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Abstract

The generalization of MIP techniques to deal with nonlinear, poten-
tially non-convex, constraints have been a fruitful direction of research
for computational MINLP in the last decade. In this paper, we follow
that path in order to extend another essential subroutine of modern MIP
solvers towards the case of nonlinear optimization: the analysis of infea-
sible subproblems for learning additional valid constraints. To this end,
we derive two different strategies, geared towards two different solution
approaches. These are using local dual proofs of infeasibility for LP-based
branch-and-bound and the creation of nonlinear dual proofs for NLP-
based branch-and-bound, respectively. We discuss implementation details
of both approaches and present an extensive computational study, showing
that both techniques can significantly enhance performance when solving
MINLPs to global optimality.

1 Introduction

Mixed integer nonlinear programs (MINLPs) are arguably among the hardest
optimization problems, with a wide range of applications in Chemical Engineer-
ing (e.g., Biegler et al. 1997, Floudas 2000, Kallrath 2005, Witzig et al. 2018),
Computational Biology (e.g., Phillips and Rosen 1994, Liberti et al. 2008, 2009),
Portfolio Optimization (e.g., Cornuéjols and Tütüncü 2006) and many others.

MINLP solvers that are based on linear relaxations and spatial branching
work similarly to mixed integer programming (MIP) solvers in the sense that
they are based on a branch-and-cut algorithm, enhanced by various heuristics,
domain propagation, and presolving techniques. However, the analysis of in-
feasible subproblems, which is an important component of most major MIP
solvers, has been hardly studied in the context of MINLPs. There are two
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main approaches for analyzing infeasibility in MIP solvers: conflict graph anal-
ysis (Achterberg 2007a), which originates from artificial intelligence and con-
straint programming, and dual proof analysis (e.g., Witzig et al. 2019a). Both
together are often subsumed under the term conflict analysis.

In this paper, we consider MINLPs of the form

min
x∈X
{f(x) | gk(x) ≤ 0 ∀k ∈ K, he(x) = 0 ∀e ∈ E , xi ∈ Z ∀i ∈ I}, (1)

with convex objective function f : X 7→ R, nonlinear constraint functions gk : X 7→
R, k ∈ K := {1, . . . , p}, continuously differentiable, possibly nonconvex, and
affine functions he : X 7→ R, e ∈ E := {1, . . . , q}. Moreover, let X ⊆ Rn be a
non-empty convex set, let N = {1, . . . , n} be the index set of all variables and
I ⊆ N the set of variables that need to be integral in every feasible solution. We
call an MINLP convex if all of its constraint functions gk are convex. Otherwise,
we call the MINLP nonconvex. If f is a linear function and all functions gk, he
are affine, we call (1) a mixed integer program (MIP).

For a general MINLP (1), we obtain its nonlinear programming (NLP) re-
laxation by omitting the integrality requirements. The MIP relaxation of an
MINLP with a linear objective1 is given by omitting all “truly” nonlinear con-
straints gk, he and keeping only those that are representable as a linear con-
straint matrix, eventually enhanced by linear underestimators of some of the
nonlinear constraints. Omitting both, integrality requirements and truly non-
linear constraints, yields the linear programming (LP) relaxation.

All three relaxations provide a lower bound on the optimal solution value of a
MINLP of form (1). In theory, linear and convex smooth nonlinear programs are
solvable in polynomial time (Khachiyan 1979, Vavasis 1995). Also in practice,
both classes can be solved very efficiently (Bixby 2002, Nocedal and Wright
2006). In contrast to that, nonconvexities as imposed by integer variables or
nonconvex nonlinear functions easily lead to problems that are both NP-hard
in theory and computationally demanding in practice.

In this paper, we focus on solving MINLPs either by LP-based or by NLP-
based branch-and-bound. During a branch-and-bound search, roughly half of
the considered subproblems are either found to be infeasible or subpoptimal, i.e.,
to exceed the bound given by the best solution found so far (which can be seen as
a special case of infeasibility). In contrast to modern MIP solvers that can refer
to a variety of well-studied techniques to “learn” from infeasible and bound-
exceeding subproblems (e.g., Davey et al. 2002, Sandholm and Shields 2006,
Achterberg 2007b, Witzig et al. 2017, 2019a), similar techniques for MINLPs
exist for certain special cases only.

To close this gap, we introduce two variants of conflict analysis for general
MINLP. The first is a straightforward generalization of MIP concepts to LP-
based branch-and-bound for MINLP. Our additional contribution is the use of
locally valid certificates of infeasibility to deal with locally valid linear approx-
imations of nonconvex constraints. The second technique is a generalization of

1It can be assumed w.l.o.g. that the objective of (1) is linear since a nonlinear objective
can be transformed into a constraint bounded by an artificial variable that is minimized.
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the theory of Farkas proofs to work with nonlinear relaxations in an NLP-based
branch-and-bound. We show how we can use the dual multipliers of an infeasible
convex NLP to generate a valid linear constraint. This paper is the full version
of a short conference proceedings paper (Witzig et al. 2019b). While in Witzig
et al. (2019b), we only briefly sketched the idea of nonlinear dual proofs, in
the present paper we give a more detailed theoretical background and present a
working implementation of the concept in a state-of-the-art MINLP solver. We
discuss various implementational details and present a thorough computational
study of both techniques.

2 Background and Related Work

In this section, we will briefly discuss different algorithms and their implemen-
tations for solving MINLPs, provide the reader with the technical background
of conflict analysis in MIP, and review related work on infeasibility in MINLP
solving.

2.1 Solving MINLPs

Commonly used methods to solve convex MINLPs include the extended cut-
ting plane algorithm (ECP) (Westerlund and Pettersson 1995), the extended
supporting hyperplane algorithm (Kronqvist et al. 2018), outer approximation
(OA) (Duran and Grossmann 1986, Fletcher and Leyffer 1994), NLP-based
branch-and-bound (Gupta and Ravindran 1985), and LP/NLP-based branch-
and-bound (Quesada and Grossmann 1992). The most commonly used method
to solve nonconvex MINLPs is a combination of either OA or ECP (Kocis and
Grossmann 1988, Viswanathan and Grossmann 1990) and spatial branch-and-
bound (Land and Doig 1960, Liberti and Pantelides 2003, Horst and Tuy 2013).
Different MINLP solvers either use LP or MIP relaxations or both during the
tree search. For example, Couenne2 (Belotti et al. 2009) and SCIP3 (Vigerske
and Gleixner 2018) derive valid lower bounds by solving LP relaxations only,
whereas ANTIGONE4 (Misener and Floudas 2014), BARON5 (Kılınç Karzan et al.
2009) and BONMIN6 (Bonami et al. 2008) solve both LP and MIP relaxations.
In contrast to that, only a handful of MINLP solvers provide the possibility to
exclusively use NLP relaxations, e.g., BONMIN and FICO Xpress7 (Belotti et al.
2016). Notably, BONMIN by default chooses a hybrid strategy between LP-based
and NLP-based branch-and-bound (Bonami et al. 2008), demonstrating that
ideally, new solving techniques are developed in a way that they can be incor-
porated into either paradigm. For a detailed overview of MINLP solvers that
can handle convex and/or nonconvex MINLPs and the implemented algorithms,

2https://github.com/coin-or/Couenne
3https://www.scipopt.org
4http://ares.tamu.edu/ANTIGONE/
5https://minlp.com/baron
6https://github.com/coin-or/Bonmin
7https://www.fico.com/en/products/fico-xpress-solver
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we refer to (Kronqvist et al. 2018).

