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Abstract

Model reduction of large Markov chains is an essential step in a wide array of techniques for
understanding complex systems and for efficiently learning structures from high-dimensional
data. We present a novel aggregation algorithm for compressing such chains that exploits
a specific low-rank structure in the transition matrix which, e.g., is present in metastable
systems, among others. It enables the recovery of the aggregates from a vastly undersampled
transition matrix which in practical applications may gain a speedup of several orders of mag-
nitude over methods that require the full transition matrix. Moreover, we show that the new
technique is robust under perturbation of the transition matrix. The practical applicability
of the new method is demonstrated by identifying a reduced model for the large-scale traffic
flow patterns from real-world taxi trip data.

1. Introduction

Large-scale time- and space-discrete Markov chains are ubiquitous in many areas of quantitative
science, where they arise as discretizations of continuous models [41, 36, 37, 24], as formalization
of network-based models [8, 40, 35], or as models of many other types of complex dynamics.
However, the number of states in these Markov chains (denoted in the following by N) can be
orders of magnitude larger than what contemporary computer systems can process, or sometimes
even represent. Efficient model reduction methods are thus required to enable numerical analysis,
prediction and control of these systems, and to gain understanding of the underlying mechanisms.

Luckily, the essential dynamics of these systems often indeed possesses an underlying less com-
plex mechanism that operates on a significantly smaller state space—one may argue this is what
makes the system relevant to study in the first place. For example, Markov chains arising from dis-
cretized biomolecular systems often exhibit metastability, the phenomenon that on long time scales,
the dynamics is determined by rare jumps between almost-invariant subsets of states [17, 41, 43].
Another example are complex traffic networks, whose transition matrices often exhibit a low-rank
structure, which can be explained by patterns in the large-scale traffic flow between neighborhoods
of a city [31, 6].

The reduced models in these systems arise from the observation that states can be grouped
into certain aggregates based on similarities in their dynamic behavior. Under certain conditions,
the reduced models can be shown to again be Markovian, which is highly favorable due to their
simplicity. The developments of data-driven algorithms for the extraction of the reduced Markov
models is an area of intense activity ever since Markov chains were studied computationally, a
small selection is presented in Section 2. The output of such algorithms is again a Markov chain,
whose states now correspond to the aggregates.

The identification of these aggregates is typically based on the analysis of the original system’s
transition matrix (denoted by P in the following) and in most cases requires knowledge of all
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entries of this matrix, i.e., global knowledge of the transition probabilities. As the number of
entries of P is N2, for large systems, analyzing or even storing P becomes nontrivial. An even
bigger problem is that, for many systems, the entries of P must be approximated from expensive
numerical computations. Typical examples are Markov chains arising from the Ulam discretization
method for space-continuous systems, where the continuous state space is partitioned into N dis-
cretization elements that form the states of the Markov chain [49]. The transition probabilities are
then computed by starting many numerical simulations in each discretization element and count-
ing the transitions to each other element. As the number of states N may depend exponentially
on the dimension of the continuous system (a phenomenon known as the curse of dimensional-
ity [5]), and the simulation may require specialized hard- and software [44], this procedure quickly
becomes prohibitively expensive. Many of the aforementioned methods acknowledge the difficulty
of globally sampling the dynamics, and various solutions have been suggested, including adaptive
sampling [9], accelerated dynamics [33, 30] or statistical reweighting methods [4, 11].

In this work however, we will take a different approach. Instead of improving the sampling of
global data, we will instead use the existence of an underlying reduced Markov chain in order to
show that extensive global sampling is not required in the first place. To be specific, we discuss
two crucial properties that when combined guarantee the existence of a reduced Markov chain and
make this chain recoverable from sparse, i.e., vastly incomplete dynamical information. Informally,
the properties can be written as follows: (i) The probability to transition from any state to an
aggregate must depend only on the aggregate of the starting state, and (ii) the probability to
transition from some starting to some ending state must essentially depend only on the aggregate
of the ending state. Consequently, measuring the transition probabilities from and to all states of
one aggregate would mostly generate redundant information. In this case it suffices to measure the
transition probabilities from only one state of each aggregate in order to capture the full dynamic
behavior. Hence, the amount of dynamical information required to describe the full model depends
only on the size of the reduced model, not of the full model.

The properties (i) and (ii), called lumpability and deflatability, induce a special form of low-
rankedness in both the row and the column space of P . This low-rank structure is robust, in
that small violations of the two properties cause P to still be close to a low-rank matrix, and the
deviation is again independent of the full system’s size. Also, lumpability and deflatability, which
to the best of our knowledge have not been investigated together before, appear to be the minimal
requirement for the described low-rank structure. While there exist a number of related concepts
in the literature, we will see that none of them imply this structure in the same generality.

The main contribution of this work is the development of a probabilistic aggregation algorithm
that exploits this low-rank structure. To be specific, the algorithm starts by randomly and sparsely
sampling the column space of P in order to estimate the range of P . It therefore is similar in
spirit to probabilistic low-rank approximation and matrix decomposition methods from random-
ized linear algebra [26, 32]. The number of required columns of P hereby depends only on the
expected number of aggregates, as well as a certain “confidence parameter”. In particular, both
of these quantities are independent of the size N of the original model. The algorithm proceeds
by computing the singular value decomposition (SVD) of the subsampled transition matrix. This
reveals the aggregates, similar to how the SVD of the (full) transition matrix of a metastable sys-
tem reveals the metastable sets [21]. Finally, even the reduced transition matrix can be computed
from the subsampled transition matrix, using only elemental algebraic calculations.

In summary, due to its probabilistic nature, the algorithm is able to exploit the low-rank struc-
ture of the full transition matrix without detailed knowledge of it. This gives our method a
computational advantage of several orders of magnitude over methods that require the full tran-
sition matrix. This advantage grows with the size of the full Markov chain, as long as the size of
the underlying reduced Markov chain remains constant.

The paper is organized as follows: Section 2 introduces the requirements of aggregatable Markov
chains and discusses the resulting low-rank structure. Section 3 contains the derivation of the low-
rank algorithm, with the method to identify the aggregates in Section 3.1, and the method to
compute the reduced transition matrix in Section 3.2. In Section 4 the algorithm is demonstrated
by three numerical examples. These include a generic, randomly-generated aggregatable Markov
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chain, a benchmark metastable system, as well as a traffic network derived from real-world taxi
trip data. Section 5 contains the conclusions and remarks on future work.

Notation

This article makes use of some special notation, mostly regarding the entries of matrices. For
N ∈ N, denote [N ] := {1, . . . , N}. For a matrix A ∈ RM×N , denote by A[:,j] the j-th column
vector of A. Likewise, denote by A[i,:] the i-th row vector of A. For J ⊂ [N ], let AJ denote the
column subsampled matrix with respect to J :

(
AJ
)

[:,j]
=

{
A[:,j], if j ∈ J
0, otherwise

, (1)

where 0 here denotes the zero-vector in RN . For R ∈ [N ], the matrix consisting of the leading R
columns and all rows of P is denoted by P[:,1:R]. Analogously, the matrix consisting of the leading
R rows and all columns of P is denoted by P[1:R,:]. As usual, the entry of the i-th row and j-th
column of A is denoted by Aij .

2. Aggregatable Markov chains

We consider an N -state time- and space-discrete Markov chain (Xn)n∈N, or short (Xn). Without
loss of generality, its state space is [N ]. Let Ω := {Ω1, . . . ,ΩR}, Ωr ⊂ [N ] be a partition of
[N ]. Let ω : [N ] → [R] be the function assigning the states to their respective partition element:
ω(i) = r if i ∈ Ωr. The number of states in the r-th partition element is denoted by mr := |Ωr|.
The time-evolution of probability distributions under (Xn) is described by the transition matrix1

P ∈ RN×N of (Xn):
Pij = P[Xn+1 = i | Xn = j].

As the process (Xn) is homogeneous, P does not depend on the step n. Similarly, we can describe

the transition probabilities from individual states to the partition elements by a matrix P̃ ∈ RR×N :

P̃rj = P[Xn+1 ∈ Ωr | Xn = j] =
∑

i∈Ωr

Pij .

Now, given (Xn) and Ω, we can define the aggregated stochastic process (Yn)n∈N, or short (Yn),
on state space [R] by

Yn = r :⇐⇒ Xn ∈ Ωr for n ∈ N.
In contrast to (Xn), the process (Yn) is in general non-homogeneous, and furthermore depends

on the initial distribution of (Xn). Hence, the transition matrix P̂ ∈ RR×R of (Yn), for now only
symbolically defined by

P̂rs = P[Xn+1 ∈ Ωr | Xn ∈ Ωs]

is not well-defined.
The purpose of this article is now essentially to answer the following questions:

1. When is (Yn) again a Markov process, i.e., when is the matrix P̂ well-defined?

2. Is (Yn) equivalent to the full process, i.e., can P be restored from P̂ , and if so, how?

3. How much knowledge (data) about the full process is required to construct the reduced

process, i.e., can P̂ and Ω be computed from just a sparse sample of P?

The conditions on P and Ω under which all three questions can be answered positively are presented
in this section.
1Note that we use the definition of the transition matrix from [43], hence P is the transposed of what is more

commonly known as the transition matrix (see, e.g., [29]). This way, the space of accessible distributions of the
Markov chain coincides with the (column) span of P , and invariant distributions are (right) eigenvectors of P .
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2.1. Lumpability and deflatability

There are two central conditions a transition matrix P along with a partition Ω must fulfill in order
to be sparsely compressible into P̂ , called lumpability and deflatability. These conditions impose
strong restrictions on the admissible transition probabilities from and to the partition elements
Ωi, and in this way on the column- and row structure of P . We will show that these two conditions
are fundamental for making P low rank and thus for the construction of a sparse approximation
algorithm. We will also see later (Section 2.3) that other common properties of Markov chains
related to model reduction are not equivalent in inducing said low-rank structure.

Definition 2.1. Let Ω = {Ω1, . . . ,ΩR} be a partition of [N ] and π = {π1, . . . , πR} be a collection
of distribution vectors over [N ], where πr has support in Ωr. Let Π be the matrix

Π =



| |
π1 · · · πR
| |


 ∈ RN×R.

We call the transition matrix P lumpable with respect to Ω if

P̃[:,j] = P̃[:,k] if ω(j) = ω(k). (2)

We call P deflatable with respect to (Ω, π) if for all j ∈ [N ] holds

P[:,j] = Π · P̃[:,j]. (3)

We call P aggregatable with respect to (Ω, π) if P is lumpable and deflatable with respect
to (Ω, π). In this case we call the partition elements Ω1, . . . ,ΩR the aggregates of (Xn).

The two properties lumpability and deflatability have very different historical backgrounds.
While the former is well-established and the basis for many model reduction techniques, the
latter, to the best of our knowledge, seems to be a new concept and uninvestigated (the term
“deflatability” is introduced herein for the first time). Still, we prefer to see the two properties
complementary to each other, in the following way:

Lumpability means that the probability to transition into a certain partition element Ωr depends
only on the partition element ω(j) of the starting state j, not on the exact starting state:

P̃rj = P̃rk if ω(j) = ω(k).

Hence, lumpability describes a sort of “starting state similarity” of the transition probabilities
within the aggregates.

