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Abstract

This article proposes a Lagrangean relaxation approach to solve inte-
grated duty and vehicle scheduling problems arising in public transport.
The approach is based on the proximal bundle method for the solution
of concave decomposable functions, which is adapted for the approximate
evaluation of the vehicle and duty scheduling components. The primal
and dual information generated by the bundle method is used to guide a
branch-and-bound type algorithm.

Computational results for large-scale real-world integrated vehicle and
duty scheduling problems with up to 1,500 timetabled trips are reported.
Compared with the results of a classical sequential approach and with
reference solutions, integrated scheduling offers remarkable potentials in
savings and drivers’ satisfaction.

1 Introduction

The process of operational planning in public transit is traditionally organized in
successive steps of timetabling, vehicle scheduling, duty scheduling, duty roster-
ing, and crew assignment. These tasks are well investigated in the optimization
and operations research literature. An enormous progress has been made in
both the theoretical analysis of these problems and in the computational ability
to solve them. For an overview see the proceedings of the last four CASPT
conferences ([26], [3], [7], and [5]).

It is well known that the integrated treatment of planning steps discloses
additional degrees of freedom that can lead to further efficiency gains. The first
and probably best known approach in this direction is the so-called sensitivity
analysis, a method on the interface between timetabling and vehicle scheduling
that uses slight shiftings of trips in the timetable to improve the vehicle schedule.
The method has been used with remarkable success in HOT and HASTUS, see
[4] and [16].
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(BMBF), grant no. 03-GRM2B4. Responsibility for the content of this article is with the
authors.
∗∗Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany, Email [surname]@zib.de

1



Vehicle and duty scheduling, the topic of this article, is another area where
integration is important. The need is largest in regional scenarios, which often
have few relief points for drivers, such that long vehicle rotations can either not
be covered with legal duties at all or only at very high cost. In such scenarios the
powerful optimization tools of sequential scheduling are useless. Rather, the ve-
hicle and the duty scheduling steps must be synchronized to produce acceptable
results, i.e., an integrated vehicle and duty scheduling method is indispensible.
Urban scenarios do, of course, offer efficiency potentials as well.

The current planning systems provide only limited support for integrated ve-
hicle and duty scheduling. There are frameworks for manual integrated schedul-
ing that allow to work on vehicles and duties simultaneously, rule out infeasibili-
ties, make suggestions for concatenations, etc. Without integrated optimization
tools, however, the planner must still build vehicle schedules by hand, antici-
pating the effects on duty scheduling by skill and experience.

The literature on integrated vehicle and duty scheduling is also comparably
scant. The first article on the integrated vehicle and duty scheduling problem
(Isp) that we are aware of was published in 1983 by Ball, Bodin, and Dial
[1]. They describe an Isp at the Baltimore Metropolitan Transit Authority and
develop a mathematical model for it. However, they propose to solve this model
by decomposing it into its vehicle and duty scheduling parts, i.e., the model is
integrated, but the solution method is sequential.

For the next two decades, the predominant approach to the Isp was to in-
clude duty scheduling considerations into a vehicle scheduling method or vice
versa. The first approach is, e.g., presented by [24] and [6], who propose two-
step methods that first includes some duty scheduling constraints in a vehicle
scheduling procedure and afterwards solve the duty scheduling problem in a
second step. Examples of the opposite approach are the articles [25], [8], and
[23]. They concentrate on duty scheduling and take the vehicle scheduling con-
straints and costs heuristically into account. A survey of integrated approaches
until 1997 can be found in [15].

The complete integration of vehicle and crew scheduling was first investi-
gated in a series of publications by Freling and coauthors ([9, 10, 11, 13, 12]).
They propose a combined vehicle and duty scheduling model and attack it by
integer programming methods. Computational results on several problems from
the Rotterdam public transit company RET with up to 300 timetabled trips,
and from Connexxion, the largest bus company in the Netherlands, with up
to 653 timetabled trips are reported. A branch-and-price approach to Isp in-
stances involving a single type of vehicles was also described by [14] and tested
on artificial data.

We propose in this article an integrated vehicle and duty scheduling method
similar to that of Freling et al. Our main contribution is the use of bundle tech-
niques for the solution of the Lagrangean relaxations that come up there. The
advantages of the bundle method are its high quality bounds and automatically
generated primal information that can both be used to guide a branch-and-
bound type algorithm. We apply this method to real-world instances from
several German carriers with up to 1,500 timetabled trips. As far as we know,
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these are the largest and most complex instances that have been tackled in
the literature using an integrated scheduling approach. Our optimization mod-
ule IS-OPT has been developped in a joint research project with IVU Traf-
fic Technologies AG (IVU), Mentz Datenverarbeitung GmbH (mdv), and the
Regensburger Verkehrsbetriebe (RVB). It is incorporated in IVU’s commercial
scheduling system MICROBUS 2.

The article is organized as follows. Section 2 gives a formal description
of the Isp and states an integer programming model that provides the basis
of our approach. Section 3 describes our scheduling method. We discuss the
Lagrangean relaxation that arises from a relaxation of the coupling constraints
for the vehicle and the duty scheduling parts of the model, the solution of
this relaxation by the proximal bundle method, in particular, the treatment
of inexact evaluations of the vehicle and duty scheduling component functions,
and the use of primal and dual information generated by the bundle method to
guide a branch-and-bound algorithm. Section 4 reports computational results
for large-scale real-world data. In particular, we apply our integrated scheduling
method to half-regional half-urban instances for the German city of Regensburg
with up to 1,500 timetabled trips.

