemes, for example by creating more than two subproblems, or
by adding additional constraints to the subproblems instead of tightening a
variable’s domain.

3.6 Variable Pricers

Several optimization problems are modeled with a huge number of variables,
e. g., with each path in a graph or each subset of a given set correspond-
ing to a single variable. In this case, the full set of variables can not be
generated in advance. Instead, the variables are added dynamically to the
problem, whenever they may improve the current solution. In mixed integer
programming, this technique is called column generation.

Scip supports dynamic variable creation by variable pricers. They are
called during the subproblem processing and have to generate additional
variables that reduce the lower bound of the subproblem. If they operate on
the LP relaxation, they would usually calculate the reduced costs of the not
yet existing variables with a problem specific algorithm and add some or all
of the variables with negative reduced costs. Note that since variable pricers
are part of the model, they are always problem class specific. Therefore, Scip
does not contain any “default” variable pricers.

3.7 Primal Heuristics

Feasible solutions can be found in two different ways during the traversal
of the branching tree. On the one hand, the solution of a node’s relaxation
may be feasible. On the other hand, feasible solutions can be discovered by
primal heuristics. They are called periodically during the search.
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Scip provides specific infrastructure for diving and probing heuristics.
Diving heuristics iteratively resolve the LP after making a few changes to
the current subproblem, usually aiming at driving the fractional values of
integral variables to integrality. Probing heuristics call the domain propa-
gation algorithms of the constraint handlers after applying changes to the
variables’ domains. Other heuristics without special support in Scip include
local search heuristics like tabu search, and rounding heuristics, which try
to round the current fractional LP solution to a feasible integral solution.

3.8 Node Selectors

Node selectors decide, which of the leaves in the branching tree is selected as
next subproblem to be processed. This choice can have huge impact on the
solver’s performance, because it influences the finding of feasible solutions.

Constraint Programming was originally developed for Constraint Satis-
faction Problems (CSPs). These are CPs without objective function. In this
setting, the solver only has to find out whether there is a feasible solution or
not. Therefore, many of the available CP solvers employ depth first search.

With the addition of an objective function, depth first search is usually
an inferior strategy. It tends to evaluate many nodes in the tree, that could
have been discarded if the optimal solution was known earlier. In Mixed
Integer Programming, several node selection strategies are known, that try
to discover good feasible solutions early during the search process. Examples
of those strategies are best first and best estimate search.

3.9 Relaxators

Scip provides specific support for LP relaxations: constraint handlers pos-
sess virtual methods for generating the LP, additional cut separators may
be included to further tightening the LP relaxation, and there exist a lot of
interface methods to access the LP information at the current subproblem.

In addition, it is also possible to include other relaxations, e. g., Lagrange
relaxations or semidefinite relaxations. This is possible through relaxator
objects. The relaxator manages the necessary data structures and calls the
relaxation solver to generate dual bounds and primal solution candidates.
However, the data to define a single relaxation must either be extracted
by the relaxator itself (e. g., from the user defined problem data, the LP
information, or the integrality conditions), or be provided by the constraint
handlers. In the latter case, the constraint handlers have to be extended to
support this specific relaxation.

Like with LP relaxations, support for managing warmstart information is
available to speed up the resolves at the subproblems. At each subproblem,
the user may call any number of relaxators, including the LP relaxation. In
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particular, it is possible to refrain from solving any relaxation, in which case
the solver behaves like a CP solver.

3.10 Event Handlers

Scip contains a sophisticated event system, which can be used by external
plugins or other objects to be informed about certain events. For example, a
constraint handler may want to be informed about the domain changes of the
variables involved in its constraints. This can be used to avoid unnecessary
work in preprocessing and propagation: a constraint has only to be processed
again, if at least one domain of the involved variables was changed since the
last preprocessing or propagation call. Events can also be used to update
certain internal values (e. g., the total weight of variables currently fixed to
1 in a knapsack constraint) in order to avoid frequent recalculation.

Other potential applications for the event system include a dynamic
graphical display of the currently best solution and the online visualization
of the branching tree. These are supported by events triggered whenever a
new primal solution has been found or a node has been processed.

An event handler is a special plugin that is called to process events of
selected types. This handler usually passes the information to other objects,
e. g., to a constraint handler. It is very common in Scip, that a constraint
handler closely interacts with an event handler in order to improve its own
run time performance.

