
Takustr. 7
14195 Berlin

Germany
Zuse Institute Berlin

NIELS LINDNER, JULIAN REISCH

Parameterized Complexity of Periodic Timetabling

ZIB Report 20-15 (May 2020)

Zuse Institute Berlin
Takustr. 7
14195 Berlin
Germany

Telephone: +49 30-84185-0
Telefax: +49 30-84185-125

E-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

bibliothek@zib.de
http://www.zib.de

Parameterized Complexity of Periodic Timetabling

Niels Lindner∗ Julian Reisch
lindner@zib.de julian.reisch@synoptics.de

Zuse Institute Berlin Synoptics GmbH

May 11, 2020

Abstract

Public transportation networks are typically operated with a periodic timetable. The Pe-
riodic Event Scheduling Problem (PESP) is the standard mathematical modelling tool for
periodic timetabling. Since PESP can be solved in linear time on trees, it is a natural ques-
tion to ask whether there are polynomial-time algorithms for input networks of bounded
treewidth. We show that deciding the feasibility of a PESP instance is NP-hard even when
the treewidth is 2, the branchwidth is 2, or the carvingwidth is 3. Analogous results hold
for the optimization of reduced PESP instances, where the feasibility problem is trivial. To
complete the picture, we present two pseudo-polynomial-time dynamic programming al-
gorithms solving PESP on input networks with bounded tree- or branchwidth. We further
analyze the parameterized complexity of PESP with bounded cyclomatic number, diame-
ter, or vertex cover number. For event-activity networks with a special – but standard –
structure, we give explicit and sharp bounds on the branchwidth in terms of the maximum
degree and the carvingwidth of an underlying line network. Finally, we investigate several
parameters on the smallest instance of the benchmarking library PESPlib.

1 Introduction

Creating and optimizing timetables is substantial for planning and operating public trans-
portation networks. As well as in local traffic as in long-distance train networks, timetables
are often periodic, i.e., the schedule of trips repeats after a certain period time T, e.g., 60 min-
utes.

Mathematically, periodic timetabling is captured by the Periodic Event Scheduling Problem
(PESP, Serafini and Ukovich, 1989). The idea behind PESP is to model arrival and departure
events of trips in a public transportation network as vertices (events) of a directed graph. De-
pendencies between events, such as driving of a vehicle or changing at a station, are modeled
as arcs (activities) connecting pairs of events. These activities come with restrictions on their
duration, e.g., driving from one station to the next might take at least 7 minutes. Then, a solu-
tion to PESP is an assignment of times in [0, T) to each event (a periodic timetable) such that the
activity duration restrictions are respected. We refer to Section 2 for rigorous formulations.

Deciding whether a periodic timetable exists is an NP-complete problem, even if T ≥ 3
is not considered as part of the input. This result can be proved by a polynomial-time re-
duction of T-VERTEX COLORING, where a T-coloring of a graph corresponds to event times

∗Funded by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excel-
lence Strategy – The Berlin Mathematics Research Center MATH+ (EXC-2046/1, project ID: 390685689).

1

in {0, 1, . . . , T − 1} (Odijk, 1994). This suggests a close relationship between PESP and color-
ing problems. In fact, both PESP and VERTEX COLORING are solvable in linear time on trees,
regardless of T. Furthermore, for any T, deciding if a graph admits a T-coloring is fixed-
parameter tractable when parameterized by treewidth. More precisely, there is a function f
such that for a given graph G on n vertices with a nice tree decomposition of treewidth ≤ k
and a natural number T, there is an O(f (k) · n) algorithm deciding the T-VERTEX COLORING

problem on G (Arnborg and Proskurowski, 1989).
We show in Section 3 that no such result holds for PESP: Even if the event-activity network

has treewidth 2 or branchwidth 2, i.e., every connected component is series-parallel, it is an
NP-complete problem to decide whether a feasible periodic timetable exists. When consider-
ing reduced PESP instances, where the activities carry only lower bounds, but no (non-trivial)
upper bounds, we prove that it is NP-complete to decide if there exists a periodic timetable
whose weighted periodic slack is below a given threshold. Both proofs work by a reduction
of the SUBSET SUM problem. As a byproduct, we also obtain an NP-hardness result on net-
works of carvingwidth 3. As a consequence, if P 6= NP, then there are only pseudo-polynomial
time algorithms available for both the feasibility and the reduced optimality problem. We give
two such algorithms based on dynamic programming in Section 4, one in terms of a branch
decomposition, and the other one in terms of a nice tree decomposition.