2 Integrated Vehicle and Duty Scheduling

The integrated vehicle and duty scheduling problem (Isp) contains a vehicle and a
duty scheduling part. We describe these individual parts first and conclude with
the integrated scheduling problem. The exposition assumes that the reader is
familar with the terminology of vehicle and duty scheduling; suitable references
are [22] for vehicle scheduling and [2] for duty scheduling.

The vehicle scheduling part of the Isp is based on an acyclic directed multi-
graph G = (T ∪{s, t},D). The nodes of G are the set T of timetabled trips plus
two additional artificial nodes s and t, which represent the beginning and the
end of a vehicle rotation, respectively; s is the source of G and t the sink. The
arcs D of G are called deadheads, the special deadheads that emanate from the
source s are the pull-out trips, those entering the sink t are the pull-in trips.
Associated with each deadhead a is a depot ga ∈ G from some set G of depots
(i.e., vehicle types), that indicates a valid vehicle type, and a cost da ∈ Q.
There may be parallel arcs in G with different depots and costs. We denote by
Dg := {a ∈ D : ga = g} the set of deadheads that can be covered by a vehicle
of type g ∈ G, by δ+

g (v) := δ+(v) ∩ Dg the outcut of node v, restricted to arcs
in Dg, and by δ−g (v) := δ−(v)∩Dg the incut of node v, restricted to arcs in Dg.

A vehicle rotation or block of type g ∈ G is an st-path in G that uses only
deadheads of type g, i.e., an st-path p such that p ⊆ Dg for some depot g ∈ G.
A vehicle schedule is a set of blocks such that each timetabled trip is contained
in one and only one block. The vehicle scheduling problem (Vsp) is to find
a vehicle schedule of minimal cost. It can be stated as the following integer
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program:

(Vsp) min dTy
(i) y(δ+

g (v))− y(δ−g (v)) = 0 ∀v ∈ T , g ∈ G
(ii) y(δ+(v)) = 1 ∀v ∈ T
(iii) y(δ−(v)) = 1 ∀v ∈ T
(iv) y ∈ {0, 1}D

The duty scheduling part of the Isp also involves an acyclic digraph D = (R∪
{s, t},L). The nodes of D consist of a set of tasks R plus two artificial nodes s
and t, which mark the beginning and the end of a part of work of a duty; again s
is the source of D and t the sink. A task r can correspond either to a timetabled
trip vr ∈ T or to a deadhead trip ar ∈ D; there may also be additional tasks
independent of the vehicle schedule that model sign-on and sign-off times and
similar activities of drivers.

Let RT and RD be the sets of tasks that correspond to a timetabled trip and
a deadhead trip, respectively. We assume that there is at least one task associ-
ated with every timetabled trip and every deadhead trip; these tasks correspond
to units of driving work on such a trip. Several tasks for one trip indicate that
this trip is subdivided by relief opportunities to exchange a driver into several
units of driving work. The arcs L of D are called links; they correspond to
feasible concatenations of tasks in a potential duty. A part of work of a duty
is an st-path p in D that corresponds to the certain legality rules and has a
certain cost cp, again determined by certain rules. A duty is a concatenation of
one or more (usually one or two) compatible parts of work.

Denote by S the set of all such duties, and by cp, p ∈ S, their costs. Let
further Sr := {p ∈ S : r ∈ p} be the set of all duties that contain some task
r ∈ R. Given a vehicle schedule y, a compatible duty schedule is a collection
of duties such that each task that corresponds to either a timetabled trip or a
deadhead trip from the vehicle schedule is contained in exactly one duty, while
the tasks corresponding to deadhead trips that are not contained in the vehicle
schedule are not contained in any duty. The duty scheduling problem associated
with a vehicle schedule y is to find a compatible duty schedule of minimum cost.
The Dsp can be stated as the following integer program:

(Dspy) min cTx
(i) x(Sr) = 1 ∀r ∈ RT
(ii) x(Sr) = yar

∀ar ∈ D
(iii) x ∈ {0, 1}S

The integrated vehicle and duty scheduling problem is to simultaneously con-
struct a vehicle schedule and a compatible duty schedule of minimum overall
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cost. Introducing suitable constraint matrices and vectors, the Isp reads:

(Isp) min dTy + cTx
(i) Ny = b
(ii) Ax = 1
(iii) My − Bx = 0
(iv) y ∈ {0, 1}D
(v) x ∈ {0, 1}S

In this model, the multiflow constraints (Isp) (i) correspond to the vehicle
scheduling constraints (Vsp) (i)–(iii); they generate a feasible vehicle sched-
ule. The (timetabled) trip partitioning constraints (Isp) (ii) are exactly the
duty scheduling constraints (Dspy) (i); they make sure that each timetabled
trip is covered by exactly one duty. Finally, the coupling constraints (Isp) (iii)
correspond to the duty scheduling constraints (Dspy) (ii)–(iii); they guarantee
that the vehicle and duty schedules x and y are synchronized on the deadhead
trips, i.e., a deadhead trip is either assigned to both a vehicle and a duty or to
none. We remark that a practical version includes several types of additional
constraints such as depot capacities, and duty scheduling base constraints (e.g.
duty type capacities, average paid/working times), which we omit in this ar-
ticle. The inclusion of such constraints in our scheduling method is, however,
straightforward.

The integrated scheduling model (Isp) consists of a multicommodity flow
model for vehicle scheduling and a set partitioning model for duty scheduling
on timetabled trips. These two models are joined by a set of coupling constraints
for the deadhead trips, one for each task on a deadhead trip. The model (Isp)
is the same as that used by Freling and coauthors, see [9].

