HuMBOLDT-UNIVERSITAT ZU BERLIN
MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTAT
INSTITUT FUR INFORMATIK

Using Blockchain for Tamper-Proof
Broadcast Protocols

Masterarbeit

zur Erlangung des akademischen Grades
Master of Science (M. Sc.)

eingereicht von: ~ Jonas Spenger
geboren am:
geboren in:

Gutachter/innen: Prof. Dr. Alexander Reinefeld
Prof. Dr. Bjorn Scheuermann

eingereicht am: verteidigt am:

Using Blockchain for Tamper-Proof
Broadcast Protocols

by Jonas Spenger
Master’s Thesis

Submitted in partial fulfilment of the requirements for the degree of
Master of Science (M. Sc.) in the Department of Computer Science
at the Humboldt University of Berlin

First Supervisor: Prof. Dr. Alexander Reinefeld
Second Supervisor: Prof. Dr. Bjorn Scheuermann

May, 2020

Abstract

We present the tamper-resistant broadcast abstraction of the Bitcoin blockchain,
and show how it can be used to implement tamper-resistant replicated state
machines. The tamper-resistant broadcast abstraction provides functionality
to: broadcast, deliver, and verify messages. The tamper-resistant property
ensures: 1) the probabilistic protection against byzantine behaviour, and 2) the
probabilistic verifiability that no tampering has occurred.

In this work, we study various tamper-resistant broadcast protocols for: differ-
ent environmental models (public/permissioned, bounded /unbounded, byzantine
fault tolerant (BFT)/non-BFT, native/non-native); as well as different proper-
ties, such as ordering guarantees (FIFO-order, causal-order, total-order), and
delivery guarantees (validity, agreement, uniform). This way, we can match
the protocol to the required environment model and consistency model of the
replicated state machine.

We implemented the tamper-resistant broadcast abstraction as a proof of
concept. The results show that the implemented tamper-resistant broadcast
protocols can compete on throughput and latency with other state-of-the-art
broadcast technologies. Use cases, such as a tamper-resistant file system, supply
chain tracking, and a timestamp server highlight the expressiveness of the
abstraction.

In conclusion, the tamper-resistant broadcast protocols provide a powerful
interface, with clear semantics and tunable settings, enabling the design of
tamper-resistant applications.

Acknowledgements

I wish to express my gratitude to my advisor Dr. Florian Schintke at the Zuse
Institute Berlin, for the invaluable feedback, suggestions, discussions, knowledge,
and guidance throughout the entirety of this project. I would also like to thank
my first supervisor Prof. Dr. Alexander Reinefeld at the Humboldt University
of Berlin and the Zuse Institute Berlin, for feedback on earlier versions and
refereeing of this thesis. Furthermore, I wish to thank my second supervisor
Prof. Dr. Bjorn Scheuermann at the Humboldt University of Berlin, for the
involvement and refereeing of this thesis.

At last, I wish to acknowledge a selection of influential and important sources
to this work. Much of the theory, notation, and style of this thesis surrounding
broadcast and consensus is based on the book Introduction to Reliable and Secure
Distributed Programming by Cachin, Guerraoui, and Rodrigues [1]. An important
source for the Bitcoin blockchain was the book Mastering Bitcoin: Programming
the open blockchain by Antonopoulos [2], and the original bitcoin paper Bitcoin:
A Peer-to-Peer Electronic Cash System by Nakamoto [3]. Inspiration for studying
blockchain abstractions stemmed from reading about the Virtualchain, described
in Blockstack: A global naming and storage system secured by blockchains by Ali,
Nelson, Shea, and Freedman [4]. The motivation for this work originated from
our ongoing work on a blockchain-based file system at the Zuse Institute Berlin

[5]-

Contents

1 Introduction 9
1.1 Motivation 9
1.2 Problem Statement 10
1.3 Outline e 11
1.4 Significance of the Study 12
1.5 Assumptions L 12

2 Background 13
2.1 Theory 13

2.1.1 Distributed Programming Abstractions 13
2.1.2 Distributed Agreement Problem 14
2.1.3 Broadcast Abstraction 14
2.1.4 Broadcast Models L. 16
2.1.5 Broadcast Environment Models 16
2.1.6 Relations and Limits of Consistency, Consensus, and
Broadcast 17
2.1.7 Replicated State Machines 18
2.2 General Background Information 19
2.2.1 Cryptography L 19
2.2.2 Bitcoin Blockchain 0oL 20
2.2.3 Saving Data to the Blockchain 24
2.2.4 Other Blockchain Technologies 26
2.3 Related Work 26

3 Blockchain Ledger 31
3.1 Related Work o 31
3.2 Blockchain Ledger Abstraction 32
3.3 Bitcoin Transaction Abstraction 32
3.4 Bitcoin Blockchain Ledger Abstraction 33

4 Tamper-Resistant Broadcast 37
4.1 Related Work 37
4.2 Tamper-Resistant Broadcast Abstraction. 38
4.3 Public Tamper-Resistant Broadcast Protocols 39

4.3.1 Best-Effort Tamper-Resistant Broadcast 39
4.3.2 Reliable Tamper-Resistant Broadcast 41
4.3.3 FIFO-Order Tamper-Resistant Broadcast 41
4.3.4 Causal-Order Tamper-Resistant Broadcast 44

4.3.5 Uniform Causal-Order Total-Order Tamper-Resistant
Broadcast o

4.3.6 Implications

4.4 Permissioned Tamper-Resistant Broadcast Protocols
4.4.1 Fixed Group Tamper-Resistant Broadcast
4.4.2 Tmplications oo

4.5 Permissioned Non-Native Tamper-Resistant Broadcast Protocols
4.5.1 High Throughput Low Latency Non-Native Uniform Total-
Order Tamper-Resistant Broadcast

4.5.2 Implications oo

5 Evaluation
5.1 Methodology
5.1.1 Implementation
5.1.2 Software
5.1.3 Deployment Lo oo
514 Benchmark
5.1.5 Statistics
52 Results.
5.2.1 Correctness e
5.2.2 Throughputo oo
5.23 Latency o

6 Use Cases
6.1 Design Pattern: Tamper-Resistant Replicated State Machine
6.2 Use Case: Tamper-Resistant File System
6.3 Use Case: Timestamp Server
6.4 Use Case: Virtual Blockchain
6.5 Use Case: Supply Chain Tracking

7 Discussion
8 Conclusion
Bibliography

A Data Insertion Methods
A.1 Characteristics
A2 OPRETURN e
A3 DataHashw/Sig
A4 Data Efficiency

B Broadcast Properties

50
o1

53
53
o4
o4
%)
55
55
56
96
o7
59

65
65
67
67
69
70

73

77

79

83
83
83
84
84

87

Chapter 1

Introduction

1.1 Motivation

Blockchain technology enables the design of decentralised and tamper-proof
applications. Because of the growing demand in such technology, there is also
a growing demand in understanding the fundamental technology. This was
confirmed during our ongoing work at designing a blockchain-based tamper-proof
file system [5]. One way to generalise blockchain-based technology is by the
concept of tamper-proof replicated state machines and tamper-resistant replicated
state machines. In this thesis, we study how tamper-resistant (not tamper-
proof) replicated state machines can be implemented using the blockchain and
blockchain-based tamper-resistant broadcast protocols.

The term tamper-proof generally refers to protection against byzantine behav-
ior, such that any attempts at tampering (unauthorized changes) are not possible
(c.f. byzantine fault tolerance [1, ch. 2.2.6]). In an attempt to capture the distinct
characteristic of blockchains in our definition, we define tamper-proof as: 1) the
protection against byzantine behavior, such that any attempts at tampering
are not possible, and 2) the verifiability that no tampering has occurred (i.e.
verifiable proof that it is untampered with). The second rule addresses the
case when no single participating instance can be trusted (including the local
instance), and enables independent third party verification of the proof.

Ideally, we would like our applications to be tamper-proof. The Bitcoin
blockchain, however, should not be considered tamper-proof, due to its proba-
bilistic nature. We instead choose to label it as tamper-resistant or probabilistic
tamper-proof. We define this term as: 1) the probabilistic protection against
byzantine behaviour, and 2) the probabilistic verifiability that no tampering
has occurred. Probabilistic and probabilistically should be read as: with high
probability. In this thesis we build upon the tamper-resistant Bitcoin blockchain,
and discuss tamper-resistant protocols.

The tamper-proof and tamper-resistant property cannot be guaranteed for
the general use-case of replicated state machines, unless further assumptions
(restrictions) are made on the environment. For general functionalities, we
require at minimum an honest majority for the secure execution of the protocols.
In this work, we assume that at most one-third of the participating processes
are faulty (byzantine failure model) (including the local instance).

We are motivated by the use case of tamper-resistant replicated state machines.
A replicated state machine is a program which is replicated on several processes,
such that each correct instance exhibits the same behaviour [1, ch. 6]. We
characterise the tamper-resistant property of our tamper-resistant replicated
state machine abstraction as:

o Tamper-resistant replicated state machine: The replicated state machine
is probabilistically protected against tampering, and the output of the
replicated state machine is probabilistically verifiable.

In this thesis, we study tamper-resistant broadcast protocols using the Bitcoin
blockchain. These can be used to implement tamper-resistant replicated state
machines. The tamper-resistant broadcast abstraction consists of functionality
to: broadcast a message; deliver a message broadcast by another participant;
and verify the authenticity of a message and the message history.

The presented work is a joining of concepts from distributed systems (repli-
cated state machines, consensus, broadcast, byzantine fault tolerance) with
concepts from blockchain. The tamper-proof property extends the concept of
byzantine fault tolerance (protection against tampering), with the verifiability
that no tampering has occurred (and tamper-resistance extends probabilistic
byzantine fault tolerance). The verification allows for independent third party
verification, and does not require local trust assumptions.

Our work differentiates from other work, by being a generalisation of the
problem. The tamper-resistant (and tamper-proof) replicated state machine
is a generalisation of blockchains and of blockchain-based applications. This
allows us to study various environment models, and various safety and liveness
properties, giving us a broader picture of the problem.

We hope to accomplish two goals: show how to design blockchain-based
tamper-resistant applications and discuss important aspects thereof.

1.2 Problem Statement

The design of blockchain-based tamper-resistant applications is complex. It
requires extensive knowledge of the properties and functions of the blockchain,
and how to use these for the desired behaviour. This is often not easy as certain
applications require properties and functions that are not directly derived from
the blockchain, but rather from complex interactions with the blockchain.

In this thesis, we study the design of tamper-resistant broadcast protocols
using the Bitcoin blockchain, for various environment models and safety and
liveness properties.

The tamper-resistant broadcast protocols can be used to implement tamper-
resistant replicated state machines, and, in turn, tamper-resistant applications.
The environment model of the broadcast protocol can be matched with the
required environment model of replicated state machine. The safety and liveness
properties of the broadcast protocol can be matched with the required consistency
model of the replicated state machine.

10

1.3 Outline

The following is an outline of this thesis, and lists the contributions that go
towards answering the proposed problem statement:

e In Chapter 2, Background, we review previous work, and discuss how it
relates to our work.

e In Chapter 3, Blockchain Ledger, we present and discuss an abstraction of
the Bitcoin blockchain (Bitcoin Core API) and its properties.

e In Chapter 4, Tamper-Resistant Broadcast, we discuss and implement
blockchain-based tamper-resistant broadcast protocols. We look at different
environment models of broadcast protocols, in particular:

— Public tamper-resistant broadcast protocols: protocol is publicly
available, anyone can participate.

— Permissioned tamper-resistant broadcast protocols: protocol is open
to a known set of participants.

— Non-native permissioned tamper-resistant broadcast protocols: pro-
tocol is permissioned and may use direct links or other protocols for
exchanging messages.

Furthermore, we look at different broadcast safety and liveness properties
[1]:

— No creation

— No duplication

— Validity

— Agreement

— FIFO-order

— Causal-order

— Total-order

— Uniform
and performance properties:

— Throughput
— Latency

e In Chapter 5, Evaluation, we evaluate the protocols on throughput and
latency, running a workload on a distributed cluster, spanning over three
physically separated locations.

e In Chapter 6, Use Cases, we show how to implement tamper-resistant
replicated state machines using the tamper-resistant broadcast abstrac-
tion, and apply this to four use cases of blockchain technology [6]: data
management and the secure storage of data; integrity verification such as
tamper-resistant and verifiable storage of data (time stamping); blockchain
virtualisation; supply chain, for example logistics providing origin tracking
and identifying counterfeit products.

11

1.4 Significance of the Study

The presented work aids the design of tamper-resistant applications. Such
applications will permeate sectors with an emphasis on trust, and become
more commonplace as we transition from using human-centric and centralised
forms of trust (e.g. notary offices, banks), to decentralised trust-networks (e.g.
Bitcoin, Tendermint). This includes and already applies to [6]: supply chain
logic and tracking; file archival of financial data; land registry. We hope that
our findings will help the understanding of the problem, and help the design of
new applications in these and more fields. In particular, the tamper-resistant
broadcast protocols can be used to implement tamper-resistant replicated state
machines, thus applicable to the design of arbitrary tamper-resistant applications.

1.5 Assumptions

In order to limit the scope of this thesis, we make the following assumptions:

o Fundamental system model: ~ We consider the following fundamental
properties of the system and environment for this project [7, ch. 2.4]:

— Interaction model: Asynchronous distributed system model, i.e. no
assumptions can be made about the time —process execution speeds,
message transmission delays and clock drift rates are arbitrary and
unknown.

— Failure model:

% Communication channel omission failure model [1, ch. 2.2.3]: A
sent message may never arrive at the receivers incoming message
buffer;

* Byzantine failure model (arbitrary failure model) [1, ch. 2.2.6]:
faulty processes can exhibit arbitrary behaviour, no assumptions
is made on their behaviour. This is our main failure model, unless
explicitly mentioned otherwise. A correct process does not crash.

* We will also under certain circumstances (explicitly mentioned)
consider the process crash-stop failure model [1, ch. 2.2.2]: faulty
processes execute the protocol correctly until crashing and stop-
ping.

— Security model / threat model: The system is exposed to the threat
of interactions with an adversarial process.

e Bitcoin blockchain: We assume that the underlying blockchain system is
the Bitcoin blockchain [2, 3]. We will only consider the functionality as
provided by the Bitcoin Core API [8]. Furthermore, we will only consider
zero-fee transactions.

o Verification proof in tamper-resistant protocols: We refrain from explicitly
returning a proof to the verification requests in the defined modules and
protocols. Although returning the proof is necessary for the case when
local instances cannot be trusted, we believe that adding such functionality
is trivial. For example, it would be a sufficient proof to return the variables
that are evaluated during the verification protocol.

12

Chapter 2

Background

The following is an introduction to the research on blockchain-based tamper-
resistant broadcast protocols. We include an introduction to the related theory,
general background information of the outlined problem, as well as a review of
the related work.

2.1 Theory

This section introduces the relevant theory from distributed systems: distributed
programming abstractions, the broadcast abstraction and replicated state ma-
chines.

2.1.1 Distributed Programming Abstractions

A distributed program consists of inter-communicating entities that perform
computations [1, ch. 1.2]. The computing entities are referred to as processes,
and the communication paths between them as links.

The algorithms we discuss are based on an asynchronous event-based composi-
tion model [1, ch. 1.4]. Each process hosts a set of components. The components
communicate through the exchange of events. The components provide an
interface, consisting of request events and indication events. The two types of
events differ in direction. Request events are triggered by a second component,
requesting a service to be executed at the first component. Indication events
are triggered by the first component, indicating or delivering information to a
second component.

Modules are made up of one or many modules [1, ch. 1.4]. They provide
request and indication events. The properties of the module describe the prop-
erties of its behaviour. The behaviour of a module can be described as the
behaviour observed by another component interacting through the module inter-
face. One type of property are guarantees, such as the guarantee that an action
is performed by all processes.

The fundamental system model explicitly states the assumptions made about
the underlying system, and generalises on the possible interactions in the model
[7, ch. 2.4]. Our assumptions of the system’s interaction model, failure model,
and security model, can be found in Section 1.5.

13

2.1.2 Distributed Agreement Problem

The distributed agreement problem [1, ch. 1.2] involves a set of processes to agree
on certain facts. This could be finding an agreement on the order of certain
events. But also, on finding a common sequence of actions to take. Distributed
agreement can thus be used for the cooperation between the distributed processes.

Consensus and broadcast are distributed agreement problems and a focal
point to this thesis. Consensus is the problem of agreeing on a value out of a set
of proposed values [1, ch. 5]. The consensus module has two events: propose,
a request to propose a value; decide, an indication event that the distributed
processes have decided and achieved agreement on a value. Broadcast is the
problem of sending a message to all processes including oneself [1, ch. 3]. It has
two events: broadcast, a request to broadcast a message to all processes; deliver,
an indication to deliver a message from a process. The consensus problem and
the total-order broadcast problem can be shown to be equivalent [9].

2.1.3 Broadcast Abstraction

Broadcast is the problem of sending a message to all processes including oneself
The broadcast abstraction interface is shown in Module 1 [1, ch. 3]. It has two
events: broadcast, a request (application to module) to broadcast a message to
all processes; deliver, an indication (module to application) to deliver a message

from a process '.

Module 1 Broadcast

Module name: Broadcast, instance b
Events:

E1 Request: < b, Broadcast | message >: Broadcast a message to all
processes.

E2 Indication: < b, Deliver | p, message >: Deliver a message broadcast
by process p.

Among the characteristics of broadcast protocols that we will use in later
chapters, we will look at the following safety and liveness properties. Safety
properties state that “something will not happen”, liveness properties state that
eventually "something must happen” [10]. Properties and description with minor
adaptions from Cachin et al. [1]:

e No duplication: No message is delivered more than once.

e No creation: If a process delivers a message with sender s, then the message
was previously broadcast by process s.

e Validity: If a correct process broadcasts a message m, then every correct
process eventually delivers m.

1By contrast, the consensus abstraction interface has the events: propose, a request to
propose a value; decide, an indication event that the distributed processes have decided and
achieved agreement on a value [1, ch. 5].

14

e Fuair Validity: If a process repeatedly broadcasts a message, then eventually
the message is delivered by every correct process.

o Agreement: If a message m is delivered by some correct process, then m is
eventually delivered by every correct process.

e Uniform agreement: If a message m is delivered by some process (correct
or non-correct), then m is eventually delivered by every correct process.

o Total-order delivery: Let my and mo be any two messages and suppose p
and ¢ are any two correct processes that deliver m; and ms. If p delivers
my before msy, then g delivers mq before ms.

o Uniform total-order delivery: Let m; and mgy be any two messages and
suppose p and ¢ are any two processes (correct or faulty) that deliver my
and my. If p delivers m1 before m2, then q delivers my before ms.

o FIFO-order delivery (first in, first out): If some process broadcasts message
m1 before it broadcasts message mo, then no correct process delivers my
unless it has already delivered m.

e Causal-order delivery: For any message m; that potentially caused a
message Mo, i.e. M1 — Mo, No process delivers moy unless it has already
delivered mq 2.

The performance properties evaluate the implementations and the physical
machines running the implementations, we will evaluate the following:

e Latency: The time between the broadcast request event and deliver in-
dication event of a message (for the sending process). We define an
implementation to be low latency, if the latency is comparable (within
50%) to other high-performance specialised systems for the same task.

e Throughput: The rate at which messages are delivered, measured in number
of messages per second, or, bytes per second (total for entire network).
We define an implementation to be high throughput, if the throughput is
comparable (within 50%) to other high-performance specialised systems
for the same task.

Lastly, we would like to define the tamper-resistant property:

o Tamper-resistant: The broadcast messages, and the delivered message his-
tory, are probabilistically® protected against tampering, and the delivered
messages are probabilistically verifiable?.

2The causal-order property specifies that messages are delivered such that the order respects
the happened-before relationship. The happened-before relationship can be described as follows
[1, ch. 3.9.4]: m1 happened before ma, i.e. mi; — ma, if: some process broadcast mi before
ma; or if some process delivered m1 before broadcasting ms; or if there exists a message m/’
such that m; — m’ and m’ — ma.

3With high probability.

4A verification request returns ”Valid” (with high probability), if the message has not been
tampered with and is part of the untampered message history, else "NotValid”.

15

2.1.4 Broadcast Models

We can label variations of the broadcast implementations by their properties.
This is a selection of broadcast models that are mentioned throughout this
document [1]:

Best-effort broadcast: No creation, no duplication, validity.
Reliable broadcast: No creation, no duplication, validity, agreement.

