
Takustr. 7
14195 Berlin

Germany
Zuse Institute Berlin

DANIEL REHFELDT , HENRIETTE FRANZ, THORSTEN KOCH

Optimal Connected Subgraphs:
Formulations and Algorithms

ZIB Report 20-23 (August 2020)

https://orcid.org/0000-0002-2877-074X
https://orcid.org/0000-0002-1967-0077

Zuse Institute Berlin
Takustr. 7
14195 Berlin
Germany

Telephone: +49 30-84185-0
Telefax: +49 30-84185-125

E-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

bibliothek@zib.de
http://www.zib.de

Optimal Connected Subgraphs: Formulations

and Algorithms

Daniel Rehfeldt , Henriette Franz, Thorsten Koch

Zuse Institute Berlin,

Takustr. 7, 14195 Berlin, Germany

{rehfeldt,koch}@zib.de

TU Berlin, Chair of Software and Algorithms for Discrete Optimization,

Str. des 17. Juni 135, 10623 Berlin, Germany

August 6, 2020

Abstract

Connectivity is a central concept in combinatorial optimization, graph theory, and op-
erations research. In many applications, one is interested in finding an optimal subset of
vertices with the essential requirement that the vertices are connected, but not how they
are connected. I.e., it is not relevant, which edges are selected to obtain connectivity. Two
natural examples in this category are the maximum-weight connected subgraph problem
(MWCSP) and the uniform weight (prize-collecting) Steiner tree problem.

This article is concerned with the exact solution of such problems via integer program-
ming. On the theoretical side, we analyze and compare IP and MIP formulations with
respect to the strength of their LP relaxations. Along the way, we also provide a tighter
(compact) description of the connected subgraph polytope—the convex hull of subsets of
vertices that induce a connected subgraph. Furthermore, we give a (compact) complete de-
scription of the connected subgraph polytope for graphs with no four independent vertices.
On the algorithmic side, we introduce new components, such as primal and dual heuristics,
to enhance a branch-and-cut algorithm based on the strongest previously considered IP for-
mulation. These developments allow us to solve MWCSP benchmark instances from the
literature faster than current state-of-the-art solvers. Additionally, previously intractable
instances can be solved to optimality.

1 Introduction

In many clustering and network analysis applications one is interested in finding an optimal
subset of vertices with the main requirement being that the vertices are connected, but not how
they are connected. I.e., one looks for a subsets of vertices, such that the subgraph induced by
these vertices is connected. Which edges are selected to obtain connectivity is not relevant.

Applications of such a induced connectivity span a diverse set of areas: Computational
biology Dittrich et al. [2008], wildlife conservation Dilkina and Gomes [2010], computer vi-
sion Chen and Grauman [2012], social network analysis Moody and White [2003], political dis-
tricting Garfinkel and Nemhauser [1970], wireless sensor network design Buchanan et al. [2015],
and even robotics Banfi [2018].

1

https://orcid.org/0000-0002-2877-074X
https://orcid.org/0000-0002-1967-0077

From an optimization perspective, a fundamental model for such problems is the maximum-
weight connected subgraph problem (MWCSP), see e.g. Álvarez-Miranda et al. [2013a]. Given
an undirected graph G = (V,E) and vertex weights p : V → R, the task is to find a connected
subgraph S = (V (S), E(S)) ⊆ G such that ∑

v∈V (S)

p(v)

is maximized. The literature also describes variations of the MWCSP such as the rooted and
the budget constrained problem, see Álvarez-Miranda et al. [2013b]. Another well-known opti-
mization problem that is based on induced connectivity is the unweighted (as well as uniformly
weighted) Steiner tree problem: Any solution (i.e. Steiner tree) consisting of n nodes will be of
weight n− 1; it does not matter which n− 1 edges are selected as long as they connect the given
nodes. This observation is exploited in Fischetti et al. [2017] for a node based (prize-collecting)
Steiner tree algorithm. The corresponding solver won most of the categories at the 11th DI-
MACS Challenge, dedicated to Steiner tree and related problems. As to the MWCSP, other
practical algorithms can for example be found in Álvarez-Miranda et al. [2013a], Leitner et al.
[2018], Rehfeldt and Koch [2019].

Various articles discuss theoretical aspects of optimization problems based on induced connec-
tivity, such as the strength of (mixed) integer-programming formulations, e.g. Álvarez-Miranda
et al. [2013b], Carvajal et al. [2013], polyhedral descriptions, e.g. Biha et al. [2015], Wang et al.
[2017], or complexity, e.g. Álvarez-Miranda et al. [2013a], Buchanan et al. [2018].

This article aims at improving the exact solution of optimization problems based on in-
duced connectivity via integer programming. A central component is an improved theoretical
understanding of different IP and MIP formulations, including the relative strength of their LP-
relaxations. However, this article also seeks to improve the practical performance of IP algorithms
based on these theoretical results.

1.1 Contribution

The first, and main, part of this article analyzes integer and mixed integer formulations for op-
timization problems that are based on induced connectivity. In particular, node based formula-
tions (which have gained notable attention in the recent literature) are compared with edge based
ones. It will be shown that the latter prevail with respect to the strength of their LP-relaxations.
Furthermore, polyhedral results are given, including a (compact extended) description of the
connected subgraph polytope for all graphs with less than four independent vertices.

The second part of the article introduces algorithmic components to improve the practical
exact solution of MWCSP based on the strongest of the previously studied IP formulation. The
resulting branch-and-cut solver is shown to be faster than the current state of the art for MWCSP.
Furthermore, previously intractable benchmark instances can be solved to optimality.

Both parts of this article are clustered around the MWCSP. However, it will also be shown
how to apply the (theoretical and algorithmic) results to other induced connectivity problems,
such as (unweighted) Steiner tree.

1.2 Definitions and notation

For the vertices and edges of an undirected, graph G we write V (G) and E(G), respectively. For
a directed graph D, we write A(D) for its set of arcs. For a subset of vertices U ⊆ V we define

E[U] :=
{
{v, w} ∈ E | v, w ∈ U

}
.

2

Further, the notation n := |V | and m := |E| will be used.
For U ⊆ V define δ(U) :=

{
{u, v} ∈ E | u ∈ U, v ∈ V \ U

}
and for a subgraph G′ ⊆ G

and U ′ ⊆ V (G′) define δG′(U
′) :=

{
{u, v} ∈ E(G′) | u ∈ U ′, v ∈ V (G′) \ U ′

}
. A corresponding

notation is used for directed graphs (V,A): For U ⊆ V define δ+(U) := {(u, v) ∈ A | u ∈
U, v ∈ V \ U} and δ−(U) := δ+(V \ U). For a single vertex v we use the short-hand notation
δ(v) := δ({v}), and accordingly for directed graphs. We define the neighborhood of a vertex set
U ⊆ V as

N(U) :=
{
v ∈ V \ U | ∃u ∈ U, {u, v} ∈ δ(U)

}
.

For a single v ∈ V we set N(v) := N({v}). For directed graphs we define

N+(U) :=
{
v ∈ V \ U | ∃u ∈ U, (u, v) ∈ δ+(U)

}
.

We denote by α(G) the maximum number of independent vertices in graph G. Given a r-t
flow f , we denote its net flow value by v(f) = f(δ+(r))− f(δ−(r)).

Let v and w be two distinct vertices of G. A subset C ⊆ V \{v, w} is called (v, w)−separator,
or (v, w)−node-separator, if there is no path from v to w in the graph (V \C,E[V \C]). The family
of all (v, w)−separators is denoted by C(v, w). Note that C(v, w) = ∅ if and only if {v, w} ∈ E.
For directed graphs we say that C ⊆ V \ {v, w} is a (v, w)−separator if all directed paths from
v to w contain a vertex from C.

For any function x : M 7→ R with M finite, and any M ′ ⊆ M define x(M ′) :=
∑
i∈M ′ x(i).

Given an IP formulation F we denote its optimal objective value by v(F). Further, we denote
the optimal objective value and the set of feasible points of its LP relaxation by vLP (F) and
PLP (F), respectively. If we want to emphasize a specific problem instance I, we also write F (I).

1.3 Preliminaries: MWCSP and related problems

The MWCSP is NP-hard, see e.g. Johnson [1985]. It is even NP-hard to approximate the
MWCSP within any constant factor as shown in Álvarez-Miranda et al. [2013a]. Note that
in the case of only non-negative vertex weights, the MWCSP reduces to finding a connected
component of maximum vertex weight; in the case of only non-positive vertex weights, the
empty set constitutes an optimal solution.

Rooted MWCSP

A close relative of the MWCSP is the rooted maximum-weight connected subgraph problem
(RMWCSP), see e.g. Álvarez-Miranda et al. [2013b], which incorporates the additional con-
dition that a non-empty set Tf ⊆ V needs to be part of any feasible solution. For simplicity, we
usually assume that p(t) = 0 for all t ∈ Tf .

Unweighted Steiner tree problem

Given an undirected connected graph G = (V,E) and a set T ⊆ V of terminals, the unweighted
Steiner tree problem (USPG) is to find a tree S ⊆ G with T ⊆ V (S) such that |E(S)| is
minimized. The USPG can also be seen as a Steiner tree problem with uniform edge weights.
Moreover, the USPG be formulated as a RMWCSP by assigning each non-terminal vertex a
weight of −1. Many of the hardest Steiner tree benchmark instances are unweighted, see Koch
et al. [2001] for an overview. Moreover, many theoretical articles consider just the unweighted
case, see e.g. Nederlof [2013] for recent complexity results.

3

Steiner arborescence problem

Several results of this article rely on the Steiner arborescence problem (SAP), which is defined as
follows: We are given a directed graph D = (V,A), costs c : A→ R≥0, a set T ⊆ V of terminals
and a root r ∈ T . The SAP requires an arborescence (i.e. directed tree) S ⊆ D with T ⊆ V (S)
that is rooted at r, such that c(A(S)) is minimized.

2 Formulations for rooted connected subgraphs

This section is concerned with connected subgraph problems where a predefinded, non-empty
set of vertices needs to be part of any feasible solution. We start with formulations for the SAP.
While the SAP is not based on induced connectivity itself, it forms the base of several other
results in this article.

2.1 Formulations for the Steiner arborescence problem

Consider an SAP (V,A, T, r, c). Associate with each arc a ∈ A a binary variable y(a) indicating
whether a is contained in the Steiner arborescence (y(a) = 1) or not (y(a) = 0). A natural
formulation by Wong [1984] (i.e., one in the original variable space) can thereupon be stated as:

Formulation 1. Directed Cut Formulation (DCut)

min cT y (1)

s.t. y(δ−(U)) ≥ 1 for all U ⊂ V, r /∈ U,U ∩ T 6= ∅, (2)

y(a) ∈ {0, 1} for all a ∈ A. (3)

Another well-known formulation, see e.g. Wong [1984], is based on flows.

Formulation 2. Directed Multicommodity Flow Formulation (DF)

min cT y (4)

s.t. f t(δ−(v))− f t(δ+(v)) =

{
1
0

if v = t;
if v ∈ V \ {r, t} for all v ∈ V, t ∈ T \ {r}, (5)

f t ≤ y for all t ∈ T \ {r}, (6)

f t ≥ 0 for all t ∈ T \ {r}, (7)

y ∈ {0, 1}A. (8)

By using the max-flow min cut theorem, one shows that DF is an extended formulation of
DCut, i.e., projy(PLP (DF)) = PLP (DCut), see e.g. Duin [1993]. Both formulations can be
strengthened by the so called flow-balance constraints from Koch and Martin [1998]:

y(δ−(v)) ≤ y(δ+(v)) for all v ∈ V \ T. (9)

We well refer to the extensive of the above formulations that additionally include (9) as DCutFB
and DFFB , respectively.