In contrast to lumpability, deflatability describes a sort of “end state similarity”. By re-
writing (3) as

Pij = P̃ω(i),j · πω(i)(i), (4)

one sees that deflatability means that the transition probabilities between states essentially depend
only on the aggregate of the end state, up to factors that do not depend on the starting state:

Pijπr(k) = Pkjπr(i) if ω(i) = ω(k) = r.

Alternatively, we can describe deflatability as the property that after a jump into a partition
element, the selection of one specific next state from this partition element is, independent of
where the jump started, decided by randomly choosing from the distribution πω(i) on that partition
element.

Still, the lumpability property alone, first introduced by Kenemy and Snell in [29], already
ensures that (Yn) is a Markov process and independent of the initial distribution of (Xn):
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Theorem 2.2 ([29], Theorem 6.3.2). The matrix P is lumpable with respect to Ω if and only if
the aggregated process (Yn) is homogeneous and its transition probabilities

P̂sr = P[Xn+1 ∈ Ωs | Xn ∈ Ωr]

are independent of the choice of the probability distribution Ωr.

Question 1 from the beginning of this section can therefore be answered by assuming lumpabil-
ity of the underlying chain. Since its inception in the 70s, there have been numerous numerical
algorithms that exploit lumpability for model reduction [16, 46, 45, 10], where recently the con-
nection to metastability has come more into focus [27, 51]. All the cited algorithms are robust,
in the sense that under the assumption of an appropriate notion of only approximate lumpability
(such as weak lumpability [39] or quasi-lumpability [12]), they allow for the recovery of approxi-
mate reduced models. In situations where not even approximate lumpability may be assumed,
multilevel aggregation methods [14, 13, 15] may be applicable, that do not require lumpability
with respect to any predetermined collection of aggregates, but successively construct the “best
possible” lumping of states on each level.

However, all the mentioned algorithms in general require full knowledge of the transition matrix
P , and indeed, without further assumptions on P , a successful deduction of P̂ cannot be performed
without it. This is why the additional property of deflatability is required.

Combining lumpability and deflatability immediately implies that P admits a very simple struc-
ture:

Lemma 2.3. Let P be aggregatable with respect to (Ω, π). Then

P[:,j] = P[:,k] if ω(j) = ω(k). (5)

Proof. For ω(j) = ω(k) we have

Pij
(4)
= P̃ω(i),j · πω(i)(i)

(2)
= P̃ω(i),k · πω(i)(i)

(4)
= Pik.

In words, an aggregatable transition matrix P consists of exactly R pairwise distinct columns,
hence rank(P ) = R. The assumption of aggregability, which restricts P to matrices of form (5),
is therefore a very strong requirement. However, we will argue in Section 2.3.1, as well as the
example Section 4, that many real-world Markov transition matrices indeed possess at least an
approximate form of this property.

Remark 2.4. We call the property (5) state-wise lumpability of P with respect to Ω. Note
that not every transition matrix of rank R is state-wise lumpable, hence aggregatable. Moreover,
not every state-wise lumpable matrix is deflatable, so state-wise lumpability is not equivalent to
aggregability.

Another important consequence of aggregability is that the transition probabilities from aggre-
gates to states are independent of the starting distribution:

Lemma 2.5. Let P be aggregatable with respect to (Ω, π). Let i ∈ [N ], r ∈ [R], and ρ
(1)
r , ρ

(2)
r be

two arbitrary distributions with support on Ωr. Then

P[Xn+1 = i | Xn ∼ ρ(1)
r ] = P[Xn+1 = i | Xn ∼ ρ(2)

r ].

Proof. We have

P[Xn+1 = i | Xn ∼ ρ(1)
r ] =

∑

j∈Ωr

Pij ρ
(1)
r (j) =

∑

j∈Ωr

Pik ρ
(1)
r (j),
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where the last identity holds for any k ∈ Ωr due to (5). Hence,

P[Xn+1 = i | Xn ∼ ρ(1)
r ] = Pik

∑

j∈Ωr

ρ(1)
r (j)

︸ ︷︷ ︸
=1

= Pik
∑

j∈Ωr

ρ(2)
r (j)

︸ ︷︷ ︸
=1

=
∑

j∈Ωr

Pikρ
(2)
r (j) =

∑

j∈Ωr

Pijρ
(2)
r (j)

= P[Xn+1 = i | Xn ∼ ρ(2)
r ].

Note that Lemma 2.5 is stronger than Theorem 2.2. Hence, for aggregatable Markov chains,
the reduced transition matrix P̂ can be defined by

P̂rs :=
∑

i∈Ωr

P[Xn+1 = i | Xn ∼ ρs], (6)

where ρs is any distribution with support in Ωs. Clearly this P̂ is stochastic and thus induces a
Markov chain (Yn)n∈N whose states are the aggregates Ω1, . . . ,ΩR (or equivalently, [R]).

Finally, the following central result describes the exact relation of P̂ to the original transition
matrix P , hence can be seen as the answer to question 2 from the beginning of this section. It
will also play a major role in the latter algorithmic procedure.

Proposition 2.6. Let P be aggregatable with respect to (Ω, π). Then P admits the decomposition

P = Π P̂ Λ, (7)

where

Λ =




— 1Ω1
—

...
— 1ΩR

—


 ∈ RR×N

and 1Ωr ∈ RN is the indicator vector of Ωr.

Proof. Condition (3) implies P = Π P̃ . On the other hand, we have

(
P̂Λ
)
ri

=
R∑

s=1

P̂rsΛsi = P̂rω(i)

= P[Xn+1 ∈ Ωr | Xn ∈ Ωω(i)].

As by Lemma 2.5 this probability is independent of the starting distribution on Ωω(i), we may
assume Xn ∼ 1i, and hence

(
P̂Λ
)
ri

= P[Xn+1 ∈ Ωr | Xn = i] = P̃ri.

Thus, P can be restored under knowledge of Π, P̂ and Λ.

Remark 2.7. We can interpret the decomposition (7) as follows: For a distribution vector u ∈ RN

over [N ], Pu = ΠP̂Λu describes the pushforward of u under the dynamics. In a first step, Λu
averages u over the aggregates, i.e., Λu ∈ RR is a distribution vector over [R]. In a second step,

this distribution is pushed forward by the reduced transition matrix P̂ , i.e., transformed according
to the probabilities to transition between the aggregates. The result is again a distribution vector
over [R]. Finally, Π extends this vector again to a distribution vector over the individual states
[N ], by multiplying each entry with the appropriate distribution πr. The procedure is illustrated
in Figure 1.
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1 2 3 4 5 6 7

Ω1 Ω2 Ω3

states

aggregates

u

1 2 3 4 5 6 7

Ω1 Ω2 Ω3

Λu

1 2 3 4 5 6 7

Ω1 Ω2 Ω3

P̂Λu

1 2 3 4 5 6 7

Ω1 Ω2 Ω3

ΠP̂Λu = Pu
1 2 3 4 5 6 7

α1

1 2 3 4 5 6 7

α2

1 2 3 4 5 6 7

α3

(a)

(b)

Λ P̂

Π

Figure 1: (a) Illustration of the distribution transport under an aggregatable matrix P for N = 7
and R = 3. The distribution vector u gets first averaged over the aggregates {Ω1, . . . ,ΩR} by the

matrix Λ, subsequently pushed forward by the reduced transition matrix P̂ , and finally “inflated”
again to a distribution vector over the states by the matrix Π. (b) Illustration of the distribution

vectors π1, . . . , πR used in the last step. For r = 1, . . . , R, the r-th entry of the vector P̂Λu gets
multiplied by πr to form the vector Pu = ΠP̂Λu.

2.2. Almost aggregability

Markov chains encountered in real-life applications rarely fulfill the lumpability and deflatabil-
ity conditions exactly. We therefore introduce appropriate notions of “almost lumpability” and
“almost deflatability”, and investigate in what sense such transition matrices are close to truly
aggregatable matrices.

Definition 2.8. Let Ω = {Ω1, . . . ,ΩR} be a partition of [N ], let π = {π1, . . . , π} be a collection
of distribution vectors over [N ], where πr has support in Ωr, and let

Π =



| |
π1 · · · πR
| |


 ∈ RR×N .

For ε > 0, we call the transition matrix P ε-almost lumpable with respect to Ω if for all r ∈ [R]
holds ∥∥∥P̃[:,j] − P̃[:,k]

∥∥∥
1
≤ ε if ω(j) = ω(k) (8)

We call P ε-almost deflatable with respect to (Ω, π) if for all j ∈ [N ] holds

∥∥∥P[:,j] −Π · P̃[:,j]

∥∥∥
1
≤ ε (9)

We call P ε-almost aggregatable with respect to (Ω, π) if P is ε-almost lumpable and ε-almost
deflatable with respect to (Ω, π).
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Remark 2.9. A comment on the choice of the norm: Lumpability (2) is the equality of two

columns of the matrix P̃ , which are distribution vectors over [R]. A natural definition for ε-almost
lumpability is therefore the ε-closeness of these distribution vectors, for which the natural distance
measure is the L1-norm in RR.

Likewise, deflatability (3) is the equality of a column of the matrix P and a specific vector
in RN . These are both distribution vectors over [N ], and thus a natural definition for ε-almost
deflatability is the ε-closeness of these vectors in the L1-norm in RN .

Almost aggregability now implies that P is close to an aggregatable transition matrix in the L1

norm:

Theorem 2.10. Let P be ε-almost aggregatable with respect to (Ω, π). Then there exists an
aggregatable transition matrix P ∈ RN×N and a matrix E ∈ RN×N with ‖E‖1 ≤ 4ε such that

P = P + E. (10)

Proof. See Appendix A.

Note that ‖E‖1 ≤ 4ε implies |Eij | ≤ 4ε for all i, j ∈ [N ]. We from now on assume that the
perturbation matrix E = E(ε) is element-wise analytic in ε. Then P admits a Taylor expansion

P = P + εE(1)(0) +
ε2

2
E(2)(0) + . . . , (11)

where E(k) denotes the k-th element-wise derivative of E with respect to ε. We shorthand
write (11) as

P = P + εL+O(ε2), (12)

where for L := E(1)(0) ∈ RN×N holds ‖L‖1 ≤ 4. Although the element-wise perturbation re-
sult (12) is somewhat weaker than the perturbation with respect to the ‖ · ‖1-norm (10), it will
prove more useful when performing perturbation analysis on the spectrum of P (Section 3.1.3).

2.3. Comparison to other properties of compressible Markov chains

(Almost) lumpability and (almost) deflatability should be seen as fundamental, abstract properties
that Markov chains from different areas of applications may or may not have. To the best of
our knowledge, there exists no concept in the literature that is equivalent to our definition of
(almost) aggregability. In this section, we compare almost aggregability to two other properties
of Markov chains that are commonly investigated for the purpose of model compression, namely
metastability and near completely-decomposability, and show that they are indeed not equivalent
to our definition of almost aggregability.

2.3.1. Metastable Markov chains

Metastable Markov chains are almost aggregatable. We show this for the special case of reversible
Markov chains.

For a subset of states M⊂ [N ] consider the first exit time from M

τM := inf{n ∈ N, Xn /∈M},

which is a random variable in N. Let πM be the quasi-sationary density (QSD) of M, defined as
the long-time limit of the law of (Xn) conditioned to stay on M:

πM := lim
n→∞

Law(Xn | τM > n). (13)

Following [25], we now call the setM metastable if the time to observe almost-convergence in (13)
is small compared to the mean exit time E[τM]. This definition can be made precise by relating the
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convergence rate of (13) and the rate of exit events to the dominant eigenvalues of the infinitesimal
generator of the process [25].