In Section 5, we prove that the feasibility version of PESP is fixed-parameter tractable when
parameterized by the cyclomatic number, i.e., the dimension of the cycle space of the event-
activity network. For computing periodic timetables with minimum weighted periodic slack,
we give a polynomial-time algorithm when the cyclomatic number is bounded. We further
discuss the diameter as a parameter. Some generalizations of the VERTEX COLORING problem
like, e.g., L(2, 1)-LABELING, are also NP-complete on graphs of treewidth ≥ 2, but are fixed-
parameter tractable when parameterized by the vertex cover number, i.e., the cardinality of
a minimum vertex cover (Fiala et al., 2011). We prove that deciding the feasibility of a PESP
instance is W[1]-hard when parameterized by the vertex cover number.

As PESP instances arising from public transportation networks typically have a special
structure, we show in Section 6 that on this type of event-activity networks, the branchwidth
can be related to invariants of an underlying line network: Roughly speaking, the number of
lines at a station of a public transport network is a (sharp) lower bound on the branchwidth
of the event-activity network. The carvingwidth of the often planar line network provides
an upper bound, which is also sharp. Finally, we consider the smallest instance R1L1 of the
PESP benchmarking library PESPlib, and use the relation to line networks in order to compute
bounds on the width parameters discussed in this paper.

The presentation finishes with a few concluding remarks in Section 7.

2 The Periodic Event Scheduling Problem

The Periodic Event Scheduling Problem (PESP) was introduced in (Serafini and Ukovich, 1989).
PESP instances comprise the following ingredients:

• a directed graph G (often called event-activity network) with vertex set V(G) (events) and
arc set A(G) (activities),

• a period time T ∈N,

• lower bounds ` ∈ Z
A(G)
≥0 , ` < T,

• upper bounds u ∈ Z
A(G)
≥0 , u ≥ `,

2

• weights w ∈ Q
A(G)
≥0 .

In the application of periodic timetabling in public transport, the events are typically ar-
rivals or departures of a line at a station, and activities model driving between stations, dwelling
at a station, passenger transfers, or safety constraint such as minimum distances between vehi-
cles (Liebchen and Möhring, 2007). The weights often reflect the number of passengers using
an activity.

Definition 2.1. Given (G, T, `, u) as above, a periodic timetable is a vector π ∈ [0, T)V(G) such
that there exists a periodic tension x ∈ R

A(G)
≥0 satisfying

∀ij ∈ A(G) : `ij ≤ xij ≤ uij and πj − πi ≡ xij mod T. (1)

Intuitively, π gives the cyclic order of the events, and x corresponds to the duration of the
activities. If there exists a periodic timetable π, then a periodic tension can be computed by

xij := [πj − πi − `ij]T + `ij, ij ∈ A(G), (2)

where [·]T denotes the modulo-T-operator taking values in [0, T). Conversely, from a vector
x ∈ R

A(G)
≥0 with ` ≤ x ≤ u, one can construct a periodic timetable with tension x by a graph

traversal, see also Lemma 2.7.
In terms of the incidence matrix B ∈ {−1, 0, 1}V(G)×A(G), condition (1) can be rewritten as

` ≤ x ≤ u and Btπ ≡ x mod T.

Since B and hence are Bt are totally unimodular (Schrijver, 1986, Example 19.2) and the bounds
`, u are integer, it follows that if a periodic timetable exists, then there is also an integer timetable
with an integer periodic tension. However, in general, it is not at all clear that a periodic
timetable exists:

Definition 2.2 (T-PESP-FEASIBILITY). Given a tuple (G, T, `, u) as above, decide if there exists
a periodic timetable π.

Theorem 2.3 (Odijk, 1994). T-PESP-FEASIBILITY is NP-complete for fixed T ≥ 3.

Proof. It is clear that T-PESP-FEASIBILITY is in NP, as a feasible timetable π with periodic
tension x serves as certificate. We recall the proof in order to emphasize the natural relationship
between PESP and VERTEX COLORING. Fix T ≥ 3. Given an undirected graph H, construct
a T-PESP-FEASIBILITY instance (G, T, `, u) as follows: G is obtained from H by arbitrarily
directing the edges, and set ` := 1, u := T − 1. Then, H admits a T-coloring if and only if
(G, T, `, u) has a periodic timetable π. Namely, if f : V(H) → {0, . . . , T − 1} is a T-coloring,
then setting πi := f (i) for all i ∈ V(G) is a periodic timetable, as for every arc ij ∈ A(G) then
holds xij = [πj − πi]T = [f (j)− f (i)]T ∈ [1, T − 1]. Vice versa, if the PESP instance is feasible,
then there is an integer timetable, giving rise to a T-coloring.