Uniform reliable broadcast: No creation, no duplication, validity, uniform
agreement.

FIFO-order (reliable) broadcast: No creation, no duplication, validity,
agreement, FIFO order.

Causal-order (reliable) broadcast: No creation, no duplication, validity,
agreement, causal order.

Total-order (reliable) broadcast: No creation, no duplication, validity,
agreement, total order.

Uniform total-order (reliable) broadcast: No creation, no duplication, va-
lidity, uniform agreement, uniform total order.

Uniform causal-order total-order (reliable) broadcast: No creation, no
duplication, validity, uniform agreement, uniform total order, uniform
causal-order.

2.1.5 Broadcast Environment Models

We can label different environments of the broadcast implementations by their
properties. Of particular interest are the following four properties:

Public/permissioned: — The protocol is publicly available, anyone can
participate (public); or, the protocol is only available to known (authorised)
participants (permissioned).

Bounded/unbounded: The number of participants during an epoch (voting
period) is known and finite (bounded); or, the number of participants
during an epoch is unknown and potentially infinite (unbounded).

BFT/non-BFT (byzantine fault tolerant): The protocol tolerates arbitrary
faults up to < 1/3 of participants (BFT); or, the protocol tolerates fail-
crash-stop faults up to < 1/2 of participants (non-BFT). If there are more
faulty processes than the limit, we define that there are no liveness or
safety guarantees for the BF'T model, and the safety guarantees still hold
but not the liveness guarantees for the non-BFT model.

Native/non-native: The messages are broadcast via the blockchain, and
consensus is via blockchain (native); or, the messages are broadcast via
direct links or P2P (not via blockchain), and consensus is not via blockchain
(non-native).

We will study the following three broadcast environment models:

16

Consistency Models Broadcast Models Consensus

W Linearizable Uniform Total-Order -1 Consensus
o
= i f

g

@ Sequential r-—1 Causal Total-Order | Total-Order
- I I
*ﬂJ
% Causal r= Causal-Order
T
2 T T

>
ﬁ PRAM I FIFO-Order
7 1
Reliable

Legend: T

-~ equivalent Best-Effort (Bitcoin) Blockchain
A+B B implies A Consensus

Figure 2.1: Relationship of consistency [11, 12, 13], broadcast [9], and consensus
[9]-

e Public tamper-resistant broadcast protocols: public, unbounded, BFT,
native.

o Permissioned tamper-resistant broadcast protocols: permissioned, bounded,
non-BFT, native.

e Non-native permissioned tamper-resistant broadcast protocols: permis-
sioned, bounded, non-BF T, non-native.

We chose these environment classes as each represents a typical use-case.
The public tamper-resistant broadcast protocols are suitable for public tamper-
resistant applications, e.g. public ownership tracking, cryptocurrency. The
use-case for permissioned tamper-resistant broadcast protocols are private tamper-
resistant applications that are publicly open for auditing, but not publicly open
for participation, e.g. supply chain tracking. Non-native permissioned tamper-
resistant broadcast protocols, can be used for private tamper-resistant applications
that require the use of non-native techniques to achieve higher throughput or
lower latency than what is provided by the blockchain, e.g. secure storage of
data, integrity verification.

2.1.6 Relations and Limits of Consistency, Consensus, and
Broadcast

The relationship between consistency [11, 12, 13], broadcast [9], and consensus [9]
is shown in Figure 2.1. The figure shows the equivalence of the models through
dotted lines. The hierarchy of the models is shown through the arrows, pointing
from weaker to stronger models. The figure is divided into sticky availability
and unavailability [11, 12]. Sticky availability is defined as the ability to make
progress and read previous progress under indefinitely long network partitions,
if the user sticks to the same server [12]. If the user switches server, then the

17

ability to make progress and read previous progress is no longer guaranteed.
Unavailability is defined as the impossibility to make progress due to certain
network partitions.

The broadcast models which we discuss have equivalent counterparts in
consistency models. The FIFO-order is equivalent to the PRAM consistency
model, causal-order is equivalent to the causal consistency model, and the
causal-order total-order broadcast is equivalent to the sequential consistency
model. For example, the sequential consistency model requires: a single total
order (SINGLEORDER), the FIFO-order (PRAM), and return value consistency
[13]. This can be achieved using the causal-order total-order broadcast. The
uniform total-ordered broadcast is equivalent to the consensus abstraction [9].
The (Bitcoin) blockchain consensus model is weaker in the hierarchy compared
to the consensus model. The blockchain provides only probabilistic eventual
consistency, compared to eventual consistency of consensus.

The concept of sticky availability and unavailability is closely related to
the CAP theorem, stating that: a distributed system has to sacrifice one of
consistency, availability, or partition tolerance [13]. The Bitcoin blockchain
sacrifices consistency, it uses a probabilistic consensus algorithm that can cause
forks and temporary inconsistencies. This is where it differs to typical consensus
protocols, such as ZAB [14], which sacrifice the availability to make progress
(liveness properties) rather than sacrificing consistency (safety properties). In
order to achieve total-order using the Bitcoin Blockchain, we will have to either:
assume that forks never exceed a certain length, which we call bounded fork
length (i.e. assume that network partitions are bounded in time), this is perhaps
reasonable but not strictly true; or, use other consistency preserving off-chain
mechanisms to agree on a total-order.

There are further limits of what can be achieved under different broadcast
environment classes. For example, no protocol can reach consensus if the number
of participants is unknown and the number of faulty processes is unbounded (for
BFT failure model) [15]. We could argue, that for a public environment model,
we cannot bound the number of faulty and potentially byzantine processes.
This is the case for the Bitcoin blockchain. The blockchain circumvents this
impossibility, by providing a probabilistic eventual consensus protocol. It is also
the case for our public tamper-resistant broadcast environment model. Implying,
that that we cannot achieve uniform total-order broadcast with unbounded
number of participants. We can argue further, that no protocol exists (for BFT
and non-BFT) that can reach consensus if the number of participants during an
epoch (i.e. a voting period) is unknown. This follows from the impossibility of
defining a quorum for an unknown and unbounded set of participants. That is
part of the motivation, why we also consider permissioned and bounded non-BFT
protocols in Chapter 4, as it allows us to define quorums of correct processes
during an epoch.

2.1.7 Replicated State Machines

A replicated state machine is a program which is replicated on several processes,
such that each correct instance exhibits the same behaviour [1, ch. 6]. This
can be achieved by using a total-order broadcast module (with properties: no
creation, no duplication, validity, agreement, total order), that orders and delivers
the same sequence of commands to all processes, and if the state machine is

18

deterministic.

It is not strictly necessary to have a total-order of broadcast messages for
replicated state machines. Certain problems allow relaxations such that the
replicated service still exhibits correct behaviour. A partial order of commands
may suffice, this is the case if the commands are commutative [16, sec. 2.3]. For
example, if implementing an eventually consistent replicated set, then the order
of insertion would not matter. For this, a reliable broadcast (with properties:
no creation, no duplication, validity, agreement) would suffice.

In later chapters, we will show that a tamper-resistant replicated state
machine can be implemented using a tamper-resistant total-order broadcast.

2.2 General Background Information

This section introduces general background knowledge on blockchain, including:
cryptography; the Bitcoin blockchain; saving data to the blockchain; and other
blockchain technologies.

2.2.1 Cryptography

Crpytography is the study of protocols to aid the confidential communication
between trusted parties [17]. Important concepts from cryptography that are
used in blockchain are one-way hash functions, the Merkle tree hash, and digital
signatures using public-key cryptography.

2.2.1.1 One-way Hash Functions

A hash function, is a function h that maps data x to a fingerprint y = h(x) of
the data [17, ch. 5]. The fingerprint is typically fixed length and shorter than
the data. The fingerprint represents the data which produces it, much like a
human fingerprint represents the person who produces it.

A one-way hash function is a function that is easy to compute but hard to
invert. For example, given a one-way hash function and a fingerprint, it would
be practically infeasible to find what data hashes to the fingerprint. Practically
infeasible is generally understood to mean: the best strategy, to our knowledge,
involves brute-force searching every possible input when searching for a specific
output.

The bitcoin blockchain uses one-way hash functions SHA256 (Secure Hash
Algorithm) and RIPEMD160 (RACE Integrity Primitives Evaluation Message
Digest) [2, ch. 4].

A Merkle tree is a binary tree, in which every leaf node is the hash of some
data value, and every inner node is the hash of the concatenation of its children
[17, ch. 9]. The root of the Merkle tree (sometimes referred to as the Merkle
tree hash) is a single hash value. The Merkle tree hash is used in Bitcoin to
represent a sequence of hash values by a single hash value, the Merkle tree root.
To prove that a hash value was one of the leaf nodes of the Merkle tree, one has
to calculate the hash values on the path from the leaf node to the root node,
this has complexity O(logn) for a total of n hash values.

19

Block 0 Block n -1 Block n

Block Header - Block Header . Block Header
00000000000000 H PRSP .| Prev Block Header Hash | |- - |- - | Prev Block Header Hash
List of Transactions List of Transactions List of Transactions

Transaction 1 Transaction 1 Transaction 1

Figure 2.2: The bitcoin blockchain, forming a chain of blocks starting from the
genesis block (block 0) to the most recently added block (block n).

2.2.1.2 Digital Signatures

A digital signature is a method for signing a message such that the authenticity of
the message can be verified by the receiver [17, ch. 8]. Public-key cryptography
consists of a key-pair (K, k)—a private key K and public key k—and a signing
and a verification algorithm. The signing algorithm sigy is private, whereas the
verification algorithm wvery is public.

The private key holder can sign a message m and produce a signature
y = sigi (m). Any receiver of the message m and signature y can, together with
the public-key verification algorithm, verify if a signature was produced by the
corresponding private-key. The verification function verg(m,y) outputs true,
if y = sigix(m), else false. A message with a verified signature is considered
authorized by the private key holder, because it is practically infeasible to
calculate a correct signature without access to the private key.

The bitcoin blockchain uses the Elliptic Curve Digital Signature Algorithm
[2, ch. 6] (ECDSA), on the basis of public-key cryptography and elliptic curve
cryptography [2, ch. 4].

2.2.2 Bitcoin Blockchain

Blockchain technology and the Bitcoin Blockchain was first described in 2008 [3].
Bitcoin is a decentralised transactional system, and relies on cryptography for
secure payment authorisation of the Bitcoin currency. No centralised authority
or financial institution is needed for transactions and payments between clients.
Bitcoin-nodes participate in a distributed consensus protocol to achieve this.
Full bitcoin-nodes verify and keep the entire bitcoin blockchain in their storage,
and participate in the Bitcoin consensus protocol.

2.2.2.1 Blockchain

The blockchain [2, ch. 8] is a growing chain of blocks, sometimes also referred to
as the ledger. A single block consists of: the hash value of the previous block
header in the chain, a timestamp, and the transaction data (see Figure 2.2). As
each block references the hash of the previous block, a chain is formed. This
chain goes all the way back to the first block, also known as the genesis block.

20

Occasional forking
Block 0 Block 1 Block 2 Block 3 Block 4 Block 5 Block 6

Block 2 " Block 5

L fr nt exten forkin
Block 0 Block 1 Block 2 Block 3 Block 4 Block 5

Block 2 Block 3 Block 4 Block 5 Block 6

“"1 o | | || |

Figure 2.3: Forking on the Bitcoin Blockchain: showing the more frequent
occasional forking (top), and less frequent extended forks (bottom) occurring on
the blockchain (figure reproduced from [18]).

New blocks are added to the blockchain through a process called mining
[2, ch. 10]. Mining requires solving a computationally intensive problem, so
called Proof-of-Work (PoW): brute-force search for a random number (called
the nonce) that inserted to the block header produces a hash with sufficient
number of leading zeroes. The number of leading zeroes regulate the amount of
work needed to participate in the block mining, as it is less likely to choose a
random number that produces more leading zeroes. Once a new valid block has
been mined, it is broadcast to the other participating nodes in the blockchain
network.

Consensus is achieved through [2, ch. 10]: verification of each transaction;
mining new blocks (aggregating transactions into blocks); verification of each
block; selection of longest chain (main chain) of blocks as main chain (dealing
with forks). Forking occurs when two mining nodes successfully mine a new
block and append it to the blockchain (see example, top block five, in Figure
2.3). This will cause network to consist of two disagreeing partitions. Eventually,
one of the forks will outpace the other, and become the main chain (see block
six in Figure 2.3).

2.2.2.2 Block

A block consists of the block header and a list of transactions (see Figure 2.4)
[2, ch. 9]. The block header contains information such as the time at which
the block was mined, the nonce, reference to the previous block header, and it
contains the Merkle root hash of all transactions. A block is considered valid, if
all of its transactions are valid, and if the time it was mined is within two hours
of the validating nodes clock. A block can be identified and accessed through its
block header hash.

21

Block n-1

Block n

Block Header

Version

The block version number

Block Header

List of Transactions

Hash of the header of the previous

| Prev Block Header Hash |1y ir the blockchain

Merkle Root Hash Hash of all transactions

The time the miner started hashing the

| | | Time header
The threshold which the mining node
Threshold has to find a hash less than
The number set by the mining node in
Nonce order to produce a block header hash

less than the threshold target

List of Transactions

Transaction 1

Figure 2.4: The bitcoin block data structure.

Transaction
Input Output
Hash of the referenced : |Version Transaction version number Value associated
PrevixHash |4 nsaction : [Value with this output
o |#inputs Number of inputs : d
PrevTxOut Index ofrreferenced . : _ ank\lng script
transaction output linputs seq |List of inputs . |Locking defining
- script conditions to be
. .. |Script that unlocks the ‘
Unlocking script [-2 b eod locking script #Outputs Number of outputs met for unlocking

QOutputs seq |List of outputs | . |

Earliest time transaction is valid
and can be added to blockchain

Locktime

Figure 2.5: The bitcoin transaction data structure.

2.2.2.3 Transaction

A Dbitcoin transaction transfers funds from the inputs to the outputs [2, ch. 6].
A transaction consists of: version number, a list of inputs, a list of outputs, and
the locktime (see Figure 2.5). It can be referenced by its transaction id. The
transaction id, abbreviated as txid, is the hash of the transaction.

An output of a transaction consists of a wvalue (in Bitcoin currency) and
a locking script. The locking script defines the conditions on spending the
associated value. Each input consists of a reference to a previous output (from a
previous transaction), and an unlocking script. The reference is the concatenation
of the referenced transaction id and the referenced output index of the referenced
transaction. The unlocking script is used to unlock the inputs locking script.
Unspent transaction outputs are referred to as UTXOs. These are transactions
not yet referenced by any other transaction on the blockchain.

A transaction is valid if: the referenced transactions are valid; the unlocking
scripts satisfactorily unlock the locking scripts; the referenced transaction outputs
have not been spent; and the inputs exceed the outputs in value (the difference
thereof is the transaction fee). The unlocking script is verified as follows: the

22

Name Description

Version no: 1
Num. inputs: 1
Inputl: e Previous transaction hash: <PREVTXHASH>

e Previous transaction output index: 0

o Input unlocking script length: sizeof(<SIGNATURE>) +
sizeof(<PUBKEY>)

o Input unlocking script: <SIGNATURE> <PUBKEY>

Num. outputs: 1

Outputl: o Value: 1

o Qutput script length: 24

e Output script: OP_DUP OP_HASH160 <PUBKEYHASH>
OP_EQUALVERIFY OP_CHECKSIG

Locktime: 0

Table 2.1: Pay-to-Public-Key-Hash (P2PKH) transaction with 1 input and 1
output.

unlocking script and locking script are concatenated and executed in the bitcoin
Script language, if at the end of executing the top of the stack holds the value
true, then it unlocked successfully.

Pay-to-Public-Key-Hash (P2PKH) Pay to public key hash (P2PKH) [2,
ch. 6] is the standard payment method used by Bitcoin wallets issuing a
transaction. The payment is issued towards a hash of a public key, transfering
bitcoins from an input to an output. Only the private key holder can unlock
the output with the corresponding public key hash. The presented P2PKH
transaction consists of one input and one output (see Table 2.1), but could
include more inputs and outputs.

A referenced P2PKH output is signed for and verified by providing the
input script consisting of the signature and the public key. The Script language
then concatenates the input with the output script, such that the following
script is produced: <SIG> <PUBKEY> OP_DUP OP_HASH160 <PUBKEYHASH> OP_-
EQUALVERIFY OP_CHECKSIG. The Script language reads the input from left to
right, and puts any non 0P_ commands on the stack. The part <PUBKEY> OP_-
DUP OP_HASH160 <PUBKEYHASH> OP_EQUALVERIFY duplicates the public key, and
checks if it matches the pubkeyhash of the output script, i.e. the address to
whom the money is being sent. The <SIG> <PUBKEY> ... O0OP_CHECKSIG part,
checks if the signature of the corresponding pubkey of this transaction is correct.
If the signature is correct, the input is verified, and the transaction is valid.

OP_RETURN OP_RETURN |2, ch. 12] is an output type specifically for
writing data to the blockchain. The OP_RETURN output marks the output
as invalid and not part of the UTXOs. The data written to the OP_RETURN
output is written to the output script of the output, appended after the OP -
RETURN command (see Table 2.2). The maximum allowed data to be written
to OP_RETURN is 80 byte according to the Bitcoin standard, and only 1

23

Name Description

Outputl: o Value: 0
o Output script length: sizeof(<DATA>) + 1
e QOutput script: OP_RETURN <DATA>

Table 2.2: Transaction with OP_RETURN output.

Parameter Default value
Mining-difficulty retargeting time: Every two weeks [2, ch. 10]
Average block-mining time: Ten minutes [2, ch. 10]
Max block size: 1 MB

Max data per transaction: 100 kB

Max input script size: 1650 B

Max element size on bitcoin script stack: 520 B

Max number of OP_RETURNSs per transaction: | 1

Max size of OP_RETURN data: 80 B

Table 2.3: Default parameters of the bitcoin blockchain [19].

OP_RETURN output is allowed per transaction. OP_RETURN is a way for
bitcoin-based applications to save data and application state to the blockchain.

2.2.2.4 Default Parameters and Properties

The default parameters are shown in Table 2.3. The parameters can be changed
for new networks but not for the public Bitcoin network.

2.2.3 Saving Data to the Blockchain

Regular transactions store only the necessary information for transferring funds
from one locking script (output) to another. This section reviews how arbitrary
data can be stored in transactions on the blockchain.

There are many possible methods for saving data to the blockchain. Out
of the presented methods [19], we are only interested in methods that do not
generate unspendable UTXOs and are not vulnerable to security and data
integrity issues. The only qualifying methods are: OP_RETURN and Data hash
(w/ sig).

Out of the two methods, OP_RETURN achieves better data efficiency (see
Appendix A), data efficiency is calculated as the ratio of inserted data size to
transaction size. The data efficiency of OP_RETURN is 25% at an input size
of 80 byte, compared to 16% of Data Hash w/ Sig. Further, if the data size is
increased, the OP_RETURN method continues to have better data efficiency,
under the assumption that the OP_RETURN method is not limited to 80 byte
(this is not true for the public Bitcoin blockchain, but can be set for private

24

Algorithm 2 Function CreateTransaction

uses Blockchain, instance b

function CreateTransaction(privatekey, publickey, prevtxhash, data)
pubkeyhash = hash(publickey)

inputl = {
'txid’: prevtxhash, \\ referenced transaction id
'vout’: 0 } \\ referenced output number
outputl = { pubkeyhash: 1, } \\ bitcoin address and value in btc

output2 = { "data”: data } \\ ”data” keyword and hex-encoded data
unsignedtransaction = b.CreateRawTransaction®(
[inputl],
[outputl, output2 |)
signedtransaction = b.SignRawTransactionWithKey®(
unsignedtransaction,
privatekey)
return signedtransaction

?createrawtransaction [8]
bsignrawtransactionwithkey [8]

networks). We limit any further discussions, and select OP_RETURN for saving
data to the blockchain.

2.2.3.1 OP_RETURN

The OP_.RETURN method [19] is achieved by adding data to an output with
the following output script to a transaction:

e Qutput script: OP_RETURN <DATA>

It is protected against tampering as data is written to the signed outputs.
Additionally, the output of OP_RETURN is defined by the bitcoin standard to
not be part of the UTXO set, thus avoiding the unspendable UTXO problem.
The max data per transaction is 80 byte (for Bitcoin default, but can be set
higher for other networks). The data efficiency is 25% for 80 byte of data. At
most one OP_RETURN output can be added to a standard bitcoin output.