Based on the above understanding of metastability, we can assume that for the unrestricted
process (Xn), at the time when the first exit event fromM happens, Law(Xn) is already close to
πM, without loss of generality in the 1-norm. Hence, ifM is metastable, there exists a step count
η � E[τM], and a small number ε > 0 such that

∥∥(P η)[:,j] − πM
∥∥

1
≤ ε for all j ∈M, (14)

where P η denotes the η-th power of P . The lag time η in (14) should be thought of as being long
enough to observe local equilibration to the QSD, but not long enough to likely experience exit
events and observe global equilibration to the stationary density.

Now suppose that Ω = {Ω1, . . . ,ΩR} is a metastable partition of [N ], and that there exists an
η > 0 and a small ε > 0 such that (14) holds for allM = Ωr. Under this assumption, we can now
show that the η-step transition matrix P η is almost aggregatable:

Proposition 2.11. Let Ω be a partition of [N ] and let (14) hold with parameters η, ε for all
Ωr ∈ Ω. Let πr denote the QSD of Ωr, r = 1, . . . , R. Then P η is 2ε-almost aggregatable with
respect to (Ω, π), where π = {π1, . . . , πR}.
Proof. The matrix P η is state-wise 2ε-almost lumpable: for ω(i) = ω(j) = r we have

∥∥(P η)[:,i] − (P η)[:,j]

∥∥
1
≤
∥∥(P η)[:,i] − πr

∥∥
1

+
∥∥(P η)[:,j] − πr

∥∥
1
≤ 2ε.

In particular P η is 2ε-almost lumpable.
Now let er be the r-th unit vector in RR. Because the transition probability into other aggregates

is low, the j-th column of P̃ η is ε-close to eω(j):

∥∥∥
(
P̃ η
)

[:,j]
− eω(j)

∥∥∥
1

=
∑

r∈[R]

∣∣∣
(
P̃ η
)
rj
− eω(j)(r)

∣∣∣ =: (?).

As πω(j) is a distribution with support in Ωω(j), we have
∑
i∈Ωr

πω(j)(i) = eω(j)(r). Thus,

(?) =
∑

r∈[R]

∣∣∣
∑

i∈Ωr

(
P η
)
ij
−
∑

i∈Ωr

πω(j)(i)
∣∣∣

≤
∑

r∈[R]

∑

i∈Ωr

∣∣(P η
)
ij
− πω(j)(i)

∣∣

=
∑

i∈[N ]

∣∣(P η
)
ij
− πω(j)(i)

∣∣

=
∥∥∥
(
P η
)

[:,j]
− πω(j)

∥∥∥
1

(14)

≤ ε.

Using this and (14), we can show 2ε-almost deflatability:

∥∥∥
(
P η
)

[:,j]
−Π ·

(
P̃ η
)

[:,j]

∥∥∥
1
≤
∥∥∥
(
P η
)

[:,j]
−Π · eω(j)

∥∥∥
1

+
∥∥∥Π · eω(j) −Π ·

(
P̃ η
)

[:,j]

∥∥∥
1

≤
∥∥∥
(
P η
)

[:,j]
− πω(j)

∥∥∥
1︸ ︷︷ ︸

≤ε

+
∥∥Π‖1︸ ︷︷ ︸

=1

∥∥∥eω(j) −
(
P̃ η
)

[:,j]

∥∥∥
1︸ ︷︷ ︸

≤ε

.

Remark 2.12. On the other hand, not every almost aggregatable Markov chain is metastable,
hence the two concepts are not equivalent. See Section 4.1 for a counterexample. Loosely speaking,
an almost aggregatable transition matrix P is metastable if its reduced transition matrix P̂ is
almost diagonal.
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2.3.2. Nearly completely decomposable Markov chains

Nearly completely decomposable Markov chains [3, 48], also called nearly uncoupled [18], in general
are not almost aggregatable. To be specific, they do not fulfill the almost deflatability property (9).

Let Ω = {Ω1, . . . ,ΩR} again be a partition of state space [N ], and assume the states are ordered
by partition element, i.e.,

∀ r, s ∈ [R],∀ i ∈ Ωr, j ∈ Ωs : r < s⇒ i < j.

A transition matrix P is then called completely decomposable (CD) with respect to Ω, if it has
block-diagonal form, i.e., if there exist matrices D1 ∈ Rm1×m1 , . . . , DR ∈ RmR×mR , such that [12]

P =




D1 0 · · · 0
0 D2 · · · 0
...

...
...

0 0 · · · DR


 .

A transition matrix P is called nearly completely decomposable (NCD), if P = P + E for an
uncoupled matrix P , and small ε := ‖E‖∞ [12].

Uncoupled matrices are in general not deflatable with respect to Ω. One easily sees that all
columns of the individual Di need to be equal in order for P to be deflatable. Consider for example
the CD matrix

P =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


 (15)

with the two partition elements Ω1 = {1, 2}, Ω2 = {3, 4} and the sub-matrices D1 = D2 = ( 0 1
1 0 ).

The matrices D1, D2 are themselves not CD, hence P cannot be decomposed further. For (15), the
transition probability matrix between the individual states and the partition elements becomes

P̃ =

[
1 1 0 0
0 0 1 1

]

In particular, the columns of P̃ in each partition element are equal (this is a universal property
of CD matrices). However, as the two columns of P in each partition element are not equal,

no matrix Π ∈ RN×R can exist such that P = ΠP̃ , as would be required by the deflatability
condition (3).

The matrix (15) is not even ε-almost deflatable for a small ε, as

arg min
P deflatable

‖P − P‖1 =




1/2 1/2 0 0
1/2 1/2 0 0
0 0 1/2 1/2
0 0 1/2 1/2


 ,

hence minP deflatable ‖P − P‖1 = 1. As every CD matrix is NCD, this demonstrates that NCD
transition matrices in general are not almost deflatable.

Remark 2.13. On the other hand, it is easy to see that every CD matrix is lumpable. It also
has been shown that NCD matrices are quasi-lumpable [12], a slight relaxation of lumpability.

Finally, note that metastability is a special case of nearly complete decomposability. Here, the
internal homogeneity in the sub-matrices Di that is required for deflatability is present due to the
rapid equilibration inside the metastable sets.
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3. A probabilistic aggregation algorithm

Now let P be an ε-almost aggregatable matrix, which in particular implies

P = P + εL+O(ε2),

where P is aggregatable and ‖L‖1 ≤ 4. Our goal in this section is to compute the aggregates

Ω1, . . . ,ΩR as well as the matrix P̂ of the aggregatable matrix P . We will derive an algorithm
that achieves this using only a vastly incomplete subset of the entries of P . This algorithm will
therefore be the answer to question 3 posed at the beginning of Section 2.

3.1. Sparse recovery of the aggregates

Assume for the moment that P is aggregatable, i.e., P = P . Let J ⊂ [N ] be any index set
in which all aggregates are “represented”, i.e., ω(J ) = [R]2. Consider the column-subsampled
transition matrix PJ , as defined in (1). As ω(J ) = [R] and P is state-wise lumpable, the vector
spaces spanned by the columns of P and PJ are identical. Furthermore, the R leading left singular
vectors of PJ are linear combinations of the πr, as shown by the following theorem. Note that
this does not simply follow from range(PJ ) = span{π1, . . . , πR}.
Theorem 3.1. Let P be an aggregatable matrix admitting the decomposition P = Π P̂ Λ from
Proposition 2.6, and let PJ as defined in (1). For r ∈ [R], let

jr := |J ∩ Ωr|,
i.e., the number of indices in J that belong to Ωr. Define the diagonal matrices

DΠ = diag
(
‖π1‖2, . . . , ‖πR‖2

)
, DΛJ = diag

(√
j1, . . . ,

√
jR
)
.

Let Û Ŝ V̂ be the singular value decomposition of DΠP̂DΛJ . Then there exists a singular value
decomposition U SV of PJ , with

S[1:R,1:R] = Ŝ,

and
U[:,1:R] = ΠD−1

Π Û , V[1:R,:] = V̂ D−1
Λ ΛJ .

Proof. We can write the column-subsampling of P as PJ = P · IJ , where I is the N ×N identity
matrix. Plugging in the decomposition of P and the SVD of DΠP̂DΛJ yields

PJ =
(
ΠP̂Λ

)
IJ = ΠD−1

Π Û︸ ︷︷ ︸
=:U(1)

Ŝ V̂ D−1
ΛJ ΛIJ︸ ︷︷ ︸

=:V (1)

.

The columns of U (1) are orthonormal:

U (1)ᵀU (1) =
(
ΠD−1

Π Û
)ᵀ(

ΠD−1
Π Û

)
= ÛᵀD−1

Π ΠᵀΠ︸︷︷︸
=(DΠ)2

D−1
Π Û = ÛᵀÛ = I.

The rows of V (1) are also orthonormal:

V (1)V (1)ᵀ =
(
V̂ DΛJ ΛIJ

)(
V̂ DΛJ ΛIJ

)ᵀ
= V̂ DΛJ ΛJΛᵀ

J︸ ︷︷ ︸
=(DΛJ )2

DΛJ V̂
ᵀ = V̂ V̂ ᵀ = I.

Let U (2) be a completion of the columns of U (1) to an orthonormal basis of RN , and analogously
V (2) be a completion of the rows of V (1) to an orthonormal basis of RN . We then can write PJ as

P =
[
U (1) U (2)

]
︸ ︷︷ ︸

=:U

[
Ŝ 0
0 0

]

︸ ︷︷ ︸
=:S

[
V (1)

V (2)

]

︸ ︷︷ ︸
=:V

,

which by definition is a singular value decomposition of PJ .

2We will describe later how to find such an index set without a priori knowledge of the aggregates.
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The fact that the leading R left singular vectors {u1, . . . , uR} of PJ are linear combinations of
the columns of Π, i.e., the vectors {π1, . . . , πR}, now can be exploited to compute the aggregates
under knowledge of only the matrix PJ . As the πr do not change sign within the aggregates,
neither do the ur. Furthermore, there exist no two aggregates on which the sign structure of all
ur, r ∈ [R], is identical:

Lemma 3.2. Let P be aggregatable with respect to (Ω, π). Let u1, . . . , uR be the leading orthonor-
mal left singular vectors of PJ , and let σ : [N ]→ {−1, 0, 1}N be given by

σ(i) :=
[

sgn
(
u1(i)

)
, . . . , sgn

(
uR(i)

)]
, i = 1, . . . , N

where sgn : R→ {−1, 0, 1} denotes the sign function. Then for any two i, j with ω(i) 6= ω(j) holds

σ(i) 6= σ(j) and σ(i) 6= −σ(j).

Proof. The proof is identical to that of [21, Theorem 3.1], where instead of aggregatable matrices,
block stochastic matrices were considered. We repeat the short argument for completenes’ sake.

Since the ur do not change sign within the aggregates, we may assume that each aggregate
conists of only one state, i.e., N = R. Then U = [u1, . . . , uR] ∈ RR×R is a square matrix with
orthonormal columns, the rows of U are also orthogonal. Hence, no two row vectors, which are
the vectors

(
u1(i), . . . , uR(i)

)
, can have the same sign structure.