We end this section with a (new) result for SAP, which will be used several times in the
following.

Lemma 1. If |T | ≤ 3, then vLP (DCutFB) = v(DCutFB).

4

Proof. For the case of |T | = 1 and |T | = 2 the lemma holds already without the flow-balance
constraints. So let (V,A, T, c, r) be an SAP with two terminals t, u besides the root r. We
additionally require that a feasible solution does not have any leaves apart from r, t, u. For this
so called two-terminal Steiner tree problem a complete polyhedral description is given by Ball
et al. [1989]:

f(δ−(v))− f(δ+(v)) ≥
{
−1
0

if v = r;
otherwise;

for all v ∈ V, (10)

(f + f t)(δ−(v))− (f + f t)(δ+(v)) =

 1
−1
0

if v = t;
if v = r;
otherwise;

for all v ∈ V, (11)

(f + fu)(δ−(v))− (f + fu)(δ+(v)) =

 1
−1
0

if v = u;
if v = r;
otherwise;

for all v ∈ V, (12)

f + f t + fu ≤ y, (13)

y, f, f t, fu ∈ RA≥0. (14)

The above description is based on the following observation: Any feasible arborescence for the
two-terminal Steiner tree problem consists of a path from r to a splitter node v, as well as a v-t
and a v-u path. Note that any of these paths can be a single node.

Let (f t, fu, y) be an optimal LP solution to DFFB . Assume that this solution is minimal,
i.e. for any feasible solution (f̃ t, f̃u, ỹ) ≤ (f t, fu, y) it holds that (f̃ t, f̃u, ỹ) = (f t, fu, y). We

will show that there exist f̂ , f̂ t, f̂u ∈ RA such that (f̂ , f̂ t, f̂u, y) is contained in the polyhedron
described above. Define for all a ∈ A:

f̂(a) := min{f t(a), fu(a)}, (15)

f̂ t(a) := max{f t(a)− fu(a), 0}, (16)

f̂u(a) := max{fu(a)− f t(a), 0}. (17)

First, we show (10). Let v ∈ V . Because of the assumed minimality of (f t, fu, y) we obtain:

f̂(δ−(v))− f̂(δ+(v)) = (f t + fu − y)(δ−(v))− (f t + fu − y)(δ+(v)) (18)

= (f t + fu)(δ−(v))− (f t + fu)(δ+(v)) + y(δ+(v))− y(δ−(v)). (19)

If v = r, then
(f t + fu)(δ−(v))− (f t + fu)(δ+(v)) = −2 (20)

and
y(δ+(v))− y(δ−(v)) ≥ 1, (21)

thus (19) implies that (10) holds. If v ∈ {t, u}, then

(f t + fu)(δ−(v))− (f t + fu)(δ+(v)) = 1 (22)

and
y(δ+(v))− y(δ−(v)) ≥ −1. (23)

Finally, if v ∈ V \ {r, t, u}, the flow-balance constraints imply that (19) is non-negative.

5

Next, consider (11)—and equivalently (12). By definition it holds that

(f̂ + f̂ t)(δ−(v))− (f̂ + f̂ t)(δ+(v)) = f t(δ−(v))− f t(δ+(v)), (24)

which implies (11). Likewise, (13) follows from the definition of f̂ , f̂ t, and f̂u.

Note that the lemma is best possible in the sense that there exist SAP instances with |T | = 4
such that vLP (DCutFB) 6= v(DCutFB), see e.g. Liu [1990], Polzin and Daneshmand [2001a].

2.2 Rooted maximum-weight connected subgraphs

This section discusses the directed variant of the RMWCSP, see Álvarez-Miranda et al. [2013b]:
Given a directed graph D = (V,A), vertex weights p : V → R, a non-empty set Tf ⊆ V and an
r ∈ Tf , find a connected subgraph S ⊆ D containing R such that any v ∈ V (S) can be reached
from r on a directed path in S, and p(V (S)) is maximized. Any undirected RMWCSP can be
formulated in directed form by choosing an arbitrary r ∈ Tf and replacing each edge by two
anti-parallel arcs.

Note that any solution to the directed RMWCSP can be represented as an arborescence.
This observation leads to the following IP formulation, see e.g. Álvarez-Miranda et al. [2013b],
based on a well-known formulation for SAP, see e.g. Goemans and Myung [1993]. Define for each
v ∈ V a variable x(v) ∈ {0, 1} that is equal to 1 if and only if vertex v is part of the solution.
Analogously, define for each a ∈ A a variable y(a) ∈ {0, 1}.

Formulation 3. Rooted Steiner Arborescence Formulation (RSA)

max pTx (25)

s.t. y(δ−(v)) = x(v) for all v ∈ V \ {r} (26)

y(δ−(U)) ≥ x(v) for all U ⊆ V \ {r}, v ∈ U (27)

x(t) = 1 for all t ∈ Tf (28)

x ∈ {0, 1}V (29)

y ∈ {0, 1}A. (30)

In Álvarez-Miranda et al. [2013b] a new formulation for the directed RPCSTP based on
node-separators is introduced. Note that the use of node-separators for modeling connectivity is
already suggested in Fügenschuh and Fügenschuh [2008].

Formulation 4. Rooted Node Separator Formulation (RNCut)

max pTx (31)

s.t. x(C) ≥ x(v) for all v ∈ V \ ({r} ∪N+(r)), C ∈ C(r, v) (32)

x(v) = 1 for all v ∈ Tf (33)

x ∈ {0, 1}A. (34)

Besides the two IP models introduced above, several other formulations for RMWCSP (some-
times including a budget constraint) have been introduced in the literature, see e.g. Álvarez-
Miranda et al. [2013b], Dilkina and Gomes [2010]. However, one can show that these formula-
tions are weaker with respect to the LP relaxation than both of the above models, see Álvarez-
Miranda et al. [2013b] for some such results. Another example is the formulation from Conrad
et al. [2007] that is based on single-flow. However, also this formulation can be shown to be

6

weaker than Formulation 3 by using max-flow/min-cut arguments—similarly to corresponding
results for minimum spanning tree or Steiner tree problems, which can be found for example
in Hwang et al. [1992].

In Álvarez-Miranda et al. [2013b] it is stated that the LP relaxations of the RNCut and RSA
model yield the same optimal value. Unfortunately, this claim is not correct, as the following
proposition shows. Appendix A discusses the error in the line of argumentation in Álvarez-
Miranda et al. [2013b]—and furthermore provides some insight on how the node separator con-
straints miss to capture structures accurately described by edge cut constraints.

Proposition 2. It holds that projx(PLP (RSA)) ⊂ PLP (RNCut) and the inclusion can be strict.

Proof. The inclusion is essentially proven in Álvarez-Miranda et al. [2013b]. An example for a
strict inclusion is given in Appendix A.

One can strengthen the RSA formulation by inequalities similar to the flow-balance con-
straints. However, these constraints depend on the objective vector, so they cannot (directly) be
used for polyhedral results.

y(δ−(v)) ≤ y(δ+(v)) for all v ∈ V \ (Tf ∪ Tp). (35)

We refer to the strengthened formulation as RSAFB . One readily obtains the following result
from Lemma 1.

Lemma 3. If |Tp ∪ Tf | ≤ 3, then vLP (RSAFB) = v(RSAFB).

Proof. Let I be an RMWCSP instance with |Tp ∪ Tf | ≤ 3. Define an SAP I ′ = (V ′, A′, T ′, c′)
on an extended graph (V ′, A′) as described in Rehfeldt and Koch [2019] for the case of |Tf | = 1.
Initially, set V ′ := V , A′ := A, and T ′ := Tf . For each arc a = (v, w) ∈ A set c′(a) :=
max{−p(w), 0}. For each t ∈ Tp we add a new terminal t′ to T ′ and arcs (r, t′) of weight p(t)
and (t, t′) of weight 0 to A′. It holds that

p(Tp)− v(DCutFB(I ′)) = v(RSAFB(I)); (36)

recall that we assume Tp∩Tf = ∅. Any optimal LP solution (y, z) to RSAFB can be extended to
a feasible LP solution y′ to DCutFB defined by y′(t, t′) = x(t), y′(r, t′) = 1− x(t) for all t ∈ Tp,
as well as y′(a) := y(a) for all a ∈ A. Thus,

p(Tp)− vLP (DCutFB(I ′)) ≥ vLP (RSAFB(I)) ≥ v(RSAFB(I)). (37)

Because I ′ has at most three terminals, Lemma 1 and (36) imply that the above inequalities are
satisfied with equality. Consequently, vLP (RSAFB(I)) = v(RSAFB(I)).

2.3 Unweighted Steiner tree problems

This section analyzes and compares two formulations for the USPG. First, we state the node-
separator formulation from Fischetti et al. [2017]. Note that in Fischetti et al. [2017] a more
general version for the prize-collecting USPG is used. However, the prize-collecting USPG is
essentially a MWCSP. The results of this section can be partly extended to this more general
variant (which is done in Section 3 for the non-rooted case), but for simplicity, we now consider
the USPG only.

7

Formulation 5. Terminal Node Separator Formulation (TNCut)

min x(V)− 1 (38)

s.t. x(C) ≥ 1 for all t, u ∈ T, t 6= u,C ∈ C(t, u), (39)

x(v) = 1 for all v ∈ T, (40)

x(v) ∈ {0, 1} for all v ∈ V. (41)

Second, we look at the well-known bidirected cut formulation (BDCut) for (U)SPG. This
formulation corresponds to the DCut formulation for the SAP obtained by replacing each edge
of the SPG by two anti-parallel arcs of the same weight, and choosing an arbitrary terminal as
the root.

2.3.1 Exactness of the bidirected cut formulation

This section formulates conditions under which the bidirected cut formulation has no integrality
gap. We start with a direct consequence of Lemma 1, which applies also to weighted SPG.

Proposition 4. If |T | ≤ 3, then vLP (BDCutFB) = v(BDCutFB).

A simple reduction technique for USPG is to contract adjacent terminals (and delete one
edge from each resulting pair of multi-edges). The following proposition shows that the absolute
integrality gap of BDCut is invariant under this operation.

Proposition 5. Let I be an USPG instance with adjacent terminals t, u. Let I ′ be the USPG
obtained from contracting t and u. It holds that:

vLP (BDCut(I)) = vLP (BDCut(I ′)) + 1. (42)

Proof. Throughout the proof we assume that u is the root for the BDCut formulation, i.e. r = u.
It is well-known that the choice of the root does not affect vLP (BDCut) (this result also follows
from the proof of Theorem 6). Furthermore, let D′ = (V ′, A′) be the bidirected graph obtained
by contracting r and t and let r′ be the new vertex. I.e., V ′ = (V \ {r, t}) ∪ {r′}.

First, we show that vLP (BDCut(I)) ≥ vLP (BDCut(I ′))+1. Let y be an optimal LP solution
to BDCut(I). The optimality of y implies that y(δ−(t)) = 1, see Polzin and Daneshmand [2001a].
Create a new optimal solution ỹ as follows. Set ỹ(a) := y(a) for all a ∈ A\δ−(t), ỹ(a) := 0 for all
a ∈ δ−(t) \ {(r, t)}, and ỹ((r, t)) := 1. Note that for any cut δ−(U) with U ⊂ V \ {r} such that
δ−(U)∩δ−(t) 6= ∅ it holds that (r, t) ∈ δ−(U). Thus, ỹ(δ−(U)) ≥ 1. Consequently, ỹ satisfies (2).
Define an LP solution y′ to BDCut(I ′) as follows: y′(a) := ỹ(a) for all a ∈ A′∩A, and y′(a) := 0
for all a ∈ δ−D′(r

′). For any a = (r′, v) ∈ δ+D′(r
′) proceed as follows. If (r, v), (t, v) ∈ A, set

y′(a) := ỹ((r, v)) + ỹ((t, v)); if (t, v) /∈ A, set y′(a) := ỹ((r, v)); otherwise, set y′(a) := ỹ((t, v)).
Because of y(δ−(v)) ≤ 1, we have in any case that y′(a) ≤ 1.