3 A Bundle Method

Our general solution strategy for the Isp is based on a Lagrangean relaxation of
the coupling constraints (Isp) (iii). This decomposes the problem into a vehicle
scheduling subproblem, a duty scheduling subproblem, and a Lagrangean master
problem. All three of these problems are large scale, but of quite different nature.
Efficient methods ([22]) are available to solve vehicle scheduling problems of the
sizes that come up in an integrated approach with a very good quality or even
to optimality. Duty scheduling is, in fact, the hardest part. We are not aware of
methods that can produce high quality lower bounds for large-scale real-world
instances. However, duty scheduling problems can be tackled in a practically
satisfactory way using column generation algorithms, see, e.g., [2]. We will use
such an algorithm to “solve” the duty scheduling subproblem. In the Lagrangean
master, multipliers for several tens of thousands of coupling constraints have
to be determined. Here, the complexity of the vehicle and the duty scheduling
subproblems demands a method that converges quickly and that can be adapted
to inexact evaluation of the subproblems. The proximal bundle method [21] has
these properties; it further produces primal information that can be used in
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a superordinate branch-and-bound algorithm to guide the branching decisions.
Moreover, the large dimension of the Lagrangean multiplier space, a potential
computational obstacle, can be collapsed by a simple dualization.

This section discusses our Lagrangean relaxation/column generation ap-
proach to the Isp using the proximal bundle method. In a first phase, the
procedure aims at the computation of an “estimation” of a global lower bound
for the Isp and at the computation of a set of duties that is likely to contain
the major parts of a good duty schedule. This procedure constitutes the core of
our integrated vehicle and duty scheduling method. In a second phase, the bun-
dle core is called repeatedly in a branch-and-bound type procedure to produce
integer solutions.

3.1 Lagrangean Relaxation

We consider in this subsection a restriction (IspI) of the Isp to some subset of
duties I ⊆ S that have been generated explicitly (in some way):

(IspI) min dTy + cT
I xI

(i) Ny = b
(ii) AIx

I = 1
(iii) My − BIx

I = 0
(iv) y ∈ {0, 1}D
(v) xI ∈ {0, 1}I

A Lagrangean relaxation with respect to the coupling constraints (IspI) (iii) and
a relaxation of the integrality constraints (iv) and (v) results in the Lagrangean
dual

(LI) max
λ

 min
Ny=d,

y∈[0,1]D

(dT − λTM)y + min
AIxI=1,

xI∈[0,1]I

(cT
I + λTBI)xI

 .

Define functions and associated arguments by

fV : RRD → R, λ 7→ min(dT − λTM)y; Ny = d; y ∈ [0, 1]D

f I
D : RRD → R, λ 7→ min(cT + λTBI)xI ; AIx

I = 1; xI ∈ [0, 1]I

f I := fV + f I
D,

and

y(λ) := argminy∈[0,1]D fV (λ)

xI(λ) := argminxI∈[0,1]I f I
D(λ),

breaking ties arbitrarily. With this notation, (LI) becomes

(LI) max
λ

f I(λ) = max
λ

[
fV (λ) + f I

D(λ)
]
.

6



The functions fV and f I
D are concave and piecewise linear. Their sum f I is

therefore a decomposable, concave, and piecewise linear function; f I is, in
particular, nonsmooth. This is precisely the setting for the proximal bundle
method.

3.2 The Proximal Bundle Method

The proximal bundle method (PBM) is a subgradient-type procedure for concave
functions. It can be adapted to handle decomposable, nonsmooth functions in
a particularly efficient way.

We recall the method in this section as far as we need for our exposition.
An in-depth treatment can be found in the articles [20, 21].

When applied to (LI), the PBM produces two sequences of iterates λi, µi ∈
RRD , i = 0, 1, . . . . The points µi are called stability centers; they converge to a
solution of (LI). The points λi are trial points; calculations at the trial points
result either in a shift of the stability center, or in some improved approximation
of f I .

More precisely, the PBM computes at each iterate λi linear approximations

f̄V (λ;λi) := fV (λi) + gV (λi)T(λ− λi)

f̄ I
D(λ;λi) := f I

D(λi) + gI
D(λi)T(λ− λi)

f̄ I(λ;λi) := f̄V (λ;λi) + f̄ I
D(λ;λi)

of the functions fV , f I
D, and f I by determining the function values fV (λi),

f I
D(λi) and the subgradients gV (λi) and gI

D(λ); by definition, these approx-
imations overestimate the functions fV and f I

D, i.e., f̄V (λ;λi) ≥ fV (λ) and
f̄ I

D(λ;λi) ≥ f I
D(λ) for all λ. Note that f̄V and f̄ I

D are polyhedral, such the sub-
gradients can be derived from the arguments y(λi) and xI(λi) associated with
the multiplier λi as

gV (λi) := − My(λi)

gI
D(λi) := BIx

I(λi)

gI(λi) := − My(λi) + BIx
I .

This linearization information is collected in so-called bundles

JV,i := {(λj , fV (λj), gV (λj) : j = 0, . . . , i}

JI
D,i := {(λj , f

I
D(λj), gI

D(λj) : j = 0, . . . , i}.

For convenience of exposition, we will use notations such as λj ∈ JV,i, gV (λj) ∈
JV,i, etc. to express that the referenced item is contained in some appropri-
ate tuple in the bundle. The PBM uses the bundles to build piecewise linear
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approximations

f̂V,i(λ) := min
λj∈JV,i

f̄V (λ;λj)

f̂ I
D,i(λ) := min

λj∈JI
D,i

f̄ I
D(λ;λj)

f̂ I
i := f̂V,i + f̂ I

D,i

of fV , f I
D, and f I . Adding a quadratic term to this model that penalizes

large deviations from the current stability center µi, the next trial point λi+1 is
calculated by solving the quadratic programming problem

(QpI
i ) λi+1 := argmaxλ f̂ I

i (λ)− u
2 ‖µi − λ‖2 .