Thus, once the left singular vectors of PJ have been computed, the aggregates can be recovered
by grouping the states according to the values of the vectors σ(i), i ∈ [N ], i.e.,

ω(i)
!
= ω(j) if σ(i) = σ(j).

Remark 3.3. The technique of grouping states via the sign structure of eigen- or singular vectors
of some propagator matrix is not new, and in general is known as spectral clustering. In particular,
similar to us, Fritzsche et al. [21] find the metastable sets of a metastable system by analyzing the
dominant singular vectors of the transition matrix P . The fundamental idea however goes back
to Dellnitz, Junge, Deuflhard, Schütte and coworkers [17, 18], who originally identified metastable
sets from the dominant eigenvectors of discretizations of transfer operators. Fritzsche et al. state
as the main reason to compute the singular- over the eigendecomposition of P the applicability
to non-reversible systems. Similarly, Froyland [22] computes metastable sets via eigenvectors of a
certain “reversibilized” transition matrix of a in general non-reversible Markov chain. Compared
to all these methods, the innovation of our method is that only aggregability of the system must
be assumed (of which metastability is a special case), and, crucially, only the vastly incomplete
matrix PJ instead of the full matrix P is required.

Also note that the sign structure of eigen- or singular vectors is in general unstable under
perturbation of the underlying matrix [38] (see also Section 3.1.3). Therefore, the assignment
to the aggregates based purely on the sign structure is unstable as well. However, there exist
advanced and robust spectral clustering techniques, for example PCCA+ [19, 38] and SEBA [23],
that consider not only the signs, but also the magnitude of the eigenvector entries and are less
susceptible to these instabilities. These methods are fully compatible with our setting.

3.1.1. Probabilistic column sampling.

While there exist minimal index sets J with |J | = R and ω(J ) = [R], it is in general impossible
to select such a set without a priori knowledge of the aggregates, or analyzing all columns of P .
Our algorithmic strategy will therefore rely on randomly sampling the column space of P . We will
show that under a sensible assumption regarding the sizes of the aggregates, the number of samples
required to fulfill the condition ω(J ) = [R] with a certain high probability does not depend on N .

Let J = |J | denote the number of indices. When drawing the indices from [N ] uniformly and
independently, the probability to “hit” all aggregates is

12



P
[
ω(J ) = [R]

]
= P

[
1 ∈ ω(J ) ∧ . . . ∧R ∈ ω(J )

]
.

Note that in general, assuming that R− 1 aggregates are hit will decrease the probability to hit
the remaining aggregate, as there are now at most J −R+ 1 chances for the remaining aggregate
to be hit. However, if we choose J much bigger than R, this effect is negligible, as then the
probability to hit an individual aggregate with J draws is close to the probability to hit it with
J−R+1 draws. The probabilities P

[
r ∈ ω(J )

]
then are approximately independent, and we have

P
[
ω(J ) = [R]

]
≈

R∏

r=1

P
[
r ∈ ω(J )

]
=

R∏

r=1

(
1−

(
N−mr

J

)
(
N
J

)
)
,

where, as a reminder, mr = |Ωr|.
In the last equation, the factor P

[
r ∈ ω(J )

]
can be thought of as the probability to draw

at least one red ball from an urn with mr red and N −mr black balls within J draws without
replacement. If J � N , as we would require in practical applications, drawing with replacement
results in approximately the same probability. Hence in that case, we get

P
[
ω(J ) = [R]

]
≈

R∏

r=1

P
[
r ∈ ω(J )

]
≈

R∏

r=1

(
1−

(
1− mr

N

)J)
. (16)

Now let p ∈ (0, 1) be a “confidence parameter”, i.e., minimal probability for which we want to
find the smallest J such that

P
[
ω(J ) = [R]

]
≥ p. (17)

From Formula (16), we see that if there exists only a single lowly-populated aggregate Ωr, i.e.,
one with mr/N ≈ 0, then a large J is required to achieve (17) for any satisfactory p. On the
other hand, the best case scenario is when all R aggregates are approximately evenly populated,
i.e., mr ≈ N/R for all r ∈ [R], as this maximizes the right hand side of (16). In this case, (16)
approximately takes the form

P
[
ω(J ) = [R]

]
≈
(

1−
(

1− 1

R

)J)R
. (18)

Crucially, this probability does not depend on the number of states N , and hence the number
of draws J required to achieve (17) also does not depend on N . For reasonable values of p and
small R, J can thus be chosen much smaller than N , which means that only a small subset of
the columns of P has to be computed. Referring to question 3 from the beginning of Section 2,
it is therefore indeed possible to compute P̂ from a vastly undersampled data matrix P , if one is
willing to accept the (qualitative) uncertainty (17) of the result.

We will from now on always assume that all aggregates are of approximately equal size in
order to use the simple formula (18) to estimate the required number of column draws. However,
this assumption is actually not strictly required to achieve (17) with a low number of draws J .
Denoting the ratio of the smallest to the largest aggregate by θ ∈ (0, 1), i.e.,

θ :=
minrmr

maxrmr
,

one gets

P
[
ω(J ) = [R]

]
'
(

1−
(

1− θ

R

)J)R
. (19)

For moderate values of θ that do not depend on N (say, θ = 0.5), (19) still allows one to choose
moderate values of J in order to guarantee (17) for a sensible p.
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Remark 3.4. As a side remark, in the case where all mr are perfectly equal, the described problem
is equal to the so-called coupon collector’s problem [34, Section 3.6]. It estimates the expectation
of the number of randomly drawn columns in order to hit all aggregates as

E
[
|J |

∣∣ ω(J ) = [R]
]

= R logR+ Θ(R),

and its variance as

Var
[
|J |

∣∣ ω(J ) = [R]
]

=
π2

6
R2 + Θ(R logR),

where Θ is the Landau symbol for asymptotically equal growth. The expectation and variance are
again independent of N . Thus, for large N , the expected number of columns of P that has to be
computed in order to hit all aggregates is again much smaller than N .

3.1.2. The probabilistic aggregation algorithm

In summary, the random column sampling strategy, combined with the singular value decomposi-
tion and spectral clustering method leads to our main algorithm:

Algorithm 3.1 Probabilistic aggregation of large Markov chains.

Input: Ability to compute individual columns of the transition matrix P ,
Upper bound of the number R of aggregates,
Confidence parameter p ∈ (0, 1)

1: Using Equation (18), randomly draw an index set J ⊂ [N ], so that

P
[
ω(J ) = [R]

]
≥ p.

2: Compute the columns of P with indices in J and assemble the matrix PJ .
3: Compute the singular value decomposition PJ = U SV . Let the leading R left singular vectors

be denoted by u1, . . . , uR .
4: Apply a spectral clustering algorithm such as PCCA+ or SEBA to u1, . . . , uR

Output: Aggregates Ω1, . . . ,ΩR of P .

Multiple remarks are in order:

Remark 3.5. The main attractiveness of this aggregation algorithm is that only J columns of
the N × N transition matrix P need to be computed. As we have discussed in Section 3.1.1, J
depends only on R and p, thus for large N this represents enormous savings in numerical effort.
The actual method of computing the columns varies from case to case, but typically they need
to be computed individually by expensive Monte Carlo sampling methods, see the example in
Section 4.2 for details.

Remark 3.6. The requirement of an upper bound of the number R of expected aggregates is not
as harsh as it may seem. For one, a ballpark estimate of R is often available in practice. One
knows for example that in Markov chains that describe the folding of small proteins, the number
of metastable conformations (which here represent the aggregates) typically is in the order of 101

to 102. For the other, overestimating R does not degrade the quality of the end result, but only
leads to additional numerical effort. However, in many practical applications with thousands or
millions of states but only a handful of aggregates, even overestimating R by one or two orders
of magnitude still leads to vastly improved performance over computing the full transition matrix
P . A detailed error analysis of Algorithm 3.1 with respect to R will be subject of future research.

Step 1 of the Algorithm 3.1 again requires that all aggregates are approximately equal-size.
In case where this is not a reasonable assumption, we can conduct a different strategy: For
aggregatable matrices, ω(J ) is equivalent to rank(PJ ) = R, hence σR > 0, where σR is the R-th
largest singular value of PJ . For almost aggregatable matrices, this condition becomes σR � σR+1,
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i.e., the existence of a spectral gap after σR. The computational strategy is therefore to randomly
add columns to PJ and compute its SVD until such a gap appears.

Remark 3.7. Algorithm 3.1 is related to a class of probabilistic algorithms designed to compute an
orthonormal basis of the range of a generic rank-R matrix A ∈ RN×N , see for example [26, p. 224].
These algorithms are based on “measuring” A by a randomly-drawn test matrix T ∈ RN×R, i.e.
the product Y = A · T is computed. As the R randomly-drawn columns of T are almost surely
linearly independent, and almost surely do not fall into ker(A), the columns of Y are also almost
surely linearly independent, and it holds range(Y ) = range(A). The leading left singular vectors
of Y hence form an orthonormal basis of range(A). Note however that the computation of Y here
requires the full matrix A.

In Algorithm 3.1, the selection of the columns J from P is equivalent to the multiplication to P
with the matrix IJ (see the proof of Proposition 3.1), i.e., PJ = P · IJ , thus IJ can be considered
a test matrix in the above context. Crucially however, although the columns of IJ have not been
randomly drawn and contain only one non-zero element, we still have range(PJ ) = range(P ), due
to the equality of the columns due to state-wise lumpability (5).

3.1.3. Applicability to almost aggregatable Markov chains

We now shift our focus to Markov chains that are only almost instead of exactly aggregatable.
Assume that P is ε-almost aggregatable with respect to (Ω, π), which by (12) implies

P = P + εL+O(ε2), ‖L‖1 ≤ 4.

Our goal is to recover the aggregates of the exactly aggregatable but unknown matrix P , and
we again assume that the computation of individual columns of P is possible. Our strategy is to
apply Algorithm 3.1 to the perturbed matrix P , in the hope that the above ε-perturbation will
only result in an error for the aggregates of order of magnitude ε. We will illuminate under which
conditions this holds true, and for this perform a perturbation analysis of the singular vectors
of P . In particular, we will investigate how the sign structure of the individual components of the
singular vectors respond to perturbation, as they are used for the aggregate assignments.

It turns out that the same techniques that have been used by Fritzsche et al. [21] in the anal-
ysis of almost block-stochastic transition matrices can also be applied to our setting of almost
aggregatable transition matrices. Most of the following arguments have therefore been borrowed
from [21, Section 4.1].

Let J ⊂ [N ] be again an index set with ω(J ) = [R]. Define the matrix

T (ε) := PJP
ᵀ
J .

We will study how the eigenvectors of T (ε) depend on ε, as they are identical to the left singular
vectors of PJ . The matrix T (ε) admits a Taylor expansion in ε,

T (ε) = T + εT (1) +O(ε2), (20)

with T = PJP
ᵀ
J and T (1) = PJL

ᵀ
J +LJP

ᵀ
J . Therefore, T (ε) is analytic in ε, and also symmetric.