It remains to show that vLP (BDCut(I)) ≤ vLP (BDCut(I ′)) + 1. Given an optimal LP solu-
tion y′ to BDCut(I ′) we define a corresponding LP solution y to BDCut(I). First, y((r, t)) := 1,
y((t, r)) := 0. Second, y(a) := y′(a) for all a ∈ A′ ∩A, and y(a) := 0 for all a ∈ δ−({r, t}). Next,
consider the remaining edges δ+({r, t}). If (r, v), (t, v) ∈ A set y((r, v)) := y′(r′, v), y((t, v)) := 0;
otherwise, for a = (r, v) or a = (t, v) set y(a) = y′((r′, v)).

With this result at hand, we obtain the following theorem (recall that α(G) denotes the
independence number of graph G).

Theorem 6. Consider an USPG on a graph G. If α(G) ≤ 3, then vLP (BDCut) = v(BDCut).

8

Proof. Consider a USPG instance I = (G,T, c) with α(G) ≤ 3. Let I ′ = (G′, T ′, c′) be the
USPG obtained by (repeatedly) contracting all adjacent terminals. Let D′ = (V ′, A′) be the
bidirected equivalent of G′. Proposition 5 implies that vLP (BDCut(I)) = v(BDCut(I)) if and
only if vLP (BDCut(I ′)) = v(BDCut(I ′)). Furthermore, because of α(G) ≤ 3 it holds that
|T ′| ≤ 3. For |T ′| < 3, the BDCut formulation is well-known to have no integrality gap. So
assume |T ′| = 3. By construction of I ′, the terminals form an independent set. Further, let y be
an optimal LP solution to BDCut(I ′) with an arbitrary r ∈ T ′ being the root.

Suppose that vLP (BDCut(I ′)) 6= v(BDCut(I ′)). By Lemma 1, there is a v ∈ V ′ \ T ′ such
that

y(δ+(v)) < y(δ−(v)). (43)

Because of α(G) ≤ 3, at least one of the terminals needs to be adjacent to v. We may assume
that this property holds for r. Otherwise, we can readily create another optimal LP solution ỹ
that satisfies (43) and has a root adjacent to v: Assume that a t ∈ T \{r} is adjacent to v and let
f t be a unit flow from r to t such that f t ≤ y; define ỹ((q, u)) := y((q, u))−f t((q, u))+f t((u, q))
for all (u, q) ∈ A′.

Define a new LP solution y′ from y as follows. For a0 := (r, v) set y′(a0) := y(δ+(v)). For
any a ∈ δ−(v) \ {a0} set y′(a) := 0. For all (remaining) a ∈ A′ \ δ−(v) set y′(a) := y(a). Note
that because of (43) it holds that y′(A′) < y(A′). It remains to be shown that y′ is feasible.
Suppose that there is a U ⊆ V \ {r} with U ∩ T ′ 6= ∅ and y′(δ−(U)) < 1. Because y is feasible,
it has to hold that v ∈ U . Let Ũ := U \ {v}. By the construction of y′ it holds that

y(δ−(Ũ)) = y′(δ−(Ũ))

= y′(δ−(Ũ)) + y′((r, v))− y′(δ+(v))

≤ y′(δ−(U))

< 1,

which contradicts the feasibility of y. Consequently, we have shown that vLP (BDCut(I ′)) =
v(BDCut(I ′)) and, thus, vLP (BDCut(I)) = v(BDCut(I)).

The theorem is best possible; i.e., there exist USPG instances such that α(G) = 4 and
vLP (BDCut) 6= v(BDCut), see e.g. Duin [1993], Filipecki and Van Vyve [2020].

2.3.2 Comparison of edge and node based formulation

Formulation 5 (TNCut) was used within a branch-and-cut algorithm by the most successful
solver at the 11th DIMACS Challenge DIMACS. Furthermore, the solver was able to solve several
USPG benchmark instances that had been unsolved for more than a decade to optimality. Thus,
one might wonder how this formulation theoretically compares with the better known bidirected
cut formulation. As the next proposition shows, BDCut is always stronger than TNCut and
the relative gap can be rather large.

Proposition 7. It holds that vLP (TNCut) ≤ vLP (BDCut). Furthermore,

sup

{
vLP (BDCut)

vLP (TNCut)

}
≥ 2, (44)

where the supremum is taken over all USPG instances.

Proof. For the first inequality consider an optimal LP solution y to BDCut. Define x ∈ RV by
x(v) := y(δ−(v)) for all v ∈ V \ {r} and x(r) := 1. The optimality of y implies x(v) ≤ 1 for

9

all v, see Polzin and Daneshmand [2001a]. Let t, u ∈ T with t 6= u and Ctu ∈ C(t, u). We will
show that C(t, u) satisfies (39). If Ctu ∩ T 6= ∅, then x(Ctu) ≥ 1, because x(q) ≥ 1 for all q ∈ T
due to (2) and the definition of x. Thus, (39) holds. If Ctu ∩ T = ∅, let Ur be the connected
component in the graph induced by V \ Ctu with r ∈ Ur. By definition of Ctu, either t /∈ Ur or
u /∈ Ur. Therefore, y(δ+(Ur)) ≥ 1, which implies y(δ−(Ctu)) ≥ 1 because of δ+(Ur) ⊂ δ−(Ctu).
Now we obtain from the definition of x that

x(Ctu) ≥ y(δ−(Ctu)) ≥ 1.

Finally, by construction of x we have that

x(V)− 1 =
∑
v∈V

y(δ−(v)) = y(A);

note that y(δ−(r)) = 0 because y is optimal.
For (44) we construct the following family of USPG instances. For any k ≥ 3 let Ik be the

USPG instance with with k + k2 nodes, k + k2 edges, and k terminals defined as follows. Let ti
for i = 1, ...k be the terminals and define for each i ∈ {1, ..., k} Steiner nodes vi,j , j = 1, ...k. For
each i ∈ {1, ..., k} define edges {ti, vi,1}, {t(i+1) mod k, vi,k}, and {vi,j , vi,j+1} for j = 1, ..., k− 1.
Instance I3 is shown in Figure 1. A feasible (and indeed optimal) LP solution x to TNCut(Ik)
is given by x(t) := 1 for all terminals t and x(v) := 0.5 for any Steiner node v. Its objective is
k2

2 + k − 1. On the other hand, vLP (BDCut(Ik)) = k + k(k − 1) = k2. Thus,

lim
k→∞

vLP (DCut(Ik))

vLP (TNCut(Ik))
= lim
k→∞

k2

k2

2 + k − 1
= 2, (45)

which concludes the proof.

Corollary 8. The (relative) integrality gap of TNCut is at least 2.

Note that one can strengthen TNCut by constraints that correspond to the flow-balance
constraints for BDCut, see Fischetti et al. [2017]. However, if compared to BDCutFB , the
results of Proposition 7 remain the same for this stronger version of TNCut.

Figure 1: USPG instance I3. Terminals are drawn as squares.

3 Formulations for non-rooted connected subgraphs

In this section we consider the undirected MWCSP. Some of the following results can also be
extended to the directed case. However, the undirected MWCSP is the more common (and,
arguably, also more natural) problem.

10

3.1 Node based formulations

This section considers formulations for MWCSP that use only node variables. The probably best
known one, see e.g. Wang et al. [2017], is given below.

Formulation 6. Node Separator Formulation (NCut)

max pTx (46)

s.t. x(v) + v(w)− x(C) ≤ 1 for all v, w ∈ V, v 6= w, C ∈ C(v, w), (47)

x(v) ∈ {0, 1} for all v ∈ V. (48)

The contraction of neighboring positive weight vertices drastically reduces the size of many
real-world MWCSP instances, as for example shown in Rehfeldt et al. [2019]. Recalling the
invariance of the BDCut integrality gap to the contraction of terminals, one might wonder
whether a corresponding property holds for MWCSP and the NCut formulation. The answer is
given in the next proposition. Note that when contracting adjacent vertices t, u ∈ Tp into a new
vertex t′, we set p(t′) := p(t) + p(u).

Proposition 9. vLP (NCut) is invariant under the contraction of adjacent vertices of positive
weight.

Proof. Let I be an MWCSP instance with an edge {t, u} ∈ E such that t, u ∈ Tp. Let I ′ =
(V ′, E′, p′) be the instance obtained from I be contracting {t, u} into a new vertex t′. It holds
that vLP (NCut(I ′)) ≤ vLP (NCut(I)), because any x′ ∈ PLP (NCut(I ′)) can be mapped to

a x ∈ PLP (NCut(I)) with pTx = p′
T
x′ defined by x(v) := x′(v) for all v ∈ V ∩ V ′, and

x(t) := x(u) := x′(t′). The opposite case is somewhat more involved.
Let x be an optimal LP solution to NCut(I). The optimality of x, and the fact that {t, u} ∈ E

imply
x(t) = x(u). (49)

Define x′ ∈ RV ′ by x′(v) := x(v) for all v ∈ V ′ \ {t′}, and x′(t′) := x(t). Assume that
x′(t′) ∈ (0, 1)—otherwise, the proof is already complete. It remains to be shown that x′ ∈
PLP (NCut(I ′)). Suppose this is not the case. Then there are a, b ∈ V ′ and an a-b separator
C ′ab ⊂ V ′ such that

x′(a) + x′(b)− x′(C ′ab) > 1. (50)

Because x is feasible, t′ ∈ C ′ab. Thus, we obtain from (50) that

x(a) + x(b)− x(t) = x′(a) + x′(b)− x′(t′) > 1, (51)

and therefore
min{x(a), x(b)} > x(t). (52)

Now we return to the original instance I. Because x is optimal, and x(t) = x(u) < 1, there is a
q ∈ V \ {t, u} and a Cqt ∈ C(q, t) such that

x(t) + x(q)− x(Cqt) = 1. (53)

Similarly, there is a s ∈ V \ {t, u} and a Csu ∈ C(s, u) with x(u) + x(s) − x(Csu) = 1. At least
one such combination q, Cqt, or s, Csu satisfies u /∈ Cqt or t /∈ Csu, otherwise we could increase
x(u) and x(t). Assume w.l.o.g. u /∈ Cqt. Further, observe that (53) implies

x(Cqt) ≤ min{x(t), x(q)}. (54)

11

Thus, (53) and (52) imply a, b /∈ Cqt. One notes that Cqt /∈ C(a, q), because (52) and (53) imply

x(a) + x(q)− x(Cqt) > 1. (55)

Likewise, Cqt /∈ C(b, q). Consequently, any path from {t, u} to a or b needs to cross Cqt; otherwise,

the latter would not separate q and t. Therefore, C̃ab := (C ′ab \ {t′}) ∪ Cqt separates a and b (in
the original graph). However, from (50) and (54) we obtain

1 < x(a) + x(b)− x′(C ′ab) ≤ x(a) + x(b)− x(C̃ab), (56)

which contradicts the feasibility of x.

Furthermore, one obtains the following optimality criterion:

Proposition 10. If |Tp| ≤ 2, then vLP (NCut) = v(NCut).