Here, u is a positive weight that can be adjusted to increase accuracy or con-
vergence speed. If the approximated function value f̂ I

i (λi+1) at the new iterate
λi+1 is sufficiently close to the function value f I(µi), the PBM stops; µi is
the approximate solution. Otherwise a test is performed whether the predicted
increase f̂ I

i (λi+1) − f I(µi) leads to sufficient real increase f I(λi+1) − f I(µi);
in this case, the model is judged accurate and the stability center is moved to
µi+1 := λi+1. The bundles are updated by adding the information computed
in the current iteration, and, possibly, by dropping some old information. Then
the next iteration starts, see Algorithm 3.2 for a listing (the vectors g̃V,i and
g̃D,i will be defined and explained in a second).

Require: Starting point λ0 ∈ Rn, weights u0,m > 0, optimality tolerance
ε ≥ 0.

1: Initilization: i← 0, JV,i ← {λi}, JD,i ← {λi}, and µi = λi.
2: Direction Finding: Compute λi+1, g̃V,i, g̃D,i by solving problem (QpI

i ).
3: Function evaluation: Compute fV (λi+1), gV (λi+1), f I

D(λi+1), gI
D(λi+1).

4: Stopping Criterion: If f̂ I
i (λi+1)− f I(µi) < ε(1 +

∣∣f I(µi)
∣∣) output µi, termi-

nate.
5: Bundle Update:

Select JV,i+1 ⊆ JV,i ∪ {
(
λi+1, fV (λi+1), gV (λi+1)

)
,
(
λi+1, f̂V,i(λi+1), g̃V,i

)
},

select JI
D,i+1 ⊆ JI

D,i ∪{
(
λi+1, f

I
D(λi+1), gI

D(λi+1)
)
,
(
λi+1, f̂D,i(λi+1), g̃D,i

)
}.

6: Ascent Test: µi+1 ← f I(λi+1)−f I(µi) > m(f̂ I
i (λi+1)−f I(µi)) ? λi+1 : µi.

7: Weight Update: Set ui+1.
8: i← i + 1, goto step 2.

Algorithm 1: Generic Proximal Bundle Method (PBM).

Besides function and subgradient calculations, the main work in the PBM is
the solution of the quadratic problem QpI

i . This problem can also be stated as

(QpI
i) max vV + vI

D −u
2 ‖µi − λ‖2

(i) vv −f̄V (λ;λj) ≤ 0 ∀λj ∈ JV,i

(ii) vI
D −f̄ I

D(λ;λj) ≤ 0 ∀λj ∈ JI
D,i.
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A dualization results in the equivalent formulation

(DqpI
i) argmax

∑
λj∈JV,i

αV,j f̄V (µi;λ) +
∑

λj∈JI
D,i

αI
D,j f̄

I
D(µi;λ)

− 1
2u

∥∥∥∥∥∥ ∑
λj∈JV,i

αV,jgV (λ) +
∑

λj∈JI
D,i

αI
D,jg

I
D(λ)

∥∥∥∥∥∥
2

∑
λj∈JV,i

αV,j = 1∑
λj∈JI

D,i

αI
D,j = 1

αV , αI
D ≥ 0.

Here, αV ∈ [0, 1]JV,i and αI
D ∈ [0, 1]J

I
D,i are the dual variables associated with

the constraints (QpI
i ) (i) and (ii), respectively. Given a solution (αV , αI

D) of
DqpI

i , the vectors

g̃V,i :=
∑

λj∈JV,i
αV,jgV (λj)

g̃I
D,i :=

∑
λj∈JI

D,i
αI

D,jg
I
D(λj)

g̃I
i := g̃V,i + g̃I

D,i

are convex combinations of subgradients; they are called aggregated subgradients
of the functions fV , f I

D, and f I , respectively. It can be shown that they are, ac-
tually, subgradients of the respective functions at the point λi+1 and, moreover,
that this point can be calculated by means of the formula

λi+1 = µ +
1
u

 ∑
λj∈JV,i

αV,jgV (λj) +
∑

λj∈JI
D,i

αI
D,jg

I
D(λj)

 .

Note that (DqpI
i ) is again a quadratic program, the dimension of which is equal

to the size of the bundles, while its codimension is only two. In our integrated
scheduling method, we solve (DqpI

i ) using a specialized version of the spectral
bundle method of [17], a variant of the proximal bundle method that can take
advantage of this special structure.

The PBM (without stopping) is known to have the following properties:

• The series (µi) converges to an optimal solution of LI , i.e., an optimal
dual solution of the LP-relaxation of (IspI).

• The series (yi, x
I
i ) defined as

(yi, x
I
i ) :=

 ∑
λj∈JV,i

αV,iy(λj),
∑

λj∈JI
D,i

αI
D,ix

I(λj)


converges to an optimal primal solution of the LP-relaxation of (IspI).
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• Convergence is preserved if the bundles contain at least two subgradients,
namely, the last subgradient and the aggregated subgradient, see step 5
of Algorithm 3.2.

The bundle size controls the convergence speed of the PBM. If large bundles
are used, less iterations are needed, however, problem (QpI

i ) becomes more
difficult. We limit the bundle size in our implementation to 5, a value that we
found a good compromise between speed and accuracy.