In the following, we will focus on MINLP solvers that use a combination of
LP-based branch-and-bound (e.g., generated by an ECP) and spatial branch-
and-bound. Spatial branch-and-bound is – as a special variant of LP-based
branch-and-bound (Dakin 1965, Land and Doig 1960) – a divide-and-conquer
method which splits the search space sequentially into smaller and smaller sub-
problems that are intended to be easier to solve. Additionally, convex relax-
ations are used to compute lower bounds on the individual subproblems. A
subproblem can be pruned if the lower bound exceeds the currently best-known
solution. To divide the search space into smaller pieces, spatial branch-and-
bound branches on integer variables with a fractional solution value in the re-
laxation solution. In addition to that, spatial branch-and-bound can branch on
variables (possibly continuous) if they appear in nonconvex terms of nonlinear
constraints that are violated by the current relaxation solution.

During a branch-and-bound procedure, infeasible subproblems may be en-
countered. Infeasibility can either be detected by an infeasible relaxation or
by contradicting variable bounds, derived by domain propagation. The goal of
conflict analysis is to learn from these infeasibilities, in order to prune the search
tree more efficiently going forward.

2.2 Conflict Analysis in MIP

To a certain extent, conflict analysis techniques for MIP can also be applied
within MINLP solvers that rely on LP-based branch-and-bound. Hence, we will
look at MIP conflict analysis techniques in this subsection and discuss their
limitations when carried-over one-to-one for solving MINLPs in the next sub-
section.

Here and in Section 3, we will assume the objective function of (1) to be
linear. This happens without loss of generality, since a nonlinear objective
function can be transformed into a constraint bounded by an artificial variable
z that is minimized.

Furthermore, whenever we will use standard MIP notation whenever con-
sidering a MIP or an LP. Therefore, we will denote the linear objective as
f(x) = cTx. Moreover, we treat the set of constraints gk(x) ≤ 0, he(x) = 0 as
a constraint matrix of form Ax ≤ b by considering −he(x) ≤ 0 and he(x) ≤ 0
and moving the (potentially nonzero) constants of the affine functions to the
right-hand side of the constraint matrix. Finally, the set X is represented by the
intersection of variable bounds ` ≤ x ≤ u with `, u ∈ Rn, where R := R∪{±∞}.
Hence a MIP reads as

min{cTx |Ax ≤ b, ` ≤ x ≤ u, xj ∈ Z∀j ∈ I}. (2)

Conflict analysis for MIPs has a long history, having its origin in artificial
intelligence (Stallman and Sussman 1977) and solving satisfiability problems
(SAT) (Marques-Silva and Sakallah 1999). Similar ideas are used in constraint
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programming (CP) (e.g., Ginsberg 1993, Jiang et al. 1994). Integrations of
these techniques into MIP were independently suggested in (Davey et al. 2002,
Sandholm and Shields 2006, Achterberg 2007a).

If infeasibility is encountered by domain propagation, modern SAT and MIP
solvers construct a directed acyclic graph which represents the logic of how the
set of branching decisions led to the detection of infeasibility. This graph is
called the conflict graph. Valid conflict constraints can be derived from cuts
in the graph that separate the branching decisions from an artificial vertex
representing the infeasibility. Based on such a cut, a conflict constraint consists
of a set of variables with associated bounds, requiring that in each feasible
solution at least one of the variables has to take a value outside these bounds.

If the LP relaxation of a subproblem with local bounds `′ and u′ turns out
to be infeasible, it is necessary to identify a set of variables and bound changes
that are sufficient to render the infeasibility. Such a set, the so-called dual proof
constraint, see, e.g., Witzig et al. (2017, 2019a), can be constructed by using LP
duality theory that states that exactly one of the systems

Ax ≤ b, `′ ≤ x ≤ u′ (3)

yTA+ ru − r` = 0, yTb+
∑
j∈N

(ruj u
′
j − r`j`′j) < 0, y, r`, ru ≥ 0 (4)

can be satisfied. System (4) implies a proof of infeasibility with respect to the
local bounds

0 > yTb+
∑
j∈N

(ruj u
′
j − r`j`′j)

⇐⇒ 0 > yTb− (yTA){`′, u′}
⇐⇒(yTA){`′, u′} > yTb,

where A·j denotes the j-th column of constraint matrix A and (yTA){`′, u′} :=∑
j∈N : yTA·j>0(yTA·j)`

′
j+

∑
j∈N : yTA·j<0(yTA·j)u

′
j . Thus, (yTA){`′, u′} is equiv-

alent to the minimal activity with respect to the local bounds `′ and u′. Con-
sequently, every feasible solution has to satisfy

(yTA)x ≤ yTb, (5)

which is called a dual proof constraint ; it is a globally valid constraint because
it is a conic combination of all globally valid constraints. Thereby, dual proof
constraints are a special case of Benders cuts (Benders 1962). The (initial)
dual proof constraint is used as a starting point for conflict graph analysis or
dual proof analysis. As defined by Witzig et al. (2019a), dual proof analysis
denotes the non-trivial modification of dual proof constraints, e.g., by lifting or
elimination techniques. Both, the constraitns resulting from dual proof analysis
and conflict constraints, are typically used for propagation in the remainder of
the MIP search, but they are not added to the LP relaxation.

Note that in MIP, conflict graph analysis might yield several conflicts per
infeasibility. These might be of a disjunctive nature that is not necessarily
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linear, see Achterberg (2007a). In contrast, dual proof analysis yields exactly
one linear constraint.

For further details on conflict analysis in MIP we refer to Achterberg (2007a)
and Witzig et al. (2019a) and the references therein. In this paper, we will focus
on dual proof analysis for MINLP.

2.3 Conflict Analysis in MINLP

Only few publications are dealing with infeasibility in MINLP. Most of the lit-
erature is restricted to certain classes of MINLPs, e.g., conic certificates for
convex MINLPs (Coey et al. 2020) which has been proven to be very successful
on mixed integer second-order cone (MISOCP) problems. Purely theoretical re-
sults for mixed integer semidefinite programs (MISDP) were recently published
in Kellner et al. (2019). Both publications deal with MINLPs that are infea-
sible as a whole, and not with the analysis of infeasible subproblems to learn
information during the solution process.

For MINLP algorithms that are based on solving LP relaxations, in partic-
ular, for OA- and ECP-based solvers, conflict analysis methods for MIP can
be applied under certain conditions. To this end, let us first recap the idea of
constructing an LP relaxation for an MINLP.

During the tree search, nonlinear functions are approximated by linear func-
tions if they are violated by a relaxation solution. Let x̃ be a relaxation solution
with gk(x̃) > 0. If gk is convex, a so-called gradient cut

gk(x̃) +∇gk(x̃)(x− x̃) ≤ 0

is added. If gk is nonconvex, convex underestimators are used to relax gk.
For products of two variables, these are the so-called McCormick underestima-
tors (McCormick 1976). More general nonlinear functions are typically decom-
posed into functions of a single variable, for which explicit underestimators are
known, and products of two variables. If such an underestimator itself is linear,
it is added to the LP relaxation directly, otherwise a gradient cut for the un-
derestimator is derived (e.g., Vigerske and Gleixner 2018, Belotti et al. 2013).
Note that gradient cuts derived from convex functions are globally valid, while
underestimators for non-convex functions (and their gradient cuts) typically in-
volve some local bounds and are hence not globally valid. They are locally valid
at the node for which they were created and its descendants.