3.11 Conflict Handlers

Current state-of-the-art SAT solvers employ analysis of infeasible subprob-
lems to generate so-called conflict clauses (see [47]). These are induced
constraints that may help to prune the branching tree at other nodes. In
the CP community, a generalization of those clauses is known as no-goods.

Scip adopts this mechanism and extends it on the analysis of infeasible
LPs. Whenever a conflict was found by the internal analysis algorithms, the
included conflict handlers are called to create a conflict constraint out of
the set of conflicting variables. Conflict handlers usually closely cooperate
with constraint handlers by calling the constraint creation method of the
constraint handler and adding the constraint to the model.

3.12 File Readers

File readers are called to parse an input file and generate a CIP model. It
creates constraints and variables, and activates variable pricers if necessary.
Each file reader is hooked to a single file name extension. It is automatically
called if the user wants to read in a problem file of corresponding name.
Examples of file formats are the MPS format [26] and LP format [27] for
Linear and Mixed Integer Programs, the CNF format for SAT instances in
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conjunctive normal form, and the TSP format [44] for traveling salesman
tour instances.

3.13 Dialog Handlers

Scip comes with a textual shell, that allows the user to read in problem
instances, modify the solver’s parameters, initiate the optimization and dis-
play certain statistics and solution information. This shell can be extended
with dialog handlers. They are linked to the shell’s calling tree and executed
whenever the user enters the respective command. The default shell itself is
also generated with dialog handlers and therefore completely adjustable to
the needs of the software developer.

3.14 Display Columns

While solving a Constraint Integer Program, Scip displays status informa-
tion in a column-like fashion. For example, the current number of processed
branching tree nodes, the solving time, and the relative gap between primal
and dual bound are three of those display columns. There already exist a
wide variety of display columns which can be activated or deactivated on
demand. Additionally, the user can implement his own display columns in
order to track problem or algorithm specific values.

4 Algorithmic Design

This section focuses on the algorithmic design of Scip. During the execution
of Scip, different operational stages are distinguished (see Figure 1). These
stages are described below, and it is specified which callback methods of the
different plugins are executed and which operations the user may perform
during the different stages. It is explained, how the problem is represented in
Scip’s data structures, and which transformations are being applied during
the course of the algorithm.

4.1 Init Stage

In the init stage, the basic data structures are allocated and initialized. The
user has to include the required plugins with calls to SCIPinclude...().
Each included plugin may allocate its own private data. With a call to
SCIPcreateProb() or SCIPreadProb(), the solver leaves the init stage and
enters the problem modification stage, the latter one executing a file reader
to create the problem instance.
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Transformed

Solved

Presolved

Modification
Problem

Init
Transforming Presolving

Init Solve

Solving

Free Solve

Free Transform

Figure 1. Operational stages of Scip. The arrows represent possible transitions

between stages.

4.2 Problem Modification Stage

During the problem modification stage, the user can define and modify the
original problem instance that he wants to solve. He can create constraints
and variables, and activate included variable pricers. A file reader that is
called during the init stage switches to the problem modification stage with
a call to SCIPcreateProb() and subsequently creates the necessary problem
data.

4.3 Transforming Stage

Before the actual solving process begins, Scip creates a working copy of the
original problem instance. The working copy is called transformed problem
and protects the original problem instance from modifications applied during
presolving or solving. The original problem can only be modified in the
problem modification stage.

In the transforming stage, the data of variables and constraints is copied
into a separate memory area. Because Scip does not know how the con-
straints are represented, it has to call the constraint handlers to create copies
of their constraints.

4.4 Transformed Stage

After the copying process of the transforming stage was completed, the
transformed stage is reached. This state is only an intermediate state, from
which the user may initiate the presolving stage or free the solving process
data by switching into the free transform stage.
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4.5 Presolving Stage

In the presolving stage permanent problem modifications on the transformed
problem are applied by the presolvers and the presolving methods of the
constraint handlers. These plugins are called iteratively until no more re-
ductions can be found or until a specified limit is reached.

One of the main tasks of presolving is to detect fixings and aggregations
of variables. These variables can be deleted from the problem by replacing
their occurences in the constraints with the corresponding counterpart. The
fixings and aggregations are stored as variable aggregation graph, which is
used by the framework to automatically convert any operations on those
variables to equivalent ones on active problem variables.