3.3 Adaptations of the Bundle Method

Two obstacles prevent the straightforward application of the proximal bundle
method to the Isp. First, the component problem for duty scheduling is NP-
hard, even in its LP-relaxation; the vehicle scheduling LP is computationally at
least not easy. We can therefore not expect that we can compute the function
values fV (λi) and f I

D(λi) and the associated subgradients gV (λi) and gI
D(λi)

exactly. The algorithms [22] and [2] that we use provide in general only ap-
proximate solutions. Second, the column generation algorithm process that is
carried out for the duty scheduling problem must be synchronized with the
bundle method.

The literature gives two versions of approximate versions of the bundle
method that can deal with inexact evaluations of the component functions. Ki-
wiel [21] stated a version of the PBM that produces an ε-approximate solution,
given that ε-subgradients can be computed, for a some arbitrary, but fixed value
of ε. Hintermüller [18] gave an improved version for which it is not necessary
to know the actual value of ε; his method produces solutions that are as good
as the supplied ε-subgradients. They converge, in particular, to the optimum if
the linear approximation converges to the original function.

We could use these approaches in principle in our setting, but at a high
computational cost and with only limited benefit. In fact, our vehicle scheduling
algorithm produces not only a primal solution, but also a lower bound and
an adequate subgradient from a certain single-depot relaxation of the vehicle
scheduling problem. However, the information that can be derived from the
subgradients associated with this single-depot relaxation was not very helpful
in our computational experiments. Concerning the duty scheduling part, we
are also able to compute a lower bound and adequate subgradients for the duty
scheduling component function f I

D for any fixed column set using exact LP-
techniques. However, this is a lot of effort for a bound that is not globally valid.
We remark that one can, at least in principle, also compute a lower bound for
the entire duty scheduling function fD, see [2]. Such procedures are, however,
extremely time consuming and do not yield high quality bounds for large-scale
problems. Therefore we use a different, much faster approach to approximate
the component functions themselves by piecewise linear functions. We show
below how this can be done rigorously for the vehicle scheduling part; in the
duty scheduling part, the procedure is heuristic, and we simply update our
approximation whenever we notice an error.
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Vehicle Scheduling Function fV . Denote by fL
V : RD 7→ R the approxima-

tion to the value of the vehicle scheduling component function fV (λ) as given
by some vehicle scheduling algorithm, and by yL(λ) ∈ [0, 1]D the associated
argument. We have fL

V (λ) ≥ fV (λ), but fL
V is in general not concave. However,

we can use fL
V to create a concave approximation f̂L

V,i ≥ fV using linearizations
at the points λj ∈ JV,i, namely, by setting

gL
V,i := −MyL(λi)

f̄L
V (λ;λi) := fL

V (λi) + gL
V,i

T(λ− λi)
f̂L

V,i(λ) := min
λj∈JV,i

f̄L
V (λ;λj).

We use this approximation in the PBM Algorithm 3.2 by replacing fV by f̂L
V,i.

The bundle update (step 5) is implemented as

JV,i+1 ⊂


JV,i ∪

{(
λi+1, f

L
V (λi+1), gL

V,i+1

)}
∪

{(
λi+1, f̂

L
V,i(λi+1), g̃L

V,i

)}
, if fL

V (λi+1) < f̂L
V,i(λi+1),

JV,i, else.
(1)

Since the function f̂L
V,i+1 depends on JV,i, we must also recalculate its value

f̂L
V,i+1(µi) at the stability center in the stopping criterion and the ascent test

(steps 4 and 6) of the PBM at each iteration.

Duty Scheduling Function fI
D. The idea is similar as in the vehicle schedul-

ing case. Denote by Ii the duty set that has been computed up to and in iter-
ation i, by fL,Ii

D : RIi 7→ R an approximate value of the duty scheduling com-
ponent function f Ii

D (λ) computed by some algorithm, and by xL,Ii(λ) ∈ [0, 1]Ii

the associated argument. In our integrated scheduling method, we compute this
approximate primal LP solution again with a bundle method.

Again, we have fL,Ii

D (λ) ≥ f Ii

D (λ), and fL,Ii

D is in general not concave. Sim-
ilar, but this time heuristically, we use fL,Ii

D to create a concave approximation
f̂L,Ii

D,i of f Ii

D using linearizations at the points λj ∈ JIi

D,i, namely,

gL,Ii

D,i := BIi
xL,Ii(λi)

f̄L,Ii

D (λ;λi) := fL,Ii

D (λi) + gL,Ii

D,i

T
(λ− λi)

f̂L,Ii

D,i (λ) := min
λj∈J

Ii
D,i

f̄L,Ii

D (λ;λj).

Since each linearization is computed with respect to a subset of duties Ij ,
it is in general not true that f̄

L,Ij

D ≥ f Ii

D if Ii 6= Ij . It can (and does) therefore
happen that we notice that the current iterate is cut off by some previously
computed linearization, i.e.,

fL,Ii

D (λi+1) > f̄
L,Ij

D (λi+1;λj)

for some j ≤ i. In this case, we have detected an error made in a previous iter-
ation and simply remove the faulty elements from the bundle and also from the
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approximation. The duty scheduling bundle update in step 5 of Algorithm 3.2
is implemented as

J
Ii+1
D,i+i ⊂



{(λj , zj , hj} ∈ JIi

D,i : f
L,Ii+1
D (λi+1) ≤ zj + hT

j (λi+1 − λj)}
∪

{(
λi+1, f

L,Ii+1
D (λi+1), g

L,Ii+1
D (λi+1)

)}
∪

{(
λi+1, f̂

L,Ii+1
D (λi+1), g̃

L,Ii+1
D (λi+1)

)}
, if fL,Ii

D (λi+1)
< f̂L,Ii

D,i (λi+1),
JIi

D,i, else.