2.2.3.2 Function CreateTransaction

The following function CreateTransaction (Algorithm 2) details how to create
a transaction containing a P2PKH input and output, and a OP_RETURN
output. The P2PKH input and output is used for authorization, such that the
owner of the private key is the owner of the data written to the OP_RETURN
output. The function takes as arguments the private and public key, as well
as the referenced transaction output, and the data which is inserted. The
algorithm uses the bitcoin core API [8] functions CreateRawTransaction and
SignRawTransactionWithKey in order to create a valid transaction.

25

2.2.4 Other Blockchain Technologies

Bitcoin was the first widely adopted blockchain. Since then (2008) many more
blockchain systems have evolved. In this section, we briefly summarise other
blockchain technologies and compare them to the Bitcoin blockchain.

e Bitcoin [20]: The Bitcoin blockchain (public blockchain), manages the
Bitcoin cryptocurrency, uses a UTXO based data model (all UTXOs are
saved in a data structure), and its smart contract language is not Turing
complete. Bitcoin was the first to propose and use the Proof-of-Work
(PoW) consensus protocol. The average block mining time is ten minutes,
and average transactions per seconds are seven. The Bitcoin blockchain is
considered to have the highest security, based on the amount of mining
nodes participating in the PoW consensus.

e FEthereum [20]: The Ethereum blockchain manages the Ethereum cryp-
tocurrency (public blockchain). The Ethereum smart contracts provide
more functionality than Bitcoin smart contracts, e.g. smart contract in-
ternal state, and are Turing complete. Its data model is accounts based,
this means that for each account the current state is saved. The Ethereum
blockchain also uses PoW consensus, but is working on integrating other
consensus algorithms. The average block mining time is 15 seconds, with
an average throughput of 15-40 transactions per second.

e Tendermint [20]: The main use of the Tendermint blockchain (private
blockchain) is as a consensus engine (for byzantine fault tolerant state
machine replication), and not as a cryptocurrency. It provides a range of
smart contract languages. Its consensus algorithm is a variant of PBFT
(practical byzantine fault tolerance), and not PoW. The block mining
latency is less than one second, and it can achieve thousand of transactions
per second (for private blockchains in single data centers).

Tendermint has best performance in terms of throughput and latency, followed
by Ethereum, followed by Bitcoin [20]. In terms of functionality, both Tendermint
and Ethereum provide smart contracts, whereas Bitcoin does not. The advantage
of using the public Bitcoin blockchain, is its superior security, due to its large
adoption and slower block mining rate [4].

Although there are differences between the later blockchain implementations
to the original Bitcoin blockchain, we should be able to extrapolate our work
to other blockchains as they typically have more functionality than the original
Bitcoin blockchain.

2.3 Related Work

We use the term related work broadly, and include a wide spectrum of other
work: virtual blockchains [4, 21]; sidechains [22]; blockchain abstraction interfaces
[23, 24]; blockchain replicated state machines [23, 24]; blockchain data anchoring
(writing data to blockchain) [25, 26, 27]; blockchain-based applications (file
system [28], database [29]); and blockchain-based tamper-resistant broadcast
protocols (our work).

We have chosen six related works from literature, and present a summary
thereof here and in Table 2.4:

26

Problem Interface Operations Network Blockchain
. DeliverTX; .
state “hine ’ bic i
el PO S e R B
Commit
anchoring . .
ad; te; b
[25] data in Factom {ed ,hv.vrl ¢ pub1e / Bitcoin
blockchain search; export | private
anchoring) . oo
(26, 27] | data in Chainpoint bubnut., . public Bitcoin;
blockchain export; verify Ethereum
4, 21 ai .
G| Dlockain | Virtualcbain |- public Bitcoin
read; Ethereum;
[29] blockchain transaction write-async; pubic / Hyperledger
database manager check-tx- private sawtooth &
status fabric
blockchain file | transaction B pubic /
[28] system manager private Ethereum
our tan.lper- tan.lper- broadcast; public / L
work resistant resistant deliver; verify | private Bitcoin
broadcast broadcast ’ :
G Safet d
Direct Com- roup Data arety an
Performance . Member- . Liveness
munication . Insertion .
ship Properties
latency: < 1s;
throughput:
(23,24] | > 10000tps no no - -
(single data
center) [20]
. OP -
25 - yes es (chainID -
125] ves (chainD) | pp RN
OP -
[26,27] | - yes 10 RETURN; -
smart
contracts
[4, 21, OP--
- no no -
30] RETURN
latency:
100ms to 1s bl
(sequential smart tuna. ¢
(29] onsictency): | O no consistency
consistency); contracts
throughput: models
350tps
latency: 42.5s
(28] (Wntmg o o smart _
response contracts
time)
our B OP -
work yes / no yes / no RETURN tunable

Table 2.4: Summary of related work.

27

o Tendermint [23, 24]: Tendermint (tendermint core) is used for byzantine
fault tolerant state machine replication. It is a 3 layer system, decoupling
the consensus layer (first layer, tendermint core) from the application layer
(third layer), by the application blockchain interface (ABCI) layer (second
layer).

e Factom [25]: Factom is an application interface to anchor, i.e. write, data
to the blockchain. Written entries are grouped into blocks, and the Merkle
tree root hash of the blocks are written to the blockchain (anchored).
This is provided as a service to the application developer. Entries can be
grouped into new chainsIDs, and the entire history of a chainID can be
retrieved in reverse order.

o Chainpoint [26, 27]: Chainpoint, similar to Factom, proposes a scalable
protocol for anchoring data to the blockchain. This is achieved by grouping
writes together and writing the Merkle tree hash to the blockchain. A
blockchain-verifiable receipt is generated and returned to the user that
proves the data was written to a transaction. This receipt can be used to
prove that the data was written independently of Chainpoint.

o Virtualchain/Blockstack [4, 21, 30]: Blockstack was at the time of publica-
tion a blockchain based name service, binding human readable names to
public keys, using the Virtualchain. The Virtualchain allows for defining
arbitrary state machines, or, arbitrary blockchains. The Virtualchain an-
nounces the state changes via the underlying blockchain. New logic can be
programmed on the Virtualchain layer.

o FEndolith [28]: Endolith is a blockchain based file system. For all changes
of the file system, the blockchain is used to store the: file-hash, user, and
timestamp. The system uses a transaction manager, abstracting away
the blockchain, to create and submit file tracking smart contracts to the
blockchain. The abstraction provides the proof that a file existed at a
certain point in time (proof-of-existence), and that a file has not been
tampered with (file validation).

e BlockchainDB [29]: BlockchainDB is a shared database on the blockchain,
that uses the blockchain as a storage layer. The BlockchainDB transac-
tion manager provides tunable consistency guarantees, such as sequential
consistency or eventual consistency with bounded staleness.

e QOur work: The work presented in this thesis: using the (Bitcoin) blockchain
for tamper-resistant broadcast protocols.

The common theme to the discussed works in Table 2.4 is the: tamper-proof
and tamper-resistant storage of data. Providing a tamper-proof data storage
service ([25, 26, 27]), or a virtual blockchain that stores data on an underlying
blockchain [4], or a blockchain database or file system that uses the tamper-
resistant storage of data and metadata ([29, 28]). In a like manner, our work is
using the blockchain for the tamper-resistant storage of messages.

The works in Table 2.4 describe a blockchain abstraction interface, residing
somewhere between the blockchain and the application. This is similar to
our work, as the tamper-resistant broadcast is layered between the application

28

layer and the blockchain layer. Such a three layer model for blockchain-based
applications has previously been discussed in: [31, 32, 33, 23, 24]. In particular,
the Tendermint architecture [23, 24], consists of three layers. Tendermint’s
application blockchain interface (ABCI) (layer two) provides, among a large set
of functions, the broadcast abstraction functionality (the function DeliverTX
[23] corresponds to the the broadcast and deliver function). The interface also
provides the Query operation, which checks the validity of a transaction, and
corresponds to the verify operation of our tamper-resistant broadcast model.

The challenges of blockchain-based applications are [4]: slow-writes; limited
bandwidth; the endless-ledger problem; and security. The slow-writes problem
is caused by the long confirmation time, such as six blocks on the Bitcoin
blockchain, or seven blocks on Ethereum (causing the average write-time to be
42.5 seconds [28]). The limited bandwidth problem is caused by the one MB
blocksize limit and the one block per ten minutes average mining time of the
Bitcoin blockchain. We will look at solutions to the slow-writes and limited
bandwidth challenges. The endless-ledger problem implies the problem which
is caused by the growing size of the blockchain. The time needed to start a
new node—to download and fully verify the blockchain—takes one to three days
[4]. The security challenge is that the security of the application relies on the
security of the underlying blockchain, however, the security of the underlying
blockchain could get compromised. The Virtualchain addresses this issue, by
the ability to migrate to a new blockchain, and by not changing any code of the
underlying blockchain [4].

29

30

Chapter 3

Blockchain Ledger

In this chapter we abstract the Bitcoin blockchain, by introducing the blockchain
ledger abstraction, an append only log (ledger) of records, and analyse its
properties. In the next chapter, we use the blockchain ledger abstraction to
build the tamper-resistant broadcast abstraction.

3.1 Related Work

The blockchain abstraction is also referred to as a distributed ledger [34, 35, 20],
or public ledger [36]. A ledger is a double-entry record keeping system, in which
each record moves funds from one account to another, similar to how (Bitcoin)
blockchain transactions move funds from one address to another. The distributed
ledger abstraction, thus suitable for our purposes, is a an append only log with
two functions[35]: get(), return the current ledger in its entirety; append(record
), append a new record to the ledger (c.f. read and write [34]). We adopt this
abstraction in this chapter.

We extended this abstraction with the tamper-resistant property, as we
believe it to be practical and integral of blockchains. This functionality exists
in the Bitcoin Blockchain [8]: verify historical transactions (gettxoutproof,
verifytxoutproof, getrawtransaction), and verify the entire ledger (verifychain).
We adopt the semantics of verifychain: a Verify request returns true if the ledger
in its current state is valid and has not been tampered with.

There are disagreements on the properties and consistency guarantees of the
Bitcoin blockchain [34]. Various statements from literature include, for example,
that Bitcoin does not satisfy eventual consistency [35], consensus is never achieved
on the blockchain and no transaction is ever final [15], consensus finality is not
achieved but rather a probabilistic and economic consensus finality [20], Bitcoin
provides eventual consistency [37], and a technical proof that the Bitcoin protocol
provides consistency in the asynchronous networking model [36]. The differing
opinions, most likely, arise from differing assumptions, preconditions and notation.
We will have to reevaluate the properties and normalise the terminology ourselves.

31

Module 3 Blockchain Ledger

Module name: Blockchain Ledger instance bl
Events:
E1 Request: < bl, Append | record >: Append a record to the blockchain
ledger.
E2 Request: < bl, Get >: Get the ledger.
E3 Indication: < bl, GetReturn | ledger >: Return the requested ledger.
E4 Request: < bl, Verify >: Verify the ledger.
E5 Indication: < bl, VerifyReturn | ”Valid”/”NotValid” >: Returnvalue
for verification request.

Properties:

P-1 Tamper-resistant: The state of the ledger, and all entries in the
ledger, are protected with high probability against tampering, and
the ledger is probailistically verifiable. A verification request returns
"Valid” (with high probability), if the blockchain ledger has not been
tampered with, else "NotValid”.

3.2 Blockchain Ledger Abstraction

The blockchain ledger abstraction, or tamper-resistant distributed ledger abstrac-
tion, is shown in Module 3. It provides five events, one event for requesting to
append a record to the ledger, and two events for requesting to get the current
ledger, and the corresponding return event getreturn thereof, and two events
for requesting to verify the current ledger, and the corresponding return event
verifyreturn. The module provides the tamper-resistant property, which is defined
in the Module specification. We also considered adding a property stating that
the records, and the order of the records, are according to the specified consensus
rules. We decided to omit such a property, as it is not a critical part of blockchain
systems (e.g. Tendermint Core [23] has no consensus rules about the records).

3.3 Bitcoin Transaction Abstraction

The blockchain ledger abstraction discussed records rather than transactions.
We need to introduce Bitcoin Blockchain transactions, before we delve into the
Bitcoin Blockchain abstraction. We define a Bitcoin Blockchain transaction to
contain the following fields:

e previzhash: A reference to the previous transaction whose output is used
as an input. (we omit information about the output index, and assume
each transaction has only one spendable output).

e data: The data which is saved to the transaction.

e pubkey: The associated public key of a transaction output, for which the
corresponding private key is needed to unlock the output.

32

The abstraction models a bitcoin P2PKH transaction which also contains an
additional OP_RETURN output (see Section 2.2.3). We omit the value, because
we only consider zero-valued transactions without transaction fees (see Section
1.5). A transaction is valid, if the following holds:

e The transaction’s signature of the referenced transaction is valid.
e The referenced transaction is valid.

e It is the only (i.e. the first) transaction in the log with the same prevtxhash
(that references the same transaction output(s)). That is, a transaction
output can only be referenced once.

3.4 Bitcoin Blockchain Ledger Abstraction

The Bitcoin Blockchain Ledger Abstraction is an abstraction of the Bitcoin
Blockchain [3], and is an instance of the Blockchain Ledger abstraction.

The Bitcoin Blockchain Ledger Module is shown in Module 4. This module is
exemplified and implemented using the bitcoin core API [8] in Algorithm 5. The
correctness of the properties are discussed around the implementation.

Correctness Probabilistic eventual consistency: The probability of having a
network partitioned into two, or more, forks, is inversely exponential to the
length of the fork [3]. Thus, the probability that two forks merge over time
converges to 1. From this follows, that the probability that all forks eventually
merge and are consistent converges to 1.

Probabilistic finality: A transaction, once appended, can only be removed
due to forks. The probability of a transaction at depth d being reverted is less
than the probability of a fork of length d. From this follows, that the probability
of reverting a transaction at depth d, converges to 1 over depth d.

Fair append: The fair append property is correct under the assumptions
that the transaction is valid and the transaction submission rate is less than the
maximum transaction mining rate (1MB per 10 minutes blockchain standard).
A transaction is included to a mined block, if it is valid and if it is among the
1MB highest paying transactions (w.r.t. transaction fees) of the unconfirmed
transactions. Because the average transaction rate is less than the mining rate
(assumption) the average size of unconfirmed valid transactions is less than 1
MB. Thus the entire set of unconfirmed valid transactions will be mined in its
entirety at infinite points in time. Which implies that the transaction is also
mined if appended infinite amount of times (fairness assumption).

Transaction validity: The transaction validity follows directly from the Bitcoin
consensus protocol and consensus rules, stating that, among other things, valid
blocks do not contain invalid transactions.

Tamper-resistant: We would like to show that this protocol implements the
tamper-resistant property. For this, we must show that (with high probability):
individual transactions are protected against tampering; the history of transac-
tions in the ledger are protected against tampering; and the verification protocol
is correct.

First, we show that individual transactions are protected against tampering.
This property follows from the valid signature (transaction validity) property of
the blockchain.

33

Module 4 Bitcoin Blockchain Ledger

Module name: Bitcoin Blockchain Ledger, instance bl

Events:

El1

E2
E3
E4
E5

Request: < bl, Append | transaction >: Append a transaction to the
blockchain ledger.

Request: < bl, Get >: Get the ledger.
Indication: < bl, GetReturn | ledger >: Return the requested ledger.
Request: < bl, Verify >: Verify the ledger.

Indication: < bl, VerifyReturn | ”"Valid”/”NotValid” >: Returnvalue
for verification request.

Properties:

P-1

Probabilistic eventual consistency: With probability converging to 1
over time, every correct process eventually agrees on the same order
of transactions in the ledger.

Probabilistic finality: With probability converging to 1 over the depth
of a transaction, an appended transaction will not be reverted and
removed from the ledger.

Fuair append: If a process appends a valid transaction infinitely often,
then eventually the transaction is appended to the ledger.

Tramsaction validity: Only valid transactions are appended to the
ledger, this includes:

o Authorization and authenticity: the transaction has a valid signa-
ture.

e Transaction order: If a transaction ta references an output of
another transaction ta’ as one of its inputs, then ta’ is located
before ta in the ledger.

e No double-spend: A transaction output can be referenced by at
most one transaction input.

Tamper-resistant: The state of the ledger, and all entries in the
ledger, are protected with high probability against tampering, and
the ledger is probailistically verifiable. A verification request returns
"Valid” (with high probability), if the blockchain ledger has not been
tampered with, else "NotValid”.

The history of transactions, i.e. the ledger, is protected against tampering.
Due to the probabilistic finality of the blockchain ledger, the probability that a
transaction is reverted converges to 0 over the depth of the transaction. Thus,
the probability that the transaction history can be tampered with, converges
to 0 over the depth of the transaction history. Because the probability is larger
than 0, it cannot be considered tamper-proof.

Lastly, we show the correctness of the verification protocol. This follows

34

Algorithm 5 Blockchain Ledger

Implements: Blockchain Ledger, instance bl
Uses: Bitcoin Blockchain (Bitcoin Core API [8]), instance b

upon event < bl, Init > do
connect to blockchain b
ledger + []

upon event < bl, Append | transaction > do
b.submitTransaction(transaction) ®

upon event < bl, Get > do
if ledger # b.mainChain * do \\ if not synchronized with mainChain
ledger = b.mainChain ¢ \\ synchronize
trigger < bl, GetReturn | ledger >

upon event < bl, Verify > do
if b.verifyChain()¢ is "Valid” do
trigger < bl, VerifyReturn | ”Valid” >
else do
trigger < bl, VerifyReturn | "NotValid” >

9Bitcoin Core API RPC: SendRawTransaction(transaction)

bThis can be tested by comparing the hash of the newest blocks, e.g. using GetBestBlockHash
to get the hash of the current top block of the blockchain

¢This assignment can be made more efficient by finding the latest common block of the
mainChain and the ledger, removing all orphaned blocks after that block from the ledger, and
then appending all successor blocks from the mainChain. The relevant Bitcoin Core RPCs
are: GetBestBlockHash; GetBlockHeader; previousblockhash and nextblockhash entries in
blockheader.

4Bitcoin Core APT RPC: VerifyChain(4, 0), thorough check of all blocks.

from the correctness of the blockchain implementation. The verification protocol
returns "Valid”, if the ledger in its entirety is valid, by checking every block down
to the genesis block. This implies that (with high probability) every transaction
in the ledger is valid, as well as the current state of the blockchain is valid and
has not been tampered with.

35

36

Chapter 4

Tamper-Resistant
Broadcast

This chapter introduces the tamper-resistant broadcast abstraction. It is divided
into sections relating to broadcast environment models: public tamper-resistant
broadcast protocols; permissioned tamper-resistant broadcast protocols; permis-
sioned non-native tamper-resistant broadcast protocols.

4.1 Related Work

The operations discussed in the works of Table 2.4 can be generalized and inter-
preted as the broadcast module events—broadcast, deliver—and, an additional
operation to verify the authenticity of data: verify.

The broadcast operation, writes a message to the blockchain (direction:
application to blockchain), either via smart contracts [28, 26, 27, 29], or via
OP_RETURN [25, 26, 27, 4]. The write operation can be asynchronous or
synchronous, i.e. blocking or non-blocking [23, 24, 29].

The deliver operation, delivers messages previously broadcast via the
blockchain (direction: blockchain to application). This is the semantic of our
work and other work [23, 25]. Other works [29] define a read operator with the
semantic of reading a variable.

The verify operation lets the application validate if a message was previously
written to the blockchain (part of the message history), e.g. Query [23] and
verify [26]. A message can be verified by checking if the transaction that stored
the message (in complete form or as a hash representation) is stored on the
blockchain [26]. Transaction verification is also part of the Bitcoin Blockchain
functionality (gettxoutproof, verifytxoutproof) [8].

By studying the previous literature, we can study examples on how certain
broadcast properties are realised when using the blockchain as a communications
medium, but also for solutions that do not rely on blockchain. A summary of
examples of solutions from previous research to the discussed properties can be
found in Appendix B.