For a subproblem s during the tree search, let Gs := {ls1, . . . , lsq} be the index
set of all linear approximations of all gk with k ∈ K that have been added at the
node corresponding to s or any of its ancestors. Hence, it is the current set of
(local) linear relaxation cuts; all are valid at s. Let Gs be the matrix containing
all of these linearizations and ds be the corresponding right-hand sides. Thus,
the LP relaxation solved for subproblem s reads as

min{cTx | Ax ≤ b, Gsx ≤ ds, `′ ≤ x ≤ u′}. (6)
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We denote the set of linearizations added at the root node by G0. During
(spatial) branch-and-bound the set of linearizations expands along each path of
the tree: It holds that G0 ⊆ Gs1 ⊆ . . . ⊆ Gsp ⊆ Gs for each path (0, s1, . . . , sp, s).
In analogy to solving MIPs, if (6) is infeasible each ray (y, w, r`, ru) in its dual
can be used to construct a proof of local infeasibility. Here, yi are the dual
variables corresponding to Ai·, wl are the dual variables corresponding to Gsl·
for all l ∈ Gs, and r`j , r

u
j denote the reduced costs (the duals of the lower and

upper bound constraints) of every variable xj . Note that the reduced costs of
xj are given by cj − yTA·j − wTGs·j .

Hence, a local infeasibility proof with respect to the local bounds `′ and u′

is given by

yTb+ wTds +
∑
j∈N

(ruj u
′
j − r`j`′j) < 0. (7)

In contrast to (5) the constraint

yTAx+ wTGsx ≤ yTb+ wTds (8)

is not globally valid in general because linearizations of nonconvex constraints
might rely on intermediate local bounds. Conflict graph and dual proof anal-
ysis as introduced in Achterberg (2007a) and Witzig et al. (2017, 2019a) only
consider globally valid reasons of infeasibility. To this end, the locally valid
constraint (8) is relaxed to a globally valid constraint, considering only the
dual multipliers for the original linear system Ax ≤ b and the globally valid
linearization G0 ≤ d0:

yTAx+ w̄TGsx ≤ yTb+ w̄Tds, (9)

where w̄l := wl, if l ∈ G0, and w̄l := 0, otherwise. In general, this relaxed
constraint might not prove infeasibility of subproblem s. If, however, (9) is a
valid proof of local infeasibility, i.e., no locally valid linearization is needed to
prove local infeasibility, we can use a relaxed infeasibility certificate

yTb+ w̄Tds +
∑
j∈N

(r̄uj u
′
j − r̄`j`′j) < 0, (10)

with r̄ := cj−yTA·j−w̄TGs·j , to generate conflict constraints. In this case, (10) is
an alternative infeasibility proof for subproblem s, no locally valid linearization
is needed to prove local infeasibility, and all conflict analysis techniques known
from MIP can be used straightforward. As reported in Witzig et al. (2019b),
this situation could only be observed in 5 % of all infeasible subproblems. This
observation corresponds to the result reported in Vigerske and Gleixner (2018)
that applying conflict analysis techniques as used for solving MIPs has almost
no impact when solving MINLPs. In the vast majority of cases, at least one
locally valid linearization cut is needed to prove local infeasibility, and MIP
conflict analysis cannot be readily applied. This brings us to the idea of local
dual proofs.
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3 Local Dual Proofs for LP-based Branch-and-
Bound

In MIP, both conflict graph analysis and dual proof analysis rely on globally
valid proofs. In most MIP solvers, local cuts are applied rarely, if at all. This
is very different for non-convex MINLP solvers which rely on local linearization
cuts.

The crucial question is how to deal with linearization cuts that are only
locally valid. Note that the same question might rise within a MIP solver using
local cuts, e.g., FICO Xpress. Analogous to MINLP, local cuts in MIP are based
on variable bounds that are not globally valid.

To incorporate local linearizations of nonlinear constraints we propose lifting
infeasibility proofs as far as possible towards the root. This idea is motivated
by two observations. First, an infeasibility proof at a subproblem s of an LP-
based branch-and-bound does not neccessarily need to contain linearization cuts
of nonconvex constraints created at the current node. Second, LP infeasibility
proofs are typically not minimal. Consequently, it might be possible to set some
of the proof’s coefficients to zero and still have a valid proof of infeasibility, see
also (Achterberg 2007a). This brings us to the idea of performing a greedy
search for a set Ĝ with G0 ⊆ Ĝ ⊆ Gs, such that Ĝ gives rise to an infeasibility
proof

yTb+ ŵTds +
∑
j∈N

(r̂uj u
′
j − r̂`j`′j) < 0 (11)

of subproblem s. Here, `′ and u′ are the local bounds at node s and ŵl is
defined as ŵl := wl, if l ∈ Ĝ, and ŵl := 0, otherwise; consequently, r̂ reads
as r̂j := cj − yTA·j − ŵTGs·j . The goal of the greedy search is to minimize

ŝ = 0, . . . , s, such that Ĝ ⊆ G ŝ.
It follows that the dual proof constraint derived from the infeasibility cer-

tificate (11) is valid for the search tree induced by subproblem ŝ. Hence, the
infeasibility proof might be lifted to an ancestor ŝ of the subproblem s it was
created for, if all local information used for the proof were already available at
ŝ. In other words, node ŝ is the ancestor of s closest to the root for which we
can reduce the infeasibility proof such that is still a valid proof, but only uses
globally valid linearizations plus local linearizations that have been created at
ŝ or one of its ancestors (but no local linearizations from the nodes between ŝ
and s or s itself).

Note that it would be possible to apply conflict graph analysis to (11), too.
However, this would introduce a computational overhead because the order
of locally applied bound changes and separated local linearizations needs to be
tracked and maintained. Hence, we refrain from applying conflict graph analysis
on locally valid infeasibility certificates in our implementation.
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4 Nonlinear Dual Proofs for NLP-based Branch-
and-Bound

Recall that next to LP/MIP-based branch-and-bound, another common method
to solve MINLPs is NLP-based branch-and-bound. In this section, we will
discuss theoretical considerations how conflict analysis can be directly applied
to convex nonlinear relaxations of MINLPs. More precisely, we will describe
how a generalization of LP dual proof analysis can be derived from the KKT
conditions of convex NLPs. For ease of notation, we will assume in this section
that the MINLP itself is convex, but all methodology can be generalized to
convex relaxations of nonconvex MINLPs.

Given a convex MINLP

min
x∈X
{f(x) | gk(x) ≤ 0 ∀k ∈ K, he(x) = 0 ∀e ∈ E , xj ∈ Z ∀j ∈ I}, (12)

where f, gk are convex, continuously differentiable functions over Rn and he are
affine functions. For every optimal solution x? of (12) of the (convex) NLP
relaxation of (12) there exists λ ≥ 0 such that it holds that

∇f(x?) +
∑
k∈K

λk∇gk(x?) +
∑
e∈E

µe∇he(x?) = 0 (13)

λkgk(x?) = 0. (14)

These conditions originate from the so-called Karush-Kuhn-Tucker-Conditions (Kuhn
and Tucker 1951). The left-hand side of Equality (13) is the gradient of the La-
grangian function

L(x, λ, µ) := f(x) +
∑
k∈K

λkgk(x) +
∑
e∈E

µehe(x), (15)

with λ ≥ 0 and µ ∈ R|E|. The Lagrangian dual function q : R|K| × R|E| 7→ R is
defined as

q(λ, µ) := inf
x∈X
L(x, λ, µ). (16)

Further, the dual problem of (12) is given by maximizing the Lagrangian dual
function

sup
λ≥0,µ

q(λ, µ) := sup
λ≥0,µ

inf
x∈X
L(x, λ, µ) (17)

and yields the tightest lower bound on the optimal value of (12). If (12) is
infeasible a proof of infeasibility can be derived from the following nonlinear
version of Farkas’ Lemma, introduced in Avriel (2003, Theorem 3.2):

Theorem 1 Let gk : Rn 7→ R with k ∈ K be convex, continuously differentiable
functions over Rn, he : Rn 7→ R with e ∈ E be affine functions, and x? ∈ X.
Exactly one of the following systems will be satisfied.
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(a) There exists (λ?, µ?) ∈ R|K|×|E| with λ? ≥ 0 such that

∇xL(x?, λ?, µ?) = ∇f(x?) +
∑
k∈K

λ?k∇gk(x?) +
∑
e∈E

µ?∇he(x?) = 0

λ?kgk(x?) = 0, gk(x?) ≤ 0 ∀k ∈ K
he(x

?) = 0 ∀e ∈ E .