(2)

This approximation must also be recomputed at the stability center in every
iteration.

Combined Function fI . The combined approximate functions are

fL,Ii := fL
V + fL,Ii

D

f̂L,Ii

i := f̂L
V,i + f̂L,Ii

D,i .

Require: Starting point λ0 ∈ Rn, duty set I0, weights u0,m > 0, optimality
tolerance ε ≥ 0.

1: Initialization: i← 0, JV,i ← {λi}, JD,i ← {λi}, and µi = λi.
2: Direction Finding: Compute λi+1, g̃L

V,i, g̃L,Ii

D,i by solving problem (QpIi
i ).

3: Function evaluation: Compute fL
V (λi+1), gL

V (λi+1), Ii, fL,Ii

D (λi+1),
gL,Ii

D (λi+1).
4: Stopping Criterion: If f̂L,Ii

i (λi+1)−fL,Ii(µi) < ε(1+
∣∣fL,Ii(µi)

∣∣) output µi,
terminate.

5: Bundle Update: Select JV,i+1, J
Ii+1
D,i+1 as stated in 1, 2.

6: Ascent Test: µi+1 ← fL,Ii(λi+1) − fL,Ii(µi) > m(f̂L,Ii

i (λi+1) −
fL,Ii(µi)) ? λi+1 : µi.

7: Weight Update: Set ui+1.
8: i← i + 1, goto step 2.

Algorithm 2: Inexact Proximal Bundle Method (PBM) with Column Gener-
ation.

Column generation. This is the most time consuming part of our algorithm,
and we therefore enter this phase only if significant progress can be expected.
Our strategy is basically to recompute the duty set when the stability center
changes; we call such an iteration a serious step, all other iterations are called
null steps.

The reasoning behind this strategy is as follows. The quadratic penalty
term in the quadratic program QpIi

i ensures that the next trial value for the
dual multipliers λi+1 stays in the vicinity of the current stability center. When
the multipliers change only little, one has reason to believe that the number
and the potential effect of improving duties is also small. We therefore hope

12



that the current duty set Ii, which has been updated when the stability center
was set, does still provide a good representation of the duty space also for the
new multipliers λi+1. In practice, we reduce the number of column generation
phases even further by requiring a certain minimum increase ε in the objective
function at the new stability center; the larger ε, the less column generation
phases will occur.

Algorithm 3.3 gives a listing of our bundle algorithm using inexact evalua-
tions of the component functions and column generation in the duty scheduling
component.

3.4 Backtracking Procedure

The inexact proximal bundle method that we have described in this section is
embedded in a backtracking procedure that aims at the generation of integer
solutions. This procedure makes use of the primal information produced by the
bundle method, namely, the sequence

(
yi(λi), xIi

i (λi)
)
. As in an LP-approach,

fractional values can be interpreted as probabilites for the inclusion/exclusion
of a deadhead trip or duty in an optimal integer solution.

Our computational experiments revealed that it is adavantageous to fix the
deadhead trips first, until the vehicle scheduling part of the problem is de-
cided. The remaining duty scheduling problem can then be solved with the
duty scheduling module of the algorithm as described in [2]. Our strategy for
fixing the deadhead variables is to fix the deadheads in the order of largest y-
values. Our algorithm also examines the consequences of such fixings and, if
the increase in the objective function is too large, also reverses decisions. The
details on how many variables to fix at a time, up to which threshold, etc. have
been determined experimentally; in general, the algorithm fixes more boldy in
the beginning and more carefully towards the end.

Figure 1 shows a typical runtime chart of our algorithm IS-OPT. The x-
axis measures time in seconds, the y-axis gives statistics in two different scales,
namely, for the right scale, the number of duties generated (#columns), the
number of deadheads fixed to one (#fixed deadheads), and the residuum of the
coupling constraints (more precisely: the norm is the square of the euclidean
norm of g̃Ii

i ), as well as, for the left scale, the vehicle, duty, and the integrated
scheduling objective values. Here the duty scheduling value is the lower bound of
the restricted Dsp calculated by the PBM, and integrated scheduling objective
value is simply the sum of the Vsp and the Dsp value.

In the first phase of the algorithm until point A a starting set of columns
was generated with Lagrangean multiplicators λ all at zero. In principle the
Dsp objective value should be strictly decreasing here, while the number of
columns should grow. However, we calculated in this initial phase only rough
lower bounds for the restricted Dsp, which may be more or less accurate. Ad-
ditionally we deleted columns with large reduced cost if the total number of
columns exceeded 450,000. Between points A and B, a series of null steps was
performed, which resulted in a decreased norm and an increased Isp-value. Be-
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Figure 1: IS-OPT Runtime Chart.

tween points B and C, column generation phases alternated with PBM-steps,
until an aggregated subgradient of small norm and thus also a “good” primal
approximation of the LP-relaxation of Isp was calculated. Since the column
generation process did not find enough improving columns at this point, we
used the computed information to fix deadheads until (at point D) the vehicle
scheduling part of the problem was completely decided. At that point, the duty
scheduling component of the algorithm concluded by computing a feasible duty
scheduling.

Serious steps of the PBM are marked by peaks of the norm statistic. This
effect is due to the shift of the stability center in combination with the possible
inclusion of additional columns in Ii. In fact, the new stability center may lie in
a region where the model f̂L,Ii of the previous iteration i is less accurate; also,
new columns in Ii change the function fL,Ii , what also worsens the model.