Proof. Consider an MWCSP I = (G, p) with |Tp| ≤ 2. The case |Tp| ≤ 1 is clear. Let {a, b} := Tp
and assume p(a) ≥ p(b). Thus, there is a minimal optimal LP solution x such that x(a) = 1.
Let (V,A) be the bidirected equivalent of G. Create a new directed graph (V ′, A′) by replacing
each node v ∈ V \ {a, b} by two nodes v1, v2 and arcs (v1, v2), (v2, v1). Further, all ingoing arcs
of v become ingoing arcs of v1, and all outgoing arcs of v are now outgoing arcs of v2. Define arc
capacities k for each pair of these new arcs by x(v); for any (remaining) arc e ∈ A set k(e) :=
∞.1 By the max-flow/min-cut theorem there is a-b flow f with v(f) = x(b) in this extended
network. Define the directed MWCSP Ir := ((V,A), Tf , r, p) with Tf := {a} and r := a, and set
y := f �A. Because of the optimality and minimality of x it holds that (x, y) ∈ PLP (RSA(Ir)).
Thus, vLP (NCut(I)) ≤ vLP (RSA(Ir)). Furthermore, y satisfies constraints (35). Because of
v(NCut(I)) = v(RSA(Ir)), Lemma 3 implies that vLP (NCut(I)) = v(NCut(I)).

Figure 2 shows an MWCSP instance with |Tp| = 3 and vLP (NCut) 6= v(NCut). It holds
that v(NCut) = 1, but vLP (NCut) = 1.5 (set the values of all negative weight node variables to
0.5 and the remainder to 1).

Finally, by combining the previous two propositions we obtain a significantly shorter proof
of a main result from Wang et al. [2017].

Theorem 11. If α(G) ≤ 2, then PLP (NCut) is integral.

Proof. Let p ∈ RV . If α(G) ≤ 2, then Proposition 9 implies that the MWCSP (G, p) can
be transformed to an MWCSP with at most two positive weight vertices without changing
vLP (NCut). Now, Proposition 10 gives vLP (NCut) = v(NCut). Because p can be chosen
arbitrarily, PLP (NCut) is integral.

Wang et al. [2017] also show that PLP (NCut) is integral only if α(G) ≤ 2.

Indegree constraints

Given an undirected graph G = (V,E), a d ∈ Zn is an indegree vector if there is an orientation
D = (V,A) ofG such that dv = |δ−D(v)| for all v ∈ V . For each indegree vector d the corresponding
indegree inequality is given as ∑

v∈V
(1− dv)x(v) ≤ 1, (57)

where x ∈ RV≥0 are the node variables. Korte et al. [2012] show that the indegree inequalities
describe the connected subgraph polytope if G is a tree. Furthermore, Wang et al. [2017] show
conditions for (57) to be facet inducing and shows that the constraints can be separated in linear
time. It is further shown that the constraints (57) can strengthen the NCut formulation.

1Such kind of flow network transformations are well-known in algorithmic graph theory; see also Appendix A.

12

3.2 Edge based formulations

An edge based formulation for the directed MWCSP is introduced in Álvarez-Miranda et al.
[2013a], based on a transformation to the prize-collecting SPG. We will use essentially the same
formulation for the undirected MWCSP, but without the transformation to the prize-collecting
SPG, and thus with a different objective function. Consider the bidirected equivalent D = (V,A)
to the given undirected graph. Let (Vr, Ar) be the directed graph defined as follows with an
additional node r: Vr := V ∪ {r}, Ar := A ∪ {(r, v) | v ∈ V }. Define the following extended
MWCSP formulation based on the new graph (Vr, Ar).

Formulation 7. Extended Steiner Arborescence Formulation (ESA)

max pTx (58)

s.t. y(δ−(v)) = x(v) for all v ∈ V (59)

y(δ−(U)) ≥ x(v) for all U ⊆ V, v ∈ U (60)

y(δ+(r)) ≤ 1 (61)

x ∈ {0, 1}V (62)

y ∈ {0, 1}Ar . (63)

The remainder this section aims to prove an integrality condition for projx(PLP (ESA))
based on the independence number. We follow the same principal ideas used in Section 2.3.1,
but require additional technical results, due to the absence of a natural root node. We start with
the easiest one.

Lemma 12. Let (x, y) be an optimal LP solution (x, y) to ESA, and let v ∈ V . There is a
ỹ ∈ RAr with ỹ((r, v)) = x(v) such that (x, ỹ) is an optimal LP solution to ESA.

Proof. Assume there is an optimal LP solution (x, y) with κ := y(δ−D(v)) > 0 for a v ∈ V .
Because of (60), there is a r-v flow fκ ≤ y with v(fκ) = κ and fκ((r, v)) = 0. Define a new
solution (x, ỹ) with

ỹ((u,w)) :=


y((u,w))− fκ((u,w)) + fκ((w, u)), (u,w) ∈ A
y((u,w))− fκ((u,w)), (u,w) ∈ δ+(r) \ {(r, v)}
y((u,w)) + κ, (u,w) = (r, v).

For (59), first let u ∈ V \ {v}. It holds that

ỹ(δ−(u)) = y(δ−(u)) + fκ(δ+D(u))− fκ(δ−D(u))− fκ((r, u)) = y(δ−(u)) = x(u).

Similarly, because of ỹ((r, v)) = y((r, v)) + κ and fκ(δ−D(v)) + fκ(δ+D(v)) = κ it holds that
ỹ(δ−(v)) = x(v).

For (60), consider a U ⊆ V , and a u ∈ U . First, assume v ∈ U . Because of (r, v) ∈ δ−(U),
and fκ(δ−D(U)) + fκ(δ+D(U)) = κ we obtain ỹ(δ−(U)) = y(δ−(U)). Second, assume v /∈ U . In
this case, flow conservation of fκ implies that

ỹ(δ−(U)) = y(δ−(U)) + fκ(δ+(U))− fκ(δ−(U)) = y(δ−(U)).

Note that for (exact) optimization, ESA only requires arcs from r to vertices in Tp. Further-
more, only constraints (60) for vertices v ∈ U with v ∈ Tp need to be enforced. We will refer to
this modified formulation as ESA+. Further, we define A+

r := A∪{(r, t) | t ∈ Tp}. In practice, it
is advisable to add additional |Tp| symmetry breaking constraints similar to those from Fischetti
et al. [2017] to ESA+. As to the LP relaxation of ESA+, one obtains the following result.

13

Lemma 13. Let (x, y+) be an optimal LP solution to ESA+. Then (x, y) ∈ RV+Ar with
y(a) := y+(a) for a ∈ A+

r and y(a) := 0 for a ∈ Ar \A+
r is an optimal LP solution to ESA.

Proof. Let ESA′ be the reduced version of ESA where constraints (60) are only enforced for
vertices v ∈ U with v ∈ Tp. Note that

vLP (ESA) ≤ vLP (ESA′) ≤ vLP (ESA+). (64)

In this proof we only consider minimal optimal LP solutions, i.e., solutions for which no entry
can be reduced without loosing either feasibility or optimality.

First, we show that any optimal LP solution to ESA+ is also optimal for ESA′. To this
end, we show the existence of an optimal LP solution (x′, y′) to ESA′ such that y′((r, v)) = 0
for all v ∈ V \ Tp. Assume there is an optimal LP solution (x′, y′) to ESA′ with y′((r, v)) > 0
for a v ∈ V \ Tp. Because (x′, y′) is optimal, there is a r-t flow f t with f t ≤ y′ for a t ∈ Tp
with v(f t) = y′((r, v)). We can now proceed as in Lemma 12 to revert the flow going to t. The
resulting optimal solution (x̃, ỹ) satisfies ỹ((r, v)) = 0 and ỹ((r, u)) ≤ y′((r, u)) for all u ∈ V \{t}.

Second, we show that any optimal LP solution (x′, y′) to ESA′ with y′((r, v)) = 0 for all
v ∈ V \ Tp satisfies constraints (60) also for v ∈ U with v /∈ Tp. We use essentially the same line
of argumentation used in Goemans and Myung [1993] for the SPG bidirected cut formulation.
Suppose there is a U ⊆ V and a u ∈ U with

x′(u) > y′(δ−(U)). (65)

Choose such a U with |U | as small as possible. Because of (65), there is a e ∈ δ−(u) \ δ−(U)
such that y′(e) > 0. Because of the minimality of (x′, y′), there is a W ⊆ V and a t ∈ W ∩ Tp
such that e ∈ δ−(W) and

y′(δ−(W)) = x′(t). (66)

Because of e ⊆ U and |e ∩ W | = 1, one obtains |U ∩ W | < |U |. We will show that U ∩ W
satisfies (65), which contradicts the minimality of |U |. By standard graph theory we have that

y′((δ−(U)) + y′(δ−(W)) ≥ y′(δ−(U ∩W)) + y′(δ−(U ∪W)).

Together with (66), it follows that y′((δ−(U)) ≥ y′(δ−(U ∪W)), which leads to the sought for
contradiction.

Corollary 14. vLP (ESA) = vLP (ESA+).

Further, we require the following result.

Lemma 15. If |Tp| ≤ 3, then there is an optimal LP solution (x, y) to ESA such that x(t) ∈
{0, 1} for all t ∈ Tp.

Proof. As before, let D = (V,A) be the bidirected equivalent to the given undirected graph.
Also, we assume any optimal solution to be minimal. By Lemma 13 we can consider ESA+

instead of ESA to show the required result. Thus, throughout this proof we consider an optimal
LP solution (x, y) to ESA+.

The case |Tp| ≤ 1 is clear. Assume |Tp| = 2, and let {a, b} := Tp such that p(a) ≥ p(b). By
Lemma 12 we can assume that y(δ−D(a)) = 0. Thus, also y(δ+D(b)) = 0. If y(δ+(a)) = 0, either
x(a) = 1 and x(b) = 0, or vice versa. If y(δ+(a)) > 0, the minimality of (x, y) implies∑

v∈V \{a}

p(v)y(δ−D(v)) > 0, (67)

14

which implies also β := y(δ−D(b)) > 0. Let κ := 1
β . Define ỹ ∈ RA+

r by ỹ((r, a)) := 1, ỹ((r, b)) := 0,

and ỹ(e) := κy(e) for all e ∈ A. Define x̃(v) := ỹ(δ−(v)) for all v ∈ V . One notes that (x̃, ỹ) is
feasible, and satisfies x̃(a) = x̃(b) = 1. Furthermore, pT x̃ ≥ pTx because of κ ≥ 1.

In the remainder of this proof we consider an MWCSP instance I with |Tp| = 3.

Claim 1. There is an optimal LP solution (x, y) to ESA+(I) such that x(t) = 1 for a t ∈ Tp.

Proof. Let {a, b, c} := Tp such that p(a) ≥ max{p(b), p(c)}. Again, assume y((r, a)) = x(a).
Thus, also y(δ−D(a)) = 0. Suppose that y((r, t)) < 1 for all t ∈ Tp. Note that y((r, b)) > 0 or
y((r, c)) > 0 (otherwise y((r, a)) = 1). Assume w.l.o.g. y((r, b)) > 0. Because of p(a) ≥ p(c) and
y(δ−D(a)) = 0, we can assume by a flow argument similar to that of Lemma 12 that y((r, c)) = 0
holds. Similarly, we can assume that there is a flow f cb from r to c with v(f cb) = f cb ((r, b)) =
y((r, b)) and f cb ≤ y—otherwise, we decrease y((r, b)) and increase y((r, a)). Let f ba and f ca be
maximum flows from a to b and c with f ba ≤ y and f ca ≤ y. If v(f ba) = v(f ca) = 0, we are effectively
in the case |Tp| ≤ 2, since we can restrict the problem to the support graph of (x, y).