Example 4.1 Consider the linear constraints

3x1 = 9 (3)

2x1 + 4x2 − x3 = 0 (4)

x3 + x4 = 1 (5)

on integer variables x1, x2, x3, and x4. The presolving of constraint (3) fixes x1 = 3.
The linear constraint handler then replaces the occurence of x1 in (4) with its fixed
value, resulting in 4x2 − x3 = −6. Now, x3 can be aggregated to x3 = 4x2 + 6.
Constraint (5) inserts the aggregation x4 = 1− x3 into the aggregation graph.

Figure 2 shows the complete aggregation graph of this example. On the left
hand side, the original problem variables created in the problem modification stage
are shown. They are linked to their transformed problem counterpart. Additional
links between transformed variables are introduced by aggregations. Assume now,
some constraint handler or cut separator adds the inequality

x1 + 4x2 + 3x3 + 2x4 ≤ 23

to the LP relaxation. This inequality is constructed out of a mixture of origi-
nal, fixed, aggregated, and active problem variables, and is thereby automatically
transformed onto active problem variables. This results in the inequality

8x2 + 11 ≤ 23,

which is actually stored as 8x2 ≤ 12 in the LP relaxation. From this inequality,
we can derive the bound change x2 ≤ 1, which also automatically produces the
corresponding bound changes x3 ≤ 10 and x4 ≥ −9.

Constraint handlers may also upgrade their constraints to a more specific
constraint type. For example, the linear constraint handler provides an
upgrading mechanism for its constraints

l ≤ aTx ≤ r.

Other constraint handlers can be hooked into this mechanism to be called for
converting linear constraints into constraints of their own type. For example,
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Figure 2. Variable aggregation graph of Example 4.1.

the knapsack constraint handler (see Example 3.1) checks whether the linear
constraint consists of only binary variables, integral weights, and only one
finite side l or r. If the check succeeds, the linear constraint is converted into
a knapsack constraint, possibly by negating some of the binary variables or
inverting the inequality.

4.6 Presolved Stage

Like the transformed stage, the presolved stage is an intermediate stage,
which is reached after the presolving was completed. From thereon the
actual solving process may be launched. If the presolving already solved the
problem instance by detecting infeasibility or unboundness, or by fixing all
variables, Scip automatically switches via the init solve stage to the solved
stage.

4.7 Init Solve Stage

In the init solve stage all necessary data structures for the solving process
are set up. For example, the root node of the branching tree is created and
the LP solver is initialized. Additionally, the plugins are informed about the
beginning of the solving process, such that they can also create and initialize
their private data.

4.8 Solving Stage

If the problem was not already solved in the presolving stage, the branch and
bound process to implicitly enumerate the potential solutions is performed
in the solving stage. This stage contains the main solving loop of Scip which
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Figure 3. Main solving loop of the solving stage.

consists of five different steps that are called successively until the problem
is solved or the solving process is interrupted (see Figure 3).

4.8.1 Node Selection

The first step of each iteration in the main solving loop is the selection of
the next subproblem. The node selector of highest priority (the active node
selector) is called to select one of the leaves in the branching tree to be
processed. He can decide between the current node’s children and siblings,
and the “best” of the remaining leaves stored in the tree. The ordering
relation of the tree’s leaves is also defined by the active node selector.

Successively choosing a child or sibling of the current node is called plung-
ing. Selecting the best leave of the tree ends the current plunging sequence
and starts the next one. During plunging, the set up of the subproblems to
be processed is computationally less expensive, since the children and sib-
lings are most likely to be closely related to the current node. Switching to
the best leave of the tree is more expensive, but has the advantage that the
search can be brought to regions in the search space that are more promising
to contain a good feasible solution. Efficient node selectors for MIP employ
a mixture of plunging and best first search.

Scip has two different operation modes: the standard mode and the
memory saving mode. If the memory limit given as parameter by the user
is nearly reached, Scip switches to the memory saving mode, in which other
priorities for the node selectors apply. Usually, the depth first search node
selector has highest priority in memory saving mode, since it does not pro-
duce as many unprocessed nodes as strategies like best first search and tends
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to reduce the number of open leaves, thereby releasing allocated memory.
If the memory consumption decreased sufficiently, Scip switches back to
standard mode.

4.8.2 Domain Propagation

After a node is selected to be processed and the corresponding subproblem
is set up, the domain propagators and the domain propagation methods of
the constraint handlers are called to tighten the variables’ local domains.
This propagation is applied iteratively until no more reductions are found
or a propagation limit set by the user is reached.