37

Module 6 Tamper-Resistant Broadcast

Module name: Tamper-Resistant Broadcast, instance tb

Events:
E1 Request: < tb, Broadcast | message >: Broadcast message to all
processes.
E2 Indication: < tb, Deliver | p, message >: Deliver message broadcast
by process p.
E3 Request: < tb, Verify | p, message >: Verify if a message has been
tampered with.
E4 Indication: < tb, VerifyReturn | "Valid”/”NotValid” >: Returnvalue
for verification request.
Properties:
P-1 Tamper-resistant: The broadcast messages, and the delivered message

history are probabilistically (with high probability) protected against
tampering, and the delivered messages are probabilistically verifiable.
A verification request returns ”Valid” (with high probability), if the
message has not been tampered with and is part of the untampered
message history, else "NotValid”.

Algorithm 7 Tamper-Resistant Broadcast

Implements: Tamper-Resistant Broadcast, instance tb

Uses: Blockchain Ledger, instance bl

upon event < tb, Verify | p, txid, message > do
if message signed by p in bl.Get() A bl.Verify() is "Valid” do

trigger < tb, VerifyReturn | ”Valid” >

else do

trigger < tb, VerifyReturn | "NotValid” >

4.2 Tamper-Resistant Broadcast Abstraction

The tamper-resistant broadcast abstraction is shown in Module 6. It consists of:
a broadcast request event, i.e. send a message to all others; a deliver event, i.e.
deliver a message; and a verify and verifyreturn event, probabilistically validate
that a message has not been tampered with and is part of the untampered
message history.

The implementation is shown in Algorithm 7. We omit showing implemen-
tations for the broadcast and delivery events, as these will be defined later. A
message is verified if it exists as a historical transaction on the (untampered)
blockchain ledger (as common in other discussed protocols [26, 27, 25, 28], the

38

transaction on the blockchain is used as proof). The implementation uses the
Get request and the Verify request of the Blockchain Ledger as a synchronous
function call. In a real implementation using the Bitcoin Blockchain, we could di-
rectly use the Bitcoin Blockchain native functions for verification of a transaction:
gettxoutproof, verifytxoutproof [8].

Correctness Tamper-resistant: We would like to show that this protocol,
together with the subsequent protocols, implements the tamper-resistant property.
As we have not defined the broadcast and delivery events, we must make
assumptions about their implementation. These assumptions will hold for all
subsequently defined protocols, thus this correctness argument will subsequently
hold. We assume that broadcast messages are appended to the blockchain ledger
(directly or indirectly as a verifiable hash value), signed for by the broadcasting
process. Messages are not delivered before they have been appended to the
blockchain ledger.

The correctness follows from the correctness of the tamper-resistant property
of the blockchain ledger. The messages and message history are protected against
tampering (with high probability), because they are part of the blockchain ledger,
and the blockchain ledger is protected against tampering. The verification request
checks if the message is in the blockchain ledger, and if the blockchain ledger is
valid, if both are true then the message has not been tampered with and is part
of the message history.

Given the assumptions, we shall be able to assume the tamper-resistant
property of the following broadcast protocols in this chapter.

4.3 Public Tamper-Resistant Broadcast Proto-
cols

We will start with studying public tamper-resistant broadcast protocols. These
protocols are: public (open to any participant), unbounded (unlimited partic-
ipants), BFT (resistant to byzantine faults), and native (messages written to
blockchain, consensus via blockchain). The benefit of this configuration, is that it
is publicly verifiable and open for any party to participate. This can be useful for
certain applications, such as public and open registration systems. We will study
a selection of broadcast models, starting with the best-effort tamper-resistant
broadcast.

4.3.1 Best-Effort Tamper-Resistant Broadcast

The best-effort tamper-resistant broadcast provides validity, no duplication, and
no creation (see Module 8). The implementation is shown in Algorithm 9. The
algorithm adds any new broadcast messages to a set of waiting transactions. All
transactions that are not part of the blockchain are continually (upon a timeout)
re-appended. The algorithm regularly (upon timeout) checks if the ledger has
changed (i.e. new transactions). If the ledger has changed, then all transactions
of the ledger, that have not previously been delivered (comparison to a set of
delivered transactions), are delivered.

39

Module 8 Best-Effort Tamper-Resistant Broadcast

Module name: Best-Effort Tamper-Resistant Broadcast, instance btb
Properties:

P-1 Tamper-resistant

P-2-4 Validity, no duplication, no creation

Algorithm 9 Best-Effort Tamper-Resistant Broadcast

Implements: Best-Effort Tamper-Resistant Broadcast, instance btb
Uses: Blockchain Ledger, instance bl

upon event < btb, Init | privkey, pubkey, prevtxhash > do
privkey = privkey
pubkey = pubkey
prevtxhash = prevtxhash
prevledger = []
waiting = ()
delivered = ()
starttimer(A)

upon event < btb, Broadcast | message > do
transaction = CreateTransaction(privkey, pubkey, prevtxhash, message)
waiting = waiting U transaction
prevtxhash = hash(transaction)

upon event < Timeout > do
for transaction € waiting A transaction ¢ prevledger do
trigger < bl, Append | transaction >
trigger < bl, Get >

upon event < bl, GetReturn | ledger > do
for transaction € ledger \ prevledger A transaction ¢ delivered do
trigger < bb, Deliver | transaction.pubkey, transaction.message >
delivered = delivered U transaction
prevledger = ledger
starttimer(A)

Correctness Validity: The validity property is inherited from the fair append
property. If a correct process broadcasts a message m, then m is added to the
waiting set of transactions. This set of transactions is repeatedly appended to
the blockchain ledger, if the transaction is not yet on the ledger (see e.g. [1,
ch. 2.4] or [28]). Thus, eventually it will be appended to the blockchain, and
delivered by the other processes.

No duplication: This is achieved by saving all delivered messages in a set,

40

and comparing any new messages with the set of already delivered messages (see
e.g. [1, ch. 2.4]).

No creation: Assuming that every blockchain broadcast instance is instanti-
ated with a unique public key (assumption). And assuming that every delivered
message is valid. Then this implies that every message also must have been
signed for by the private key holder. Thus the authenticity of the message is
provided (see e.g. [4]).

4.3.2 Reliable Tamper-Resistant Broadcast

The reliable tamper-resistant broadcast (Module 10) provides in addition the
agreement property. The agreement property states, if a message m is delivered
by some correct process, then m is eventually delivered by every correct process.

The reliable tamper-resistant broadcast protocol is shown in Algorithm 11.
The protocol achieves agreement by: if a process delivers a message, then this
message is added to a set of delivered messages; if, due to a fork, a previously
delivered message is no longer part of the blockchain, then this message (trans-
action) is continually re-appended to the blockchain until it is again part of the
ledger.

We must, however, consider the following scenario. Consider an adversarial
process that double-spends a UTXO on two different forks, such that two different
messages are delivered by the processes on the different forks. In this case, we
must be able to re-append (one or both of them) to the blockchain, in order to
achieve agreement. We cannot add both transactions to the blockchain (using
same input UTXO). Instead, we could write the lost transaction as part of the
data of a new transaction (as is done in Algorithm 11).

Correctness Tamper-resistant, validity, no duplication, no creation: This
follows from the same argument as for best-effort broadcast.

Agreement: The agreement property is achieved by each process keeping track
of its delivered messages, in such a way that if a delivered message/transaction
is removed from the blockchain due to forking, then the process adds this
transaction to its own waiting set, even if the process did not originally broadcast
the message. This ensures that any correct process that delivers a message
repeatedly ensures that the message is part of the blockchain and thus also
eventually delivered by every other correct process (see e.g. [1, ch. 3.3]).

4.3.3 FIFO-Order Tamper-Resistant Broadcast

The FIFO-order (first-in first-out) property specifies the order of delivery of
messages. It guarantees that the order of messages broadcast from a sender s is
the same as the order of delivered messages from s. The FIFO-order (reliable)
tamper-resistant broadcast is shown in Module 12.

The idea behind the FIFO-order algorithm (Algorithm 13), is that each
broadcast transaction references the previously broadcast transaction in the
prevtxhash field. This produces a linked chain of transactions, and the blockchain
ledger must adhere to this order (transaction validity property). From this follows
that, if transactions are delivered in the order of the blockchain, then this is
also the order of broadcast messages. The reliable tamper-resistant broadcast

41

Module 10 Reliable Tamper-Resistant Broadcast

Module name: Reliable Tamper-Resistant Broadcast, instance rtb
Properties:

P-1-4 Tamper-resistant, validity, no duplication, no creation

P-5 Agreement

Algorithm 11 Reliable Tamper-Resistant Broadcast

Implements: Reliable Tamper-Resistant Broadcast, instance rtb
Uses: Blockchain Ledger, instance bl

upon event < rtb, Init | privkey, pubkey, prevtxhash > do
same as Algorithm 9

upon event < rth, Broadcast | message > do
same as Algorithm 9

upon event < Timeout > do
same as Algorithm 9

upon event < bl, GetReturn | ledger > do

for transaction € ledger \ prevledger A transaction® ¢ delivered do
trigger < rtb, Deliver | transaction.pubkey, transaction.message >
delivered = delivered U transaction

for transaction € delivered \ ledger do
if transaction not valid® do

trigger < rtb, Broadcast | transaction >¢

waiting = waiting U transaction

prevledger = ledger

starttimer(A)

“If the transaction contains a transaction as data, then check if is valid and if it has already
been delivered, if valid then deliver the transaction.data.pubkey, transaction.data.message.

b Adversarial process has double-spent the UTXO input of this transaction.

¢Broadcast the transaction as data payload instead.

algorithm (Algorithm 11) did not specify the order of delivery, whereas this is
specified for the FIFO-order algorithm.

Correctness Tamper-resistant, validity, no duplication, no creation, agree-
ment: Follows from reliable broadcast.

FIFO-order: The correctness of the FIFO-order property follows from
the blockchain ledger transaction validity property, which encompasses the
transaction order property: if a transaction ta references an output of another
transaction ta’ as one of its inputs, then ta’ is located before ta in the ledger. As

42

Module 12 FIFO-Order Tamper-Resistant Broadcast

Module name: FIFO-Order Tamper-Resistant Broadcast, instance ftb
Properties:

P-1-5 Tamper-resistant, validity, no duplication, no creation, agreement
P-6 FIFO-order®

“We consider messages broadcast by an adversarial process to be concurrent, and not in
any order. For example, if an adversarial process double-spends a UTXO, and appends two
different messages on two different forks, then these are two concurrent broadcasts and not
strictly in FIFO-order.

Algorithm 13 FIFO-Order Tamper-Resistant Broadcast

Implements: FIFO-Order Tamper-Resistant Broadcast, instance ftb
Uses: Blockchain Ledger, instance bl

upon event < ftb, Init | privkey, pubkey, prevtxid > do
same as Algorithm 9

upon event < ftb, Broadcast | message > do
same as Algorithm 9

upon event < Timeout > do
same as Algorithm 9

upon event < bl, GetReturn | ledger > do
for transaction € ledger \ prevledger \\ in sequence of ledger
A transaction® ¢ delivered do
trigger < rtb, Deliver | transaction.pubkey, transaction.message >
delivered = delivered U transaction
for transaction € delivered \ ledger do
if transaction not valid® do
trigger < rtb, Broadcast | transaction >°¢
waiting = waiting U transaction
prevledger = ledger
starttimer(A)

°If the transaction contains a transaction as data, then check if is valid and if it has already
been delivered, if valid then deliver the transaction.data.pubkey, transaction.data.message.

b Adversarial process has double-spent the UTXO input of this transaction

“Broadcast the transaction as data payload instead.

the submitted transactions build a chain of submitted transactions by input refer-
ences, this FIFO-order also has to be reflected on the blockchain ledger. Because
previously undelivered messages are delivered in the order of the blockchain,
the order of the delivered messages are in FIFO-order. The FIFO-order is not
required of transactions by an adversarial process.

43

Module 14 Causal-Order Tamper-Resistant Broadcast

Module name: Causal-Order Tamper-Resistant Broadcast, instance ctb
Properties:

P-1-6 Tamper-resistant, validity, no duplication, no creation, agreement,
FIFO-order

P-7 Causal-order

Algorithm 15 Causal-Order Tamper-Resistant Broadcast

Implements: Causal-Order Tamper-Resistant Broadcast, instance ctb
Uses: FIFO-order Tamper-Resistant Broadcast, instance ftb

upon event < ctb, Init | privkey, pubkey, prevtxhash > do
ftb.Init(privkey, pubkey, prevtxhash)

DAG =10
delivered = 0
root = L

add root to DAG

upon event < ctb, Broadcast | message > do
leafs = set of reachable leafs from root in DAG
msg = pack(leafs, message)
for tx in leafs do
add edge (tx, msg.txid) to DAG
trigger < ftb, Broadcast | msg >

upon event < ftb, Deliver | pid, message > do

leafs, msg = unpack(message)

tx1, tx2, ..., txn = leafs

add node (pid, tx, message) to DAG

add edges (tx1, tx), ..., (txn, tx) to DAG

for all reachable® nodes that are not in delivered do
trigger < ctb, Deliver | node.pid, node.txid, node.msg >
delivered = delivered U node

“We define a node as reachable, if all of its predecessors are in the DAG and reachable.

4.3.4 Causal-Order Tamper-Resistant Broadcast

The causal-order property specifies that messages are delivered such that the order
respects the happened-before relationship: for any message m1 that potentially
caused a message m2, i.e., m1 — m2, no process delivers m2 unless it has already
delivered m1. The module is shown in Module 14.

The causal-order can be achieved by: using vector clocks [1, ch. 3.9], or
appending the causal message history to the message [1, ch. 3.9]. Because the

44

number of participants is unbounded, we cannot use the vector-clock methodology.
The implementation which we present, is a derivation of the message history
method.

For every message, we must uniquely (and immutably) assign its causal
past. The protocol (Algorithm 15), broadcasts together with the message, a set
of transaction ids that were the causal predecessors of the transaction. From
these references, we can build a directed acyclic graph (DAG). From the DAG,
the causal past of a transaction can be inferred. Thus, we wait to deliver a
transaction, until its causal past has been delivered.

Correctness Tamper-resistant, validity, no duplication, no creation, agree-
ment, FIFO-order These properties follow directly from the use of the FIFO-order
(reliable) broadcast. The FIFO-order follows from the causal-order.

Causal-order: Messages are delivered in the order of the DAG. And, only
messages for which all predecessors are present in the DAG are delivered. From
this follows the causal-delivery, if the DAG is causally ordered. The DAG
respects the causal-order by construction, as processes which broadcast messages
assign their causal predecessors correctly. This is achieved by the algorithm
choosing all leafs of the DAG (leafs defined as the set of reachable nodes that
have no reachable successor node; we define a node as reachable, if all of its
predecessors (references) are in the DAG and reachable), and append these leafs
to the message.

4.3.5 Uniform Causal-Order Total-Order Tamper-
Resistant Broadcast

As noted in the background chapter, we cannot design a public uniform total-
ordered broadcast protocol, as it would imply a solution to the (impossible)
public uniform consensus problem, for an unbounded number of participants.
The standard practice is to assume a bounded fork length: Bitcoin six blocks
[38]; Bitcoin ten blocks [30]; Ethereum seven blocks [28]. Thus, any transaction
that is at least six blocks deep on the Bitcoin blockchain can be considered
confirmed, or, final, i.e. it will not be re-ordered or removed from the ledger.

The blockchain uniform causal-order total-order tamper-resistant broadcast
is shown in Module 16, the implementation is shown in in Algorithm 17. The
uniform agreement and total-order follows from only delivering transactions that
are final, i.e. confirmed (according to assumptions). From the total-order and
FIFO-order, follows the causal-ordered delivery of messages. The difference of
this protocol to previous protocols, is that we wait until a transaction is six
blocks deep (confirmed, finalized) before delivering it to the application.

Correctness Tamper-resistant, validity, no duplication, no creation, FIFO-
order: Same as for FIFO-order broadcast.

Causal-order: FIFO-order + total-order implies causal-order. Let us assume
that the order is both FIFO-order and total-order. We must show that the order
respects the causal-order according to the happened-before relationship (see
Section 2.1, denoted by —). The happened-before relationship is described by the
disjunction of 3 rules, we will show how each rule is satisfied by our assumptions.
(1) If some process broadcast m; before ma, then m; — ms. Because of the

45

Module 16 Uniform Causal-Order Total-Order Tamper-Resistant Broadcast

Module name: Uniform Causal-Order Total-Order Tamper-Resistant Broad-
cast, instance ucttb

Events:

E1 Request: < ucttb, Broadcast | message >: Broadcast message to all
processes.

E2 Indication: < ucttb, Deliver | p, message >: Deliver message broadcast
by process p.

Properties:

P-1-4 Tamper-resistant, validity, no duplication, no creation
P-5 Uniform agreement
P-6 Uniform total-order

P-7 Uniform causal-order

Algorithm 17 Uniform Causal-Order Total-Order Tamper-Resistant Broadcast

Implements: Uniform Causal-Order Total-Order Tamper-Resistant Broadcast,
instance ucttb

Uses: Blockchain Ledger, instance bl

upon event < ucttb, Init | privkey, pubkey, prevtxhash > do
same as Algorithm 9

upon event < ucttb, Broadcast | message > do
same as Algorithm 9

upon event < Timeout > do
same as Algorithm 9

upon event < bl, GetReturn | ledger > do
for transaction € ledger \ delivered \\ in sequence of ledger
A transaction is confirmed * do
trigger < ucttb, Deliver | transaction.pubkey, transaction.message>
delivered = delivered U transaction
prevledger = ledger
starttimer(A)

“Bitcoin transactions are commonly considered finalized once they are six blocks deep [38].

46

FIFO-order property, m; will always be before ms in the total-order. (2) If
some process delivered m; before broadcasting ms, then m; — msy. Because
of the total-order property, if m; is delivered, then the prefix of messages in
the total-order up to m; is fixed. Thus, no message mso broadcast after the
delivery of m; can be inserted before m; in the total-order. Thus, m; must
be before mq in the total-order. (3) If there exists a message m’ such that
my — m' and m’ — mo, then m; — my. The transitivity rule follows from the
transitivity of the total-order property. If m; is before m’ and m’ is before my
in the total-order, then m; is before ms in the total-order.

The reverse direction (causal-order + total-order implies FIFO-order + total-
order) is trivial to show, thus FIFO-order + total-order is equivalent to causal-
order + total-order. Similarly, as shown in Hadzilacos and Toueg [9, ch. 3.3],
causal-order is equivalent to FIFO-order + local-order (local-order: if a process
delivers a message m, before broadcasting a message mo, then no other process
delivers mo before mq). As an alternative argument, we could have shown that
total-order implies the local-order, thus total-order and FIFO-order implies the
local-order and FIFO-order, which implies the causal-order.

Uniform agreement: Transactions are not delivered until they have been
confirmed on to the blockchain. This ensures that if a transaction is delivered
by a process, then it has been confirmed, which implies that the transaction is
immutably stored on the blockchain and eventually is delivered by all correct
processes, even if the process fails shortly after delivering (see e.g. [30, 28]).

Uniform total-order: The uniform total-order property is ensured, because
each process delivers the messages of the confirmed transactions in the same order
as the ledger. Because of the bounded fork length assumption, the confirmed
transactions order on the ledger is final. Thus, the order in which the messages
are delivered is the same for any two processes (see e.g. [30, 28]).

4.3.6 Implications

This section has shown the possibility for achieving causal-ordered reliable
broadcast, for the public, unbounded, BFT model. We noted the impossibility
of uniform reliable broadcast (and stronger models), for the public, unbounded,
BFT model. Many current implementations rely on the assumption that the
fork-length is bounded for realising a uniform total-ordered tamper-resistant
broadcast. In the next section, we will use the fact that we have a known and
bounded set of non-byzantine participants, and can therefore design stronger
models (without assuming bounded fork length).

4.4 Permissioned Tamper-Resistant Broadcast
Protocols

There are two reasons why we are interested in permissioned broadcast protocols.
The first reason, is that group communication and group membership abstractions
can be very useful for the application developer. In particular, through disjoint
permissioned group communication channels, we can limit the group to known
participants and non-byzantine participants. Second, by introducing group
communication channels, we can also limit the number of participants to a
known set and bounded number. Thus, we can use protocols that rely on

47

quorums (e.g. majority voting), and we can also assume the non-byzantine
behaviour of the participants.

4.4.1 Fixed Group Tamper-Resistant Broadcast

The fized group tamper-resistant broadcast protocol, has a fixed and finite set of
members (participants). The set of members are decided before the initialisation
of the protocol. The messages are publicly broadcast via the blockchain, this
provides the tamper-resistant property.