(b) For all (λ?, µ?) ∈ R|K|×|E| with λ? ≥ 0 such that

L(x, λ?, µ?) = f(x) +
∑
k∈K

λ?kgk(x) +
∑
e∈E

µ?ehe(x) > 0 (18)

holds for all x ∈ X.

In other words, the (primal) NLP relaxation of MINLP (12) is infeasible if and
only if there exists an infinite direction (λ?, µ?) in the dual. Thus, (λ?, µ?)
proves infeasibility of MINLP (12) and consequently∑

k∈K

λ?kgk(x) +
∑
e∈E

µ?ehe(x) ≤ 0 (19)

is a valid inequality for (12). It is a conic combination of the inequality con-
straints gk(x) ≤ 0 plus a linear combination of the equations he(x) = 0. Inequal-
ity (19) is the convex optimization analogue of the dual proof constraint (4).

Assume that constraint (19) is given as proof of infeasibility for a subproblem
within an NLP-based branch-and-bound. If no local cuts are involved in the
infeasibility proof, inequality (19) is a globally valid convex nonlinear constraint.
Note in this context that gradient cuts are globally valid.

Clearly, inequality (19) holds for all non-negative λ?. The following observa-
tion makes the concrete (λ?, µ?) from the nonlinear infeasibility proof interesting
to use as global information inside a branch-and-bound tree search for convex
MINLP. Consider the linearization at an infeasible point x? ∈ X

gk(x?) +∇gk(x?)T(x− x?) ≤ 0 ⇔ ∇gk(x?)Tx ≤ ∇gk(x?)Tx? − gk(x?) ∀k ∈ K.
(20)

Then, the corresponding dual multipliers λ?, µ? give the linear Farkas system∑
k∈K

λ?k∇gk(x?) +
∑
e∈E

µ?e∇he(x?) = 0∑
k∈K

λ?k(∇gk(x?)Tx? − gk(x?)) +
∑
e∈E

µ?e∇he(x?)Tx? < 0.
(21)

Thus, for every infeasible convex MINLP an LP relaxation can be constructed
from which a linear proof of infeasibility can be derived. This could be done by
linearizing all nonlinear constraints gk with λk > 0 at an (arbitrary) infeasible
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Figure 1: Illustration of linear and nonlinear dual proofs of Example 2 projected into
the y-space.

point. However, using a linear dual proof constraint derived from (21) will
in general be weaker than the nonlinear dual proof (19). An illustration of
the strength of linear and nonlinear underestimators is given in the following
example and Figure 1.

Example 2 Consider the following convex nonlinear system.

g1(x, y) : (x− 1)2 − y ≤ 0

g2(x, y) : (x+ 1)2 − y ≤ 0

with x, y ≥ 0, see Figure 1a. Assume we perform a branching y ≤ 1
2 , thereby

rendering the system infeasible by a local bound change. Then, λ1 = λ2 = 1
2 ,

together with λ3 = 1 for the branching constraint, are valid dual multipliers
proving infeasibility. Linearizing g1 and g2 at the infeasible point (0, 12 ) gives

2x− y +
1

2
≤ 0 and − 2x− y +

1

2
≤ 0.

Aggregating both linearizations, see Figure 1b, with λ1, λ2 yields −y+ 1
2 ≤ 0 as a

linear dual proof constraint. The linear dual proof constraints proves infeasibility
for y < 0.5. In contrast to that, aggregating both nonlinear constraints g1 and
g2 yields the nonlinear dual proof constraint x2 + 1 − y ≤ 0, see Figure 1c.
The nonlinear dual proof constraint proves infeasibility for y < x2 + 1, which is
stronger than the linear proof.

As in the case of dual proof analysis for MIP, inequality (19) is a single
inequality that would have directly provided an infeasibility proof. If (19) had
been part of the constraint set, the relaxation would not have to be solved for
the current subproblem; instead, infeasibility could have been proven by domain
propagation.

The hope (which is true for MIP) is that (19) is a good candidate to detect
infeasibility by propagation (under the use of integrality information) in other
parts of the search tree, and might be a meaningful aggregation of problem
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constraints to create cuts from. As in the MIP case, infeasibility information
might be used in other contexts, consider hybrid branching (Achterberg and
Berthold 2009), conflict-driven diving heuristics (Witzig and Gleixner 2019),
and also rapid learning (Berthold et al. 2010, 2019).

For many NLP solvers, in particular dual active set methods (Murty and
Yu 1988, Nocedal and Wright 2006, Forsgren et al. 2016) and barrier algo-
rithms (Mehrotra 1992, Mészáros 1999, Wächter and Biegler 2006), dual mul-
tipliers will be readily available. The added advantage of active set methods is
that they typically yield a sparse dual weight-vector (λ, µ).

5 Nonlinear Dual Proofs: Implementation As-
pects

In this section, we introduce a dual multiplier filtering heuristic, which proved
to be an important details of our implementation, and we discuss the impact of
different types of NLP solvers on the presented algorithms.

5.1 Dual Multiplier Filtering Heuristic

Let (λ?, µ?) ∈ R|K|≥0×R|E| be a set of dual multipliers proving infeasibility of (12).
The support of (λ?, µ?) is not minimal in general; Every set of dual multipliers

(λ, µ) ∈ R|K|≥0 × R|E| with supp(λ?) ⊆ supp(λ) and supp(µ?) ⊆ supp(µ) satisfy-
ing (18) yields a (nonlinear) dual proof. Hence, we might be able to obtatin a
dual proof involving less of the original problem constraints simply by setting
some of the dual multipliers to zero. In particular, in some cases it might be
possible to remove entire classes of constraints in this fashion.

In our implementation we always try to prefer linear dual proofs over non-
linear ones. One reason for preferring linear constraints is the fast propagation
compared to nonlinear constraints in general, i.e., linear time in the number of
nonzero variables compared to linear time in the number of expressions. More-
over, quadratic constraints are preferred over general nonlinear. Therefore, we
subsequently check whether the following constraints prove infeasibility:

1.
∑
e∈E µ

?
ehe(x) ≤ 0

2.
∑
i∈Q λ

?
i gi(x) +

∑
e∈E µ

?
ehe(x) ≤ 0, where Q := {i ∈ K | gi is quadratic}

3.
∑
i∈K λ

?
i gi(x) +

∑
e∈E µ

?
ehe(x) ≤ 0

and immediately stop if we found a valid proof.
Analogous to linear dual proof constraints, nonlinear dual proof constraints

are used only for propagation within our implementation.
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5.2 Interior Point vs. Active Set Methods

The preferred technique for solving the relaxations within an LP-based (spa-
tial) branch-and-bound is the dual Simplex algorithm (Lemke 1954). Simplex-
based LP solvers typically provide the dual multipliers proving local infeasibility.
However, the set of dual multipliers returned by the Simplex algorithm is not
minimal in general. Note, calculating a maximally sparse vector of dual multi-
pliers that is sufficient to render infeasibility is strongly NP-hard (Chakravarti
1994). Such a set of multipliers is well-known as minimal irreducible infeasible
set (minIIS) (e.g., Chinneck and Dravnieks 1991, Gleeson and Ryan 1990).