So assume v(f ba) > 0 or v(f ca) > 0. Thus, x(a) > 0. Suppose x(b) < 1 and x(c) < 1. Note that
either v(f ba) = 0, or both v(f ba) > 0 and v(f ca) > 0. First, suppose v(f ba) = 0. Thus, y(δ−(b)) = 0
and ∑

v∈V \{a,b}

p(v)y(δ−D(v)) > 0. (68)

Define κ := x(a)
v(fc

a)
. Define ỹ ∈ RA+

r by

ỹ(e) := max{y(e), κf ca(e)}, (69)

for all e ∈ A+
r , and define x̃ ∈ RV accordingly. We have κx(c) = x̃(c). Thus, (68) implies

pT x̃ > pTx.
Second, suppose v(f ba) > 0 and v(f ca) > 0. In this case, (67) holds. Furthermore, y(δ−D(b)) =

f ba(δ−D(b)). Thus, we can proceed as before and multiply both f ba and f ca by some κ > 1 to get a
better LP solution. Overall, we have shown that x(b) = 1 or x(c) = 1.

(Proof of Lemma 15 continued.) Let {a, b, t} := Tp such that x(t) = 1 (which we can assume
by Claim 1). Assume y((r, t)) = x(t). In the following we mostly ignore the arcs δ+(r) and
concentrate on the bidirected graph D = (V,A). We need to show that x(a), x(b) ∈ {0, 1}.

Suppose x(a) ∈ (0, 1) or x(b) ∈ (0, 1). Let fa and f b be maximum flows from t to a and
b with capacity y(e) for each arc e ∈ A. Note that x(a) = 1 or x(b) = 1; otherwise we could
increase fa, f b, and y as in the proof of Claim 1. Assume w.l.o.g. x(a) = 1. Let k ∈ RA with
k(e) := max{0, fa(e)− f b(e)} for all e ∈ A. Let f̌a be a maximum t-a flow with f̌a ≤ k.

Claim 2. It holds that v(f̌a) > 0.

Proof. Suppose v(f̌a) = 0. Let V t ⊂ V be the set of vertices that can be reached by a directed
path from t on the support graph induced by k (i.e., via arcs e ∈ A with k(e) > 0). Because of
v(f̌a) = 0, we have a /∈ V t. Because (x, y) is optimal, we have b /∈ V t. Because of a /∈ V t and
x(a) = 1 we obtain

fa(δ+(V t))− fa(δ−(V t)) = 1. (70)

From the definition of V t we get

f b(δ+(V t)) ≥ fa(δ+(V t)). (71)

Finally, because of x(b) < 1 we have

f b(δ+(V t))− f b(δ−(V t)) < 1. (72)

15

From (70),(71), and (72) we get

f b(δ−(V t)) > fa(δ−(V t)). (73)

Thus, there is a u ∈ V t \ {t} and e0 ∈ δ−(u) with f b(e0) > fa(e0); note that y(e0) = f b(e0). By
definition of V t, there is a directed path P from t to u such that fa(e) > f b(e) for all e ∈ A(P).
Let U ⊂ V with e0 ∈ δ−(U). If b ∈ U , the existence of P implies y(δ−(U)) > x(b) (since we
can increase f b along P). If a ∈ U , we obtain from y(e0) > fa(e0) that y(δ−(U)) > x(a). Thus,
we can decrease y(e0) while staying feasible—in contradiction to the minimality or optimality of
(x, y).

(Proof of Lemma 15 continued.) We assume v(f̌a) < 1. Otherwise the proof would already

be complete, since the support graphs of fa and f b would be arc disjoint. Let f̂a := fa − f̌a.
Further, for all e ∈ A define f̃ b(e) := max{0, f b(e) − fa(e)}. Note that f̂a is a flow, but f̃ b in
general not. We further have∑

v∈V
p(v)(f̂a + f̌a + f̃ b)(δ−D(v)) =

∑
v∈V \{t}

p(v)x(v). (74)

Claim 3. It holds that

1

v(f̂a)

∑
v∈V

p(v)(f̂a + f̃ b)(δ−D(v)) =
1

v(f̌a)

∑
v∈V

p(v)f̌a(δ−D(v)). (75)

Proof. Because (x, y) is optimal and fa = f̂a + f̌a, we obtain from (74) that for any sufficiently
small ε > 0:(

1 +
ε

v(f̂a)

)∑
v∈V

p(v)(f̂a + f̃ b)(δ−D(v)) +
(
1− ε

v(f̌a)

)∑
v∈V

p(v)f̌a(δ−D(v)) ≤
∑

v∈V \{t}

p(v)x(v), (76)

and(
1− ε

v(f̂a)

)∑
v∈V

p(v)(f̂a + f̃ b)(δ−D(v)) +
(
1 +

ε

v(f̌a)

)∑
v∈V

p(v)f̌a(δ−D(v)) ≤
∑

v∈V \{t}

p(v)x(v). (77)

Note that on the right hand sides of the previous two inequalities we have essentially shifted an
ε of the flow fa from f̌a to f̂a, and vice-versa. Finally,

0
(76)

≤ ε

v(f̂a)

∑
v∈V

p(v)(f̂a + f̃ b)(δ−D(v))− ε

v(f̌a)

∑
v∈V

p(v)f̌a(δ−D(v))
(75)

≤ 0, (78)

which proves (75).

(Proof of Lemma 15 continued.) Set

κ :=
(
1 +

v(f̌a)

v(f̂a)

)
. (79)

Because of (75), and (74) we obtain

κ
∑
v∈V

p(v)(f̂a + f̃ b)(δ−D(v)) =
∑

v∈V \{t}

p(v)x(v). (80)

Define ỹ ∈ RA+
r by

ỹ(e) := max{y(e), κf̂a(e), κf b(e)}, (81)

for all e ∈ A+
r , and define x̃ ∈ RV accordingly. It holds that pT x̃ = pTx, and x̃(c) = 1.

16

As the last piece, we have the now familiar contraction result (with a slight generalization).

Proposition 16. vLP (ESA) is invariant under the contraction of adjacent vertices of non-
negative weight.

The proposition can be proven in a similar way as Proposition 5, with a few additional
technical details. We now reach the main result of this section.

Theorem 17. If α(G) ≤ 3, then projx(PLP (ESA)) is integral.

Proof. Let I = (G, p) be an MWCSP with α(G) ≤ 3. Let I ′ = (V ′, E′, p′) be the MWCSP
obtained from I by contracting all adjacent vertices of non-negative weight. Let A′ be the
bidirected equivalent of E′. Proposition 16 implies that vLP (ESA(I)) = vLP (ESA(I ′)). Also,
I ′ satisfies |T ′p| ≤ 3 and the vertices T ′p are independent. By Lemma 15 and Lemma 12 there is
an optimal LP solution (x̃, ỹ) to ESA(I ′) such that x(u) ∈ {0, 1} for all u ∈ T ′p, and y((r, t)) = 1
for one t ∈ T ′p. Consider the RMWCSP I ′t = (V ′, E′, T ′f , p

′) with T ′f := {t}. For simplicity, we
deviate from the assumption that fixed terminals have 0 weight. It holds that v(ESA(I ′)) =
v(RSA(I ′t)) and vLP (ESA(I ′)) = vLP (RSA(I ′t)). We will show that

vLP (RSA(I ′t)) = v(RSA(I ′t)), (82)

which concludes the proof. Let (x, y) be the restriction of (x̃, ỹ) to (V ′, A′). Note that (x, y) is
an optimal LP solution to RSA(I ′t). Suppose that (82) does not hold. Thus, by Lemma 3 there
is a v ∈ V ′ \ (T ′p ∪ T ′f) with

y(δ+(v)) < y(δ−(v)). (83)

The case |T ′p| < 3 can be readily ruled out by a flow argument. So assume |T ′p| = 3. Because of
α(G) ≤ 3, at least one vertex u ∈ T ′p is adjacent to v. Recall that x(u) ∈ {0, 1}. If x(u) = 0,
we reduce the problem to the support graph of (x, y), which corresponds to the case |T ′p| < 3.
So assume x(u) = 1. If u 6= t, define the RMWCSP I ′u = (V ′, E′, T ′′f , p

′) with T ′′f := {t, u}.
Further, construct an optimal solution (x, ỹ) to I ′u with root u analogously to Lemma 12. In this
way, ỹ(δ+(v)) < ỹ(δ−(v)) holds again (for the same v as above). In the following, assume u = t.
Define a new LP solution (x′, y′) from y as follows. For a0 := (t, v) set y′(a0) := y(δ+(v)). For
any a ∈ δ−(v)\{a0} set y′(a) := 0. For all a ∈ A′\δ−(v) set y′(a) := y(a). Set x′(v) := y(δ+(v)),
and x′(w) := x(w) for all w ∈ V \ {v}. By construction of I ′t it holds that p(v) < 0 (otherwise,
v would have been contracted into u). Thus, p′Tx′ > p′Tx. The feasibility of (x′, y′) can be seen
as in the proof of Theorem 6.

Note that there are graphs with a(G) = 4, such that projx(PLP (ESA)) is not integral. For
an example, extend the graph in Figure 2 as follows. Add a new vertex v and edges between v
and the (three) vertices of negative weight shown in the figure.

3.3 Comparison of the formulations

A result from Álvarez-Miranda et al. [2013a] states that the directed equivalents of ESA and
NCut induce the same polyhedral relaxation of the directed connected subraph polytope. This
result suggest that the same relation holds for the undirected case. Unfortunately, the result
from Álvarez-Miranda et al. [2013a] is not correct (the proof suffers from a similar problem as
that discussed in Appendix A for the rooted case). The strict inclusion result given in the next
proposition can indeed also be extended to the directed case.

Proposition 18. The following inclusion holds and can be strict:

projx(PLP (ESA)) ⊂ PLP (NCut). (84)

17

Proof. Let (x, y) ∈ PLP (ESA) and let a, b ∈ V , a 6= b. Let C ∈ C(a, b) and let Ua be the
connected component in the graph (V \ C,E[V \ C]) with a ∈ Ua. Define Ūb := V \ Ua and
Ūa := Ua ∪ C. Because of Ūa ∩ Ūb = C, one obtains

y(δ−(Ūa)) + y(δ−(Ūb)) = y(δ−(Ūa ∪ Ūb)) + y(δ−(C)), (85)

where we use δ− := δ−Dr
. Thus,

x(a) + x(b)
(60)

≤ y(δ−(Ūa)) + y(δ−(Ūb)) (86)

(85)
= y(δ+(r)) + y(δ−(C)) (87)

(61)

≤ 1 + x(C). (88)

An example for a strict inclusion is given in Figure 2. E.g., consider the following point
that is in PLP (NCut), but not in projx(PLP (ESA)): Set the values of all negative weight node
variables to 0.5 and the remainder to 1.

1

-1 -1

1 1-1

Figure 2: MWCSP instance with given node weights.

Next, we consider the indegree constraints. Following Wang et al. [2017], we define

Q′ := {x ∈ RV≥0 | x satisfies all indegree constraints}. (89)

While Q′ * PLP (NCut), see e.g. Wang et al. [2017], the indegree constraints cannot improve
the ESA formulation, as the following proposition shows.

Proposition 19. The following inclusion holds and can be strict:

projx(PLP (ESA)) ⊂ Q′. (90)

Proof. Consider an undirected graph G, and let D be its bidirected equivalent. Furthermore, let
Dr be the extended, directed graph on which ESA is defined. Let (x, y) ∈ PLP (ESA). First,
note that constraints (59) and (60) imply for all {v, w} ∈ E that

min{y(δ−Dr
(v)), y(δ−Dr

(w))} ≥ y((v, w)) + y((w, v)). (91)

18

Let d be an indegree vector. It holds that∑
v∈V

x(v) =
∑
a∈Ar

y(a)

≤
∑
a∈A

y(a) + 1

=
∑

{v,w}∈E

(
y((v, w)) + y((w, v))

)
+ 1

(91)

≤
∑

{v,w}∈E

min{y(δ−Dr
(v)), y(δ−Dr

(w))}+ 1

≤
∑
v∈V

dvx(v) + 1,

which implies that (57) is satisfied by x; thus, x ∈ Q′. For a strict inclusion consider the graph
in Figure 2 and the point x as defined in the proof of Proposition 18.