In our computational tests the algorithm rarely had to reverse a fixing deci-
sion for a deadhead and backtrack. In all our instances, the Isp objective value
is very stable with respect to careful fixings of deadheads, see also Figure 1. In
fact, the gap between our estimated lower bound, i.e., the objective value prior
to the first fixings, and the final objective value was never larger then 5% and
only 1-2% on the average. We do, however, not know the size of the gap be-
tween the estimated lower bound and the real minimum of (Isp); the mentioned
behaviour is therefore only a weak indicator for the quality of the final solution
found by IS-OPT.
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4 Computational Results

We report in this section on the results of computational studies with our inte-
grated vehicle and duty scheduling optimizer IS-OPT for several medium- and
large-scale real-world scenarios as well as for benchmark scenarios from the liter-
ature. Our code IS-OPT is implemented in C and has been compiled using gcc
version 3.3.3 with switches -O4. All computations were made single-threaded
on a Dell Precision 650 PC with 4 GB of main memory and a dual Intel Xeon
3.0 GHz CPU running SuSE Linux 9.0. The computation times in the following
tables are in hours:minutes.

We compare our integrated scheduling method is with two sequential ap-
proaches. The first one, denoted by v+d , is a classical sequential vehicles-first
duties-second approach, i.e., v+d first solves the vehicle scheduling part of the
problem using our optimizer VS-OPT ([22]), fixes the deadheads chosen by the
vehicle schedule, and solves the resulting duty scheduling problem in a second
step using our optimizer DS-OPT ([2]). The second method d+v uses kind of
the contrary approach. A simplified integrated scheduling problem is set up
that identifies drivers and vehicles, i.e., vehicle changes outside of the depot are
fobidden. This “poor man’s integrated scheduling model” is solved using the
duty scheduling algorithm DS-OPT. The vehicle rotations resulting from this
duty schedule are concatentated into daily blocks using the vehicle scheduling
algorithm VS-OPT in a second step.

4.1 RVB Instances

The Regensburger Verkehrsbetriebe GmbH (RVB) is a medium sized public
transportation company in Germany. We consider two instances that contain
the entire RVB operation for a sunday and for a workday. The structure of
the RVB data is half-regional and half-urban with only four relief points. In
fact, the network of the RVB is star-shaped with nearly all lines meeting in
a small area around the main railway station. Only there or at the nearby
single garage the drivers can change busses and begin or end duties. The RVB
uses only one type of vehicles on sundays, and three types on workdays, i.e.,
the sunday scenario is fleet homogenous, while the workday scenario is a multi-
depot problem. The vehicle types can only be used on trips on certain sets
of (non-disjoint) lines. The sunday scenario involves three different types of
early, mid, and late duties, each with four different types of break rules, namely,
block breaks of 1 × 30, 2 × 20, and 3 × 15 minutes plus 1/6-quotient breaks.
The workday scenario contains in addition a type of split duties, again with the
mentioned break rules per part of work. Table 4.1 reports further statistics on
the number of timetabled trips, tasks, and deadhead trips. The sunday scenario
is medium-sized, while the workday scenario is, as far as we known, the largest
and most complex instance that has been attacked with integrated schedudling
techniques.

Table 4.1 gives computational results for the sunday scenario. The column
‘reference’ lists statistics for the solution that RVB planners had generated by
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sunday workday
vehicle types 1 3
timetabled trips 794 1414
tasks on tt 1248 3666
deadhead trips 47523 57646
duty types 3 4
break rules 4 4

Table 1: Statistics on the RVB Instances.

reference v+d 1 v+d 2 is 1 is 2
time on vehicles 518:33 472:12 472:12 501:42 512:55
paid time 545:25 562:58 565:28 518:03 531:31
paid break time 112:36 131:40 85:41 74:17 64:27
number of duties 82 83 74(1) 76 66
number of vehicles 36 32 32 32 35
average duty duration 6:39 6:48 7:38 6:40 8:03
computation time — 0:33 5:13 35:44 37:26

Table 2: Results for the RVB Sunday Scenario.

hand. The next four columns give the results of two sequential v+d -optmizations
and two integrated is-optimizations; we do not report results for the method
d+v , because we could not produce a feasible solution for this scenario with this
method. In the optimization runs “v+d 2” and “is 2”, emphasis was placed on
the minimization of the number of duties, while runs “v+d 1” and “is 1” tried
to reproduce the average duty time of the reference solution.

As expected the sequential methods reduce the number of vehicles and the
time on vehicle rotations since these are the primary optimization objectives.
Also they produce quite reasonable results in terms of duty scheduling. “v+d 1”
suffers from a slight increase in duties and paid time, “v+d 2” yields substantial
savings in duties; however the price for this reduction is a raised average paid
time. Even better are the results of the integrated opimizations. “is 1” is
perfect with respect to any statistic and produces large savings. These stem
from the use of short duties involving less than 4:30 hours of driving time,
which don’t need a break; this potential improvement of the sunday schedule
is one of the most significant results of this optimization project for the RVB.
Even more interesting is solution “is 2”. This solution trades three vehicles and
an increased average for another 10 duties; as longer duties must have breaks,
the paid time (breaks are paid here) increases as well. Solution “is 2” revived
a discussion at the RVB whether drivers prefer to have less, but longer duties
on weekends or whether they want to stay with more, but short duties.

Table 4.1 lists the results of the workday optimizations. Method d+v could
again not produce a feasible solution and is therefore omitted from the table.
The objective in this scenario is far from obvious; it is given as a complicated
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reference v+d is
time on vehicles 1037:18 960:29 1004:27
paid time 1103:48 1032:20 1040:11
granted break time 211:53 109:11 105:23
number of duties 140 137 137
number of vehicles 91 80 82
number of pieces of work 217 290 217
number of split duties 29 39 36
average duty duration 7:56 8:03 7:55
obj. value — 302.32 291.16
computation time — 8:02 125:55

Table 3: Results for he RVB Workday Scenario.

mix of fixed and variable vehicle costs, fixed costs and paid time for duties,
and various penalties for several pieces of work, split duties, etc., that can
compensate each other such that one cannot really compare the solutions by
means of single statistics. Doing it nevertheless, we see that both optimizaton
approaches clearly improve the reference solution substantially. The outcome is
close. In fact, v+d has less paid time than is; in the end, however, is is better
in terms of the composite objective function.