So far, we have neglected the weight vector w ∈ Q
A(G)
≥0 . The weights come into play in the

optimization variant of PESP, which we state as its corresponding decision version. If x is a
periodic tension, we call y := x− ` ≥ 0 the periodic slack.

Definition 2.4 (T-PESP-OPTIMALITY). Given (G, T, `, u, w) as above and a number M, find a
periodic timetable π with periodic slack y such that wty ≤ M.

3

Minimizing the weighted periodic slack, or equivalently, the weighted periodic tension,
can be interpreted as minimizing the total travel time of all passengers in a public transporta-
tion network. Clearly, T-PESP-OPTIMALITY is an NP-hard optimization problem. However, in
many non-railway public transport networks, minimum distances are neglected for planning,
and the driving and dwelling times of vehicles have a rather small span, so that they can be
assumed as fixed. Contracting the corresponding activities yields a graph where only transfer
activities remain, and these have typically no restrictions on their durations in the sense that
lower and upper bounds differ by at least T− 1. This motivates the following specialization of
PESP, sometimes called reduced PESP:

Definition 2.5 (T-RPESP-OPTIMALITY). Given (G, T, `, u, w) as above with u ≥ `+ T− 1 and
a number M, find a periodic timetable π with periodic slack y such that wty ≤ M.

Note that the feasibility problem is trivial to solve: Any integral vector π ∈ [0, T)V(G) is a
periodic timetable, because for any acitivity ij ∈ A(G),

`ij ≤ xij = [πj − πi − `ij]T + `ij ≤ T − 1 + `ij ≤ uij.

Theorem 2.6 (Nachtigall, 1993). T-RPESP-OPTIMALITY is NP-hard for any fixed T ≥ 3.

Proof. We adapt the proof of Nachtigall to our notions and notations. Fix some period time
T ≥ 3. We reduce T-PESP-FEASIBILITY to T-RPESP-OPTIMALITY. Let (G, T, `, u) be a T-
PESP-FEASIBILITY instance. Without loss of generality, assume that u− ` < T, because if the
instance is feasible, then there is a periodic tension x satisfying x < `+ T by (2). Add to each
arc a ∈ A(G) from i to j a reverse copy a with `a := [−ua]T. Set all weights w to 1. For this
T-RPESP-OPTIMALITY instance, let π be a periodic timetable with tension x as defined in (2).
Then for any original arc a holds `a ≤ xa < `a + T and xa ≡ −xa mod T. For the slacks ya and
ya, we obtain

ya + ya = [xa − `a]T + [ua − xa]T.

Since 0 ≤ xa − `a ≤ ua − `a < T and −T < `a − xa ≤ ua − xa ≤ ua − `a < T,

ya + ya =

{
ua − `a if ua − xa ≥ 0,
ua − `a + T if ua − xa < 0.

In particular, for the weighted slack of the T-RPESP-OPTIMALITY instance holds

∑
a∈A(G)

(ya + ya) ≥ ∑
a∈A(G)

(ua − `a),

and equality holds if and only if xa ≤ ua for all a ∈ A(G). This means that the T-PESP-
FEASIBILITY instance is feasible if and only if the described T-RPESP-OPTIMALITY instance
has weighted periodic slack at most M := ∑a∈A(G)(ua − `a).

We turn now to simple algorithms for T-PESP-OPTIMALITY. Consider at first instances
where undirecting the event-activity network results in a tree (shortly, G is a tree):

Lemma 2.7. If G is a tree on n vertices, then T-PESP-OPTIMALITY on (G, T, `, u, w) can be solved
in O(n) time. Morever, ` is an optimal periodic tension, and the minimum weighted periodic slack is 0.

Proof. If undirecting G results in a tree on n vertices, then the transpose Bt of the incidence
matrix B of G is a (n− 1)× n matrix of full rank n− 1. In particular, Btπ = ` has a solution
over Z, and reducing modulo T gives a feasible periodic timetable π∗ with periodic tension `
and hence weighted periodic slack 0.

4

Avoiding linear algebra, π∗ can as well be obtained by traversing the tree, starting with
π∗v = 0 at an initial vertex v and setting π∗j := [π∗i + `ij]T when traversing ij ∈ A(G), and
π∗j := [π∗i − `ij]T if ji ∈ A(G) is traversed. A depth-first traversal takes O(|V(G)|+ |A(G)|) =
O(n) time.