Similar to LP solvers, dual multipliers are readily available in many NLP
solvers. This holds in particular for dual active set methods (e.g., Murty and
Yu 1988, Nocedal and Wright 2006, Forsgren et al. 2016) and barrier algo-
rithms (e.g., Mehrotra 1992, Mészáros 1999, Wächter and Biegler 2006). A
major advantage of active set methods is that they typically yield a sparse dual
weight-vector (λ, µ). Like in the linear case, the problem is that the initial rea-
son will typically be too large to be meaningful. Intuitively, one would expect
that a sparse vector of dual multipliers might lead to nonlinear dual proofs with
a smaller support. Of course, this intuition is not true in general but it is worth-
while to investigate whether active set methods lead to nonlinear dual proofs
that are more efffective than those generated with a dense vector of multipliers,
like it is the case for barrier algorithms. We support both types of NLP solvers
within our implementation and compare their impact on dual proof analysis as
part of our computational study.

6 Computational Results

In our computational study, we address three questions:

• When solving general MINLPs with an LP-based branch-and-bound, what
is the impact of using a combined approach of applying (global) dual proof
analysis in addition to conflict graph analysis?

• Given that local linearization cuts often prohibit finding globally valid
proof constraints: What is the impact of our suggested strategy to gener-
ate local dual proofs when solving nonconvex MINLPs with an LP-based
branch-and-bound?

• When solving general MINLPs with an NLP-based branch-and-bound ap-
proach, what is the impact of our newly proposed nonlinear dual proofs?

In order to answer these three questions, we carried out an extensive com-
putational study. In the first part of this section, we analyze the impact of
LP-based conflict analysis in SCIP within an LP-based branch-and-bound. To
do so, we compare SCIP without LP-based conflict analysis (nolpinf) against
SCIP using conflict graph analysis solely (confgraph), and SCIP using a com-
bined approach of conflict graph analysis and dual proof analysis (combined).
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In the second part of this section, we compare nolpinf with combined and
an extension of combined that exploits locally valid dual proof constraints. We
refer to the latter as combined-local. Note again that for convex MINLPs, all
proof constraints are globally valid. Consequently, this part of the study is only
conducted for nonconvex MINLPs.

In the last part of this section, we present computational results on the
impact of nonlinear dual proof constraints. Based on an NLP-based branch-
and-bound, we compare SCIP without conflict analysis (noconflict) to SCIP

applying conflict graph analysis to infeasibilities derived during constraint prop-
agation (nonlpinf). Further, we compare both settings to SCIP deriving non-
linear dual proof constraints from infeasible convex NLP relaxations (nlpinf).

All experiments were performed with the academic solver SCIP (git hash
fd3e45275d, based on SCIP 6.0.2) (Gleixner et al. 2018). For the results pre-
sented in Sections 6.1 and 6.2, we used SoPlex 4.0.0 as LP solver. For the
results presented in Section 6.3, we used Ipopt 3.12.11 (Wächter and Biegler
2006) and FilterSQP (Fletcher and Leyffer 1998) as NLP solvers.

To evaluate the generated data, we used the interactive performance evalu-
ation tool (IPET)8. We ran the experiments on a cluster of identical machines
equipped with Intel Xeon E5-2690 CPUs with 2.6 GHz and 128 GB of RAM; a
time limit of 7200 seconds was set. To account for the effect of performance
variability (Lodi and Tramontani 2013) all experiments were performed with
three different constraint permutations. We used MINLPLib9 as a test set,
excluding instances that are purely continuous, i.e., do not contain any integer
variables. This test set consists of 1029 publicly available MINLP problems.
Every combination of MINLP problem and permutation is treated as an indi-
vidual observation, effectively resulting in a test set of 3087 instances. We will
use the term “instance” when referring to a problem-permutation combination.

All tables shown in the remainder of this section contain aggregated results.
Detailed results with instance-wise computational results can be found in a
GitHub repository10. Note that for every table we excluded instances that
either could be solved at the root node by all settings or for which at least one
setting finished with numerical violations.

The tables in this paper distinguish between instances for which every con-
sidered setting hit the time limit (timelimit) and instances that could be solved
by at least one considered setting (1-opt). The set 1-opt is further divided into
affected instances and into a hierarchy of increasingly harder classes ”≥k ”. We
call an instance affected when it did not take the same solution path for all
settings of the respective table. Class ”≥k ” contains all affected instances for
which at least one setting needed at least k seconds. As explained by Achterberg
and Wunderling (2013), this excludes instances that are “easy” for all settings
in an unbiased manner. Moreover, if both convex and nonconvex MINLPs are
considered, the respective table distinguishes between convex and nonconvex
affected instances.

8https://github.com/GregorCH/ipet
9http://www.minlplib.org/, git hash a71254dc

10https://github.com/jakobwitzig/conflict-analysis-minlp
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For every group of instances the tables show:

• the number of instances in the respective group (2nd column: #),

• the number of solved instances (S)

• the shifted geometric mean of run time, where a shift of 1 was used (T)

• the relative run time with respect to the baseline setting (TQ)

• the shifted geometric mean of tree nodes, where a shift of 100 was used
(N)

• the relative number of tree nodes with respect to the baseline setting (N

Q)

• the dual integral with respect to the best know primal solution (DI)

• the relative dual integral with respect to the baseline setting (DIQ)

Relative solving times of setting s are defined by the quotient ts/tb, where ts
is the mean solving time of setting s and tb is the mean solving time of setting
b that is used as a baseline. An analogous definition holds for explored branch-
and-bound nodes and the dual integral. Thus, a number less than one implies
that the setting s is superior and a number greater than one implies that it is
inferior to the baseline setting b. In the following tables, an improvement or
deterioration by at least 5 % is highlighted in bold and blue or italic and red,
respectively.

The (relative) number of nodes is computed over the set of instances that
could be solved by all settings. For the group 1-opt, 1376 out of 1403 (Table 1),
606 out of 632 (Table 2), and 598 out of 626 (Table 3) fulfilled this criterion.

6.1 LP-based Conflict Analysis

In this section, we address our first question of what the impact of LP-based
conflict analysis is when solving MINLPs with an LP-based branch-and-bound.
Table 1 summarizes our findings. It compares three different settings: nolpinf
for a version of SCIP that does not use LP-based conflict analysis, confgraph for
a version of SCIP that applies conflict graph analysis to infeasible LP relaxations,
and combined for a version of SCIP that uses dual proof analysis in addition to
conflict graph analysis for infeasible LPs. The setting confgraph is the default
setting of SCIP and corresponds to what has been used by Vigerske and Gleixner
(2018), which to the best of our knowledge is the only computational study of
conflict analysis techniques for MINLP so far.