The fixed membership tamper-resistant broadcast module is shown in Module
18. The group membership property, implies, that no message is delivered
unless it was broadcast by a process from the group (c.f. view inclusion of
view-synchronous communication for a static view [1, ch. 6.8]).

The implementation in Algorithm 19 identifies the group members through
their public keys. The protocol uses an underlying instance of a tamper-resistant
broadcast protocol. Messages that are delivered by the underlying protocol are
filtered, such that only messages from known group members are delivered to the
application. Because of this, the properties of the underlying broadcast protocol
are wholly inherited, whilst also providing the group membership property.

Correctness Group membership: The correctness of the algorithm relies on
the assumption that, if the underlying broadcast protocol delivers a message m
with sender p, then this message was previously broadcast by p. This follows from
the no creation property of the tamper-resistant broadcast protocols discussed in
previous section. Thus, by filtering for messages that are from group members,
we only deliver messages that are from group members.

4.4.2 Implications

Permissioned tamper-resistant broadcast allows us to design protocols and solve
problems that are not possible when using the public tamper-resistant broadcast
abstraction. This is because we can assume a known and bounded set of group
members; and assume the non-byzantine failure model of the group members.
The security of the application is still backed by the tamper-resistant (possibly
public) blockchain. Thus the message history is protected from byzantine faults.

In this short section, we left out many other aspects, notably: dynamic group
membership and view-synchronous communication [1, ch. 6.8].

We could build many more protocols on the fixed membership model. Here
are some that we thought are worth a brief mention:

Byzantine, and non-byzantine, fault-tolerant consensus: Byzantine fault-
tolerant consensus can be achieved through a best-effort broadcast (ByzantineEp-
ochConsensus [1, ch. 5.6]). The same is true for non-byzantine fault-tolerant
consensus. We find that fixed group tamper-resistant consensus is an interesting
possibility, because the protocol is transparent and publicly inspectable. How-
ever, because of the high message complexity of consensus, we think that in the
majority of cases, using a non-native protocol for consensus (if possible) is a
better alternative, as we explore in the next section.

Uniform total-order (reliable) broadcast: Byzantine, and non-byzantine
uniform, total-order broadcast can be achieved by using reliable broadcast and
consensus [1, ch. 6.1, ch. 6.2].

48

Module 18 Fixed Group Tamper-Resistant Broadcast

Module name: Fixed Group Tamper-Resistant Broadcast, instance fgtb
Events:

E1 Request: < fgtb, Broadcast | message >: Broadcast message to all
processes.

E2 Indication: < fgtb, Deliver | p, message >: Deliver message broadcast
by process p.

Properties:

P-1 Group membership: If a process delivers a message m broadcast by
process p, then p is a member of the fixed group.

Algorithm 19 Fixed Group Tamper-Resistant Broadcast

Implements: Fixed Group Tamper-Resistant Broadcast, instance fgtb
Uses: Tamper-Resistant Broadcast, instance tb

upon event < fgtb, Init | privkey, pubkey, prevtxhash, groupmembers > do
groupmembers = groupmembers
tb.Init(privkey, pubkey, prevtxhash)

upon event < fgtb, Broadcast | message > do
trigger < tb, Broadcast | message® >

upon event < tb, Deliver | p, message > do
if p € groupmembers do
trigger < fgth, Deliver | p, message >

%It is also possible to encrypt the message, such that only the group members could decrypt
the message. For this, a (1,n) threshold encryption scheme could be used, such that any (1)
of the recipients (n) can decrypt the message [17, ch. 11.5]. For this, the set public-keys are
needed for encryption, and one private key for decryption

Uniform causal-order (reliable) broadcast: Using the causal-order tamper-
resistant broadcast implementation in previous section, we could wait to deliver
a message until it has at least > n/2 many leafs (majority of processes have
acknowledged the transaction).

Uniform causal-order total-order broadcast: By combining the total-order
and FIFO-order, we achieve causal-order. For example, we could use a FIFO-
broadcast protocol to broadcast the messages. Using consensus, we could decide
on which order to broadcast the messages (whilst keeping the FIFO-order).

Performance gains of permissioned tamper-resistant broadcast protocols versus
public tamper-resistant broadcast protocols: An interesting aspect are poten-
tial performance gains possible for permissioned protocols compared to public

49

protocols. The discussed fixed group tamper-resistant broadcast protocol in
Algorithm 19, reduces itself to using a public tamper-resistant broadcast protocol
for the same non-group-membership problem. This implies that no performance
gains are achieved when comparing the public and permissioned counterparts.
Performance gains, however, are possible as we reduce the problem instance
space.

To our knowledge, there are no significant performance gains possible from
optimising the discussed best-effort, reliable, FIFO-order, and causal-order
broadcast protocols for the permissioned environment model. In the next section
we discuss how performance gains can be achieved by decoupling the performance
from the underlying blockchain using non-native permissioned tamper-resistant
broadcast protocols.

4.5 Permissioned Non-Native Tamper-Resistant
Broadcast Protocols

In this section, we look at permissioned protocols (bounded), assuming the fail-
crash failure model (non-BFT), that may use direct links or P2P for exchanging
messages (non-native). The difference to previous sections, is that we can
use external means for communication, and not depend on the blockchain for
exchanging messages. In effect, we are not limited to blockchains throughput
and latency for our protocol. This is one of the benefits of the non-native
environment, and we will look at commonly employed techniques for achieving:
high throughput, low latency, and arbitrary message sizes.

4.5.1 High Throughput Low Latency Non-Native Uniform
Total-Order Tamper-Resistant Broadcast

The broadcast module is shown in Module 20, it defines the high throughput
and low latency properties as comparable to other high-performance systems.
High throughput can be achieved by grouping writes together and writing the
Merkle root hash thereof on the blockchain [25, 26, 27]. Low latency can be
achieved by buffering broadcast messages as an asynchronous write [28, 25, 26].
Arbitrary message size is enabled through a constant sized hash.

The implementation is shown in Algorithm 21. It uses a high-throughput
and low-latency total-ordered broadcast (htllth) primitive for the ordering and
dissemination of messages to all processes. By construction, the protocol inherits
the properties of the total ordered broadcast (htlltb), any total-ordered broadcast
model could be used for this. The tamper-poof property arises from anchoring
(writing) a group of messages to the blockchain through the Merkle-root hash.
This is regularly triggered by a timeout.

Correctness High throughput and low latency: The throughput and latency
are only limited by the used uniform total-order broadcast, as well as the local
operations log.append and signature is valid. Assuming that the local operations
are implemented efficiently, then the latency and throughput should reflect that
of the used high-performance uniform total-ordered broadcast, and achieve high
throughput and low latency.

50

Module 20 High Throughput Low Latency Tamper-Resistant Broadcast

Module name: High Throughput Low Latency Tamper-Resistant Broadcast,
instance htlltb

Events:
E1 Request: < htllth, Broadcast | message >: Broadcast message to all
processes.
E2 Indication: < htlltb, Deliver | p, message >: Deliver message broad-
cast by process p.
Properties:
P-1 High throughput: The throughput is comparable (within 50%) to
other high-performance specialized systems for this task.

P-2 Low latency: The latency is comparable (within 50%) to other high-
performance specialized systems for this task.

Other broadcast properties The protocol inherits the broadcast properties of
the underlying uniform total-order broadcast protocol by construction. This is
because, if the application broadcasts a message, then the message is broadcast
via hltob, and, if hltob delivers a message, then our algorithm also delivers the
message.

Tamper-resistant: In order to prove the tamper-resistant condition,we must
show that the broadcast messages are protected against tampering, and that the
message history is protected against tampering. The broadcast messages are
protected against tampering because they are signed by the private key holder,
this signature is appended to the message. The message history is protected by
the tamper-resistant broadcast. The Merkle root of the entire message history is
regularly broadcast via the tamper-resistant broadcast. Thus, the Merkle root
of the history of messages (the log) is tamper-resistant, which implies that the
history of messages is tamper-resistant.

4.5.2 Implications

The presented implementation inherits its properties of the used subcomponents.
For example, if we required a non-BFT causal-ordered total-ordered tamper-
resistant broadcast, we can use the zookeeper atomic broadcast [14], which has
the properties of a uniform causal-ordered total-ordered (reliable) broadcast.
This composition would tolerate up to < n/2 faulty (non-byzantine) failures.

With the non-native permissioned tamper-resistant broadcast environment
model, high-performance tamper-resistant broadcast models can be designed
matching the desired properties.

o1

Algorithm 21 High Throughput Low Latency Tamper-Resistant Broadcast

Implements:
High Throughput Low Latency Tamper-Resistant Broadcast, instance
htlltb

Uses:
Fixed Group Reliable Tamper-Resistant Broadcast, instance fgrtb
High Throughput Low Latency Uniform Total-Ordered Broadcast, in-
stance hltob

upon event < htlltb, Init | privkey, pubkey, prevtxhash, groupmembers > do
fertb.Init(privkey, pubkey, prevtxhash, groupmembers)
map = ()
log =[]
timeout.start(A)

upon event < htlltb, Broadcast | message > do
trigger < hltob, Broadcast | message, sign(message, privkey) >

upon event < hltob, Deliver | p, message, signature > do
if signature is valid do
trigger < htlltb, Deliver | p, length(log), message >
log.append(p, message, signature)

upon event Timeout do
mth = MerkleTreeHash(log)
trigger < fgrtb, Broadcast | length(log) — mth >
timeout.start(A)

upon event < fgtb, Deliver | p, txid, length — mth > do
map.add(length — (txid, mth))

upon event < htlltb, Verify | p, Isn, message, signature > do
if p, message, signature in log at position lsn do
length = min{length € map : length > lsn}
txid, mth = map.get(length)
trigger < hltb, VerifyReturn | fgrtb.Verify(txid, mth) >
else
trigger < hltb, VerifyReturn | "NotValid” >

52

Chapter 5

Evaluation

We implemented and evaluated the performance of a selection of the protocols,
and experimentally tested the correctness of the protocols. The implementation
of the protocols, together with all code used for running the discussed experiments
can be accessed online [39].

Broadcast protocols are commonly evaluated on throughput and latency
[40, 41]. This is also true of the related work in Section 2.3 [28, 29], and of
Blockchain systems [20]. We define the latency as time between broadcast and
delivery at the sending process, as similar to broadcast-related work [40]. In
contrast, blockchain systems measure latency typically as the average block
mining time [20, 42]. The throughput is described as messages per second
[41], or MB per second [41, 40], or measured as transactions per seconds (tx/s)
[20, 29, 42]. We use the definition of transactions per second (tx/s).

Besides the performance metrics, other interesting aspects to consider are:
number of processes for scalability [40, 41]; message size; packet loss; fairness
(percentage of completed broadcasts); overhead of the various subsystems as a
dimension [28], various consistency models [29]. We cannot investigate every
aspect, but we do investigate varying the number of processes, varying the
consistency models, and test for the subsystem overhead of one of the protocols.

5.1 Methodology

We implemented four protocols and deployed them on a distributed cluster,
spanning over three physically separated locations in the Frankfurt areal.

The benchmark workload consisted of continually alternating between broad-
casting a message and delivering messages for a time of 180 seconds (3 minutes).
This was executed in parallel on three, six, nine, and twelve processes. We set up
a fresh execution environment for each benchmark run, using Google Kubernetes
Engine. This comprised of a six-node ETCD cluster, a six-node MultiChain
cluster, and a twelve-node Broadcast cluster. The nodes were evenly deployed
over three physically separated locations in the Frankfurt area. From these

workloads, we collected the history of each process executing the benchmark. A

IRefer to [39] and in particular the evaluation execution script evaluation/deployment /run_-
all.sh, and the benchmark executor tamperproofbroadcast/tests/benchmarks/benchmark.py
for exact details [39].

53

history consists of a sequence of: operation (broadcast or deliver); process id;
message; time. From this history, the throughput and latency of each individual
process was calculated. Further statistics, such as average throughput and
average latency, and the 5th and 95th percentile were calculated from this. The
histories were also used to check the correctness of each execution, with respect
to the safety properties of the broadcast protocols.

5.1.1 Implementation

We implemented three of the discussed protocols from Chapter 4, and a non-
tamper-resistant broadcast protocol for comparison. Here follows a short de-
scription of each implementation and the identifier which refers to it:

e fotb (identifier used in this chapter): FIFO-Order Tamper-Resistant
Broadcast (Algorithm 13)

e totb: Uniform Causal-Order Total-Order Tamper-Resistant Broadcast
(Algorithm 17)

e htllth: High Throughput Low Latency Tamper-Resistant Broadcast (Al-
gorithm 21)

e htlltbtest: Not described in previous chapters. This is an implementation
of a non-tamper-resistant uniform causal-ordered total-ordered broadcast.
The purpose of it is to allow the comparison of our proposed algorithms to
other state-of-the art algorithms. For this, we use the implementation of
htlltb, and strip away all blockchain and tamper-resistant related compo-
nents. What we are left with, is a broadcast abstraction of the used high
throughput low latency broadcast software.

We use a Bitcoin Core [8] compatible blockchain, MultiChain version 2.0.2 [43],
as the blockchain ledger, for fotb, totb and htlith. We use ETCD version 3.4.5
[44], a raft-based consensus program (linearizable replicated key-value storage),
for the high throughput and low latency causal-order total-order broadcast of
htlltb and htlltbtest.

The implementations were translated from pseudocode into the programming
language Python. We tried to use the Python built-in data types, such as sets
and lists, where possible.

We use batching to increase the throughput, as otherwise the performance
suffers due to RPC round trip times. For fotb and totb, broadcast messages
during the latest 0.1 seconds (or if cumulatively larger than 2048 byte), are
batched together before written to the blockchain. For htlltb and htlltbtest,
broadcast messages are batched together in groups of 128 messages, before being
broadcast via the underlying broadcast system.

5.1.2 Software

We used the following software and settings:

e Broadcast protocols: The implemented tamper-resistant broadcast proto-
cols are available online [39].

54

o MultiChain: We used the MultiChain blockchain serving as the Bitcoin
Core compatible backend.

— Consensus: Proof-of-work, 10 seconds per block, max 8MB per block,
no transaction costs.

— Version: 2.0.2 [45]

e ETCD: Version: 3.4.5, bitnami/etcd [44]

5.1.3 Deployment

We deployed the benchmark on Google Kubernetes Engine with the following
settings. The code for the deployment is available online [39].

e Region: europe-west-3 (Frankfurt, Germany)
e Zones: a, b, ¢ (physically separated locations)

e Machine type (ni-standard-2): 2 vCPU, 7.5 GB memory, 100 GB disk
size, 10 Gbps network egress bandwidth (24 machines in total, 1 node per
machine) 2

e Nodes: 6 MultiChain nodes, 2 per zone; 6 ETCD nodes, 2 per zone; 12

broadcast nodes, 4 per zone.

5.1.4 Benchmark

The benchmark consisted of the following workload:

e Workload: 180 seconds (3 minutes) of alternating between: broadcasting 1
message; delivering up to 1024 messages or until local queue is exhausted.

o Message size: 256 byte random data.
We repeated the benchmark for the following configurations:
o Number of processes: 3, 6,9, and 12.

e Protocols: fotb, totb, htlltb, and htlltbtest.

5.1.5 Statistics

We collected the statistics of the benchmark runs. This is how we caluclated the
throughput and latency:

e Throughput: Total delivered messages per second (tx/s). This is calculated
as the average (over all histories) number of delivered messages per second.

e Latency: Time between broadcasting and delivering a message, from the
perspective of the broadcasting process. This is calculated as the average
(over all histories) of all messages that were broadcast and delivered.

2A vCPU is a single hardware Hyper-thread on one of the following Intel Xeon CPU
platforms: Skylake, Broadwell, Haswell, Sandy Bridge, or Ivy Bridge [46].

%)

e Broadcast Throughput: Total broadcast (not delivered) messages per
second (tx/s). This is calculated as the average (over all histories) number
of broadcast messages per second.

o Sth and 95th percentile: The 5th percentile is the value which is greater
than 5% of the observed values and less than 95%; the 95th percentile is
the value which is greater than 95% of the observed values.

5.2 Results

We executed the benchmark for each protocol, with three, six, nine, and twelve
nodes. From the histories, we analysed the throughput and latency, and checked
the histories for correctness.

5.2.1 Correctness

We collected the histories from each workload. A history, is a sequence of
broadcast and delivered messages from the view of a process. We evaluated
these histories [39], and could not find any inconsistencies to the proposed safety
properties: FIFO-order; total-order; causal-order; no-duplication; no-creation.
We did, however, confirm that fotb does not provide the total-order property, as
fotb-6 and fotb-9 did not deliver in a total-order accross nodes (this is due to
blockchain forks).

We should note that, because a history is specific to an execution, the results
of this analysis cannot generalise to every execution. Thus, the analysis cannot
prove the correctness of the implementation. Rather, the analysis can show

Process 1

Process 2

Broadcast

e Process 1

o MessageNr 0

o Time 1584566082.8416443
Broadcast

e Process 1

o MessageNr 1

o Time 1584566082.8416843

Deliver

e Process 1

o MessageNr 0

e Time 1584566083.0866983
Deliver

e Process 1

o MessageNr 1

o Time 1584566083.0867066

Deliver

e Process 2

o MessageNr 0

e Time 1584566083.7022316
Deliver

e Process 2

o MessageNr 1

e Time 1584566083.7022405

Broadcast

e Process 2

o MessageNr 0

o Time 1584566083.6448305
Broadcast

e Process 2

o MessageNr 1

o Time 1584566083.644878

Deliver

e Process 1

o MessageNr 0

e Time 1584566084.357182
Deliver

e Process 1

o MessageNr 1

o Time 1584566084.0794506

Deliver

e Process 2

o MessageNr 0

e Time 1584566084.357182
Deliver

e Process 2

o MessageNr 1

e Time 1584566084.3571942

Table 5.1: Abbreviated history of process 1 and process 2 of htlltbtest-3.

56

if there exists an execution that contradicts and violates any safety property.
The correctness tests did help us, however, detecting an error in earlier versions
causing long forks, causing the total-order property to be violated for the total-
order broadcast (because it assumes a bounded fork length).

The total-order property was assessed by asserting that, for each pair of
histories (of delivered messages), one is a prefix of the other. The FIFO-order
was asserted by checking that the order of delivery was the same as the order of
the broadcast. The no duplication property was asserted by checking for any
duplicate entries in any of the histories. The no creation was asserted by checking
every delivered message was broadcast in one of the histories. We also evaluated
the correctness of the implementations through writing tests that would run a
similar broadcast-deliver workload, and check the history in retrospective for
inconsistencies.

We show an excerpt of the the history of two processes of the htlltbtest-3
execution in Table 5.1. Each process starts broadcasting messages before it starts
delivering. The messages of process 1 and process 2 are broadcast concurrently,
and not strictly ordered, but the messages are delivered in the same order by both

processes (total-order), and delivered in the same order as they were broadcast
(FIFO-order).

5.2.2 Throughput

The average measured throughput over the 180 second period is shown in Figure
5.1. The outcome suggests that we can order the protocols in terms of throughput
from lowest to highest: totb (lowest throughput), fotb, htlltb, htlltbtest (highest
throughput).

—o— fotb -¥- totb --A&- htlitb —%- htlitbtest

______ -
—m— -—
g 1 —-"‘x— Aoeereeenereneneet A
R ST —— At
3 e
e At
3
o
<
o
3
°
£ 103 L Il |
o= R e e e p—— ¥
’ 6 9 12

nodes
Figure 5.1: Throughput versus number of participating nodes.

The throughput rounded to two significant digits is shown in Table 5.2. The
relative throughput achieved by htlltb compared to fotb and totb was 6.1, 8.4, 10,
13 times higher and 10, 14, 17, 21 higher for 3, 6, 9, and 12 nodes respectively.

The throughput of htlltb as relative to htlltbtest was: 0.73, 0.74, 0.67, 0.61.
This would qualify htlltb for our definition of “high throughput” (see Section
2.1.3), if we use htlltbtest as the benchmark comparison.