By applying the perturbation theory for symmetric matrices from [28, Section 6.2], we get that
T (ε) possesses an orthonormal basis of eigenvectors ϕ1(ε), . . . , ϕN (ε) that are also analytic in ε
and thus admit a Taylor expansion in ε:

ϕk(ε) = ϕk + εϕ
(1)
k +O(ε2). (21)

Here the ϕk are the eigenvectors of the unperturbed matrix T , i.e., the left singular vectors of
PJ (the singular vectors used for the aggregate assignments). The first order perturbation error

of the k-th left singular vector is therefore given by ϕ
(1)
k , for which an expression is given by the

following theorem:
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Theorem 3.8. Let λk(ε) be the k-th largest eigenvalue of the perturbed operator T (ε), counting
multiplicity. Let Q1,...,R : RN → RN denote the orthogonal projection onto span(ϕ1, . . . , ϕR), and
let βkj be coefficients such that

Q1,...,Rϕ
(1)
k =

R∑

j=1

βkjπj .

Then, for k = 1, . . . , R, the eigenvector ϕk(ε) corresponding to λk(ε) is of the form

ϕk(ε) = ϕk + ε

(
R∑

j=1

βkjπj +
N∑

j=R+1

〈
ϕj , ϕ

(1)
k

〉
ϕj

)
+O(ε2). (22)

Proof. The proof of this theorem is very similar to that of [21, Theorem 4.7].
For k = 1, . . . , R, let Qk be projection onto the eigenspace of T corresponding to the eigenvalue

λk. Note that this eigenspace may be multi-dimensional. Under perturbation, the eigenvalue λk
will in general split into multiple eigenvalues of T (ε), which we call the λk-group of eigenvalues
(see [28, Sec. II.1.8]). According to [28, Sec. II.2.1], the perturbed projection operator Qk(ε) onto
the combined eigenspaces of T (ε) corresponding to the λk-group is analytic in ε and admits the
Taylor expansion

Qk(ε) = Qk + εQ
(1)
k +O(ε2).

According to [28, Sec. II.2.1 (2.14)], the first order error coefficient can be written as

Q
(1)
k =

∑

j∈{1,...,N}
j 6=k

1

λk − λj
(
QkT

(1)Qj +QjT
(1)Qk

)
, k = 1, . . . , R.

Let Q1,...,R be the orthogonal projection onto the eigenspace of T to the distinct eigenvalues
λ1, . . . , λR. Then for the corresponding perturbed projection holds

Q1,...,R(ε) =
R∑

i=1

Qi(ε)

=
R∑

i=1

Qi + ε
R∑

i=1

∑

j∈{1,...,N}
j 6=i

1

λi − λj
(
QiT

(1)Qj +QjT
(1)Qi

)
+O(ε2)

= Q1,...,R + ε

R∑

i=1

N∑

j=R+1

1

λi

(
QiT

(1)Qj +QjT
(1)Qi

)
+O(ε2), (23)

where in the last line we used that the terms for j ≤ R cancel out, and λj = 0, j = R+ 1, . . . , N .
For the eigenvectors ϕ1(ε), . . . , ϕR(ε) of T (ε), we have that

ϕk(ε) = Q1,...,R(ε)ϕk(ε), k = 1, . . . , R. (24)

Combining (21), (23) and (24) and using Qjϕk = 0 for j = R+ 1, . . . , N , we obtain

ϕk(ε) = Q1,...,R

(
ϕk + εϕ

(1)
k

)
+ ε

N∑

j=R+1

1

λk
QjT

(1)ϕk +O(ε2).

Since Q1,...,Rϕk = ϕk, and

Q1,...,Rϕ
(1)
k =

R∑

j=1

β̃kjϕj =

R∑

j=1

βkjπj ,
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for some coefficients β̃kj , βkj ∈ R, we can write the perturbed eigenvector as

ϕk(ε) =

R∑

j=1

(
γkj + εβkj

)
πj + ε

N∑

j=R+1

1

λk
QjT

(1)ϕk +O(ε2).

This confirms the first sum in (22). The second summand, we can rewrite using the Euclidean
inner product as

N∑

j=R+1

1

λk
QjT

(1)ϕk +O(ε2) =

N∑

j=R+1

1

λk

〈
ϕj , T

(1)ϕk
〉
ϕj . (25)

To derive an expression for
〈
ϕj , T (1)ϕk

〉
, we combine the perturbation expansions (20) of T (ε),

(21) of ϕ(ε), and the expansion of the eigenvalue λk(ε),

λk(ε) = λk + ελ
(1)
k +O(ε2). (26)

Together, we obtain
(
T + εT (1) +O(ε)

)(
ϕk + εϕ

(1)
k +O(ε)

)
=
(
λk + ελ(1) +O(ε2)

)(
ϕk + εϕ

(1)
k +O(ε)

)
. (27)

Comparing the zero-th and first order terms in (27) yields

Tϕk = λkϕk,

T (1)ϕk = (λkI − T )ϕ
(1)
k + λ

(1)
k ϕk.

Plugged into the above scalar product we get

〈
ϕj , T

(1)ϕk〉 =
〈
ϕj , (λkI − T )ϕ

(1)
k + λ

(1)
k ϕk

〉

=
〈
ϕj , (λkI − T )ϕ

(1)
k

〉
+ λ

(1)
k 〈ϕj , ϕk〉︸ ︷︷ ︸

=0

,

where the last term vanishes due to the ϕ being orthonormal as eigenvectors of a symmetric
operator. Since (λkI − T ) is symmetric, we can rewrite the first term as

〈
ϕj , (λkI − T )ϕ

(1)
k

〉
=
〈
(λkI − T )ϕj , ϕ

(1)
k

〉

= (λk − λj)
〈
ϕj , ϕ

(1)
k

〉
.

Plugged into (25) and using λj = 0 for j > R, this finally yields

ϕk(ε) =

R∑

j=1

(γkj + εβkj)πj + ε

N∑

j=R+1

〈
ϕj , ϕ

(1)
k

〉
ϕj +O(ε).

We will now further investigate the individual summands of Equation (22) in order to better un-
derstand their significance for the sign structure perturbation of the ϕk. As ϕk ∈ span(π1, . . . , πR),
we can write

ϕk =
R∑

j=1

γkjπj

for some coefficients γkj ∈ R. With that (22) can be written as

ϕk(ε) =
R∑

j=1

(γkj + εβkj)πj + ε
N∑

j=R+1

〈
ϕj , ϕ

(1)
k

〉
ϕj +O(ε2). (28)
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Hence, the βkj represent the perturbation in the coefficients γkj of the unperturbed eigenvector
ϕk. As the βkj are independent of ε, this perturbation is small for small enough ε.

In any case however, even for large ε, the first summand in (28) is a linear combination of the
πj . Hence, as the πj are non-negative and have support on the respective Ωj , the first summand
does again not change sign within the aggregates (although the particular sign structure may
differ from that of ϕk if γkj and βkj have different signs and ε|βkj | > |γkj |.) Also, the perturbed
eigenvectors ϕk(ε) again form an orthonormal system. Hence, upon neglecting the remaining
two summands in (28), the ϕ1(ε), . . . , ϕR(ε) fulfill the same prerequisites as the singular vectors
u1, . . . , uR in Lemma 3.2 (which are the unperturbed eigenvectors ϕ1, . . . , ϕR). Therefore, if we
could expect the second and third summand in (28) to not perturb the sign structure of the first
summand, applying a spectral clustering algorithm to the perturbed eigenvectors ϕ1(ε), . . . , ϕR(ε)
would reveal the aggregates perfectly as per Remark 3.3.

However, the second sum in (22) potentially does perturb the sign structure within the individual
aggregates, as the non-dominant eigenfunctions ϕj , j = R + 1, . . . , N are in general not linear
combinations of the πi. To be precise, the second sum induces a sign change at position i ∈ [N ],
if at that position the second sum has a different sign than the first sum, and

ε

∣∣∣∣∣
[ N∑

j=R+1

〈
ϕj , ϕ

(1)
k

〉
ϕj

]
i

∣∣∣∣∣ >
∣∣∣∣∣
[ R∑

j=1

(
γkj + εβkj

)
πj

]
i

∣∣∣∣∣ (29)

Again, (29) cannot hold true if ε is small enough, hence in this situation the sign structure of the
ϕk(ε) is again equal to that of the ϕk. For only moderately small ε, however, (29) needs to be
checked on a case-by-case basis. Unfortunately, as the unperturbed eigenvectors ϕj and hence the
coefficients γkj , βkj are unknown, this condition cannot be checked numerically in practice. We
are however able to state two easily-interpretable circumstances under which (29) is fulfilled, and
argue that these circumstances are avoided automatically in many practically relevant systems:

1. A first condition that implies (29) is if the singular value λk is close to zero, because, due
to (25),

N∑

j=R+1

〈
ϕj , ϕ

(1)
k

〉
ϕj =

N∑

j=R+1

1

λk
QjT

(1)ϕk,

where Qj is the orthogonal projection onto the j-th distinct eigenspace of T . In many
real-world settings, however, for example if the aggregates correspond to metastable sets,
a spectral gap after the last dominant singular value is present, which then implies λk �
λR+1 = 0.

2. A second condition that implies (29) is if all πj are approximately zero at position i, as

[ R∑

j=1

(
γkj + εβkj

)
πj

]
i

=
R∑

j=1

(
γkj + εβkj

)
πj(i).

For metastable systems, the πj are the quasi-stationary densities on the Ωj (see Section 2.3.1).
These take near-zero values only in the statistically irrelevant border regions of the aggre-
gates. For i in the “core aggregates”, it holds πj(i)� 0, hence no sign change will occur in
these regions.

Of course, other circumstances such as particular combinations of γkj and βkj with opposite sign
may lead to (29) being fulfilled and have to be examined on a case-by-case basis. Overall, however,
we can expect reasonable stability of Algorithm 3.1 with respect to perturbation of the transition
matrix of form (12) if ε is small.
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3.2. Recovery of the reduced transition matrix

Assume once more that P is an exactly aggregatable matrix, i.e., P = ΠP̂Λ. Also assume that we
now have knowledge of the aggregates Ω1, . . . ,ΩR, typically obtained by applying Algorithm 3.1
to P . We now explain how to compute the reduced transition matrix P̂ , again using only a sparse,
randomly-selected subset of the columns of P .

Knowing the index sets Ωk ⊂ [N ], we first assemble the aggregation matrix Λ via

Λri :=

{
1 if i ∈ Ωr

0 otherwise
,

as well as the diagonal matrix M ∈ RR×R of aggregate cardinalities:

M := diag(m1, . . . ,mR), mr = |Ωr|.

Note that ΛΠ = I ∈ RR×R, and ΛΛᵀ = M . Hence, if the full transition matrix P were known,
one could recover P̂ by applying Λ and ΛᵀM−1 from left and right to P :

ΛP ΛᵀM−1 (7)
= ΛΠ︸︷︷︸

=I

P̂ ΛΛᵀ
︸︷︷︸
=M

M−1 = P̂ . (30)

Alternatively, P̂ can also be recovered by column-normalizing the matrix ΛP Λᵀ.