Summarizing the results of this section, one obtains:

Theorem 20. It holds that

projx(PLP (ESA)) ⊂ Q′ ∩ PLP (NCut), (92)

and the inclusion can be strict.

Finally, note that by using one flow for each vertex, similar to the DF formulation, it is also
possible to obtain a compact extended formulation for the connected subgraph polytope that is
equivalent to ESA—and thus (strictly) stronger than the combined node-separator and indegree
formulation.

4 Algorithms

The previous two sections have established theoretical results that suggest the use of edge based
formulations as opposed to node based ones for the solution of MWCSP and related problems.
A natural candidate for the practical solution of IP formulations with exponentially many con-
straints is branch-and-cut. However, the practical success of a branch-and-cut algorithm also
highly depends on additional methods such as presolving techniques or (primal and dual) heuris-
tics. Thus, this section introduces several algorithms for MWCSP, that can be used as part of a
branch-and-cut algorithm based on ESA+

FB as described in Rehfeldt and Koch [2019].
We will only consider the non-rooted MWCSP in this section for the sake of simplicity. All

MWCSP algorithms can be adapted for RMWCSP by setting sufficiently high weights for each
fixed terminal.

4.1 A primal heuristic

A common greedy heuristic for SPG, see Takahashi and A. [1980], and also already used for
MWCSP, see Rehfeldt and Koch [2019], is to start with a single vertex and iteratively connect
a new terminal, or (in the case of MWCSP) a vertex of positive weight by a path to the current
tree. In the case of the SPG a natural choice for the connection is a shortest path, but in the

19

case of MWCSP the choice is less clear. The following algorithm chooses paths that also take
intermediary vertices of positive weight into account.

Let vertex vr ∈ V be the start vertex. Initially, define for all v ∈ V \ {vr}: p+(v) :=
max{p(v), 0}, p−(v) := max{−p(v), 0}, d̃(v) := ∞. For vr set all these values to 0. Define a
predecessor pred(v) := null for each v ∈ V . Define the initial tree S as V (S) := {vr}, E(S) := ∅,
and set Q := {v}. While Q 6= ∅ proceed as follows. Choose a v = arg minu∈Q d̃(u) and remove v

from Q. If p(v) > d̃(v), add the path P between S and v marked by pred to S. Further, set for
each w ∈ V (P): d̃(w) := p+(w) := 0, and add w to Q.

In any case, define for each {v, w} ∈ δ(v)

d̃vw := d̃(v) + p−(w)−min{p−(w), p+(v)}. (93)

If d̃vw < d̃(w), add w to Q and set d̃(w) := d̃vw, pred(w) := v. Note that in (93) we cannot just
subtract p+(v), because otherwise the algorithm might cycle.

Once Q is empty, we compute a spanning tree on the graph induced by V (S), while trying to
have vertices V (S) \ Tp as leaves. Then, we use a linear-time dynamic programming algorithm
described in Magnanti and Wolsey [1995] to compute a maximum-weight connected subgraph on
this tree.

Finally, note that the above heuristic can also be extended to the (more general) prize-
collecting Steiner tree problem.

4.2 A dual heuristic

In Wong [1984] a dual-ascent algorithm for DCut was introduced, and has since then be used
as important component for reduction techniques, see e.g. Duin [1993], or initial cut generation,
see e.g. Polzin and Daneshmand [2001b]. Consider an SAP (V,A, T, r, c). Let W := {W ⊂ V |
r /∈W,T ∩W 6= ∅}. Consider the dual of DCut:

max
∑
W∈W

µW (94)

s.t.
∑

W∈W|a∈δ−(W)

µW ≤ c(a) for all a ∈ A, (95)

µ ≥ 0. (96)

Given a dual solution µ, let Aµ ⊆ A be the set of arcs for which (95) is tight. For each t ∈ T \{r},
define the root component Ut of t as the set of vertices v ∈ V such that there exists a directed v-t
path in Aµ. A root component Ut is active if T ∩ Ut = {t}. Initially, the dual-ascent algorithm
sets µ := 0. In each iteration an active root component Ut is chosen and µ is increased until (95)
becomes tight for at least one a ∈ δ−(Ut). This increase can be done implicitly by just adapting
the reduced costs. The algorithm terminates when no active root component is left.

In Rehfeldt et al. [2019] dual-ascent was used for MWCSP based on the following transfor-
mation of MWCSP to SAP:

Transformation 1 (MWCSP to SAP).
Input: An MWCSP I = (V,E, p)
Output: An SAP I ′ = (V ′, A′, T ′, c′, r′)

1. Set V ′ := V , A′ := {(v, w) ∈ V ′ × V ′ | {v, w} ∈ E}, s := |Tp|.

2. Set c′ : A′ → R≥0 such that for a = (v, w) ∈ A′:

c′(a) =

{
−p(w), if p(w) < 0

0, otherwise

20

3. Add two vertices r′ and v′0 to V ′.

4. Denote the set of all v ∈ V with p(v) > 0 by T = {t1, ..., ts} and define M :=
∑
t∈Tp

p(t).

5. For each i ∈ {1, ..., s}:

(a) Add an arc (r′, ti) of weight M to A′.

(b) Add a new node t′i to V ′.

(c) Add arcs (ti, v
′
0) and (ti, t

′
i) to A′, both being of weight 0.

(d) Add an arc (v′0, t
′
i) of weight p(ti) to A′.

6. Define the set of terminals T ′ := {t′1, ..., t′s} ∪ {r′}.

7. Return (V ′, A′, T ′, c′, r′).

Similar to the previous section, one shows that applying the DCut formulation on the SAP
I ′ from the above transformation yields (after a constant shift of the objective) the same optimal
LP value as ESA. Furthermore, one notes that the constraints (2) for I ′ corresponding to all
non-zero µW can be readily transformed to constraints (60) for ESA+. These can be used as
initial constraints for a branch-and-cut algorithm.

In practice, one tries to only increase small root components in the dual-ascent algorithm.
Moreover, it is advantageous to only update the currently used root component and rebuild Ut
by a BFS or DFS after each change of t, see Pajor et al. [2017]. For I ′ one notices that for
distinct terminals ti, tj with v′0 ∈ Uti and v′0 ∈ Utj it holds that Uti \ {ti} = Utj \ {tj}. However,
due to the structure of I ′ all root components will remain active until the end of the algorithm.
Thus, a simple, but sometimes highly effective modification of I ′ is to make v′0 a terminal. In
this way, any root component Ut ceases to be active as soon as v′0 ∈ Ut. Still, the final reduced
costs remain the same.

4.3 Reduction techniques

Reduction techniques are a vital component for practical exact solution of MWCSP, see Leitner
et al. [2018], Rehfeldt and Koch [2019], and also for many other combinatorial optimization
problems, such as SPG, see Polzin and Daneshmand [2001b] or maximum clique, see Verma et al.
[2015]. Reduction techniques for MWCSP (and other combinatorial optimizations problems) aim
to transform a given problem instance I to an instance I ′ such that any optimal solution S′ to
I ′ can be transformed to an optimal solution S to I, and I ′ is (hopefully) easier to solve than I.
Typically, reduction techniques aim to delete edges or vertices; we already saw the example of
positive weight neighbors contraction in the previous section.

Note that an optimal solution may consist of a single vertex. Thus, care needs to be taken to
avoid the deletion or modification of an optimal positive weight vertex. Indeed, one finds wrong
reduction tests in literature as detailed in Rehfeldt et al. [2019]. An example is the contraction of
a positive weight vertex of degree 1 into its (negative weight) neighbor. Also, just remembering
the maximal-weight connected vertex before the start of the reduction techniques, as suggested
in the literature, is not sufficient: A single vertex solution might be created during the reduction
process on a reduced problem. Indeed, guarding measures during the reduction process cannot
be avoided due to the following proposition. It can be readily proven by a reduction from the
decision variant of MWCSP.

Proposition 21. Deciding whether a single-vertex maximum-weight connected subgraph exists
is NP-complete.

21

The remainder of this section introduces two new reduction methods for MWCSP—these
techniques can also be applied to RMWCSP if sufficiently high weights for each fixed terminal
are used.

Bottleneck distances

Bottleneck Steiner distances are a classic concept for SPG reduction techniques introduced
by Duin and Volgenant [1989]. Initially, this section translates (in a straightforward way) a
recent generalization of this concept for PCSTP by Rehfeldt and Koch [2020] to MWCSP. Let
v, w ∈ V . A finite walk W = (v1, e1, v2, e2, ..., er, vr) with v1 = v and vr = w will be called
positive-weight constrained (v, w)-walk if no u ∈ Tp ∪ {v, w} is contained more than once in W .
For any k, l ∈ N with 1 ≤ k ≤ l ≤ r define the subwalk W (vk, vl) := (vk, ek, vk+1, ek+1, ..., el, vl).
In the following, let W be a positive-weight constrained (v, w)-walk. Define the interior cost of
W as:

C−(W) :=
∑

u∈V (W)\{v,w}

p(u), (97)

where the convention that the empty sum equals 0 is assumed, so the interior cost of an edge is
likewise 0. Furthermore, define the positive-weight constrained length of W as:

lpw(W) := min{C−(W (vk, vl)) | 1 ≤ k ≤ l ≤ r, vk, vl ∈ Tp ∪ {v, w}}. (98)

Note that lpw(W) ≤ 0 holds, because the interior cost of an edge is 0. Denote the set of all
positive-weight constrained (v, w)-walks byWpw(v, w) and define the positive-weight constrained
distance between v and w as

dpw(v, w) := max{lpw(W) |W ∈ Wpw(v, w)}. (99)

For any U ⊆ V denote by KU the complete graph on U . Furthermore, define for each edge
{v, w} of KU weights dUpw(v, w) := dpw(v, w)—with dpw being the positive-weight constrained
distance in the original MWCSP. Based on these concepts, we introduce two new edge elimination
criteria in the following. Both of them dominate the NPVk test from Rehfeldt et al. [2019]—also
if the (weaker) bottleneck distance from Rehfeldt et al. [2019] is used.

Proposition 22. Let e = {v, w} ∈ E with p(v) ≤ 0. Define ∆ := (Tp ∪ {w}) ∩N(v), and

U =
{
U ⊆ N(v) | |U | ≥ 2, U ⊇ ∆

}
.

If for all U ∈ U the weight of a minimum spanning tree on (KU ,−dUpw) is smaller than −p(v),
then at least one optimal solution does not contain edge e.

Proof. Let S be a connected subgraph with e ∈ E(S). We will show that there is a connected
subgraph S′ with e /∈ E(S′) such that

P (S) ≤ P (S′). (100)

We can assume that S is a tree, and that ∆ ⊆ NS(v). Otherwise, we can modify S to satisfy
these conditions and still contain e without decreasing the weight of S. Note that if v is of degree
1 in S, we can simply delete edge e to obtain the desired S′. So assume |NS(v)| ≥ 2.

Let U := NS(v). Let Ŝ be the subgraph obtained from S by removing vertex v and all
incident edges. Let S(1), ..., S(k) be the (inclusion-wise maximal) connected components of Ŝ.
Note that k = |U |. Let FU be a minimum spanning tree on (KU ,−dUpw) and denote its weight by

22

−CU (recall that dpw is non-positive). I.e., CU is a maximum-weight spanning tree on (KU , d
U
pw).