Our results confirm the findings of the named paper that the impact of
conflict graph analysis on the overall running time is marginal, yet slightly
positive. Not surprisingly, the technique works better on the subset of convex
MINLPs, a distinction the authors did not consider. Our results indicate that
applying dual proof analysis in addition to conflict graph analysis is beneficial.
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Table 1: Impact on LP-based branch-and-bound when using a combined approach
of dual proof and conflict graph analysis: aggregated computational results on
MINLPLib.

nolpinf confgraph combined

# S T N DI S TQ NQ DIQ S TQ NQ DIQ

1-opt 1403 1387 15.64 1463 895 1386 0.991 1.001 0.952 1394 0.970 0.963 0.954
timeout 1022 0 7200.00 – 231626 0 1.000 – 0.959 0 1.000 – 0.929

affected 908 892 31.04 4431 1606 891 0.988 1.002 0.930 899 0.956 0.945 0.933
≥10 553 537 148.40 22441 4743 536 0.979 0.975 0.893 544 0.933 0.911 0.899
≥100 295 279 646.17 129365 22502 278 0.981 0.991 0.842 286 0.920 0.936 0.852
≥1000 131 115 2173.90 422656 75451 114 1.003 1.005 0.746 122 0.910 0.968 0.804

convex 485 483 17.67 3834 1269 483 0.951 0.984 0.855 483 0.917 0.913 0.867
nonconvex 423 409 58.52 5269 2096 408 1.030 1.025 1.020 416 0.999 0.984 1.012

We observed an overall speedup of 3 %, with speedups of 8 % and more on
instances that take more than 100 seconds, more than 1000 seconds to solve,
and on the subset of convex MINLPs. This goes hand in hand with a significant
reduction of the average search tree size and an improvement in the dual integral
of more than 10 % for many subsets that we considered. Notably, also for the
set of instances that timed out with all settings, we observed an improvement
in the dual integral by about 7 %.

Similar to what is known from solving MIPs, our results indicate that conflict
analysis for MINLPs works especially well for infeasible instances and feasibil-
ity instances11, i.e., for instances where the tree is not pruned by bounding
with respect to an incumbent solution. For such instances, we observed an
above average speedup of 24 % (confgraph) and 38 % (combined) compared to
noconflict. However, this group of instances forms a rather small part of our
test set (33 in 1-opt, 14 affected).

As expected, for nonconvex MINLPs, the technique is almost performance-
neutral. Globally valid proofs could rarely be constructed, therefore the benefit
on a few instances is compromised by a slight computational overhead on many
instances. It is worth mentioning that we could solve eight more nonconvex
MINLPs when using dual proof analysis.

6.2 LP-based Local Dual Proofs

In this section, we address our second question of what the impact of generating
local dual proofs is when solving nonconvex MINLPs with an LP-based branch-
and-bound. Table 2 depicts our results. Columns nolpinf and combined take
the same meaning as before, Column combined-local shows the performance
of a version that generates both, conflict constraints and dual proof constraints
that are allowed to be locally valid. We see that for harder instances, the im-
pact of standard conflict analysis is even slightly negative. In marked contrast,
employing local dual proofs for nonconvex MINLPs led to a performance im-

11We call an instance a feasibility instance, if the optimal value of its relaxation matches
the optimal solution value
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Table 2: Impact of using local dual proof within LP-based branch-and-bound: aggre-
gated computational results on the subset of nonconxex instances of MINLPLib.

nolpinf combined combined-local

# S T N DI S TQ NQ DIQ S TQ NQ DIQ

1-opt 632 614 31.62 2123 1150 621 0.998 0.985 1.009 623 0.975 0.964 1.004
timeout 862 0 7200.00 – 226311 0 1.000 – 0.923 0 1.000 – 0.932

affected 441 423 58.63 5227 2065 430 0.997 0.979 1.012 432 0.965 0.949 1.006
≥10 309 291 191.87 15244 5884 298 1.005 0.999 1.021 300 0.959 0.954 1.013
≥100 179 161 736.74 68520 22734 168 1.045 1.113 1.047 170 0.963 1.030 1.034
≥1000 80 62 2593.38 167820 74290 69 1.018 1.163 1.036 71 0.877 1.013 0.965

provement with respect to the overall running time on all subset of instances
that we considered. The overall impact was about 2.5 % speedup. For instances
that need more than 1000 seconds to solve, the difference was most pronounced,
but given the small size of this subset, the result should be taken with a grain
of salt. The slight deterioration in the number of nodes is due to a single outlier
instance which creates a significantly larger search tree while taking only twice
as much run time.

The impact on the number of branch-and-bound nodes is roughly similar to
the impact on running time. The dual integral, however, seems to be hardly
affected. This can partially be explained by this technique being local and
thereby only affecting the part of the tree that is currently being processed. In
classical conflict analysis, the generation of new globally valid constraints might,
e.g., trigger an immediate reduction of global variable bounds by propagating
the new constraints, which in turn might raise the global (not only the local) dual
bound. It should be said, though, that on the set of instances that timed out
with all settings, we did observe an improvement for the dual integral. Overall,
the results give a strong indication that the generation of local infeasibility
proofs for nonconvex MINLPs is beneficial.

Figure 2 visualizes the effect of lifting locally valid dual proofs, in an instance-
wise manner. For every nonconvex MINLP in our test set where at least 50
infeasible LP relaxations were encountered (1142 instances) we analyzed the
reduction of depth at which the dual proof is valid. More precisely, for each
instance we calculated the following three percentages:

• The portion of dual proofs for which at least one linearization cut that
is only valid at the current node is needed to prove infeasibility (group
”local”). For such proofs, no depth reduction is possible and they have to
be discarded.

• The portion of dual proofs for which no locally valid linearization cut is
needed (group ”global”). These proofs are globally valid and can be lifted
to the root node. Hence, they can be used for propagation throughout the
remainder of the search.

• The portion of dual proofs for which at least one local linearization cut
is needed, but none of the current node. These proofs are locally valid at
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Figure 2: Instance-wise distribution dual proof constraints that are only locally valid
at the node where they have been created, constraints that can be lifted to an inner
node of the search tree, and constraints that are globally valid.

some ancestor of the current node, but not at the root. They can be used
for searching parts of the tree which share that ancestor and are therefore
added as locally valid constraints to the named ancestor node. (group
”lifted”).

For each group the figure shows a box-plot (McGill et al. 1978), where the box
ranges indicates the second and the third quartile. The median is marked with
a bold, horizontal solid line, each instance outside the box is indicated by a dot.

The left box plot shows that it is a common case that most proofs are only
locally valid and, therefore, have to be discarded. The median bar is at 77 %,
which means that for half of the considered instances, we could not lift the
generated dual proof for at least 77 % of all analyzed infeasible LPs. For 25 %
of the instances, this share was even larger than 93 %. Note, however, that the
75 %-percentile is comparably low, at 5 %.

The right box plot shows that the next common case is proofs being globally
valid. For 25 % of the instances, more than 82 % of the proofs could be lifted to
the root node. The median is at 4 %, which means that for 50 % of the instances,
at least 4 % of the proofs could be lifted to the root. On 35 % of the instances,
we observed that no globally valid proof could be derived at all.