3.2.1. Probabilistic matrix recovery

Now suppose that we are again in the situation where assembling the whole matrix P is numerically
infeasible, i.e., only a small subset of the columns of P can be computed. Let K ⊂ [N ] be an
index set with ω(K) = [R] and let the column-subsampled matrices PK and ΛK be defined as
in (1). While K does not need to coincide with J from Section 3.1 and can trivially be chosen
to fulfill ω(K) = [R] if the Ωr are known, choosing K = J has the advantage that no additional
computations need to be performed to compute PK. Applying Λ from the left and Λᵀ

K from the

right to the column-sparse matrix PK instead of P also recovers P̂ :

Proposition 3.9. Let kr be number of indices in K that belong to aggregate Ωr, i.e.,

kr = |K ∩ Ωr|.

Define the diagonal matrix K := diag(k1, . . . , kR). Then

ΛPKΛᵀ
KK

−1 = P̂ . (31)

Proof. Consider the identity matrix I ∈ RN×N , and IK as defined by (1). The column-sampled
matrix PK can then be written as PK = P · IK. With that and (7), the product in (31) becomes

ΛPKΛᵀ
KK
−1 = ΛΠ︸︷︷︸

=I

P̂ΛIKΛᵀ
KK
−1.

The assertion follows from the identity ΛIKΛᵀ
K = diag(k1, . . . , kr).

Thus, if kr 6= 0 for all r ∈ [R], then P̂ can be recovered from PK. Again, in the case where

the numerical effort is dominated by the computation of the entries of P , being able to restore P̂
from (31) instead of (30) provides a computational speedup of factor N/|K|, as to assemble PK,
only |K| columns of P have to be computed.

This leads to the following algorithm for the recovery of P̂ :
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Algorithm 3.2 Recovery of the reduced transition matrix P̂ .

Input: Aggregates Ω1, . . . ,ΩR of P ,
Ability to compute individual columns of the transition matrix P

1: Choose an index set K ⊂ [N ], so that ω(K) = [R].
2: Compute the columns of P with indices in K and assemble the matrix PK.
3: Assemble the matrices Λ,ΛK and K via

Λri :=

{
1 if i ∈ Ωr

0 otherwise
,

(
ΛK
)
ri

:=

{
1 if i ∈ Ωr and r ∈ K
0 otherwise

,

and

K := diag(k1, . . . , kR), kr := |K ∩ Ωr|.

4: Compute P̂ := ΛPKΛᵀ
KK

−1.

Output: Aggregated transition matrix P̂

3.2.2. Applicability to almost aggregatable Markov chains

We now again consider the case where P is only ε-almost aggregatable, i.e.,

P = P + E, ‖E‖1 ≤ 4ε

where P is aggregatable with P = ΠP̂Λ. Like for the recovery of the aggregates, we want to
compute an approximation to the matrix P̂ by applying Algorithm 3.2 to the perturbed matrix P
(or rather, the column-subsampled matrix PK). The error in that approximation, dependent on
the perturbation ε, is invesitaged in this section.

We limit the investigation to the situation where the aggregates, hence the matrices ΛK and K,
are known exactly. In this situation, the difference between the computed and the true reduced
transition matrix is given by

∥∥ΛPKΛᵀ
KK
−1 − P̂

∥∥
1

=
∥∥ΛEKΛᵀ

KK
−1
∥∥

1
≤
∥∥Λ
∥∥

1︸ ︷︷ ︸
=1

∥∥EK
∥∥

1

∥∥Λᵀ
KK
−1
∥∥.

For the second factor on the right hand side holds
∥∥EK

∥∥
1
≤
∥∥E
∥∥

1
≤ 4ε. The r-th column of the

matrix Λᵀ
KK
−1 contains kr-times the value 1

kr
, and only zeros otherwise, hence

∥∥Λᵀ
KK
−1
∥∥

1
= 1.

Overall, we get ∥∥ΛPKΛᵀ
KK
−1 − P̂

∥∥
1
≤ 4ε.

Hence, by applying Algorithm 3.2 to an ε-almost aggregatable P , we can expect an L1-error in
P̂ of order ε. Notably, this error is again independent of the typically large size N of the original
model.

4. Numerical experiments

4.1. A generic almost aggregatable process

We consider a 500-state Markov jump process with transition matrix P that we explicitly construct
to be almost aggregatable, i.e., that is close to an aggregatable transition matrix. To this end, we
choose the matrices Λ,Π, P̂ and E so that P := ΠP̂Λ is aggregatable (see Proposition 2.6), E is
a matrix with column-sum zero and ‖E‖1 ≤ ε := 0.1, and P := P + E is a stochastic matrix.

We first subdivide the state space {1, . . . , 500} randomly into 10 aggregates of equal size 50.
This defines the matrix Λ. For the distribution vectors πr ∈ R500, r = 1, . . . , 10, we choose random
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Figure 2: (a) Full transition matrix P of the almost aggregatable process. (b) Full transition
matrix P permuted so that each 50 consecutive columns and rows correspond to one aggregate.
(c) Subsampled transition matrix PJ . (d) Leading singular values of P and PJ . The spectral
gaps after σ10 indicate that both matrices are approximately of rank 10.

distributions with support on the respective Ωr using the method detailed in [47]. However, in
order to avoid the perturbation effects discussed in Section 3.1.3 , we prohibit entries of πr that
are too small and whose signs are thus perturbed too easily. Specifically, we enforce πr(i) ≥ 0.01
for i ∈ Ωr. This defines the matrix Π.

The reduced transition matrix P̂ is constructed by randomly drawing a stochastic 10 × 10
matrix. We make sure here that the smallest non-zero singular value σ10 of P := ΠP̂Λ is not too
small, specifically σ10 ≥ 0.1. The reason is again to avoid the perturbation effects discussed in
Section 3.1.3. The matrix is shown in Figure 4 (a).

Finally, we randomly draw a matrix E with row-sum zero and scale it such that ‖E‖1 = 0.1. As

E contains negative entries, the matrix P := ΠP̂Λ + E may not be positive, hence no stochastic
matrix. We correct this fact by shifting the entries of P into the interval [0, 1] and re-normalizing
the columns.

The final transition matrix P used for our computations can be seen in Figure 2 (a). On close
inspection, one can see that certain columns are equal. Indeed, upon sorting the rows and columns
by aggregate number i.e., permuting P such that states of one aggregate appear in consecutive
order, a block pattern becomes visible (Figure 2 (b)). This pattern bears similarity to the reduced

transition matrix P̂ (Figure 4 (a)). Note that the sorted transition matrix serves only illustratory
purposes, and will not be used in the following computations.

Computation of the aggregates. We employ Algorithm 3.1 in order to compute the aggregates of
the (unpermuted) transition matrix P . For this we assume that the number R = 10 of aggregates
is known in advance. We randomly choose an index set J ⊂ [500] with |J | = 50 (Step 1 of the
algorithm). Formula (18) then predicts a probability of 95% that at least one column from each
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Figure 3: (a) Leading 10 left singular vectors u1, . . . , u10 of the matrix PJ , sorted by aggregate.
We see a characteristic jumping pattern between the aggregates. (b) Output vectors s1, . . . , s10

of the SEBA algorithm applied to u1, . . . , u10, sorted by aggregate number. We see that they
correspond to the indicator functions of the aggregates, albeit in no particular order. Hence,
SEBA is able to correctly identifies the aggregates.

of the 10 aggregates is included in J . Indeed, the gap after the singular value σ10 of PJ indicates
that all ten aggregates have been hit.

Next, we assemble the matrix PJ (Step 2 of the algorithm). As in this example P is fully
known in advance its columns do not have to be computed individually, and we can simply extract
the columns with indices in J from P . The matrix PJ can be seen in Figure 2 (c). Note
that in practical applications, each column of the transition matrix typically has to be computed
individually, often from costly numerical simulations. In the present example, the ability to
compute the aggregates based on PJ , consisting of 50 non-zero columns instead of P , which
consists of 500 non-zero columns, would therefore yield a computational speedup of factor 10.

Next we compute the leading R = 10 left singular vectors u1, . . . , u10 of PJ (Step 3 of the algo-
rithm). These vectors, with the entries sorted again by aggregate number for illustration purposes,
are shown in Figure 3 (a). We observe sharp transitions between the aggregates, indicating that
the singular vectors can indeed distinguish the individual aggregates. The irregular pattern within
the individual aggregates is due to the randomly-chosen distributions πr, and not (primarily) an
effect of the random perturbation E.

Finally, we apply the SEBA spectral clustering algorithm to u1, . . . , u10 (Step 4 of the algorithm).
The output of SEBA are indicator vectors s1, . . . s10 ∈ RN , where sr(i) = 1 indicates that i ∈ Ωr.
We see that SEBA is able to correctly identify the aggregate affiliation of all states (Figure 3 (b)),
despite the perturbation E.

Computation of the reduced transition matrix. Once we have computed the aggregates Ω1, . . . ,Ω10,
Algorithm 3.2 lets us compute the reduced transition matrix P̂ .
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Figure 4: (a) Original reduced transition matrix P̂ that was used to construct the generic almost
aggregatable transition matrix P . (b) Reduced transition matrix recovered from the subsampled
transition matrix PJ via Formula (31).

In the first step of the algorithm, we use as the index set K the same index set that was used for
the computation of the aggregates, i.e., K = J . The reason is that this way the already-computed
matrix PJ can be re-used and, due to the success of Algorithm 3.1 in recovering the aggregates,
we can be sure that ω(J ) = [R]. Hence, the second step of the algorithm, computation of the
non-zero columns of PK, is performed by simply setting PK = PJ .

In the third step, the matrices Λ,ΛK ∈ R10×500 and K ∈ R10×10 are assembled, which is
trivial under knowledge of the aggregates. Finally, in the fourth step, the reduced transition
matrix is computed via the matrix product P̂restored := ΛPKΛᵀ

KK
−1. This matrix is shown in

Figure 4 (b). We observe excellent quantitative agreement with the original reduced transition
matrix (Figure 4 (a)).

4.2. A discretized metastable Langevin process

As shown in Section 2.3.1, metastable Markov processes represent an important special case of
almost aggregatable processes. The associated coarse graining procedure is demonstrated by the
following example.

We first consider the time- and space-continuous overdamped Langevin dynamics following the
SDE

dXt = −∇V (Xt)dt+

√
2

β
dWt,

with inverse temperature β, Brownian motion dWt, and the two-dimensional potential energy
function V depicted in Figure 5 (a). The system’s unique stationary density is the Boltzmann
density π(x) = 1

Z e
−βV (x), where Z is a normalization constant. We consider the system in the

region [−2, 2]2.
The potential has five local “energy wells”, and at low enough temperature every point except

those very close to the saddle points are attracted by exactly one of the wells. Typical trajectories
are “trapped” in these wells for long times before eventually receiving enough energy through the
stochastic part of the dynamics to jump out. The five segments shown in Figure 5 (a) are thus
metastable3.

To make this system accessible to our framework, we discretize it in time and space. We first fix
an inverse temperature β and a lag time τ > 0 that is long enough to observe local equilibration for
each starting point (except the saddle points). Specifically, we choose β = 1, τ = 0.5. Furthermore,

3Note that it is in fact debatable here whether the full segments or only the regions directly around the wells,
the so-called core metastable sets [43], should be considered metastable. While our (see Section 2.3.1) and the
original [17] definition of metastable systems requires a strict partition of the state space into metastable sets,
other approaches accept the existence of so-called transition states that do not belong to any metastable set
and that may possess significant statistical weight [42, 38].
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Figure 5: (a) Potential energy function V with five local minima. The dashed lines indicate
the borders of the five metastable sets. (b) Leading singular values of the full transition matrix
P . We see a spectral gap after the fifth singular value, indicating that P is approximately of
rank 5. (c) Discretization boxes, forming the states of the discrete Markov process, along with
the discrete metastable sets (colored background). The boxes marked in black correspond to the
randomly-selected indices J used to generate the column-sparse matrix PJ .

we subdivide the state space X = [−2, 2]2 into N = 32 · 32 = 1024 boxes B1, . . . , BN of equal size
and consider the transition matrix P ∈ RN×N

Pij = P
[
Xτ ∈ Bi

∣∣ X0 ∼ 1Bj

]
.