By the assumption of the proposition it holds that

CU − p(v) > 0. (101)

Assume that the S(i) are ordered such that for each i ∈ {2, ..., k} there are vertices q(i) ∈
V (
⋃
h≤i S

(h)) ∩ U and r(i) ∈ V (S(i+1)) ∩ U such that there is a (q(i), r(i))-walk W (i) in (V,E)

corresponding to an edge in the spanning tree FU . Note that lpw(W (i)) = dpw(q(i), r(i)). Set

Ŝ(1) := S(1) and proceed for i = 2, ..., k as follows. First, observe that v /∈ V (W (i)) due to
the assumptions of the proposition. Let v1, v2, ..., vs be the vertices encountered (in this order)
when traversing W (i) from q(i) to r(i). So in particular v1 = q(i) and vs = r(i). Let b be the
minimum number such that vb ∈ V (S(i)). Further, let a be the largest number in {1, 2, .., b}
such that va ∈ V (Ŝ(i−1)). Further, define x := max{j ∈ {1, ..., a} | vj ∈ Tp ∪ {v1}} and
y := min{j ∈ {b, ..., s} | vj ∈ Tp ∪ {vs}}. By definition, x ≤ a < b ≤ y and furthermore:

C−(W (i)(va, vb)) ≥ C−(W (i)(vx, vy)) ≥ lpw(W (i)) = dpw(q(i), r(i)). (102)

Define Ŝ(i) := Ŝ(i−1) ∪ S(i) ∪ W (i)(va, vb), with a slight abuse of notation W (i)(va, vb) is
considered as a subgraph here. Ultimately, S′ := Ŝ(k) is a connected subgraph and it holds that

P (S′)
(102)

≥ P (Ŝ) + CU = P (S) + CU − p(v)
(101)
> P (S). (103)

Because v /∈ V (S′) implies e /∈ E(S′), the proposition is proven.

Another reduction test can be obtained by splitting the neighborhood of the edge considered
for elimination, as detailed in the following proposition.

Proposition 23. Let e = {v, w} ∈ E. Assume that p(v) + p(w) ≤ 0. Define ∆ := (Tp ∩N(e)).
Further, define

U =
{
U ⊆ N(e) | U ⊇ ∆, U ∩ (N(v) \ {w}) 6= ∅, U ∩ (N(w) \ {v}) 6= ∅

}
.

If for all U ∈ U the weight of a minimum spanning tree on (KU ,−dUpw) is smaller than −(p(v) +
p(w)), then no optimal solution contains edge e.

The proposition can be proved in a similar way to the previous one. Note that both propo-
sition can be extended to the case of equality if the walks corresponding to positive-weight
constrained distances do not contain edge e.

5 Computational experiments

The algorithms introduced in the previous section have been integrated into the branch-and-cut
Steiner tree framework SCIP-Jack, see Gamrath et al. [2017], which includes a state-of-the-
art MWCSP solver, see Rehfeldt and Koch [2019]. The IP formulation used by the solver is
(essentially) ESA+

FB . To evaluate the practical impact of the new algorithms, we will compare
the new version of SCIP-Jack with the one described in Rehfeldt and Koch [2019]. We will refer
to the latter as SCIP-Jack-base. Furthermore, this section also serves to show the practical
strength of ESA+ (and its rooted equivalents) on hard benchmark instances, where otherwise
decisive techniques such as reduction methods have a smaller impact.

The computational experiments were performed on Intel Xeon CPUs E3-1245 with 3.40 GHz
and 32 GB RAM. CPLEX 12.8 IBM was employed as underlying LP solver. All results were

23

obtained single-threaded. Five benchmark test sets from the literature and the 11th DIMACS
Challenge are used, as detailed in Table 1. The test set EASY is the union of the test sets
ACTMOD, SHINY, and JMPALMK. The test sets PUCN, PUCNU, and HAND contain orig-
inally USPG and prize-collecting USPG instances, which have been transformed to RMWCSP
(for USPG) and MWCSP.

Name Instances |V | |E| Status Description

EASY 119 232-5226 202-93394 solved Collection of easy real-world and random instances,
see Dittrich et al. [2008], Loboda et al. [2016].

HANDS 20 39600 - 42500 78704 - 84475 solved
 Images of hand-written text derived from

a signal processing problem see Hegde et al. [2014].
HANDB 28 158400 - 169800 315808 - 338551 unsolved

PUCN 13 64-4096 192-24574 unsolved Hard USPG instances from
the 11th DIMACS Challenge DIMACS.

PUCNU 18 64-4096 192-24574 unsolved Hard prize-collecting USPG instances from
the 11th DIMACS Challenge DIMACS.

Table 1: Classes of MWCSP instances.

Table 2 provides aggregated results of the experiments with a time limit of two hours. The
first column shows the test set considered in the current row. Columns two and three show
the shifted geometric mean from Achterberg [2007] (with shift 1) of the run time taken by the
respective solver. Column four shows the speedup of the new solver, measured as the ratio of
the previous two values. The next three columns provide the same information with respect
to the maximum run time. The last two columns give the number of instances solved by the
respective solver. The first test set, can be solved by both versions of SCIP-Jack in less than
0.3 seconds. On the next two test sets, the new solver is thrice and twice as fast with respect to
the shifted geometric mean. On the last two test sets, the new solver is again significantly faster,
and additionally solves three more instances to optimality.

Table 2: Computational comparison of SCIP-Jack-base, denoted by base and the solver de-
scribed in this article, denoted by new.

mean time maximum time # solved

Test set # base [s] new [s] speedup base [s] new [s] speedup base new

EASY 119 0.0 0.0 1.0 0.3 0.2 1.5 119 119
HANDS 20 0.6 0.2 3.0 3.2 1.6 2.0 20 20
HANDB 28 8.9 4.4 2.0 >7200 >7200 1.0 26 26
PUCN 13 72.1 59.5 1.2 >7200 >7200 1.0 8 9
PUCNU 18 124.5 57.7 2.2 >7200 >7200 1.0 12 14

Note that already the base version of SCIP-Jack is significantly faster than other MWCSP
solvers described in the literature; see Rehfeldt and Koch [2019] for more details. Finally, Table 3
shows results obtained with a time limit of 24 hours on previously unsolved instances from the
11th DIMACS Challenge. We provide the final optimality gap (column two), the best primal
objective value (column three), and the known primal objective value from the literature (column
four). Overall, five instances can be solved for the first time to optimality. Apart from handbd13,
optimality is reached for all these instances within the previous 2 h time limit. The instances cc3-
10n, cc3-11n, and cc3-12n can be solved by both the new SCIP-Jack and SCIP-Jack-base.
However, for the remaining instances SCIP-Jack-base cannot reach the new primal bounds.

The MWCSP solver developed for this article will be made publicly available as part of the
next release of the SCIP-Jack software package.

24

Table 3: Improvements on unsolved DIMACS instances in a long run (24 h). Solutions values
are given w.r.t. the original USPG and prize-collecting USPG instances.

Name gap [%] new UB previous UB
handbd13 opt 13.184261 13.18549
cc10-2n opt 179 180
cc3-10n opt 75 75
cc3-11n opt 92 92
cc3-12n opt 111 111
cc11-2n 1.0 324 327
cc12-2n 0.9 613 617
cc7-3n 1.0 287 289
cc9-2n 2.1 98 99

6 Conclusion

The first part of this article has analyzed node and edge based formulations for combinatorial op-
timization problems based on induced connectivity. Furthermore, we have shown conditions for
the LP relaxations to be tight. In particular, a (compact) complete description of the connected
subgraph polytope for graphs with less than four independent vertices has been given. Overall,
it has been demonstrated that the edge based formulations consistently provide stronger LP re-
laxations than their node based counterparts. For MWCSP, the considered edge cut formulation
has been shown to be strictly stronger than the combination of the well-known node-separator
and indegree formulations. Motivated by these results, the second part of the article has intro-
duced algorithms to enhance the practical exact solution of MWCSP and related problems by
means of edge based IP formulations. Computational experiments have demonstrated that the
resulting solver outperforms the previous state of the art.

7 Acknowledgements

The work for this article has been conducted within the Research Campus Modal funded by the
German Federal Ministry of Education and Research (fund number 05M14ZAM), and has also
been supported by the the DFG Cluster of Excellence MATH+.

References

T. Achterberg. Constraint Integer Programming. PhD thesis, Technische Universität Berlin,
2007.

E. Álvarez-Miranda, I. Ljubić, and P. Mutzel. The maximum weight connected subgraph prob-
lem. In Facets of Combinatorial Optimization, pages 245–270. Springer Berlin Heidelberg,
2013a.

E. Álvarez-Miranda, I. Ljubić, and P. Mutzel. The Rooted Maximum Node-Weight Connected
Subgraph Problem, pages 300–315. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013b. ISBN
978-3-642-38171-3. doi: 10.1007/978-3-642-38171-3 20. URL http://dx.doi.org/10.1007/

978-3-642-38171-3_20.

M. Ball, W. Liu, and W. Pulleyblank. Two terminal Steiner tree polyhedra. In Contributions to
Operations Research and Economics The Twentieth Anniversary of CORE, pages 251–284.
MIT Press, 1989.

25

http://dx.doi.org/10.1007/978-3-642-38171-3_20
http://dx.doi.org/10.1007/978-3-642-38171-3_20

J. Banfi. Multirobot exploration of communication-restricted environments. PhD thesis, Politec-
nico di Milano, 2018.

M. D. Biha, H. L. M. Kerivin, and P. H. Ng. Polyhedral study of the connected subgraph
problem. Discrete Mathematics, 338(1):80–92, 2015. doi: 10.1016/j.disc.2014.08.026. URL
http://dx.doi.org/10.1016/j.disc.2014.08.026.

A. Buchanan, J. S. Sung, S. Butenko, and E. L. Pasiliao. An integer programming approach for
fault-tolerant connected dominating sets. INFORMS Journal on Computing, 27(1):178–188,
2015.

A. Buchanan, Y. Wang, and S. Butenko. Algorithms for node-weighted steiner tree and
maximum-weight connected subgraph. Networks, 72(2):238–248, 2018. doi: 10.1002/net.21825.

R. Carvajal, M. Constantino, M. Goycoolea, J. P. Vielma, and A. Weintraub. Imposing connec-
tivity constraints in forest planning models. Operations Research, 61(4):824–836, 2013. doi:
10.1287/opre.2013.1183.

C. Chen and K. Grauman. Efficient activity detection with max-subgraph search. In 2012 IEEE
Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, June 16-21,
2012, pages 1274–1281, 2012. doi: 10.1109/CVPR.2012.6247811. URL http://dx.doi.org/

10.1109/CVPR.2012.6247811.

J. Conrad, C. P. Gomes, W.-J. van Hoeve, A. Sabharwal, and J. Suter. Connections in net-
works: Hardness of feasibility versus optimality. In P. Van Hentenryck and L. Wolsey, editors,
Integration of AI and OR Techniques in Constraint Programming for Combinatorial Opti-
mization Problems, pages 16–28, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. ISBN
978-3-540-72397-4.

B. Dilkina and C. P. Gomes. Solving connected subgraph problems in wildlife conservation. In
Proceedings of the 7th International Conference on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems, CPAIOR’10, pages 102–
116, Berlin, Heidelberg, 2010. Springer-Verlag. ISBN 3-642-13519-6, 978-3-642-13519-4. doi:
10.1007/978-3-642-13520-0 14. URL http://dx.doi.org/10.1007/978-3-642-13520-0_14.