The average throughput (averaged over nodes) is displayed as a time series
in Figure 5.2. The figure suggests that the throughput over time is more stable
for the htlltb and htlltbtest when compared to totb and fotb. This spiking effect

o7

— fotb-3 e fotb-9 — toth-3 e totb-9

-=- fotb-6 —-- fotb-12 -=-- totb-6 —-- totb-12
@ 1000 A @ 1000 A
z z
= e
2 a
£ 500 £ 500
(= (=}
S S
< o
s s b
01 T T T 01 T T T
0 50 100 150 0 50 100 150
time (s) time (s)
— htlitb-3 e htlltb-9 — htlitbtest-3 == htlltbtest-9
--- htlitb-6 —-- htlltb-12 --- htlitbtest-6 —-- htlltbtest-12
_ 12500 { = . 20000
VAT .
2 . TN o, Moefid) 2 \’\,‘Wwaw#r‘”“'«”-‘q"!,"‘“}f\r“‘"\,\~v_\“- i
< 10000 2| T 150001 K
5 Lad 5 B Vi St
a e a
‘§, 7500 1 N §; 10000 rardo M ivere Vo~ _«J\'\,‘n,\»‘,z.,slv‘\.hl
.g 5000 1 _g MUWWAAAMNAM AT AN Mg AT, |
= T T T = 5000 1 T T T
0 50 100 150 0 50 100 150
time (s) time (s)
Figure 5.2: Throughput time series.
— fotb-3 e fotb-9 — totb-3 e totb-9
—-=-- fotb-6 —-= fotb-12 —-=- totb-6 —-= totb-12
7 1000 .-'\';,ym_.;i.f;»,:\“,~~}~A,¢_'_'-,~;.-.\c_-:,y 3 1000
ko] 3
= =
5 5
2 500 2 500
[=} [=]
S S
e 2
£ £
= 04 T T T 04 v' T T
] 50 100 150 0 50 100 150
time (s) time (s)
— htlitb-3 e htlitb-9 —— htlitbtest-3 oo htlltbtest-9
--- htlitb-6 —-= htlltb-12 --- htlltbtest-6 —-= htlltbtest-12
_ P —
g ' 2
310000 1 £ 15000 1
s P
a . 2
5 7500 4 5
S S 10000
e <
£ 50004 £
] 50 100 150 0
time (s) time (s)

Figure 5.3: Throughput time series of rolling average over 30 second window.

for totb and hotb seems to occur at regular ten-second intervals, suggesting a
connection to the block mining frequency.

Figure 5.3 shows the rolling average over a 30 second window of the time
series. Herein our attention is drawn to the slow start of fotb and totb. There
is a 60 second delay before totb starts delivering messages, due to the protocol

nodes fotb | totb | htlltb | htlitbtest
3 (tx/s) 740 | 450 | 4,500 6,200
6 880 | 520 | 7,400 10,000
9 900 | 540 | 9,400 14,000
12 880 | 520 | 11,000 18,000

Table 5.2: Average throughput (tx/s).

58

waiting for 6 blocks confirmation, each block taking on average 10 seconds to
mine. For fotb, the delay would be 1 block waiting time. This artificially causes
the perceived average throughput of totb to decrease, as the protocol delivers
messages two-thirds of the workload time (120s out of 180s). Yet, if we adjust
for this, by adding 50% to the average throughput of totb, it still is less than
that of fotb (0.91, 0.89, 0.90, 0.89).

The theoretical maximum throughput of totb and fotb is 2,700tx/s, if a block
of maximum size 8 MB gets mined every 10 seconds, and transactions have a
payload of 256 byte. Neither totb nor fotb achieve a peak throughput during a 1
second interval (Figure 5.2), but rather peak at around 1,000tx/s. This hints at
inefficiencies of the implementation.

ETCD reportedly can achieve 50,000 writes per second, and 186,000 reads
per second [47]. Albeit, this was achieved on a different configuration to ours
on Google Cloud Engine, with higher number of CPUs per node, and with a
total of 1,000 clients (processes). Our comparative benchmarks, htllth-12 and
htlltbtest-12, achieved 22% and 36% thereof. The reported benchmark achieves
600 writes per second with one client (c.f. 50,000 with 1,000 clients), thus we
should expect that there is plenty of room to increase the throughput as the
number of processes are increased.

5.2.3 Latency

The average latency in milliseconds of the benchmarks are shown in Figure 5.4.
The figure suggests that the latency of the protocols are ordered from highest to
lowest: totb (highest latency), fotb, htllthb, htlltbtest (lowest latency).

—&— fotb -¥- totb -k htlitb k- htlitbtest

107 4
0 10% 4
;cj, 100 |
107 5 i_____i_____i_____z
3 6 9 12
nodes
Figure 5.4: Latency.
nodes fotb totb | htlltb | htlltbtest
3 (ms) 12,000 79,000 68 47
6 44,000 99,000 80 55
9 59,000 | 110,000 94 61
12 69,000 | 110,000 110 77

Table 5.3: Average latency (ms).

59

The average latencies are shown in Table 5.3, rounded to two significant digits.
Both fotb and totb have a comparatively high latency to htlltb. For example,
for three nodes, the average latency of fotb and totb is 630 and 1,000 times
higher compared to htlltb. The comparatively high latency of totb-3 is explained
by the 6-blocks confirmation wait time at 10 seconds per block, similarly for
fotb depends on the block mining time. Again, this highlights the benefit of
decoupling the latency from the underlying blockchain.

When comparing htlltb to htlltbtest at 3, 6, 9, and 12 nodes, the relative
latencies are: 1.45, 1.45, 1.54, 1.43. This partly supports our definition of "fast
latency” (see Section 2.1.3).

— fotb-3 e fotb-9 — totb-3 e totb-9
—-=- fotb-6 —-= fotb-12 —-=- totb-6 —-= totb-12
102 4 R
O O
9 g 1074
2 2
L L
k:l &
- - - 6x 10 - - -
0 50 100 150 0 50 100 150
time (s) time (s)
— htlitb-3 e htlltb-9 —— htlltbtest-3 e htlltbtest-9
-=- htlitb-6 —-= htlltb-12 -=- htlitbtest-6 —-= htlitbtest-12
2x107!
C) 107t = @
3 9x1072 § oy _
9 9 10-1 b
c c
g8x10 hah) s g
= 7x1072 = 6x1072
6x1072 : : : 4x1072 - T T
0 50 100 150 0 50 100 150
time (s) time (s)
Figure 5.5: Latency time series.
— fotb-3 e fotb-9 — totb-3 e totb-9
——~- fotb-6 —-- fotb-12 ——- totb-6 —-- totb-12
102 4)
C) C)
g g 104 P
2 g 9x10! P
= & gx10! ‘f,*/———————
10t 4 7x 10! 5
0 50 100 150 0 50 100 150
time (s) time (s)
— htlitb-3 e htlitb-9 —— htlltbtest-3 -+ htlitbtest-9
--- htlitb-6 —-- htlltb-12 --- htlitbtest-6 —-- htlitbtest-12
104\
@ 107140 @
3 9x%1072 2
2 2
L8x107 £ 6x107 fx
7x1072
0 0 50 100 150
time (s) time (s)

Figure 5.6: Latency time series of rolling average over 30 second window

The latency time series is shown in Figure 5.5. The latency of a message is
plotted at the time of delivering the message. This is why there is a 60 second

delay before any data points of the totb time series, and 10 seconds of the fotb
time series.

60

_ 1000 A
2 2
£ £ 750
= =
> 3
3 2 500+
ES ES
g g 2501+
5 5
T T T 01 T T T
0 50 100 150 0 50 100 150
time (s) time (s)
fotb-9 fotb-12
1000 1000 1 ™ g 2
g) Yile i
£ 750 £ 7501
5 5
£ 500 £ 500
E E
£ 250 £ 2509
S £
0 T T T 0 1 T T T
0 50 100 150 0 50 100 150
time (s) time (s)
fotb-3 fotb-6
1.35x 10! 10? .
1.3x 10!
__125x10! _
© 12x10* o
2 1.15x 10" o
$ 1llx10! S
& 1.05x 10 k]
10!
9:5x10° : . : 10* 4 : . :
0 50 100 150 0 50 100 150
time (s) time (s)
fotb-9 fotb-12
102
102 4
G 6x 10! 3
g4x10! g
g 3x10! g
~2x10! B
0 50 100 150 0 50 100 150
time (s) time (s)
fotb-3 fotb-6
Lo X 1o 2.9x102
% -29"102 1A G 2.8x102
T 2.9x 1 X 2.7x10?
£ 2.85x 102 £
P 2 = 2.6x102
7 2.8x102 1§ 8 102]
g 2.75x 102 Y
s 2 s B 2.4x10?
8 27x10 s :
5 2.65x 102 523x10°
2.6 x 102 22x10
0 50 100 150 0 50 100 150
time (s) time (s)
fotb-9 fotb-12
3x102 2.8x10?
& 2:9%x10% & 27x10?
28x10 X 26x10?
= 27x102 4] = 2.5% 102
€ 26x102 14 o g5
g 26x . A S g £ 2.4x10?
8 25x10 X v 8 2.3x10? |
£ 2.4 1071 = ¥ “ 22x102
2.3x10? : : :]]]
0 50 100 150 0 50 100 150
time (s) time (s)

Figure 5.7: Throughput, latency, and broadcast throughput time series of fotb.

61

1000 { 1000
Q) Q)
£ 7501 £ 750
=] 5
2 500 £ 5004
E S
2 250 2 250 A
£ 5
01 0 A ———— e
0 50 100 150 0 50 100 150
time (s)
totb-12
. 1000 1000 1
2 S
5 7501 £ 750
5 5
£ 500 £ 500+
B B
2 250 2 250
s s
04 0 ;
0 50 100 150 0 50 100 150
time (s) time (s)
totb-3 totb-6
<d
@ 8x10t T 1024
> > 1
g go9x10
g 2 1
k] & 8x10
%10t 7x 10!
X
0 50 100 150 0 50 100 150
time (s) time (s)
totb-9 totb-12
O Gl
T 102 o
c b c
£ 9x10! g 10
= N = 9x10*
x 1
8x10 8 x 101
7 % 10%
0 50 100 150 0 50 100 150
time (s) time (s)
2.95 % 102 totb-3 totb-6
& X 2
. 2.9x102 \ Azz:igz
% 2.85x 107 \ £
£ 5 8x102) £ 2.8x102
Z 2 =
8 2.75 x 102 & 27x102
® 27x10? 2 2.6x10?
2565 2 a, <4 2 3
5 2.65%10 5 2.5x10 Y
2 [d
2.6x10] 2.4 %102 v
0 50 100 150 0 50 100 150
time (s) time (s)
totb-9 totb-12
3x102 3 3x 102
_2.9% 1021} —
2 2.8x10? 3 2
£ 27x102{ ol - El
7 2.6x102 i a S5 VRETREY = et - SR S I
£ 2.5x102 t: = s
g 2.4x 102 Aot bty e 5
5 23x102 el T e 5
2.2 %102 i 2% 102 I I |
0 50 100 150 0 50 100 150
time (s) time (s)

Figure 5.8: Throughput, latency, and broadcast throughput time series of totb.

62

Again, we notice that the latency of htllth and htlltbtest appear to be more
stable accross the 180 seconds. In particular, the increasing latency over time
for fotb-6-9-12 and totb-6-9-12 is surprising. The latency surpasses 100 seconds
for totb-6-9-12, and for fotb-9-12, causing no broadcast message after 80 seconds
to be delivered before the end of the workload (180 seconds). Figure 5.7 and
5.8 show the throughput, latency, and broadcast throughput (the number of
broadcast messages (delivered and un-delivered)), of each individual node of fotb
and totb. The figure shows that the throughput and broadcast remain relatively
stable compared to the latency. Whereas the latency steadily increases. The
broadcast throughput (Table 5.4) of fotb is 1.08, 1.70, 2.56, 3.30 times larger
compared to the throughput (Table 5.2). This suggests that the system cannot
deliver the messages at the same rate as they are being broadcast, causing longer
queues and thus increasing latency.

nodes fotb | totb | htlltb | htlltbtest
3 (tx/s) 800 810 | 4,500 6,200
6 1,500 | 1,600 | 7,500 10,000
9 2,300 | 2,300 | 9,400 14,000
12 2,900 | 3,100 | 11,000 18,000

Table 5.4: Average broadcast throughput (broadcast tx/s).

The reported (write) latency of ETCD is 20ms for 1,000 concurrent clients,
and 1.6ms for 1 client [47]. Compared to this, our protocol htllthb-12 is 5.5 times
slower, and htlltbtest-12 3.9 times slower. This shows that our implementation
might have inefficiencies which could be optimised and corrected.

63

64

Chapter 6

Use Cases

Blockchain has the possibility to impact a wide range of problems and fields,
including [6]: data management and the secure storage of data; supply chain, for
example logistics providing origin tracking and identifying counterfeit products;
integrity verification such as tamper-resistant and verifiable storage of data (time
stamping). Among future trends is the continued work on blockchain adoption
and interoperability, this would include, for example, blockchain virtualisation.
We will review these use cases, and how they can be implemented with the
tamper-resistant broadcast abstraction.

6.1 Design Pattern: Tamper-Resistant Repli-
cated State Machine

The tamper-resistant replicated state machine is a generalisation of how to
implement a tamper-resistant (replicated) application, and shows the general
technique employed. We have already discussed the replicated state machine in
Section 2.1 but as a non-tamper-resistant variant. What makes this different, or,
what makes a replicated state machine tamper-resistant? The difference to the
replicated state machine, is the addition of the tamper-resistant property and
verification protocol.

The Tamper-Resistant Replicated State Machine is shown in Module 22. The
interface is based on the the replicated state machine interface as defined Cachin
et al. [1, Module 6.12]. The tamper-resistant property requires the current state
(and history of states) of the replicated state machine to be the probabilistically
(with high probability) correct state (untampered). This has to be verifiable.
The verification entails, in general, either proving that the history of operations
that caused the state is untampered, or that the state (and history of states) is
untampered with. We opt for the former. The verification request will (with
high probability) prove that the untampered history of operations produce the
current state.

The implementation of the tamper-resistant replicated state machine is shown
in Algorithm 23. The implementation uses an instance of the tamper-resistant
broadcast. A uniform reliable total-order broadcast is sufficient for implementing
a replicated state machine [1, ch. 6].

The algorithm broadcasts any incoming commands via the tamper-resistant

65

Module 22 Tamper-Resistant Replicated State Machine

Module name: Tamper-Resistant Replicated State Machine, instance trsm

Events:
E1 Request: < trsm, Execute | command >: Execute command on state
machine.
E2 Indication: < trsm, Output | response >: : Return response from
command executed on state machine.
E3 Request: < tb, Verify >: Verify current state of replicated state
machine.
E4 Indication: < tb, VerifyReturn | "Valid”/”NotValid” >: Returnvalue
for verification request.
Properties:
P-1 Tamper-resistant: The replicated state machine is probabilistically

(with high probability) protected against tampering, and the out-
put of the replicated state machine is probabilistically verifiable. A
verification request returns ”Valid” (with high probability), if the
replicated state machine has not been tampered with, else "NotValid”.

Algorithm 23 Tamper-Resistant Replicated State Machine

Implements: Tamper-Resistant Replicated State Machine, instance trsm

Uses: Tamper-Resistant Broadcast, instance tb

upon event < trsm, Init > do
state = initial state

log = []

upon event < trsm, Execute | command > do
trigger < tb, Broadcast | command >

upon event < tb, Deliver | pid, txid, command > do
returnvalue, state = execute(command, state)
trigger < trsm, Output | returnvalue >
log.append(command)

upon event < trsm, Verify > do
if tb.Verify(command) is "Valid” for each command in log
A log produces current state do

else

trigger < trsm, VerifyReturn | "Valid” >

trigger < trsm, VerifyReturn | "NotValid” >

66

broadcast. A command consists of the operation and arguments to be executed
on the state machine. Delivered commands via the tamper-resistant broadcast
are added to a log of commands, and executed on the state machine.

Correctness The tamper-resistant property follows from the use of the tamper-
resistant broadcast. The broadcast commands are protected against tampering,
and the Verify request returns ”Valid”, if the history of commands that produce
the current state are verified to not having been tampered with, else "NotValid”.

If a uniform total-order broadcast is used, the implementation also provides
the agreement and termination properties [1, ch. 6].

Implications The tamper-resistant replicated state machine is a general ap-
proach of creating tamper-resistant applications. The verification functionality
could be extended to include the verification of historical states, the verification
of a state passed as an argument, the verification of an operation, etc.

6.2 Use Case: Tamper-Resistant File System

The first use case we study is the secure storage of data using blockchain. We also
refer to it as a blockchain-based file system or a tamper-resistant file system. This
includes our ongoing work on a blockchain-based file system [5]. Other examples
from literature include a data provenance system for cloud data storage [28], and
a Ethereum-blockchain-based file system [48]. A tamper-resistant file system is
essential for certain applications that require the data to be securely stored, and
for which it is necessary to produce a verifiable proof. An example of this is
the storage of financial data of business entities in Germany [5]. This requires
providing tamper-resistant record-keeping, motivating the use of blockchain
technology.

For this use case, we present an implementation of a multi-user file system
(Algorithm 24). We use the tamper-resistant replicated state machine design
pattern. The local file system is the replicated state machine, and the commands
executed are the file system operations that the clients request to execute.

The correctness of the implementation relies on the correctness of the local
file system, and on the properties of the tamper-resistant broadcast. We would
recommend using the high throughput low latency total-order causal-order
tamper-resistant broadcast. This would guarantee the sequential-consistency on
the file system (see Section 2.1). Other models could also be used. For example,
if we can guarantee that the files and directories of different users are disjoint,
it would be sufficient to require the FIFO-order, rather than total-order and
causal-order.

6.3 Use Case: Timestamp Server

Providing a means for verifying the integrity and existence of data, also known
as timestamping, is a service provided by Factom [25] and Chainpoint [26]. This
involves providing a verifiable proof that the data existed at, or before, a specific
date and time. Here, we show a minimal example of how this can be implemented
using the tamper-resistant replicated state machine approach.

67

Algorithm 24 Multi-User Tamper-Resistant File System

Implements: Multi-User Tamper-Resistant File System, instance mufs

Uses:
Tamper-Resistant Broadcast, instance tb
Local File System, instance Ifs

upon event < mufs, Init > do
Ifs = initialise local file system

log =[]

upon event < mufs, Execute | command > do
trigger < tb, Broadcast | command >

upon event < tb, Deliver | pid, txid, command > do
returnvalue = Ilfs.execute(command)
if pid is my pid do \\if it was my command
trigger < mufs, Output | returnvalue >

upon event < mufs, Verify > do
Same as Algorithm 23

Algorithm 25 Timestamp Server

Implements: Timestamp Server, instance ts
Uses: Tamper-Resistant Broadcast, instance tb

upon event < ts, Init > do
map = { }

upon event < ts, Timestamp | file > do
trigger < tb, Broadcast | hash(file) >

upon event < tb, Deliver | pid, txid, filehash > do
map.add(filehash — txid)

upon event < ts, Verify | file > do
txid = map.get(hash(file))
trigger < ts, VerifyReturn | tb.Verify(txid) >

The implementation is shown in Algorithm 25. The Timestamp Server
abstraction consists of two operations: Timestamp and Verify. When a user
requests to timestamp a new file, the filehash (hash value of the file) is broadcast.
Upon delivering a filehash, we add a new entry to the map, mapping the filehash
to the transaction id. When a user attempts to verify a file, the filehash is
calculated, the transaction id is recovered from the map, and we return the proof
from the tamper-resistant broadcast. From the returned proof, the age of the
transaction id can be inferred, and by this the age of the file.

We would suggest to use an instance of high throughput low latency uniform
reliable tamper-resistant broadcast, to service the needs for a large number of

68

Algorithm 26 Virtual Blockchain

Implements: Virtual Blockchain, instance vb
Uses: Tamper-Resistant Broadcast, instance tb

upon event < vb, Init > do
state = initial state
ledger = []

upon event < vb, Append | transaction > do
trigger < tb, Broadcast | transaction >

upon event < tb, Deliver | pid, txid, transaction > do
if transaction conform with consensus rules at state do
returnvalue, state = execute(state, transaction)
ledger.append(transaction)

upon event < vb, GetLedger > do
trigger < vb, GetLedgerReturn | ledger >

upon event < bv, Verify > do
if tb.Verify(transaction) is ”Valid” for each transaction in ledger
A ledger produces current state do
trigger < trsm, VerifyReturn | "Valid” >
else
trigger < trsm, VerifyReturn | "NotValid” >

users. It is not necessary to restrict the ordering guarantees on the broadcast
abstraction. The uniform reliability property, guarantees that if a filehash has
been timestamped (delivered), then it is also eventually timestamped by all other
correct servers.