The Markov jump process induced by P is called the Ulam discretization of Xt. For a discussion
on how well it approximates the original process, see [20]. We expect the metastable sets of
this Markov chain to correspond to the metastable sets of the continuous process that have been
“discretized” over the boxes (shown in Figure 5 (c)).

We approximate the full transition matrix P column-wise, by starting M = 105 numerical
simulations of length τ in each box Bj , and counting the transitions to each other box Bi. This
is known as Ulam’s method [49]. To be precise, the (i, j)-th entry of P is approximated by

Pij ≈
1

M

M∑

m=1

1Bi

(
Φτ(m)

(
x

(m)
j

))
, (32)

where the x
(m)
j , m = 1, . . . ,M are starting points that are uniformly randomly distributed in Bj ,

and Φτ(m)(x) is the endpoint of a numerically-realized trajectory with starting point x, length τ
and random seed m. Of course, the full matrix P is only computed for comparison and benchmark
purposes. For the computation of the aggregates via Algorithm 3.1, only a sparse subset of the
columns needs to be computed (see below).

The leading singular values of P are shown in Figure 5 (b). The spectral gap after σ5 indicates
that P is approximately of rank 5, i.e. approximated well by a matrix of rank 5. This is expected,
as the columns of P should consist only of approximations to the five quasi-stationary densities
of the discretized metastable sets.

Computation of the aggregates. We again use Algorithm 3.1 to approximate the aggregates
of P . For the number of randomly drawn column indices J , we choose J = 25. By Formula (16),
this will guarantee a probability of 95% to sample all five metastable sets, i.e., ensure span(PJ ) ≈
span(P ). The boxes corresponding to our randomly-drawn indices are illustrated in Figure 5 (c).

The leading five left singular vectors u1, . . . , u5 of PJ are shown in Figure 6 (a). Applying the
SEBA spectral clustering algorithm to u1, . . . , u5 identifies aggregates that correspond very well
to the core metastable sets of the original continuous process (Figure 6 (b)).
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Figure 6: (a) Leading five singular vectors of PJ . (b) Output vectors of SEBA clustering applied
to the singular vectors. The cores of the metastable sets are clearly recognizable.
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Figure 7: (a) Exact reduced transition matrix P̂ , computed with exactly-known aggregates and

the full transition matrix P via (30). (b) Our approximation to P̂ , computed via (31) with
aggregates approximated via Algorithm 3.1 and with the sparse transition matrix PK. (c) Leading
five eigenvalues of the full transition matrix, the exactly-computed reduced transition matrix, and
our approximation to the reduced transition matrix.

Note however that the outer and the transition regions have not been included in the metastable
sets. This is an effect of the singular vectors being almost zero in these regions, and the SEBA
algorithm omitting such regions for stability reasons. These almost-zero regions are of little sta-
tistical importance, and we will see in the next section that omitting them has practically no
consequence when recovering the reduced transition matrix. Moreover, the recovery of only the
core metastable sets can also be seen as advantageous, due to the aforementioned ambiguity in
the definition of metastability.

Computation of the reduced transition matrix. As a benchmark, we first compute the exact
reduced transition matrix P̂ via Formula (30), i.e., using the full transition matrix P , and an
aggregation matrix Λ that was assembled using the analytically-known metastable sets from Fig-
ure 5 (c). The result is shown in Figure 7 (a).

We compare it to P̂ computed via Formula (31). For this we use only the column-subsampled
transition matrix PK (where we again choose K = J ). Furthermore, the aggregation matrix Λ was
assembled using the aggregates that were computed in the previous section. The resulting matrix
is shown in Figure 7 (b). We observe good element-wise agreement. Likewise, a comparison of the
eigenvalues of the two matrices (Figure 7 (c)) shows very good quantitative agreement.

25



Computational effort. For Algorithm 3.1, only the J non-zero columns of the matrix PJ are
required, thus MJ simulations have to be performed. As we have chosen K = J no additional
simulations have to be performed for the computation of the reduced transition matrix. Compared
to the MN simulations necessary to assemble and analyze the full transition matrix P , this
represents a speedup of factor N/J , or about 41 in our example.

4.3. Aggregation of Manhattan taxi trips

We now demonstrate that the method can be successfully applied to real-life data sets that only
loosely fulfill the analytic requirements of aggregability. For this, we analyze a record of 1.1 · 107

taxi trips performed in and around Manhattan island in January 2016. The data was released
by the NYC Taxi & Limousine Commission and is freely available under [1]. In particular, the
data contains the start- and end time of trips, as well as the geographical coordinates of the entry
and exit point. We investigate whether our method can aggregate Manhattan into disjoint regions
based on patterns in the destination of trips taken in the morning. The same data set was analyzed
in [52] with the same goal but using a different methodology.

We divide the relevant region into a square grid of a total of 3150 boxes and sort the data points
into the boxes according to the trip starting location. Hereby, only trips beginning between 6:00
AM and 11:59 AM are considered. Subsequently, boxes with less than 1000 points are discarded
for stability reasons. On the remaining 601 boxes, we assemble a transition matrix P ∈ R601×601.
The duration of the individual trips is ignored, i.e., in our model, each trip takes one unit of time
to complete.

Following the argumentation of Liu et al. [31], we assume that the Markov chain induced by P
is a good model for the underlying “taxi commuter dynamics” of Manhattan. Furthermore, we
conjecture that this dynamics indeed fulfills the lumpability and deflatability prerequisites of our
method, at least approximately, and we will give speculative justifications below. Note however
that we will neither analytically nor empirically verify the justifications; rather, they should only
provide a sufficient reason for heuristically applying our new method.

For one, it is plausible that for two starting boxes inside a sufficiently homogeneous district, the
probabilities to journey to another district are almost identical. For example, for starting boxes
from a specific residential district, the probabilities to journey to a nearby commercial district may
be uniformly high, whereas the probabilities to journey to some other residential district may be
uniformly low. This would imply (almost) lumpability of the Markov chain, with the aggregates
being the respective districts.

At the same time, one can conjecture that the probability to journey to a specific box inside
a destination district is determined mainly by some distribution on the destination district itself,
and not so much be the exact starting box. Again using the example of a morning commute from
a residential to a commercial district, workers from each starting box (which at our resolution
covers multiple blocks) may “spread out” over the entire commercial district according to a cer-
tain distribution that reflects the density of businesses inside the commercial district. Hence the
probability to journey from box i in the residential district to box j in the commercial district
is given by the probability to journey from i to the commercial district in general, multiplied
by the value of the aforementioned distribution at j. This is the alternate definition of (almost)
deflatability (4), again with the districts as the aggregates.

Note that metastability on the other hand is not necessarily a reasonable assumption here, as
very short trips within districts could be covered by other means of transportation, such as walking
or biking. Figure 8 (a) shows the leading singular values of P . While P is far from low-rank, we
do observe a spectral gap after σ4, indicating the existence of four aggregates. We thus choose
R = 4 for the following aggregation procedure. Note however, since this estimation is based on
the SVD of the full transition matrix, we essentially require R = 4 to be known in advance.

Computation of the aggregates. We now employ Algorithm 3.1 in order to compute the leading
singular vectors of P based on a sparse column sampling. Subsequently, we apply the SEBA algo-
rithm to the sign structure of the four leading singular vectors in order to extract the aggregates.
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Figure 8: (a) Leading singular values of the full transition matrix P and the subsampled matrix
PJ . Note that the slight spectral gap of P after σ4 essentially vanished under subsampling. (b)
Boxes of the discretization with more than 1000 trips, forming the states of our Markov chain.
Boxes selected for the aggregation algorithm are marked in red.

Application of SEBA to the sign structure instead of the raw singular vectors counteracts the
tendency of SEBA to omit the border regions of aggregates. However, it also results in slighly
more noisy aggregates, as boxes with low singular vector absolute value, i.e., high potential for
erroneous assignment, are “forced” an assignment.

For the column sample size, we choose J = 50, which by (18) results in a near 100% chance
to hit all aggregates (p > 0.99). However, in this practical example it is somewhat questionable
whether the a-priori assumption that all aggregates have exactly the same size really holds. Hence,
a comparatively large value of J was used here to compensate for possible inaccuracies of Equa-
tion (18). The boxes corresponding to the uniformly randomly-selected columns J are shown in
Figure 8 (b). Figure 9 (a) shows the result of the algorithm. The individual aggregates are (for
the most part) connected and approximately correspond to Lower Manhattan (Aggregate 1), Mid-
town Manhattan (Aggregate 2), Upper West Side (Aggregate 3) and Upper East Side (Aggregate
4). The former two consist of mostly commercial and manufacturing districts, but also contain
smaller residential neighbourhoods, whereas the latter two contain mainly residential districts [2].
Despite being based on less that one-tenth of the data, our results are in excellent qualitative
agreement with the analysis of Zhu et al. [52, Figure 3]. We also observe good agreement with
the aggregates computed from the full transition matrix P (Figure ), although there appears to
be one systematic difference (Aggregate 4 seems to have “shifted down” into Aggregate 2). This
may however again be an artifact of the unconventional application of SEBA, as the difference
disappears when applying SEBA to the singular vectors directly.

Computation of the reduced transition matrix. We proceed to compute the reduced transition
matrix P̂ using the method detailed in Section 3.2, where we use the same randomly-selected
columns of P as for the aggregate computation, i.e., K = J . The transition matrix, shown in
Figure 10 (a), confirms the suspected roles of the identified zones: We see that taxi trips from
commercial areas (Aggregates 1 & 2) to the residential areas (Aggregates 3 & 4) are very rare in the
morning. Midtown on the other hand appears to be the primary destination for commuters from
Lower Manhattan and Upper East Side, which is explained by its status as the central business
district of the city. The only surprise here is that Upper East Side seems to be a (slightly) more
popular commuting destination than Midtown for residents of Upper West Side. One possible
explanation is that the commercial north eastern parts of Midtown were assigned to the Upper
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Figure 9: (a) Aggregates identified by Algorithm 3.1. Note that the SEBA algorithm may fail
to assign a state to an aggregate, so the aggregates do not form a full partition. (b) Aggregates
identified by spectral clustering of the singular vectors of the full transition matrix P .
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Figure 10: (a) Reduced transition matrix computed via (31). (b) Leading eigenvalues of the full
vs. the reduced transition matrix.

East Side aggregate by our algorithm, and that Upper West Side residents might be commuting to
this area. The reader should also be aware that this interpretation describes taxi commuters only,
which may follow different and possibly unintuitive dynamics compared to general commuters.

Moreover, we observe moderately high metastability of all the aggregates (i.e., many trips begin
and end in the same aggregate) which indicates that in Manhattan, even short journeys are often
performed by taxi.