Domain propagation need not to be applied at every node. Every con-
straint handler and domain propagator can decide itself, if it wants to spend
the effort trying to tighten the variables’ domains.

4.8.3 Relaxation Solving

The next step of the solving loop is to solve the subproblem’s relaxations, in
particular the LP relaxation. Like the domain propagation, the solving of
relaxations can be skipped or applied as needed. However, if there are active
variable pricers, the LP relaxation has to be solved in order to generate new
variables and obtain a feasible dual bound.

In Scip we make the following notational distinctions between the CIP
subproblem and its LP relaxation. The CIP consists of variables and con-
straints. The variables are marked to be integer or continuous, and their
domains may contain holes. The constraints are stored in constraint handler
specific data structures. Their semantics is unknown to the framework and
only implicitly given by the actions performed in the constraint handlers’
callback methods.

The LP relaxation consists of columns and rows. For each column, the
lower and upper bounds are known. Every column belongs to exactly one
CIP variable, but not every CIP variable needs to be represented by a column
in the LP. The rows are defined as linear combinations of columns and have
left and right hand sides as additional data. A single constraint can give
rise to multiple rows in the LP, but rows can also live on their own, e. g., if
they were created by a general purpose separator.

The LP solving cosists of an inner loop as can be seen in Figure 4. It
is executed as long as changes to the LP were applied in the separation or
reduced cost strengthening steps. Note that resolving the LP after adding
cuts or modifying the columns’ bounds can be efficiently done with the dual
simplex algorithm.

Calling LP Solver. The first step is to call the LP solver to solve the
initial LP relaxation of the subproblem. In the root node, this is defined by
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the relaxations of constraints that are marked to be initial : the constraint
handlers are asked to enrich the LP with rows that correspond to their ini-
tial constraints before the first LP is solved. The initial LP relaxation of
a subsequent node equals its parent’s relaxation modified by the additional
bound changes of the node. Note that branching on constraints does not
change the LP relaxation of the child nodes directly. It only modifies the
CIP subproblem, and the corresponding constraint handlers may then mod-
ify the LP in their cut separation or constraint enforcement methods (see
Section 4.8.4 below).

The LP is solved with the primal or dual simplex algorithm, depending
on the feasibility status of the current basis. It is also possible to use an
interior point method like the barrier algorithm to solve the LP relaxations, if
provided by the included LP solver. The resulting LP solution is checked for
stability. In a numerically unstable situation, different LP solver parameter
settings are tried in order to achieve a stable solution. If this fails, the LP
relaxation of the current subproblem is discarded, and the solving process
continues as if the LP was not solved at the current node. Note that this
is a valueable feature for solving numerically difficult problems. Due to the
fact, that Scip does not need to solve the LP at every node, it can easily
leap over numerical troubles in the LP solver without having to abandon
the whole solving process.

Variable Pricing. After the initial LP was solved, the variable pricers
are called to create new variables and add additional columns to the LP.
Variable pricers can be complete or incomplete. A complete pricer generates
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at least one new variable if the current LP solution is not optimal in the
relaxation of the full variable space. If an incomplete pricer is used, the
objective value of the optimal LP solution is not necessarily a dual bound
of the subproblem and can not be used to apply bounding – there may exist
other variables which would further reduce the LP value, potentially leading
to an improved primal solution.

The pricing is performed in rounds. In each round, several new variables
are created, and after each round, the LP solver is called again to resolve the
relaxation. Note that the primal simplex algorithm can be used to quickly
resolve the LP after new columns have been added.

Cut Separation. After the pricing was performed and the LP was re-
solved, the cut separators and the separation methods of the constraint
handlers are called to tighten the LP relaxation with additional cutting
planes. In each iteration of the LP solving loop, cutting planes are collected
in a separation store, and only some of them are added to the LP afterwards.
The selection of the cuts to be added to the LP is a crucial decision which
affects the performance and the stability of the LP solver in the subsequent
calls. In Scip, the cuts are selected with respect to two different criteria
(see [5]):

• the efficacy of the cuts, i. e., the distance of their corresponding hy-
perplanes to the current LP solution, and

• the orthogonality of the cuts with respect to each other.

It is tried to select a nearly orthogonal subset of cutting planes cutting as
deep as possible into the current LP polyhedron. The user has the possibility
to change the employed distance norm. In the default settings, the euclidean
norm is used to measure the efficacy of the cuts.