4.2 RKH Instances

The Regionalverkehrsbetrieb Kurhessen (RKH) is a regional carrier in the mid-
dle of Germany. They provided data for the subnetworks of Marburg and Fulda
which is not (yet) in industrial use; some deadheads are missing, while for some
others travel times have only been estimated by means of distance calculations.
In our opinion the data still captures to a large degree the structure of a re-
gional carrier and we therefore deem it worthwhile to report the results of the
conceptual study that we did with it.

Figure 2 shows the spatial structure of the line network of Fulda, which
is one part of the RKH service area. The black arcs denote the timetabled
trips (drawn straight from the line’s start to the end), the gray arcs indicate the
potential deadhead trips. It can be seen that the trip network is hub-and-spoke-
like, connecting several cities and villages among themselves and with the rural
regions around them. While the deadhead network is almost complete, there
are only few relief opportunities for drivers to leave or enter a vehicle.

Table 4.2 gives further statistics on the RKH instances. They are simliar to
the RVB sunday scenario in terms of timetabled trips and tasks, but contain
much more deadhead trips. The scenarios involve three duty types, two types of
split duties that differ in the maximum duty length and one type of continous
duties. Each duty type can have 1× 30, 2× 20, or 3× 15 minutes block breaks
or 1/6-quotient breaks.

Table 4.2 reports the results of our optimizations. We do not report results
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Figure 2: The graph of scenario Fulda

Marburg Fulda
depots 3 1
vehicle types 5 1
timetabled trips 634 413
tasks on TT 1022 705
deadhead trips 142,668 67,287

Table 4: RKH Instances for the Cities of Marburg and Fulda

for the method v+d as we were not able to produce a feasible solution for either
scenario with this method. Method d+v yields useful results, but it is not able to
cover all tasks/trips of the Fulda-scenario with duties and vehicles; in fact, d+v
left 3 tasks and 6 timetabled trips uncovered (numbers in parentheses). These
deficiencies are resolved in the is-solutions, which also look better in terms of
numbers of vehicles.

4.3 ECOPT Instances

Finally, we compare IS-OPT with the approach of Freling et. al. on the ran-
domly generated benchmark data proposed in their article [19]. This data con-
sists of two sets of instances involving two and four depots, respectively. Each
set contains 10 instances of 80, 100, 160, 200, 320, and 400 trips, see again
[19] for a detailed description. The duty scheduling rules associated with these
examples are relatively simple. Duties are allowed to have at most one break,
which must be outside of a vehicle, i.e., each break also begins a new piece of
work. The only other rule is that each piece of work must be of certain minimum
and maximum length. It is shown in [19] that in this situation one can solve the
duty generation subproblem in polynomial time, i.e., exact column generation
is possible.

Tables 4.3 and 4.3 report average solution values for each of the 10 instances
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Marburg Fulda
d+v is d+v is

time on vehicles 772:02 642:41 365:41 387:37
paid time 620:27 606:30 390:08 374:53
granted break time 120:51 103:27 88:13 57:44
number of duties 73 70 41(3) 41
number of vehicles 62 50 45(6) 37
average duty duration 10:35 10:18 10:59 11:18
computation time 5:29 17:18 1:42 7:05

Table 5: Solutions on Marburg and Fulda

trips 080 10 0 160 200 320 400
vehicles 9.4 11.2 15.0 18.6 27.0 33.3

duties 21.2 25.1 33.9 40.6 57.7 69.8
total 30.6 36.3 48.9 59.2 84.7 103.1

reference 29.8 35.6 48.3 59.1 86.8 106.1
time 00:05 00:08 00:17 00:31 01:58 03:19

Table 6: Results for ECOPT-Instances with 2 Depots Variant A

of each problem class for the problem variant A; similar results for variant B
have been omitted. All computations were done with the same set of parameters,
which was optimized for speed. Row reference gives the sum of the numbers of
vehicles and duties as published in [19]; for the problems with 4 depots and 320
and 400 trips, no reference is given due to excessive computation time.

It can be seen that our algorithm IS-OPT performs worse than that in [19]
for the small instances, but produces better results with increasing problem size
and complexity; it can also solve the largest problem instances. We remark that
IS-OPT can also produce slighly better solutions for the small instances than
those reported in [19] by changing the optimality parameter ε in Algorithm 3.3
and by raising the threshold for deadhead fixes. This leads, of course, to longer
computation times.

trips 080 100 160 200 320 400
vehicles 9.2 11.2 15.0 18.5 26.7 33.1

duties 20.4 24.5 32.7 40.5 56.1 68.9
total 29.6 35.7 47.7 59.0 82.8 102.0

reference 29.6 36.2 49.5 60.4 — —
time 00:13 00:21 00:44 01:46 05:28 12:00

Table 7: Results for ECOPT-Instances with 4 Depots Variant A
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5 Conclusions

We have shown that it is possible to tackle large-scale, complex, real-world inte-
grated vehicle and duty scheduling problems using a novel “bundle” algorithm
for integrated vehicle and duty scheduling. The solutions produced by such an
integrated approach can be decidedly better in several respects at once than the
results of various types of sequential planning.
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