Finally, the comparison of the leading four eigenvalues of the full (i.e., 601×601) and the reduced
(i.e., 4 × 4) transition matrices confirms that the reduced Markov chain captures the dominant
processes of the full chain very well (Figure 10 (b)).
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5. Conclusions

In this article, we derived a data-driven model reduction algorithm for large-scale Markov chains.
Crucially, the number of columns of the transition matrix required by the algorithm, i.e., the
number of states for which the outgoing transition probabilities have to be known, depends only
on the size of the reduced model, not the full model. We have demonstrated that in applications
where the computation of the transition matrix is the computational bottleneck, this can easily
lead to a speedup of factor 10 or more over conventional model reduction algorithms. In a certain
sense, the new method is able to circumvent the curse of dimensionality in model reduction in a
similar way that methods from compressed sensing can circumvent the Nyquist–Shannon sampling
theorem in signal processing and -compression.

In order to achieve this, the algorithm exploits a specific low-rank structure in the system’s
transition matrix. This low-rank structure has been shown to be induced by two natural simi-
larity conditions in the inflow and outflow probabilities of the states. We have argued that these
conditions are readily justifiable for a broad range of Markov chains for which the existence of a
reduced chain can expected. Importantly, the class of metastable Markov chains fulfills these con-
ditions. Moreover, in case where the formal conditions are only approximately fulfilled, we have
shown that the error in the reduced model is of the same order of magnitude as the perturbation,
and again is independent of the size of the full chain.

Future work. We expect the new method to be applicable to a wide variety of Markov chains
that are suspected to possess an underlying low-rank structure. Moreover, the central requirements
of our method, lumpability and deflatability, seem to be readily transferable to time- or space-
continuous Markov models. For example, the recently-introduced class of continuous dynamical
systems that possess a so-called transition manifold is characterized by the fact that its transition
probability functions cluster around a low-dimensional manifold in a certain function space [7].
We expect this defining property to be connectable to a continuous version of lumpability and
deflatability.

One tempting application of the new method is the conformation analysis of large biomolecules.
However, as the dimension of the underlying continuous system ranges in the order of 102 to 105,
the simple box-based Ulam discretization from Section 4.2 leads to difficulties. The first hurdle is
to represent and address the sheer amount of boxes numerically, which however can be overcome
by clever indexing. A bigger problem is that in this scenario, the number of boxes forming even
the core metastable sets is higher than any practicable number M of numerical simulations one
would be able to perform. Thus, the simple Monte Carlo procedure detailed in (32) is unsuited to
accurately approximate the transition distributions P[:,j], as many boxes of the core metastable sets
would not get hit by trajectories. A possible solution would be to utilize smooth ansatz functions
with global support instead of characteristic functions over boxes in (32), for example, via a
meshfree Galerkin approximation method [50]. This way, each performed simulation contributes
to estimating the prefactor of multiple (or possibly all) ansatz functions. It is however unclear if
the Markov chain arising as discretization on such ansatz functions still exhibits lumpability and
deflatability.
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Koltai for the reference to the coupon collector’s problem, as well as the anonymous reviewers for
helpful comments and suggestions.

29



References

[1] New York City TLC taxi trip data. https://www1.nyc.gov/site/tlc/about/data.page.
Accessed: 2019-10-02.

[2] New York City ZoLa zoning & land use map. https://zola.planning.nyc.gov/about#12.
31/40.73531/-73.94643. Accessed: 2019-10-22.

[3] A. Ando and F. M. Fisher. Near-Decomposability, Partition and Aggregation, and the Rele-
vance of Stability Discussions. International Economic Review, 4(1):53, Jan. 1963.

[4] C. Bartels and M. Karplus. Multidimensional adaptive umbrella sampling: Applications
to main chain and side chain peptide conformations. Journal of Computational Chemistry,
18(12):1450–1462, 1997.

[5] R. Bellman. Dynamic Programming. Dover Books on Computer Science Series. Dover Pub-
lications, 2003.

[6] A. R. Benson, D. F. Gleich, and L.-H. Lim. The spacey random walk: A stochastic process
for higher-order data. SIAM Review, 59(2):321–345, 2017.

[7] A. Bittracher, P. Koltai, S. Klus, R. Banisch, M. Dellnitz, and C. Schütte. Transition Man-
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A. Proof of Theorem 2.10

In order to show that almost aggregatable matrices are close to aggregatable matrices in the L1

matrix norm, we proceed as follows: first, we show that almost aggregatable matrices fulfill an
approximate version of state-wise lumpability. We then proceed to show that P is indeed close to
a lumpable matrix L(P ), and close to a deflatable matrix D(P ). The final part of the proof then
consists of showing that the matrix D

(
L(P )

)
is both lumpable and deflatable, and ε-close to P .

Lemma A.1. Let P be ε-almost aggregatable with respect to (Ω, π). Then
∥∥P[:,j] − P[:,k]

∥∥
1
≤ 3ε for all j, k ∈ [N ] with ω(j) = ω(k). (33)

Proof. We have

∑

i∈[N ]

∣∣Pij − Pik
∣∣ ≤

∑

i∈[N ]

∣∣∣Pij − πω(i)(i)
∑

l∈Ωω(i)

Plj

∣∣∣

+
∑

i∈[N ]

∣∣∣πω(i)(i)
∑

l∈Ωω(i)

Plj − πω(i)(i)
∑

l∈Ωω(i)

Plk

∣∣∣ (?)

+
∑

i∈[N ]

∣∣∣πω(i)(i)
∑

l∈Ωω(i)

Plk − Pik
∣∣∣

The first and third summand are each less than ε, due to P being ε-almost deflatable. For the
second summand we get, by splitting the outer sum into the sums over the individual aggregates,

(?) =
∑

r∈[R]

∑

p∈Ωr

∣∣∣πω(p)(p)
∑

l∈Ωω(p)

(
Plj − Plk

)∣∣∣

=
∑

r∈[R]

∑

p∈Ωr

(
πr(p)

∣∣∣
∑

l∈Ωr

(
Plj − Plk

)∣∣∣
)

=
∑

r∈[R]

∣∣∣
∑

l∈Ωr

(
Plj − Plk

)∣∣∣ ·
∑

p∈Ωr

πr(p)

︸ ︷︷ ︸
=1

≤
∑

i∈[N ]

∣∣Pij − Pik
∣∣ ≤ ε,

where the last inequality holds due to P being ε-almost lumpable.

We call condition (33) 3ε-almost state-wise lumpability of P with respect to Ω.

Lemma A.2. Let P be ε-almost state-wise lumpable with respect to Ω. Define the lumping
operator L : RN×N → RN×N by

L(A)ij :=
1

mω(j)

∑

l∈Ωω(j)

Ail.

Then L(P ) is a transition matrix that is state-wise lumpable with respect to Ω and it holds
∥∥P − L(P )

∥∥
1
≤ ε.

Proof. All columns of L(P ) that belong to one aggregate are identical, hence L(P ) is state-state-
wisewise state-wise lumpable.

Moreover, L(P ) is a column-stochastic matrix:

∑

i∈[N ]

L(P )ij =
∑

i∈[N ]

1

mω(j)

∑

l∈Ωω(j)

Pil =
1

mω(j)

∑

l∈Ωω(j)

∑

i∈[N ]

Pil

︸ ︷︷ ︸
=1

=
1

mω(j)

∑

l∈Ωω(j)

1 = 1.
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Finally, it holds for all j ∈ [N ]

∥∥P[:,j] − L(P )[:,j]

∥∥
1

=
∑

i∈[N ]

∣∣∣Pij −
1

mω(j)

∑

l∈Ωω(j)

Pil

∣∣∣

=
∑

i∈[N ]

∣∣∣ 1

mω(j)

∑

l∈Ωω(j)

(
Pij − Pil

)∣∣∣

≤ max
l∈Ωω(j)

∑

i∈[N ]

∣∣Pij − Pil
∣∣

≤ ε.

In the last inequality we used the definition of ε-almost state-wise lumpability. This implies
‖P − L(P )‖1 ≤ ε.

Lemma A.3. Let P be ε-almost deflatable with respect to (Ω, π). Define the deflating operator
D : RN×N → RN×N by

D(A)ij :=
( ∑

l∈Ωω(i)

Alj

)
· πω(i)(i).

Then D(P ) is a transition matrix that is deflatable respect to (Ω, π), and it holds

∥∥P −D(P )
∥∥

1
≤ ε.

Proof. By construction, D(P ) fulfills condition 4, hence is deflatable. Further, as condition (9)
holds for P , we have ∥∥P[:,j] −D(P )[:,j]

∥∥
1
≤ ε for all j ∈ [N ].

This in turn implies
∥∥P −D(P )

∥∥
1
≤ ε.

It remains to show is that D(P ) is indeed a column stochastic matrix. This follows from

∑

i∈[N ]

D(P )ij =
∑

i∈[N ]

( ∑

l∈Ωω(i)

Plj

)
· πω(i)(i)

=
∑

r∈[R]

∑

k∈Ωr

( ∑

l∈Ωω(k)

Plj

)
· πω(k)(k)

=
∑

r∈[R]

∑

k∈Ωr

( ∑

l∈Ωr

Plj

)
· πr(k)

=
∑

r∈[R]

( ∑

l∈Ωr

Plj

) ∑

k∈Ωr

πr(k)

︸ ︷︷ ︸
=1

=
∑

i∈[N ]

Plj = 1.

Combining these three auxiliary results allows us to show Theorem 2.10:

Proof of Theorem 2.10. Because P is ε-almost aggregatable, P is 3ε-almost state-wise lumpable
(Lemma A.1). Thus, due to Lemma A.2, L(P ) is a 3ε-almost state-wise lumpable transition
matrix, and ∥∥P − L(P )

∥∥
1
≤ 3ε.
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Moreover, L(P ) is ε-almost deflatable, i.e., (9) is fulfilled for L(P ):

∑

i∈[N ]

∣∣∣L(P )ij −
( ∑

l∈Ωω(i)

L(P )lj

)
πω(i)(i)

∣∣∣
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∣∣∣ 1

mω(j)
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Pik −
( ∑
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1
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)
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=
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≤ 1

mω(j)

∑

i∈[N ]

∑

k∈Ωω(j)

∣∣∣Pik −
( ∑

l∈Ωω(i)

Plk

)
πω(i)(i)

∣∣∣

=
1

mω(j)

∑

k∈Ωω(j)

∑

i∈[N ]

∣∣∣Pik −
( ∑

k∈Ωω(i)

Plk

)
πω(i)(i)

∣∣∣

︸ ︷︷ ︸
=:(??)

= (?).

Because P is ε-almost deflatable, we have (??) ≤ ε, hence

(?) ≤ ε

mω(j)

∑

k∈Ωω(j)

1 = ε.

Therefore, due to Lemma A.3, D
(
L(P )

)
is a ε-almost deflatable transition matrix, and it holds

∥∥L(P )−D
(
L(P )

)∥∥
1
≤ ε.

Define P := D
(
L(P )

)
and E := P − P . Then

‖E‖1 =
∥∥P −D

(
L(P )

)∥∥
1
≤
∥∥P − L(P )

∥∥
1︸ ︷︷ ︸

≤3ε

+
∥∥L(P )−D

(
L(P )

)∥∥
1︸ ︷︷ ︸

≤ε

≤ 4ε.
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