Reduced Cost Strengthening. A simplex based LP solver provides re-
duced cost values for each column, denoting the change in the objective
value for a change in the column’s solution value. This information can
be used for columns being currently at one of their bounds to tighten the
opposite bound (see [41]). Reduced cost strengthening can be viewed as a
special kind of general purpose cutting plane separator using dual problem
information. In future versions of Scip it will be moved out of the core
framework and implemented as external cut separator plugin.

Domain Propagation. If a bound of the columns was changed in the
cut separation or reduced cost strengthening steps, domain propagation is
applied again to further tighten the variables’ domains (see Section 4.8.2).
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4.8.4 Constraint Enforcement

After the domain propagation was applied and the relaxations were solved,
the constraint handlers are asked to process one of the relaxations’ primal
solutions. In MIP, we usually use the solution of the LP relaxation.

In contrast to the constraint handlers’ feasibility tests which only check a
given primal solution (generated by a primal heuristic) for feasibility, the en-
forcement methods should also try to resolve an infeasibility. The constraint
handler has different options of dealing with an infeasibility (see Figure 5):

• reducing a variable’s domain to exclude the infeasible solution from
the local set of domains,

• adding an additional valid constraint that can deal appropriately with
the infeasible solution,

• adding a cutting plane to the LP relaxation that cuts off the infeasible
solution,

• creating a branching with the infeasible solution no longer be feasible
in the relaxations of the child nodes,

• concluding that the current subproblem is infeasible as a whole and
can be cut off from the branching tree,

• just stating that the solution is infeasible without resolving the infea-
sibility.

The remaining answer of a constraint enforcement method is that the current
solution is feasible for all constraints of the constraint handler.

The constraint handlers’ enforcement methods are called in an order
specified by the constraint handlers’ enforcement priorities. Depending on
the result code of each constraint enforcement method, Scip proceeds dif-
ferently. If the constraint handler tightened a variable’s domain or added a
constraint, the enforcement cycle is aborted and the algorithm jumps back
to the domain propagation. Adding a cutting plane envokes the LP solv-
ing again. Branching and cutting off the current node finish the processing
of the node after which the primal heuristics are called. If the constraint
handler detects the solution to be infeasible without resolving it, or if the
solution is feasible for the constraints of the constraint handler, the next
constraint handler is asked to process the current solution.

The constraint enforcement cycle can have three different outcomes:

1. A constraint handler resolved an infeasibility, after which the node
processing is continued appropriately.

2. All constraint handlers declared the solution to be feasible, which
means a new feasible solution has been found.
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3. At least one constraint handler detected an infeasibility, but none of
them resolved it. In this case, the branching rules are called to create
a branching.

Note that the integrality constraint handler enforces its constraint by
calling the branching rules, if at least one of the integer variables has a frac-
tional value. The integrality constraint handler has an enforcement priority
of 0, such that constraint handlers may decide whether they want to be
called only on integral solutions (in which case they should have a negative
priority) or to be also called on fractional solutions (with a positive priority).
To be called only on integral solutions can be useful, if an efficient feasibil-
ity test of the constraint handler can only be applied on integral solutions,
e. g., if the solution selects edges in a graph and the feasibility test is some
graph algorithm. To be called on fractional solutions can be useful, if one
wants to apply a constraint specific branching rule, e. g., the set partitioning
constraint handler may want to branch on a subset of a set partitioning
constraint’s variable set.

4.8.5 Primal Heuristics

The processing of a subproblem concludes with calling the primal heuristics.
Like every plugin in Scip, the primal heuristics do not need to process
every single node. They are usually called with a certain frequency, i. e., at
specific depth levels in the branching tree. Primal heuristics can generate
primal solutions, that are passed to the constraint handlers for checking
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their feasibility. If a feasible solution was found, the leaves of the branching
tree exceeding the new primal bound are discarded.

5 Computational Results

Scip version 0.78 already includes all necessary plugins to solve Mixed In-
teger Programs. In particular, it supports the following cutting planes:

• Gomory’s fractional cuts [23],

• Marchand’s version of complemented mixed integer rounding cuts [35],

• strong Chvátal-Gomory cuts [33],

• lifted knapsack cover cuts [8, 9, 37].

Cutting planes like clique cuts that depend on the set packing relaxation
are still missing but will be added in one of the next versions.

Scip includes various preprocessing algorithms, but does not yet provide
probing techniques. There are 8 different variants of diving heuristics, in-
cluding a modification of the feasibility pump [19]. Additionally, one quick
and simple and one more involved rounding heuristic use the LP solution as
starting point for generating primal solutions.