The middle box plot finally demonstrates two things. Firstly, it shows that
some form of lifting to an inner node is possible in a majority of instances,
though typically not for a large share of proofs. For half of the instances, at
least 2 % of the proofs could be lifted to an inner node and for 25 % of the
instances, at least 8 % of the proofs could be lifted. Secondly, we observe that
the outlier dots are all over the place. There are various instances for which a
large share of dual proofs can be lifted to inner nodes.
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Table 3: Impact of nonlinear dual proofs on NLP-based branch-and-bound: aggregated
results on MINLPLib.

noconflict nonlpinf nlpinf

# S T N DI S TQ NQ DIQ S TQ NQ DIQ

1-opt 626 601 66.02 505 1303 608 0.937 0.948 0.950 623 0.766 0.887 0.877
timeout 1660 0 7200.00 – 324698 0 1.000 – 0.916 0 1.000 – 0.910

affected 229 205 286.84 1529 3807 211 0.839 0.870 0.875 226 0.488 0.729 0.712
≥10 210 186 426.86 1987 4899 192 0.827 0.860 0.866 207 0.467 0.716 0.693
≥100 160 136 1018.40 3842 6909 142 0.789 0.826 0.834 157 0.466 0.708 0.644
≥1000 78 54 3197.11 9095 11166 60 0.759 0.852 0.771 75 0.404 0.741 0.478

convex 151 135 240.21 1132 5864 135 0.995 0.999 1.003 151 0.453 0.806 0.751
nonconvex 78 70 404.29 2756 1622 76 0.604 0.664 0.659 75 0.563 0.599 0.633

6.3 NLP-based Conflict Analysis

In this section, we address our third and final question of what the impact
of generating nonlinear dual proofs is when solving MINLPs with an NLP-
based branch-and-bound. Table 3 presents, to the best of our knowledge, the
first computational results for applying conflict analysis within an NLP-based
branch-and-bound algorithm. We show three different settings: noconflict for
a version of SCIP that does not use any form of conflict analysis, nonlpinf for
a version of SCIP that applies conflict graph analysis to infeasibilities found by
domain propagation, and nlpinf for a version of SCIP that in addition uses
dual proof analysis for infeasible NLPs.

For the experiments in this section, we extended SCIP to work as an NLP-
based branch-and-bound solver, using Ipopt as NLP solver. In our implemen-
tation, we always solve a convex NLP relaxation of the possibly non-convex
MINLP. The convex NLP relaxation consists of all linear constraints, non-linear
constraints that are recognized by SCIP to be convex, and linear underesti-
mators of non-convex constraints. Due to the plugin-based design of SCIP, a
lot of the functionality could easily be inherited from the LP-based implemen-
tation. For example, the NLP-based solver features a fully-fledged presolving
algorithm, advanced domain propagation/bound tightening procedures and in-
volved branching rules based on pseudo-costs and other history information.
However, some functionality is still missing in this prototype implementation,
e.g., the separation of combinatorial cutting planes, or an NLP-equivalent to
reduced cost fixing. Furthermore, while the LP-based branch-and-bound has
undergone years of solver parameter fine-tuning, this does not hold true for our
new NLP-based branch-and-bound implementation. Consequently, it can be ex-
pected that the results are somewhat more pronounced than for the LP-based
case.

Nevertheless, the extent of this distinction came as a surprise to us. First
of all, we see that conflict graph analysis from infeasibilities found in domain
propagation already has a significant impact. It leads to an overall speedup of
more than 6 % and shows consistent improvements throughout the board for
all our performance measures. The generation of nonlinear dual proofs from
infeasible NLP relaxations excels. It reduces the overall running time by more
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Figure 3: Instance-wise distribution of the density of constraints contributing to a dual
proof constraint.

than 20 %, cutting it down to less than half on the set of affected instances.
The results for the number of nodes and the dual integral are not as extreme,

but still more than 20 % in all subsets. On the set of instances where all methods
timed out, the dual integral improved by 9 %. Altogether, the results give
clear evidence that the generation of nonlinear dual proofs helps to improve the
performance of such algorithms.

l
In our implementation, we prefer linear infeasibility proofs derived from

the nonlinear relaxation over quadratic infeasibility proofs and quadratic over
general nonlinear infeasibility proofs, as described in Section 5.1. The set of in-
stances that are affected by this dual multiplier filtering heuristic is comparably
small, containing 75 instances. On this set of affected instances, however, we
observe a clear performance improvement caused by the named heuristic. All
three performance measures, the running time, the number of nodes and the
dual integral, reduce significantly by 8 %, by 2 % and by 14 %, respectively.

Finally, we made an additional experiment to investigate the impact of dif-
ferent NLP solving algorithms on the density of dual proofs as described in
Section 5.2. The box plots in Figure 3 show that, as expected, the dual so-
lutions generated by the active set method are much sparser than the ones
from the interior point solver. When using an interior point solver, the average
density of the dual solutions is larger than 40 % for half of the instances for
bound-exceeding proofs and larger than 32 % for half of the instances for infea-
sibility proofs. When using an active set method, the median was at 16 % and
9 %, respectively. Consequently, the speedup achieved by dual proof analysis
was slightly larger when using an active set method, but only in the range of
one to two percent.
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7 Conclusion

In this paper, we studied different ways to learn from infeasible subproblems
when solving MINLPs. More precisely, we studied the impact of two different
techniques – conflict graph analysis and dual proof analysis – and two different
solution paradigms – LP-based branch-and-bound and NLP-based branch-and-
bound – for convex and nonconvex MINLPs. Conflict graph analysis for MINLP
has been previously described in the literature and shown to be of little impact.
Although the generalization of dual proof analysis to LP-based branch-and-
bound for MINLP is straight-forward, it has, to the best of our knowledge,
not been studied before. We introduced a novel technique, lifting of local dual
proofs for nonconvex MINLPs, and showed that a combination of conflict graph
analysis and dual proof analysis lead to a speedup of more than 8 % for con-
vex MINLPs and 4.5 % for nonconvex MINLPs in a state-of-the-art LP-based
branch-and-bound solver.

The other main contribution of the paper is a generalization of dual proof
analysis to NLP-based branch-and-bound for MINLP. We showed how to derive
globally valid nonlinear constraints from the dual solution of a convex NLP
relaxation of a local subproblem, using a variant of Farkas’ lemma based on KKT
conditions. When implementing this technique within an NLP-based branch-
and-bound solver, we observed a speedup of more than 20 %. Our results clearly
indicate that the analysis of infeasible subproblems plays an important role for
the performance of global MINLP solvers and constitutes an interesting field of
research.
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Belotti P, Lee J, Liberti L, Margot F, Wächter A (2009) Branching and bounds tighten-
ing techniques for non-convex MINLP. Optimization Methods & Software 24(4-
5):597–634.

Benders JF (1962) Partitioning procedures for solving mixed-variables programming
problems. Numerische Mathematik 4(1):238–252.

Berthold T, Feydy T, Stuckey PJ (2010) Rapid learning for binary programs. Lodi
A, Milano M, Toth P, eds., Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems, 7th International Con-
ference, CPAIOR 2010, volume 6140 of LNCS, 51–55 (Springer Berlin Heidel-
berg).

Berthold T, Stuckey PJ, Witzig J (2019) Local Rapid Learning for Integer Programs.
Rousseau LM, Stergiou K, eds., Integration of Constraint Programming, Arti-
ficial Intelligence, and Operations Research, 67–83 (Cham: Springer Interna-
tional Publishing), ISBN 978-3-030-19212-9, URL http://dx.doi.org/https:

//doi.org/10.1007/978-3-030-19212-9_5.

Biegler LT, Grossmann IE, Westerberg AW (1997) Systematic methods for chemical
process design .