We are uncertain about the possibility of bounding the time between the
Timestamp request and the finalised append to the blockchain. This implies that
we cannot put an upper bound on the time difference between the Timestamp
request and the latest creation time of the returned timestamp proof. We do note,
however, that larger time differences are increasingly unlikely, with probability
converging to 0 (see probabilistic finality property of Module 4).

6.4 Use Case: Virtual Blockchain

The third use case is blockchain virtualisation. The Virtual Blockchain design
pattern can be used to define an arbitrary blockchain. The implementer can
arbitrarily define the consensus rules and the state machine behaviour. The ben-
efit is that new applications (blockchains) can be implemented without changes
to the code of the underlying blockchain layer, decoupling the security from
the application logic [4]. Tendermint Core uses a similar approach, decoupling
the application logic (state machine and consensus rules) from the consensus
mechanism, to enable user defined blockchains [23].

The blockchain virtualisation implements the Blockchain Ledger interface

69

(Module 3). It consists of five events: Append; Get; GetReturn; Verify; and
VerifyReturn.

The Virtual Blockchain is implemented in Algorithm 26. It uses a tamper-
resistant broadcast instance. When the user requests to append a transaction, it
is broadcast via the tamper-resistant broadcast. The transaction is delivered,
and if it conforms to the consensus rules at the current state of the state machine,
the transaction is executed on the state machine and added to the ledger. The
GetLedger request returns the latest ledger. The implementation is similar to
the Tamper-Resistant Replicated State Machine implementation. The difference,
is that transactions are checked for conformity with the consensus rules at the
current state before being executed by the state machine and added to the log.

Correctness Because every append triggers a broadcast, and every deliver
causes a transaction to be executed (if the transaction is conform), the consistency,
finality, append properties are inherited from the used tamper-resistant broadcast
model. The tamper-resistant property is inherited from the tamper-resistant
broadcast model. The transaction validity property holds true (according to the
consensus rules), because every transaction is checked for conformity with the
consensus rules, thus only valid transactions are appended to the ledger.

Implications The blockchain virtualisation can be used to create new
blockchains and new blockchain applications. For example, it can be used to
create virtual currencies, i.e. a cryptocurrency that is not native to a blockchain.

6.5 Use Case: Supply Chain Tracking

The last use case we study is supply chain tracking. We will use the blockchain
virtualisation design pattern which requires us to specify the state machine and
the consensus rules.

For this example we consider two roles, or types of end-users, that are
represented by the blockchain:

e Businesses: Businesses are producers, merchants and other intermediaries
that own and modify the product at some point from moment of production
to consumption. We denote a business by the letter B with a subscript
identifier, e.g. Bj.

o (Consumers: Consumers consume a product and become the final owners
of it. We denote consumers by the letter C' with a subscript identifier, e.g.
C1.

The state machine can execute the following transactions. The consensus rules
define the preconditions for a valid transaction. The outcome describes the effect
of a valid transaction:

e Transaction: Business B; produces a new product p.

— Precondition: p has never been produced before.
— Precondition: Transaction has been signed for by Bj.

— Outcome: Bj becomes new owner of p.

70

e Transaction: Business B; transfers a product p to a new owner Bs.

— Precondition: Bj is owner of p.
— Precondition: Transaction has been signed for by By and Bs.

— Outcome: By becomes new owner of p.
e Transaction: Consumer C' consumes product p from business Bj.

— Precondition: Bj is owner of p.
— Precondition: Transaction has been signed for by Bj.
— Outcome: C becomes final owner of p.
The proposed supply chain tracking protocol can be implemented by using

the Virtual Blockchain Algorithm 26, through substituting in the aforementioned
state machine specification and consensus rules.

71

72

Chapter 7

Discussion

We have now presented a variety of tamper-resistant broadcast protocols, and
described how they can be used to realise tamper-resistant replicated state
machines. Our study was motivated by the topic of how to implement tamper-
resistant replicated state machines. We defined tamper-resistance as 1) the
probabilistic (with high probability) protection against byzantine behaviour,
and 2) the probabilistic verifiability that no tampering has occurred. We chose
to study blockchain-based tamper-resistant broadcast protocols. We studied
various environment models and safety and liveness properties of the tamper-
resistant broadcast protocols in order to support various environment models and
consistency models of tamper-resistant replicated state machines. We evaluated
the protocols and showed how they can be used for four use cases.

The tamper-proof and tamper-resistant definitions are derived from byzantine
fault tolerance and probabilistic byzantine fault tolerance respectively, but differ
by the addition of an explicit verification protocol. We believe our definitions
of tamper-proof and tamper-resistant are useful, especially for web-applications
in which a client cannot trust the web server. The definitions may, however,
be criticised of being too vague. For example, it is not clear what tampering
is. An alternative, more specific, definition could use the universal composable
security, a framework for analysing cryptographic protocols [49]. With it we
can describe the correct behaviour of the protocol for all correct processes,
protected from actions by byzantine processes. Similar to our definition, in
the universal composable security framework, assumptions are required for
general functionalities in the so called plain model (requiring an honest majority)
[50]. Assumptions are integral to make the definition practical and feasible.
Besides the design of mathematically tamper-proof applications (as done with
the universal composable security framework), it remains a challenge to design
legally tamper-proof applications, from a legal viewpoint.

We found that the Bitcoin Blockchain cannot be considered tamper-proof,
but rather tamper-resistant. This is in part due to blockchain forking, which can
cause transactions to be reordered, thus invalidating any previously exported
proofs. It also causes the latency between a message being broadcast, and the
time it is written to the blockchain ledger, to be unbounded. Both issues affect
the verification protocol, but do not affect the safety or liveness properties of
the presented protocols. It may be possible to circumvent these difficulties by
using blockchain technologies other than Bitcoin.

73

In general, the tamper-proof property is not achievable in the public envi-
ronment model. The tamper-resistance property of the Bitcoin blockchain is a
compromise for this particular environment. For the permissioned environment
model, however, it is possible to define tamper-proof protocols. This includes
Tendermint [23], that implements a byzantine fault tolerant blockchain with
transaction finality. The protocols which we discussed would be tamper-proof, if
we ran them on a permissioned Bitcoin compatible blockchain with transaction
finality. We should note that the distinction between public and permissioned
may not be that clear, as some may argue that proof-of-stake blockchains such
as Tendermint [23] could be considered public.

The security aspects of real-world tamper-proof and tamper-resistant
blockchains should also be considered. For example, a tamper-proof blockchain
on a permissioned network is associated with risks such as centralisation and
censorship, and the risk of shut-down. This is not the case for tamper-resistant
blockchains on public networks. On a public network there are no risks of
centralisation and censorship, but tamper-resistant blockchains provide weaker
consistency semantics. There may be certain applications for which transaction fi-
nality and tamper-proof are necessary properties, thus rendering tamper-resistant
public blockchains unsuitable. Other applications, however, may be sufficiently
protected by the tamper-resistance guarantee, and require censorship resistance.
This includes the Bitcoin fork namecoin [4], a decentralised and censorship
resistant domain name system.

The discussed tamper-resistant protocols did not explicitly return the proof,
albeit this is necessary to support local distrust. As we noted in the Introduction,
Section 1.5, we assumed that generating the proof is trivial if the verification
protocol is correct.

The blockchain ledger abstraction consists of the events: Append, Get,
GetReturn, Verify, and VerifyReturn. We found that there are disagreements on
the properties and consistency guarantees of the Bitcoin blockchain in literature
[34]. We characterise the Bitcoin blockchain by the properties: probabilistic
eventual consistency, probabilistic finality, fair append, transaction validity, and
tamper-resistant. These properties rest on the assumption that less than 1/3
of participants are byzantine. If we would like to derive that the blockchain is
eventual consistent, we would need to assume the bounded fork length, which
is in contradiction to the asynchronous distributed system model. Future work
should consider extending the work to include other blockchains and transaction
costs.

The tamper-resistant broadcast consists of the events: Broadcast, Deliver,
Verify, and VerifyReturn. We found a large corpus of research that applied to
tamper-proof and tamper-resistant broadcast, and we believe that blockchain-
based tamper-resistant broadcast was a suitable way to study the problem. In
hindsight, however, we would have chosen to study tamper-resistant distributed
ledger protocols, i.e. a simplified blockchain abstraction consisting of a ledger of
records, and the operations append a record; get the ledger; and verify the ledger.
The benefit of this abstraction we think is the less awkward transformation of the
Blockchain Ledger to the Distributed Ledger (compared to Blockchain Ledger
to Broadcast). Additionally, the distributed ledger abstraction would allow us
to describe notions such as eventual consistency, which is very awkward, or not
possible, to describe on the broadcast abstraction. An alternative would be to
add an Undo-Delivery event to the tamper-resistant broadcast abstraction, to

74

undo any transactions that got lost due to forking. This may be an opportunity
for further exploration.

We considered three different environment models, which we named: public
tamper-resistant broadcast protocols; permissioned tamper-resistant broadcast
protocols; non-native permissioned tamper-resistant broadcast protocols. It is
impossible to achieve consensus in the public environment, assuming that the
number of participants is unknown and that the number of faulty processes is
unbounded [15]. We did not explore other possibilities such as partial synchrony,
or bounding the number of faulty processes. We did, however, deal with this
issue by introducing permissioned protocols, to bound the number of processes
to a known set of processes. These protocols could be extended with the notion
of dynamic groups and epochs. The non-native permissioned broadcast protocols
decoupled the broadcasting from the blockchain, and allowed us to design models
that achieved high throughput and low latency.

We executed a benchmark, consisting of 180 seconds of alternative broad-
cast and delivering messages, on a cluster spanning three physically separated
locations, varying the number of participating processes from three to twelve.

The results should only act as a guide on how each protocol performs, rather
than a precise evaluation thereof. We did not evaluate the benchmark repeatedly,
thus we cannot judge what statistical deviations would have influenced the
outcome. Furthermore, we should have implemented our protocols without
batching, in order to make the results more reproducible and comparable.

The correctness of the protocols were evaluated, using the history of broadcast
and delivered messages from the benchmark. We could not find any violations
of the proposed safety properties, but this does not guarantee the correctness of
the protocols.

The throughput and latency was evaluated, and the results were as expected.
In order of increasing throughput and decreasing latency, the protocols are
ordered: totb (lowest throughput, highest latency); fotb; htllth; htlltbtest (highest
throughput, lowest latency). We found that the High Throughput Low Latency
Tamper-Resistant Broadcast (htlltb) improved the throughput by 6.1 times
and latency by 176 times compared to FIFO-order Tamper-Resistant Broadcast
(fotb), and throughput by 10 times and latency by 1,200 times compared to
(Uniform Causal-Order) Total-Order Tamper-Resistant Broadcast (totb). The
results also showed that htlltb caused negligible overhead (i.e. less than 50%
difference) compared to its non-tamper-resistant counterpart (htlltbtest). This
supports our statement that the htlltb can achieve high throughput and low
latency, according to our definition (Section 2.1.3).

The performance of htllth (throughput 11,000 tx/s, latency 110 ms) is
favourable when compared to blockchains: the public Bitcoin Blockchain attains
600 seconds latency and 7tx/s throughput; the public Ethereum Blockchain
attains 15 seconds and 15tx/s to 40tx/s; the private Ethereum Blockchain attains
1’000tx/s; the Tendermint Blockchain <1s and "tens of thousands” tx/s [20].
The MultiChain instance we used has a peak throughput of 2,700 tx/s and
average latency of 5 seconds (half the block mining time). This highlights the
benefit of decoupling the performance aspects of the tamper-resistant broadcast
protocol from the blockchain performance.

We expect the native protocols (fotb and totb) to reach the peak throughput
(2,700 tx/s) if we increase the number of participants. If we increase the number
of participants of the non-native protocols (htlltb and htlltbtest), we expect to

(0]

reach the peak throuhput of ETCD (50,000 tx/s [47]). If we increase the number
of ETCD nodes in the cluster, then we expect a drop in the throughput. This is
discussed in a study that compared consensus protocols on scalability, ETCD
was reported to achieve 5700 tx/s for 3 nodes, and 490 tx/s for 100 nodes [51].

Implementing the protocols was not easy, and would require several small
protocol extensions for making it suitable for real-world applications. This
has been reported of Paxos implementations [52]. We shoud expect that the
performance of our implementation could still be improved. For fotb and totb,
this is evident because of the issues with increasing latency. The protocols (fotb,
tothb) peaked at 1,000 tx/s, less than half of the theoretical peak performance
2,700 tx/s. For htlltb and htlltbtest, we would also expect possibility to increase
the throughput and decrease the latency, as when compared to an ETCD
benchmark [47], htlltb and htlltbtest achieved only 22% and 36% throughput
and 5.5 and 3.9 times slower latency respectively.

We showed on three use-cases, a multi-user file system, a supply chain
tracking application, and timestamp server, how we can design tamper-resistant
applications using the tamper-resistant broadcast abstraction. The use-cases
showed the direct relationship between our work and related work. We showed
simplified protocols for the Virtual Blockchain, in parallel to the VirtualChain
of Blockstack [4]; the Timestamp Server with correspondence to Factom [25]
and Chainpoint [26]; and the tamper-resistant file system as similar to Endolith
[28] and our ongoing work [5]. We hope to have conveyed the shared principles
between different implementations.

In summary, we have discussed what we consider to be important aspects
and hope to have shown how to design tamper-resistant applications through
the use of the presented tamper-resistant broadcast protocols.

76

Chapter 8

Conclusion

We studied blockchain-based tamper-resistant broadcast protocols and how they
can be used to implement tamper-resistant replicated state machines. We studied
various environment models, and safety and liveness properties of the tamper-
resistant broadcast, this allows us to match the consistency and environment
requirements of the application. The presented protocols, and provided implemen-
tation, should provide a sufficient base for the development of tamper-resistant
applications using the Bitcoin blockchain.

We found it important to distinguish between the environment models.
For example, total-order broadcast, consensus, and tamper-proof cannot be
implemented in the public environment model, whereas they can be implemented
in the permissioned environment model. Furthermore, we found it necessary to
decouple the throughput and latency from the blockchain, and use non-native
(i.e. not via blockchain) techniques for consensus and communication in order to
achieve high throughput and low latency. We implemented three of the protocols
as a proof of concept, and showed that the non-native permissioned protocols
can compete on performance with other state-of-the-art technologies.

We chose to limit the study to a Bitcoin compatible blockchain with zero-fee
transactions. The tamper-resistant broadcast protocols inherit the tamper-
resistant property from the Bitcoin blockchain through composition. In general,
tamper-proof cannot be achieved under the public environment model, whereas
tamper-resistant can be achieved. The reported results are limited by not
executing the experiments in a repeated fashion.

We recommend further work on the definitions of tamper-proof and tamper-
resistant, and on such replicated state machines and broadcast protocols. For
work on tamper-resistant broadcast protocols, we recommend to focus on the afore-
mentioned limitations, continued work to include support for more blockchains,
and improving the implementations for robustness and efficiency. In hindsight,
we would suggest using the tamper-resistant distributed ledger abstraction in-
stead of tamper-resistant broadcast, as it more naturally fits the task. We believe
that the presented ideas can be extrapolated to the tamper-proof property.

We hope to have demonstrated the tamper-resistant broadcast as a powerful
interface with clear semantics and tunable settings. We believe our work helps the
design of tamper-resistant applications, and contributes towards the transition
from human-centric and centralised forms of trust, to decentralised forms of
trust-networks.

7

78

Bibliography

[1]

[13]

Christian Cachin, Rachid Guerraoui, and Luis Rodrigues. Introduction to
reliable and secure distributed programming. Springer Science & Business
Media, 2011.

Andreas M Antonopoulos. Mastering Bitcoin: Programming the open
blockchain. O’Reilly Media, Inc., 2017.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

Muneeb Ali, Jude Nelson, Ryan Shea, and Michael J Freedman. Blockstack:
A global naming and storage system secured by blockchains. In 2016
USENIX Annual Technical Conference, pages 181-194, 2016.

Pacio — audit-proof, distributed archival service, Last visited 2019-05-13.
URL https://wuw.zib.de/projects/pacio.

Fran Casino, Thomas K Dasaklis, and Constantinos Patsakis. A systematic
literature review of blockchain-based applications: current status, classifica-
tion and open issues. Telematics and Informatics, 36:55-81, 2019.

George F Coulouris, Jean Dollimore, and Tim Kindberg. Distributed systems:
concepts and design. Pearson Education, 2005.

Bitcoin developer reference: Bitcoin core apis, Last visited 2020-01-17. URL
https://bitcoin.org/en/developer-reference#tbitcoin-core-apis.

Vassos Hadzilacos and Sam Toueg. A modular approach to fault-tolerant
broadcasts and related problems. Technical report, Cornell University, 1994.

Leslie Lamport. Proving the correctness of multiprocess programs. IEEE
transactions on software engineering, SE-3(2):125-143, 1977.

Consistency models, Last visited 2020-01-21. URL https://jepsen.io/
consistency.

Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi, Joseph M Hellerstein,
and Ion Stoica. Highly available transactions: virtues and limitations
(extended version). arXiv preprint arXiv:1302.0309, 2013.

Paolo Viotti and Marko Vukoli¢. Consistency in non-transactional dis-
tributed storage systems. ACM Computing Surveys (CSUR), 49(1):1-34,
2016.

79

https://www.zib.de/projects/pacio
https://bitcoin.org/en/developer-reference#bitcoin-core-apis
https://jepsen.io/consistency
https://jepsen.io/consistency

[14]

[15]

[17]

[18]

[19]

[21]

[22]

Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin Reed.
Zookeeper: Wait-free coordination for internet-scale systems. In USENIX
annual technical conference, volume 8, 2010.

Kenji Saito and Hiroyuki Yamada. What’s so different about blockchain? —
blockchain is a probabilistic state machine. In 2016 IEEE 36th International
Conference on Distributed Computing Systems Workshops (ICDCSW), pages
168-175. IEEE, 2016.

Ailidani Ailijiang, Aleksey Charapko, and Murat Demirbas. Consensus in
the cloud: Paxos systems demystified. In 2016 25th International Conference
on Computer Communication and Networks (ICCCN), pages 1-10. IEEE,
2016.

Douglas Robert Stinson and Maura Paterson. Cryptography: Theory and
Practice. CRC Press, 4 edition, 2018.

Blockchain guide, Last visited 2020-01-17. URL https://bitcoin.org/
en/blockchain-guide.

Andrew Sward, Ivy Vecna, and Forrest Stonedahl. Data insertion in bitcoin’s
blockchain. Ledger, 3, 2018.

Marianna Belotti, Nikola Bozi¢, Guy Pujolle, and Stefano Secci. A vademe-
cum on blockchain technologies: When, which, and how. IEEE Communi-
cations Surveys & Tutorials, 21(4):3796-3838, 2019.

Muneeb Ali, Ryan Shea, Jude Nelson, and Michael J Freedman. Blockstack
technical whitepaper, 2017, Last visited 2020-01-17. URL https://pdos.
csail.mit.edu/6.824/papers/blockstack-2017.pdf.

Adam Back, Matt Corallo, Luke Dashjr, Mark Friedenbach, Gregory
Maxwell, Andrew Miller, Andrew Poelstra, Jorge Timoén, and Pieter Wuille.
Enabling blockchain innovations with pegged sidechains, 2014, Last visited
2020-01-17. URL https://blockstream.com/sidechains.pdf.

What is tendermint?, Last visited 2020-01-17. URL https://github.
com/tendermint/tendermint/blob/master/docs/introduction/what-
is-tendermint.md.

Jae Kwon and Ethan Buchman. Cosmos whitepaper, Last visited 2020-01-17.
URL https://cosmos.network/resources/whitepaper.

Factom business processes secured by immutable audit trails on the
blockchain, Last visited 2020-01-17. URL https://www.factom.com/
assets/docs/Factom_Whitepaper_v1l.2.pdf.

W Vaughn, Jason Bukowski, R Shea, C Allen, P Storz, and J Nel-
son. Chainpoint—a scalable protocol for anchoring data in the blockchain
and generating blockchain receipts v2.1.0, 2016, Last visited 2020-01-
17. URL https://github.com/chainpoint/whitepaper/blob/master/
chainpoint_white_paper.pdf.