Various branching rules are available, including the very simple (and
inefficient) least infeasible and most infeasible branching rules, as well as
the very sophisticated reliability branching and variants of the costly strong
branching rule (see [2] for a review). The node selection rule can be config-
ured to resemble any mixture of depth first and best first search. LP solver
interfaces exist for CPlex [27], SoPlex [51], and CLP [21].

In the following we present computational results on several MIP in-
stances, comparing Scip 0.78 with CPlex 9.03 and Sip [36]. Note that
CPlex 9.03 was used as embedded LP solver in Scip. All calculations were
performed on a 3.2 GHz Pentium-4EE workstation with 2 GB RAM.

Our test set consists of instances from Miplib 2003 [1] and instances
collected by Mittelmann [38]. We selected all instances where CPlex 9.02
needed at least 1000 branching nodes and at most one hour CPU time for
solving.4 In all runs, we used a time limit of 3600 seconds and a memory
limit of 1.5 GB.

Table 1 shows the results on our test set. Obviously, Scip 0.78 is not
strictly competitive to CPlex 9.03 – there is a factor of 2 in both, the
geometric mean and the total running time. However, we take these numbers

4CPlex was run with default settings, except that “absolute mipgap” was set to 10−9

and “relative mipgap” to 0.0, which are the corresponding values in Scip. The test set
was assembled a few months ago when CPlex 9.03 was not yet available.
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Scip 0.78 Sip CPlex 9.03
Name Nodes Time Nodes Time Nodes Time
aflow30a 41921 129.0 126209 127.7 37116 85.8
cap6000 5030 45.6 4320 15.6 4573 14.5
gesa2-o 21 7.4 42702 69.3 658 1.1
mas74 6809511 1639.4 4238858 934.0 5311878 1297.4
mas76 512719 109.0 430112 90.6 375729 56.1
misc07 42540 51.1 58155 67.4 72420 59.6
mzzv11 >3258 >3608.0 >150 >3642.2 3820 432.8
pk1 468423 133.0 344984 99.3 365710 86.2
pp08aCUTS 627 1.9 233 2.0 1518 1.8
qiu 12958 130.6 10099 108.3 11431 105.9
rout 32599 53.8 112780 149.3 843504 1832.6
vpm2 21467 12.2 14981 10.2 3240 1.1
ran8x32 23457 29.2 55375 46.2 7679 7.6
ran10x26 35591 69.0 47795 37.0 20176 41.4
ran12x21 91477 157.5 117050 85.6 81525 157.2
ran13x13 160566 139.4 95981 68.5 62936 62.6
binkar10 1 >801005 >1746.0 >1964203 >3600.0 5458 24.1
mas284 23554 12.3 20507 11.1 37405 12.2
prod1 82707 43.3 63157 42.7 97507 67.8
bc1 129174 2227.7 25050 430.1 9939 266.9
bienst1 11298 70.1 11492 54.6 12292 113.6
bienst2 105515 1126.9 102947 383.2 161843 2368.3
mkc1 >457536 >3600.0 >953912 >3600.0 14236 47.8
neos2 170245 664.0 23921 90.0 40193 81.2
neos3 >1033592 >3600.0 783556 1624.8 835129 2599.2
neos7 266071 720.0 203640 467.9 113861 415.6
seymour1 6918 890.2 5097 747.2 10459 1020.8
swath1 344 30.2 26105 131.2 15860 41.5
swath2 50467 341.9 24281 134.8 150740 372.5
Total (29) 11400591 21388.7 9907652 16870.8 8708835 11675.5
Geom. Mean 40564 162.5 49434.4 133.9 34668 81.4

Table 1. Computational results of Scip 0.78 and CPlex 9.03. Results marked

with ‘>’ were not solved to optimality within the time and memory limits.
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as an indication that Scip’s performance is not very far away from a state-
of-the-art MIP solver.

The comparison of Scip with Sip shows that Sip is slightly superior.
This is not surprising, since Scip is the successor of Sip, and the algo-
rithms reimplemented in Scip are not yet tuned as exhaustive as the ones
in Sip. The parameter settings are not yet carefully adjusted as well. Addi-
tionally, since Sip is exclusively implemented to solve completely specified
MIPs, there is an overhead incorporated in Scip for the support of general
constraints, variable pricing, and other subproblem relaxations.
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