On general networks, there are several ways to give naive exponential-time algorithms for
T-PESP-OPTIMALITY:

Lemma 2.8. On instances (G, T, `, u, w) with n events and m activities, T-PESP-OPTIMALITY can
be solved in

1. O∗(Tn−1), or

2. O∗(2n−1nn−2), or

3. O∗(3m) time,

where O∗(·) means O(·) ignoring polynomial factors.

Proof.

1. Enumerate all Tn integral vectors in [0, T)V(G), compute x by (2), and check the bounds.
This is an O(mTn) algorithm. If π is a periodic timetable, then for any d ∈ R, π′ defined
by π′i := [πi + d]T for all i ∈ V(G) is a periodic timetable with the same periodic tension.
In particular, only Tn−1 vectors have to be enumerated.

2. By Nachtigall (1998), if G is weakly connected and the instance is feasible, there is an
optimal periodic tension x∗ and a spanning tree F of G such that x∗a ∈ {`a, ua} for all
a ∈ A(F). Enumerate all O(nn−2) spanning trees F of G. For each such F, enumerate all
2n−1 vectors x ∈ ∏a∈A(F){`a, ua}. Interpreting x as a periodic tension defines a periodic
timetable π ∈ [0, T)V(G) which can be computed by an O(n + m) depth-first traversal as
in the proof of Lemma 2.7 (replacing ` by x). Use (2) to compute the periodic tension xa
of all O(m) remaining co-tree arcs a /∈ A(F) and check if the bounds are satisfied. If G is
not connected, T-PESP-OPTIMALITY can be solved on each component individually.

3. Let B denote the incidence matrix of G. Then the modulo constraint Btπ ≡ x mod T is
satisfied if and only if there is a vector p ∈ ZA(G) such that Btπ = x− Tp. Since any entry
of Btπ lies in the interval (−T, T), and any tension computed by (2) satisfies x ∈ [0, 2T),
it suffices to consider p ∈ {0, 1, 2}A(G) , cf. Liebchen (2006, Lemma 9.2). The algorithm is
now to solve the problem

Minimize wty

s.t. Btπ = x− Tp,
` ≤ x ≤ u

for each fixed p ∈ {0, 1, 2}A(G). This is a series of 3m linear programs.

Somewhat unsurprisingly, Lemma 2.8 implies that all three presented PESP variants are
solvable in polynomial time when the number of events or the number of activities is fixed. In
the remainder of the paper, we investigate several graph parameters and their effects on the
parameterized complexity of PESP, starting with treewidth.

5

3 PESP on Networks of Treewidth Two

3.1 Subset Sum

Definition 3.1 (Garey and Johnson, 1979, SP13). The SUBSET SUM problem is the following:
Given r ∈N, c ∈ Zr

≥0 and C ∈ Z≥0 with C ≤ ∑r
i=1 ci, is there a z ∈ {0, 1}r such that ctz = C?

The SUBSET SUM problem is weakly NP-complete (Karp, 1972). We will at first construct a
polynomial-time reduction of SUBSET SUM to T-PESP-FEASIBILITY.

Definition 3.2. Let (r, c, C) be a SUBSET SUM instance as above. Define I(r, c, C) as the instance
(G, T, `, u) for T-PESP-FEASIBILITY as depicted in Figure 1 with T := ∑r

i=1 ci + 1.

0 1 2 3 . . . r− 1 r

[0, c1]

[c1, T]

[0, c2]

[c2, T]

[0, c3]

[c3, T]

[0, cr]

[cr, T]

[C, C]

Figure 1: Instance I(r, c, C): arcs a are labeled with [`a, ua], T := ∑r
i=1 ci + 1

Lemma 3.3. The SUBSET SUM instance (r, c, C) has a solution if and only if T-PESP-FEASIBILITY

has a solution on the instance I(r, c, C).

Proof. Let π be a periodic timetable for I(r, c, C). Then [πi − πi−1]T ∈ {0, ci} holds for all
i ∈ {1, . . . , r}. Set

zi :=

{
1 if [πi − πi−1]T = ci,
0 otherwise,

i = 1, . . . , r.

For the arc (0, r), we then obtain

C = [C]T = [πr − π0]T =

[
r

∑
i=1

(πi − πi−1)

]
T

=

[
r

∑
i=1

zici

]
T

=
r

∑
i=1

zici,

and found a positive answer to the SUBSET SUM problem on (r, c, C). Conversely, any vector
z ∈ {0, 1}r such that ctz = C yields a feasible periodic timetable π by setting

π0 := 0 and πi := πi−1 + zici, i = 1, . . . , r.