Bixby RE (2002) Solving real-world linear programs: A decade and more of progress.
Operations Research 50(1):3–15.
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Kılınç Karzan F, Nemhauser GL, Savelsbergh MWP (2009) Information-based branch-
ing schemes for binary linear mixed-integer programs. Mathematical Program-
ming Computation 1(4):249–293, URL http://dx.doi.org/http://dx.doi.

org/10.1007/s12532-009-0009-1.

Kocis GR, Grossmann IE (1988) Global optimization of nonconvex mixed-integer non-
linear programming (MINLP) problems in process synthesis. Industrial & engi-
neering chemistry research 27(8):1407–1421.

Kronqvist J, Bernal D, Lundell A, Grossmann I (2018) A review and comparison of
solvers for convex MINLP. Preprint, Optimization Online .

23

http://dx.doi.org/10.1016/S0959-1524(99)00019-0
http://dx.doi.org/10.1287/ijoc.2.1.61
http://dx.doi.org/10.1287/ijoc.2.1.61
http://nbn-resolving.de/urn:nbn:de:0297-zib-69361
http://dx.doi.org/10.1007/s10479-005-3976-2
http://dx.doi.org/10.1007/s10479-005-3976-2
http://dx.doi.org/10.1007/s10957-019-01480-4
http://dx.doi.org/http://dx.doi.org/10.1007/s12532-009-0009-1
http://dx.doi.org/http://dx.doi.org/10.1007/s12532-009-0009-1


Kuhn HW, Tucker AW (1951) Nonlinear programming. Neyman J, ed., Proceedings of
the second Berkeley symposium on mathematical statistics and probability (Uni-
versity of California Press, Berkeley).

Land AH, Doig AG (1960) An automatic method of solving discrete program-
ming problems. Econometrica 28(3):497–520, URL http://dx.doi.org/10.

2307/1910129.

Lemke CE (1954) The dual method of solving the linear programming problem. Naval
Research Logistics Quarterly 1(1):36–47, URL http://dx.doi.org/10.1002/

nav.3800010107.

Liberti L, Lavor C, Maculan N (2008) A branch-and-prune algorithm for the molecular
distance geometry problem. International Transactions in Operational Research
15(1):1–17, URL http://dx.doi.org/10.1111/j.1475-3995.2007.00622.x.

Liberti L, Lavor C, Maculan N, Nascimento MAC (2009) Reformulation in mathemati-
cal programming: An application to quantum chemistry. Discrete Applied Math-
ematics 157(6):1309 – 1318, ISSN 0166-218X, URL http://dx.doi.org/https:

//doi.org/10.1016/j.dam.2007.08.044.

Liberti L, Pantelides CC (2003) Convex envelopes of monomials of odd degree. Journal
of Global Optimization 25(2):157–168, URL http://dx.doi.org/10.1023/A:

1021924706467.

Lodi A, Tramontani A (2013) Performance variability in mixed-integer programming.
Theory Driven by Influential Applications, 1–12 (INFORMS), URL http://dx.

doi.org/10.1287/educ.2013.0112.

Marques-Silva JP, Sakallah K (1999) Grasp: A search algorithm for propositional
satisfiability. Computers, IEEE Transactions on 48(5):506–521, URL http://

dx.doi.org/10.1109/12.769433.

McCormick GP (1976) Computability of global solutions to factorable nonconvex pro-
grams: Part I—Convex underestimating problems. Mathematical programming
10(1):147–175, URL http://dx.doi.org/10.1007/bf01580665.

McGill R, Tukey JW, Larsen WA (1978) Variations of box plots. The American Statis-
tician 32(1):12–16, URL http://dx.doi.org/10.2307/2683468.

Mehrotra S (1992) On the implementation of a primal-dual interior point method.
SIAM Journal on optimization 2(4):575–601, URL http://dx.doi.org/10.

1137/0802028.
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Wächter A, Biegler LT (2006) On the implementation of an interior-point filter line-
search algorithm for large-scale nonlinear programming. Mathematical program-
ming 106(1):25–57, URL http://dx.doi.org/10.1007/s10107-004-0559-y.

Westerlund T, Pettersson F (1995) An extended cutting plane method for solv-
ing convex minlp problems. Computers & Chemical Engineering 19:131 –
136, ISSN 0098-1354, URL http://dx.doi.org/https://doi.org/10.1016/

0098-1354(95)87027-X.

Witzig J, Beckenbach I, Eifler L, Fackeldey K, Gleixner A, Grever A, Weber M (2018)
Mixed-integer programming for cycle detection in nonreversible markov pro-
cesses. Multiscale Modeling & Simulation 16(1):248–265, URL http://dx.doi.

org/10.1137/16M1091162.

Witzig J, Berthold T, Heinz S (2017) Experiments with conflict analysis in mixed inte-
ger programming. Integration of AI and OR Techniques in Constraint Program-
ming for Combinatorial Optimization Problems, 14th International Conference,
CPAIOR 2017, volume 10335 of LNCS, 211–220 (Springer Berlin Heidelberg),
URL http://dx.doi.org/10.1007/978-3-319-59776-8_17.

Witzig J, Berthold T, Heinz S (2019a) Computational aspects of infeasibility anal-
ysis in mixed integer programming. Technical Report 19-54, Zuse Institute
Berlin, Takustr. 7, 14195 Berlin, URL http://nbn-resolving.de/urn:nbn:de:

0297-zib-74962.

Witzig J, Berthold T, Heinz S (2019b) A status report on conflict analysis in
mixed integer nonlinear programming. Integration of AI and OR Techniques
in Constraint Programming. CPAIOR 2019, volume 11494, 84 – 94, URL
http://dx.doi.org/10.1007/978-3-030-19212-9_6.

Witzig J, Gleixner A (2019) Conflict-driven heuristics for mixed integer programming.
INFORMS Journal on Computing Accepted for publication.

25

http://dx.doi.org/10.1016/0098-1354(92)80028-8
http://dx.doi.org/https://doi.org/10.1016/0004-3702(77)90029-7
http://dx.doi.org/https://doi.org/10.1016/0004-3702(77)90029-7
http://dx.doi.org/10.1007/978-1-4615-2025-2_2
http://dx.doi.org/10.1007/978-1-4615-2025-2_2
http://dx.doi.org/10.1080/10556788.2017.1335312
http://dx.doi.org/https://doi.org/10.1016/0098-1354(90)87085-4
http://dx.doi.org/https://doi.org/10.1016/0098-1354(90)87085-4
http://dx.doi.org/10.1007/s10107-004-0559-y
http://dx.doi.org/https://doi.org/10.1016/0098-1354(95)87027-X
http://dx.doi.org/https://doi.org/10.1016/0098-1354(95)87027-X
http://dx.doi.org/10.1137/16M1091162
http://dx.doi.org/10.1137/16M1091162
http://dx.doi.org/10.1007/978-3-319-59776-8_17
http://nbn-resolving.de/urn:nbn:de:0297-zib-74962
http://nbn-resolving.de/urn:nbn:de:0297-zib-74962
http://dx.doi.org/10.1007/978-3-030-19212-9_6

	Introduction
	Background and Related Work
	Solving MINLPs
	Conflict Analysis in MIP
	Conflict Analysis in MINLP

	Local Dual Proofs for LP-based Branch-and-Bound
	Nonlinear Dual Proofs for NLP-based Branch-and-Bound
	Nonlinear Dual Proofs: Implementation Aspects
	Dual Multiplier Filtering Heuristic
	Interior Point vs. Active Set Methods

	Computational Results
	LP-based Conflict Analysis
	LP-based Local Dual Proofs
	NLP-based Conflict Analysis

	Conclusion