80

https://bitcoin.org/en/blockchain-guide
https://bitcoin.org/en/blockchain-guide
https://pdos.csail.mit.edu/6.824/papers/blockstack-2017.pdf
https://pdos.csail.mit.edu/6.824/papers/blockstack-2017.pdf
https://blockstream.com/sidechains.pdf
https://github.com/tendermint/tendermint/blob/master/docs/introduction/what-is-tendermint.md
https://github.com/tendermint/tendermint/blob/master/docs/introduction/what-is-tendermint.md
https://github.com/tendermint/tendermint/blob/master/docs/introduction/what-is-tendermint.md
https://cosmos.network/resources/whitepaper
https://www.factom.com/assets/docs/Factom_Whitepaper_v1.2.pdf
https://www.factom.com/assets/docs/Factom_Whitepaper_v1.2.pdf
https://github.com/chainpoint/whitepaper/blob/master/chainpoint_white_paper.pdf
https://github.com/chainpoint/whitepaper/blob/master/chainpoint_white_paper.pdf

[27]

[28]

[32]

[33]

[34]

W Vaughn, Jason Bukowski, and Glenn Rempe. Tierion network—a global
platform for verifiable data, 2017, Last visited 2020-01-17. URL https:
//tokensale.tierion.com/TierionTokenSaleWhitePaper.pdf.

Thomas Renner, Johannes Miiller, and Odej Kao. Endolith: A blockchain-
based framework to enhance data retention in cloud storages. In 2018 26th
Euromicro International Conference on Parallel, Distributed and Network-
based Processing (PDP), pages 627-634. IEEE, 2018.

Muhammad El-Hindi, Carsten Binnig, Arvind Arasu, Donald Kossmann,
and Ravi Ramamurthy. Blockchaindb: a shared database on blockchains.
Proceedings of the VLDB Endowment, 12(11):1597-1609, 2019.

Jude Nelson, Muneeb Ali, Ryan Shea, and Michael J Freedman. Extend-
ing existing blockchains with virtualchain. In Workshop on Distributed
Cryptocurrencies and Consensus Ledgers, 2016.

Blockchain middle layer services will be as valuable and free as air,
Last visited 2020-01-17. URL https://dailyfintech.com/2018/08/
30/blockchain-middle-layer-services-will-be-as-valuable-and-
free-as-air/.

Layer 2 blockchain technology: Everything you need to know, Last vis-
ited 2020-01-17. URL https://golucidity.com/layer-2-blockchain-
technology/.

Léo Besancon, Catarina Ferreira Da Silva, and Parisa Ghodous. Towards
blockchain interoperability: Improving video games data exchange. In IEEE
International Conference on Blockchain and Cryptocurrency, 2019.

Emmanuelle Anceaume, Romaric Ludinard, Maria Potop-Butucaru, and
Frédéric Tronel. Bitcoin a distributed shared register. In International
Sympositum on Stabilization, Safety, and Security of Distributed Systems,
pages 456—468. Springer, 2017.

Antonio Fernandez Anta, Kishori Konwar, Chryssis Georgiou, and Nicolas
Nicolaou. Formalizing and implementing distributed ledger objects. ACM
SIGACT News, 49(2):58-76, 2018.

Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain
protocol in asynchronous networks. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques, pages 643—-673.
Springer, 2017.

Christian Decker, Jochen Seidel, and Roger Wattenhofer. Bitcoin meets
strong consistency. In Proceedings of the 17th International Conference on
Distributed Computing and Networking, page 13. ACM, 2016.

Number of confirmations, Last visited 2020-04-01. URL https://en.
bitcoin.it/wiki/Confirmation#Number_of_Confirmations.

Source code, Last visited 2020-04-07. URL https://github.com/
jonasspenger/mscthesis. Used commit short hash 1db6931.

81

https://tokensale.tierion.com/TierionTokenSaleWhitePaper.pdf
https://tokensale.tierion.com/TierionTokenSaleWhitePaper.pdf
https://dailyfintech.com/2018/08/30/blockchain-middle-layer-services-will-be-as-valuable-and-free-as-air/
https://dailyfintech.com/2018/08/30/blockchain-middle-layer-services-will-be-as-valuable-and-free-as-air/
https://dailyfintech.com/2018/08/30/blockchain-middle-layer-services-will-be-as-valuable-and-free-as-air/
https://golucidity.com/layer-2-blockchain-technology/
https://golucidity.com/layer-2-blockchain-technology/
https://en.bitcoin.it/wiki/Confirmation#Number_of_Confirmations
https://en.bitcoin.it/wiki/Confirmation#Number_of_Confirmations
https://github.com/jonasspenger/mscthesis
https://github.com/jonasspenger/mscthesis

[40]

[41]

[42]

Rachid Guerraoui, Ron Levy, Bastian Pochon, and Vivien Quéma. Through-
put optimal total order broadcast for cluster environments. ACM Transac-
tions on Computer Systems, 28(ARTICLE):5, 2010.

Parisa Jalili Marandi, Marco Primi, Nicolas Schiper, and Fernando Pe-
done. Ring paxos: A high-throughput atomic broadcast protocol. In 2010
IEEE/IFIP International Conference on Dependable Systems € Networks
(DSN), pages 527-536. IEEE, 2010.

Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels,
Ahmed Kosba, Andrew Miller, Prateek Saxena, Elaine Shi, Emin Giin Sirer,
et al. On scaling decentralized blockchains. In International Conference on
Financial Cryptography and Data Security, pages 106-125. Springer, 2016.

Gideon Greenspan. Multichain private blockchain—white paper. URI:
https: / /www.multichain.com/download /MultiChain- White- Paper.pdf, 2015,
Last visited 2019-05-13.

Etcd download, Last visited 2020-04-01. URL https://bitnami.com/
stack/etcd/containers.

Multichain download, Last visited 2020-04-01. URL https://wuw.
multichain.com/download-community/.

Machine types, Last visited 2020-04-01. URL https://cloud.google.com/
compute/docs/machine-types.

Etcd benchmarks, Last visited 2020-04-01. URL https:
//github.com/etcd-io/etcd/blob/master/Documentation/op-
guide/performance.md#benchmarks.

Xueping Liang, Sachin Shetty, Deepak Tosh, Charles Kamhoua, Kevin
Kwiat, and Laurent Njilla. Provchain: A blockchain-based data provenance
architecture in cloud environment with enhanced privacy and availability.
In Proceedings of the 17th IEEE/ACM international symposium on cluster,
cloud and grid computing, pages 468-477. IEEE Press, 2017.

Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In Proceedings 42nd IEEE Symposium on Foundations
of Computer Science, pages 136-145. IEEE, 2001.

Jonathan Katz. Universally composable multi-party computation using
tamper-proof hardware. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 115-128. Springer,
2007.

Rachid Guerraoui, Jad Hamza, Dragos-Adrian Seredinschi, and Marko
Vukolic. Can 100 machines agree? arXiv preprint arXiv:1911.07966, 2019.

Tushar D Chandra, Robert Griesemer, and Joshua Redstone. Paxos made
live: an engineering perspective. In Proceedings of the twenty-sizth annual
ACM symposium on Principles of distributed computing, pages 398407,
2007.

82

https://bitnami.com/stack/etcd/containers
https://bitnami.com/stack/etcd/containers
https://www.multichain.com/download-community/
https://www.multichain.com/download-community/
https://cloud.google.com/compute/docs/machine-types
https://cloud.google.com/compute/docs/machine-types
https://github.com/etcd-io/etcd/blob/master/Documentation/op-guide/performance.md#benchmarks
https://github.com/etcd-io/etcd/blob/master/Documentation/op-guide/performance.md#benchmarks
https://github.com/etcd-io/etcd/blob/master/Documentation/op-guide/performance.md#benchmarks

Appendix A

Data Insertion Methods

Regular transactions store only the necessary information for transferring funds
from one locking script to another. This is a review of how arbitrary data can
be stored in transactions on the blockchain.

A.1 Characteristics

Blockchain data insertion methods can be compared on the following character-
istics [19]:

e Data efficiency: The ratio of the data size to the transaction size.
e Cost efficiency: The cost (transaction fee) per byte data that is saved.

e Mazx data per transaction: Maximum amount of data that can be saved in
a transaction.

e Security and data integrity: Transactions should be resistant to unintended
modification of the transaction. For example, sniping is the process of
changing the unsigned outputs of a transaction to new outputs, this can also
include reordering of outputs. Transaction malleability, includes possibility
of blockchain nodes to modify transactions whilst preserving the validity
of the transactions.

e Unspendable UTXOs: Unspendable UTXOs are caused by writing data
instead of a valid public key hash to the locking script. This causes the
output to be practically unspendable, and bloating the set of UTXOs.

We are only interested in methods that do not generate unspendable UTXOs
and are not vulnerable to security and data integrity issues. The only qualifying
methods out of the presented methods [19] are: OP_RETURN and Data hash
(w/ sig), which we will elaborate further.

A.2 OP_RETURN

The OP_.RETURN method [19] is achieved by adding data to an output with
the following output script to a transaction:

83

e Qutput script: OP_RETURN <DATA>

It is protected against tampering as data is written to the signed outputs.
Further, the output of OP_RETURN is defined by the bitcoin standard to not
be part of the UTXO set, thus avoiding the unspendable UTXO problem.

The max data per transaction is 80 byte. The data efficiency is 25% for 80
byte of data. At most one OP_RETURN output can be added to a standard
bitcoin output.

A.3 Data Hash w/ Sig

The Data Hash w/ Sig method [19] requires two transactions to write one data.
The first transaction writes in its output scripts the hash of the data. The second
transaction writes in its input scripts the un-hashed data.

The following output script is used in the first of two separate transactions.
It contains a redeem-script-hash, which is the hash of the redeem script used by
the input script (see below).

e Qutput Script: OP_HASH160 <REDEEMSCRIPTHASH> OP_EQUAL

The following input references the just mentioned output. The input script
contains the data, which is securely verified by the hashed redeem script in the
output script.

e Input Script: <SIG> <DATA1> <DATA2> <DATA3> <REDEEMSCRIPT>

e Redeem Script: OP_HASH160 <DATA3HASH> OP_EQUALVERIFY OP_HASH160
<DATA2HASH> OP_EQUALVERIFY OP_HASH160 <DATA1HASH> OP_EQUALVER-
IFY <PUBKEY> OP_CHECKSIG

Data is protected from modification by writing a hash of the data in the
redeemscript. Reordering of the inputs is avoided by signing each input. Because
of this, Data Hash w/ Sig is not vulnerable to sniping or transaction malleability.
Further, it does not generate any unspendable UTXOs, as the generated UTXO
by the output script is spent by the input script in a following transaction.

The max data per transaction is 86,087 byte. The data efficiency is 95% for
86,087 byte of data, and 16% for 80 byte.

A.4 Data Efficiency

Data efficiency is calculated as the ratio of the data size to the transaction size.
If the method has higher data efficiency it can achieve higher throughput of
data stored to the blockchain. We compare the data efficiency of the methods
OP_RETURN, Data Hash w/ Sig, as well as two derivations "var OP_RETURN”
and "max OP_RETURN”:

e Data efficiency: The data efficiency is calculated as the ratio of the data
size to the transaction size.

o Data size: The amount of data to be saved to the blockchain in a transac-
tion.

84

e Transaction size: The transaction size is calculated from a transaction,
which additionally to the input and output scripts of the data saving
method also contains a standard P2PKH transaction input and output.

— P2PKH: The transaction metadata and P2PKH input and output
account for: 204 byte!.

— OP_RETURN: The OP_RETURN output accounts for: data size byte
+ 18 byte?.

— Data Hash w/ Sig: The input and output roughly account for: data
size + ROOF (data size / 1461) * 277 byte>.

— var OP_RETURN: We also consider the possibility of allowing more
than a single OP_.RETURN output per transaction, each writing max
80 byte of data.

— max OP_RETURN: We also consider the possibility of allowing a
single OP_RETURN to write an unlimited amount of data.

We compare the methods OP_RETURN, Data Hash w/ Sig, as well as two
derivations "var OP_RETURN” and "maz OP_RETURN”. Var OP_RETURN is
a scenario in which there is no limit on the number of OP_RETURN outputs per
transaction. The bitcoin standard limit is one. Max OP_RETURN is a scenario
in which there is no limit the size of data written to OP_RETURN. The bitcoin
standard limit is 80 byte.

The data efficiency comparison is shown in Table A.1. OP_RETURN is most
efficient for data up to 80 byte. For data larger than 80 byte, the most data
efficient method would be max OP_RETURN (no limit on OP_RETURN data
size), or also a mix of var OP_RETURN and max OP_RETURN. Data Hash w/
Sig achieves high comparable data efficiency whilst conforming to the bitcoin
standard.

1P2PKH transaction size: 204 byte = 107 byte (P2PKH input script) + 36 byte (referenced
output) + 1 byte (input script length) + 25 byte (P2PKH output script) + 1 byte (output
script length) + 8 byte (output value) + 26 byte (max transaction metadata)

20P_RETURN output size: data size + 18 byte = data size + 17 byte (max output
metadata) + 1 (OP_RETURN script operator code).

3Data Hash w/ Sig inputs and outputs are of size: metadata byte + input script byte
+ output script byte. Where metadata byte = ROOF(data size / 1461) * (17 (max output
metadata) + 49 (max input metadata)), and input script byte = data size + (ROOF (data
size / 1461) - 1) * 189 (input script metadata) + 111 (input script metadata) + ROOF ((data
size % 1461) / 520) * 26 (input script metadata), and output script byte = ROOF (data size /
1461) * 22 byte

85

Data Size OP_R var OP_R | max OP_R | Data Hash
(byte) w/ Sig
2 1% 1% 1% 0%

4 2% 2% 2% 1%

8 3% 3% 3% 2%

16 7% 7% 7% 4%

32 13% 13% 13% %

64 22% 22% 22% 13%

80 26% 26% 26% 16%

128 35% 3% 23%
256 48% 54% 37%
512 61% 70% 54%
17024 70% 82% 69%
2’048 75% 90% 74%
4’096 78% 95% 80%

Table A.1: Data efficiency as percentage versus data size for various data insertion
methods. OP_RETURN is abbreviated as OP_R.

86

Appendix B

Broadcast Properties

There are many ways in which broadcast properties can be realised. This is a
summary of how the discussed properties can be realised, using blockchain and
non-blockchain techniques, with the techniques employed in our work highlighted,
followed by a discussion on the definition of confirmed transactions:

o Validity: Resubmitting rejected transactions to the blockchain until con-
firmed [28]. Retransmit forever, using fairness property [1, ch. 2.4] (our
work).

e No duplication: Waiting for blockchain confirmation before delivering a
message [28, 30]. Detects and invalidates stale transactions by the use
of consensus hashes [21]. Keep a record of all messages that have been
delivered in the past, when a message is received, it is delivered only if it
is not a duplicate [1, ch. 2.4] (our work).

e No creation: Private key holder is the only one able to sign for a message
with the corresponding public key [4] (our work). That is, if each process
has a unique pubkey, then the sender can be verified by the message
signature.

o Agreement: Waiting for blockchain confirmation before delivering a message
[28, 30]. Every correct process continually resubmits every message it
delivers (using the validity property) [1, ch. 3.3] (our work).

e FIFO-order: 28] enforces a per-file FIFO-order. This is achieved by waiting
for submitting the following transaction before the previous one has been
confirmed on the blockchain. The FIFO property can also be achieved
by assigning sequence numbers to messages, and delivering the messages
in order of the sequence numbers [1, ch. 3.9]. Link two consecutive
transactions, by using the output of the first transaction as the input of
the subsequent transaction (our work).

e Causal-order: This can be achieved by using vector clocks, i.e. appending a
vector of timestamps to the broadcast messages (waiting, smaller message
size), or, by appending entire causal past to the message (no waiting,
large message size) (our work) [1, ch. 3.9]. The causal-order is implied by
the combination of FIFO-order and total-order, as is used in one of our
protocols (our work).

87

o Uniform agreement: Deliver only confirmed transactions [28, 30] (our work).
Uniform agreement cannot be achieved if the number of participants is
unbounded (because of equivalence of uniform reliable broadcast and
consensus) [15]. The solution to this is to either assume the bounded
fork length. Another solution is to limit the protocol to a bounded set
of participants (permissioned) (our work). If the set of participants is
bounded in number, quorum and majority based protocols can be used,
such as [1, ch. 3.4].

e Uniform total-order: Deliver only confirmed transactions [28, 30] (our work).
Confirmed transactions are in a total-order, thus, delivering messages in the
same order as the confirmed transactions achieves a total-order. Similarly
to uniform agreement, in order to achieve uniform total-order, we must
either bound the number of participants, or assume bounded fork-length.

o High throughput / message size / low latency / group membership: High
throughput is achieved by grouping many messages together, calculating
the Merkle tree root hash thereof, and write the Merkle root hash to
the blockchain [25, 26, 27] (our work). This method is compatible with
arbitrary message size (our work). Low latency is achieved by providing an
asynchronous write, that is, buffering the incoming messages [28, 25, 26, 29],
and providing functionality to retrieve the proof that it was written to the
blockchain at a later point (our work). This might require direct or P2P
communication protocols between the nodes, to exchange information that
is not written to the blockchain [25]. The performance, unless using such
means, will rely part on the underlying blockchain. The transactions can
also be grouped, e.g. [25] uses chainIDs, to group transactions into disjoint
chains. In our work, we simply filter messages, such that only messages
from group members are let through.

Confirmed Transactions Many of the discussed approaches rely on the
concept of confirmed transactions or final transactions. Confirmed transactions
can be described as transactions that are stored immutably and not to be
reordered, i.e finalised. Because of the probabilistic nature of blockchain, we
can only consider transactions as confirmed or final under the assumption of
bounded fork length, i.e. that there are no forks over a certain length (in reality,
no transaction is ever fully finalised on the Bitcoin blockchain). As an example,
transactions are confirmed after: six blocks on the Bitcoin blockchain [38];
ten blocks on the Bitcoin blockchain [30]; and seven blocks on the Ethereum
blockchain [28].

88

Selbstiandigkeitserklarung

Ich erklédre hiermit, dass ich die vorliegende Arbeit selbstdndig verfasst und noch
nicht fiir andere Priifungen eingereicht habe. Sdmtliche Quellen einschlieflich
Internetquellen, die unveréndert oder abgewandelt wiedergegeben werden, ins-
besondere Quellen fiir Texte, Grafiken, Tabellen und Bilder, sind als solche
kenntlich gemacht. Mir ist bekannt, dass bei Verstéflen gegen diese Grundsétze
ein Verfahren wegen Téuschungsversuchs bzw. Tduschung eingeleitet wird.

Berlin, den May 22, 2020

89

	Introduction
	Motivation
	Problem Statement
	Outline
	Significance of the Study
	Assumptions

	Background
	Theory
	Distributed Programming Abstractions
	Distributed Agreement Problem
	Broadcast Abstraction
	Broadcast Models
	Broadcast Environment Models
	Relations and Limits of Consistency, Consensus, and Broadcast
	Replicated State Machines

	General Background Information
	Cryptography
	Bitcoin Blockchain
	Saving Data to the Blockchain
	Other Blockchain Technologies

	Related Work

	Blockchain Ledger
	Related Work
	Blockchain Ledger Abstraction
	Bitcoin Transaction Abstraction
	Bitcoin Blockchain Ledger Abstraction

	Tamper-Resistant Broadcast
	Related Work
	Tamper-Resistant Broadcast Abstraction
	Public Tamper-Resistant Broadcast Protocols
	Best-Effort Tamper-Resistant Broadcast
	Reliable Tamper-Resistant Broadcast
	FIFO-Order Tamper-Resistant Broadcast
	Causal-Order Tamper-Resistant Broadcast
	Uniform Causal-Order Total-Order Tamper-Resistant Broadcast
	Implications

	Permissioned Tamper-Resistant Broadcast Protocols
	Fixed Group Tamper-Resistant Broadcast
	Implications

	Permissioned Non-Native Tamper-Resistant Broadcast Protocols
	High Throughput Low Latency Non-Native Uniform Total-Order Tamper-Resistant Broadcast
	Implications

	Evaluation
	Methodology
	Implementation
	Software
	Deployment
	Benchmark
	Statistics

	Results
	Correctness
	Throughput
	Latency

	Use Cases
	Design Pattern: Tamper-Resistant Replicated State Machine
	Use Case: Tamper-Resistant File System
	Use Case: Timestamp Server
	Use Case: Virtual Blockchain
	Use Case: Supply Chain Tracking

	Discussion
	Conclusion
	Bibliography
	Data Insertion Methods
	Characteristics
	OP_RETURN
	Data Hash w/ Sig
	Data Efficiency

	Broadcast Properties