DIMACS. 11th DIMACS Challenge. http://dimacs11.zib.de/. Accessed: January 10. 2020.

M. T. Dittrich, G. W. Klau, A. Rosenwald, T. Dandekar, and T. Müller. Identifying functional
modules in protein-protein interaction networks: an integrated exact approach. In ISMB,
pages 223–231, 2008.

C. Duin. Steiner Problems in Graphs. PhD thesis, University of Amsterdam, 1993.

C. W. Duin and A. Volgenant. Reduction tests for the Steiner problem in graphs. Networks, 19
(5):549–567, 1989. ISSN 1097-0037. doi: 10.1002/net.3230190506.

B. Filipecki and M. Van Vyve. Stronger path-based extended formulation for the steiner tree
problem. Networks, 75(1):3–17, 2020. doi: 10.1002/net.21901. URL https://onlinelibrary.

wiley.com/doi/abs/10.1002/net.21901.

M. Fischetti, M. Leitner, I. Ljubić, M. Luipersbeck, M. Monaci, M. Resch, D. Salvagnin,
and M. Sinnl. Thinning out steiner trees: a node-based model for uniform edge costs.
Mathematical Programming Computation, 9(2):203–229, Jun 2017. ISSN 1867-2957. doi:
10.1007/s12532-016-0111-0.

26

http://dx.doi.org/10.1016/j.disc.2014.08.026
http://dx.doi.org/10.1109/CVPR.2012.6247811
http://dx.doi.org/10.1109/CVPR.2012.6247811
http://dx.doi.org/10.1007/978-3-642-13520-0_14
http://dimacs11.zib.de/
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.21901
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.21901

A. Fügenschuh and M. Fügenschuh. Integer linear programming models for topology optimization
in sheet metal design. Mathematical Methods of Operations Research, 68(2):313 – 331, 2008.

G. Gamrath, T. Koch, S. Maher, D. Rehfeldt, and Y. Shinano. SCIP-Jack - A solver for STP
and variants with parallelization extensions. Mathematical Programming Computation, 9(2):
231 – 296, 2017. doi: 10.1007/s12532-016-0114-x.

R. S. Garfinkel and G. L. Nemhauser. Optimal political districting by implicit enumeration
techniques. Management Science, 16(8):B–495, 1970.

M. X. Goemans and Y. Myung. A catalog of Steiner tree formulations. Networks, 23(1):19–28,
1993. doi: 10.1002/net.3230230104.

C. Hegde, P. Indyk, and L. Schmidt. A fast, adaptive variant of the goemans-williamson scheme
for the prize-collecting steiner tree problem. In Workshop of the 11th DIMACS Implementation
Challenge. Workshop of the 11th DIMACS Implementation Challenge, 2014.

F. Hwang, D. Richards, and P. Winter. The Steiner Tree Problem. Annals of Discrete Mathe-
matics. Elsevier Science, 1992.

IBM. Cplex. URL https://www.ibm.com/analytics/cplex-optimizer.

D. S. Johnson. The np-completeness column: An ongoing guide. J. Algorithms, 6(1):145–159,
1985. URL http://dx.doi.org/10.1016/0196-6774(85)90025-2.

T. Koch and A. Martin. Solving Steiner tree problems in graphs to optimality. Networks, 32:207–
232, 1998. doi: 10.1002/(SICI)1097-0037(199810)32:3\%3C207::AID-NET5\%3E3.0.CO;2-O.

T. Koch, A. Martin, and S. Voß. SteinLib: An updated library on Steiner tree problems in graphs.
In D.-Z. Du and X. Cheng, editors, Steiner Trees in Industries, pages 285–325. Kluwer, 2001.
ISBN 1-402-00099-5.

B. Korte, L. Lovász, and R. Schrader. Greedoids, volume 4. Springer Science & Business Media,
2012.

M. Leitner, I. Ljubic, M. Luipersbeck, and M. Sinnl. A dual ascent-based branch-and-bound
framework for the prize-collecting steiner tree and related problems. INFORMS Journal on
Computing, 30(2):402–420, 2018.

W. Liu. A lower bound for the steiner tree problem in directed graphs. Networks, 20(6):765–778,
1990. doi: 10.1002/net.3230200606. URL https://onlinelibrary.wiley.com/doi/abs/10.

1002/net.3230200606.

A. A. Loboda, M. N. Artyomov, and A. A. Sergushichev. Solving Generalized Maximum-
Weight Connected Subgraph Problem for Network Enrichment Analysis, pages 210–221.
Springer International Publishing, Cham, 2016. ISBN 978-3-319-43681-4. doi: 10.1007/
978-3-319-43681-4 17. URL http://dx.doi.org/10.1007/978-3-319-43681-4_17.

T. L. Magnanti and L. A. Wolsey. Handbooks in Operations Research and Management Science,
volume Volume 7, chapter Chapter 9 Optimal trees, pages 503–615. Elsevier, 1995.

J. Moody and D. R. White. Structural cohesion and embeddedness: A hierarchical concept of
social groups. American sociological review, pages 103–127, 2003.

27

https://www.ibm.com/analytics/cplex-optimizer
http://dx.doi.org/10.1016/0196-6774(85)90025-2
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.3230200606
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.3230200606
http://dx.doi.org/10.1007/978-3-319-43681-4_17

J. Nederlof. Fast polynomial-space algorithms using inclusion-exclusion. Algorithmica, 65
(4):868–884, 2013. doi: 10.1007/s00453-012-9630-x. URL https://doi.org/10.1007/

s00453-012-9630-x.

T. Pajor, E. Uchoa, and R. F. Werneck. A robust and scalable algorithm for the steiner problem
in graphs. Mathematical Programming Computation, Sep 2017. ISSN 1867-2957. doi: 10.1007/
s12532-017-0123-4. URL https://doi.org/10.1007/s12532-017-0123-4.

T. Polzin and S. V. Daneshmand. A comparison of steiner tree relaxations. Discrete Applied
Mathematics, 112(1-3):241–261, 2001a.

T. Polzin and S. V. Daneshmand. Improved algorithms for the steiner problem in networks.
Discrete Appl. Math., 112(1-3):263–300, Sept. 2001b. ISSN 0166-218X.

D. Rehfeldt and T. Koch. Combining NP-Hard Reduction Techniques and Strong Heuristics in
an Exact Algorithm for the Maximum-Weight Connected Subgraph Problem. SIAM Journal
on Optimization, 29(1):369–398, 2019. doi: 10.1137/17M1145963.

D. Rehfeldt and T. Koch. On the exact solution of prize-collecting steiner tree problems. Tech-
nical Report 20-11, ZIB, Takustr. 7, 14195 Berlin, 2020.

D. Rehfeldt, T. Koch, and S. J. Maher. Reduction techniques for the prize collecting Steiner tree
problem and the maximum-weight connected subgraph problem. Networks, 73(2):206–233,
2019. doi: 10.1002/net.21857.

H. Takahashi and M. A. An approximate solution for the Steiner problem in graphs. Mathematica
Japonicae, 24:573 – 577, 1980.

E. Uchoa. Reduction Tests for the Prize-collecting Steiner Problem. Oper. Res. Lett., 34(4):
437–444, July 2006.

A. Verma, A. Buchanan, and S. Butenko. Solving the maximum clique and vertex coloring
problems on very large sparse networks. INFORMS Journal on Computing, 27(1):164–177,
2015. doi: 10.1287/ijoc.2014.0618.

Y. Wang, A. Buchanan, and S. Butenko. On imposing connectivity constraints in inte-
ger programs. Mathematical Programming, pages 1–31, 2017. ISSN 1436-4646. doi:
10.1007/s10107-017-1117-8. URL http://dx.doi.org/10.1007/s10107-017-1117-8.

R. Wong. A dual ascent approach for Steiner tree problems on a directed graph. Mathematical
Programming, 28:271287, 1984.

28

https://doi.org/10.1007/s00453-012-9630-x
https://doi.org/10.1007/s00453-012-9630-x
https://doi.org/10.1007/s12532-017-0123-4
http://dx.doi.org/10.1007/s10107-017-1117-8

A Node separators and rejoining of flows

Consider the directed RMWCSP instance (G,T, p, r) with G = (V,A) depicted in Figure 3.

r

a
-1

b

-1

c ed

-1

Figure 3: Directed RMWCSP instance.

A proof from Álvarez-Miranda et al. [2013b] intends to show that vLP (RNCut) ≤ vLP (RSA)
holds. For this purpose, the authors consider an arbitrary solution x̄ ∈ PLP (RNCut) and con-
struct an auxiliary graph G′ by replacing each node v ∈ V \ {r} with an arc (v1, v2). All ingoing
arcs of v become ingoing arcs of v1, and all outgoing arcs of v are now outgoing arcs of v2.
Moreover, (non-negative) capacities k′ on G′ are introduced for each arc (v′, w′) of G′ by

k′(v′, w′) :=

{
x̄(v), if (v′, w′) = (v1, v2) for a v ∈ V
1, otherwise.

r

a1 b1

a2 b2

c1 e1

c2 e2

d1

d2

1 1

0.5 0.5

1 1

0.51 1

1 1

1 1

Figure 4: Illustration of an auxiliary support graph G′ corresponding to the instance in Figure
3 regarding the optimal solution x̄(v) = 0.5, v ∈ V \ T , and x̄(t) = 1, t ∈ T , to the RNCut
formulation.

29

Figure 4 shows an auxiliary support graph of the instance illustrated by Figure 3. It is
possible to send a flow with flow value x̄(v) from root node r to each arc (v1, v2) with v ∈ V \{r}
because of constraints (32). Let fv(j, l) be the amount of a flow with source node r, sink node
v ∈ V \ {r}, and flow value x̄(v) sent along arc (j, l). Define the arc variables ŷ(j, l), (j, l) ∈ A,
of the RSA formulation as follows:

ŷ(j, l) :=

{
maxv∈V \{r} f

v(j2, l1), j, l ∈ V \ {r}
maxv∈V \{r} f

v(j, l1), j = r, l ∈ V \ {r}.

Hence, the arc variables of the instance in Figure 4 are given by ŷ(j, l) = 0.5 for each (j, l) ∈ A.
Moreover, define the node variables as x̂(v) = ŷ(δ−(v)). Thus, in our case, it holds x̂(a), x̂(b),
x̂(c), x̂(e) = 0.5, and x̂(d) = 1. The proof from Álvarez-Miranda et al. [2013b] claims that we
can follow x̄(v) = x̂(v), v ∈ V , by this definition of the variables. However, this claim is not
true because of 0.5 = x̄(d) 6= x̂(d) = 1, and therefore, no solution can be constructed from the
solution x̄ to the RNCut model.

In summary, and somewhat broadly speaking, the weaker LP relaxation can be explained
as follows. The RNCut formulation can be interpreted as a multi-commodity flow problem in
an enlarged graph. However, enlarging the graph opens new possibilities for what is sometimes
called rejoining of flows Polzin and Daneshmand [2001a]: Flows for different commodities enter
a node on different arcs, but leave on the same arc. Such a rejoining can lead to an increased
integrality gap.

30

	Introduction
	Contribution
	Definitions and notation
	Preliminaries: MWCSP and related problems

	Formulations for rooted connected subgraphs
	Formulations for the Steiner arborescence problem
	Rooted maximum-weight connected subgraphs
	Unweighted Steiner tree problems
	Exactness of the bidirected cut formulation
	Comparison of edge and node based formulation

	Formulations for non-rooted connected subgraphs
	Node based formulations
	Edge based formulations
	Comparison of the formulations

	Algorithms
	A primal heuristic
	A dual heuristic
	Reduction techniques

	Computational experiments
	Conclusion
	Acknowledgements
	Node separators and rejoining of flows