3.2 Treewidth

Definition 3.4 (e.g., Robertson and Seymour, 1984). Given a graph G, a tree decomposition of G
is a pair (T ,X) consisting of a tree T and a family of bags X = (Xt)t∈V(T) with Xt ⊆ V(G) for
each t ∈ V(T) such that

6

1.
⋃

t∈V(T) Xt = V(G),

2. for each a ∈ A(G), there is a bag Xt containing both endpoints of a,

3. for each v ∈ V(G), the subforest of T induced by {t ∈ V(T) | v ∈ Xt} is connected.

The width of a tree decomposition is maxt∈(T) |Xt| − 1, and the treewidth of G is defined as the
minimum possible width of a tree decomposition, i.e.,

tw(G) := min
{

max
t∈V(T)

|Xt|
∣∣∣∣ (T ,X) is a tree decomposition of G

}
− 1.

This definition applies to both undirected and directed graphs, and as well to multigraphs.
According to Definition 3.4. the treewidth of a graph with multiple edges equals the treewidth
of the graph where all multiple edges between two vertices are replaced by a single edge. The
simple connected graphs of treewidth 1 are precisely the trees.

Lemma 3.5. For any SUBSET SUM instance (r, c, C) with r ≥ 2, the event-activity network G of the
instance I(r, c, C) has treewidth 2.

Proof. The path of length r depicted in Figure 2, where each node is labeled with its bag, is a
tree decomposition of G. Checking the properties of a tree decomposition is straightforward.

0, 1, 2 0, 2, 3 0, 3, 4 . . . 0, r− 1, r

Figure 2: An optimal tree decomposition of width 2 for the I(r, c, C) network

The maximum bag size is 3, and hence tw(G) ≤ 2. Removing one of the two arcs from i to
i + 1, i = 0, . . . , r − 1, does not change the treewidth in the sense of Definition 3.4. As r ≥ 2,
this results in a simple graph containing a cycle, so that tw(G) ≥ 2.

An alternative way to see that the network G of I(r, c, C) has treewidth at most 2 is to
observe that G is series-parallel (see, e.g., Bodlaender and van Antwerpen-de Fluiter, 2001,
Lemma 3.4). Combining Lemma 3.3 and Lemma 3.5, we obtain:

Theorem 3.6. T-PESP-FEASIBILITY is NP-complete on networks of treewidth at most 2.

Since the transformation in the proof of Theorem 2.6 reduces the T-PESP-FEASIBILITY

problem to T-RPESP-OPTIMALITY by adding antiparallel arcs, which does not alter the treewidth,
we have moreover:

Theorem 3.7. T-RPESP-OPTIMALITY is NP-complete on networks of treewidth at most 2.

Remark 3.8. If simple graphs are desired, one can dispose of the parallel arcs in I(r, c, C) by
subdividing any arc with bounds [0, ci] into two arcs with bounds [0, ci] and [0, 0] without
affecting the feasibility of the PESP instance. Moreover, one checks that this does not increase
the treewidth of I(r, c, C).

Remark 3.9. In the proof of Lemma 3.3, the period time T is chosen very large. The above NP-
completeness theorems hence do not hold when T is fixed. We will give a pseudo-polynomial
algorithm for T-PESP-OPTIMALITY with bounded treewidth in Section 4, showing that fixing
both T and the treewidth results in a polynomial-time algorithm.

Remark 3.10. We want to remark that there has already been a paper (van Heuven van Staerel-
ing, 2018) titled Tree Decomposition Methods for the Periodic Event Scheduling Problem. However,
the title is misleading, as the algorithm there is about finding trees in the network rather than
considering tree decompositions in the usual sense.

7

3.3 Branchwidth

Definition 3.11 (Robertson and Seymour, 1991). Given a graph G, a branch decomposition of G is
a pair (B, ϕ), where B is a tree such that every non-leaf node has degree 3, and ϕ is a bijection
from the leaves of B to A(G). Deleting an edge e of B disconnects B into two subtrees and
hence partitions the leaves of B into two sets. Applying ϕ, this yields a partition A = A1

e
.
∪ A2

e .
This defines in turn a vertex separator Se ⊆ V as the set of vertices that are incident both to an
edge in A1

e and to an edge in A2
e .

The width of a branch decomposition (B, ϕ) is defined as maxe∈E(B) |Se|. The branchwidth of G
is then the minimum possible width of a branch decomposition, i.e.,

bw(G) := min
{

max
e∈E(B)

|Se|
∣∣∣∣ (B, ϕ) is a branch decomposition of G

}
.

Treewidth and branchwidth are related as follows:

Theorem 3.12 (Robertson and Seymour, 1991, 5.1). If bw(G) ≥ 2, then

bw(G) ≤ tw(G) + 1 ≤
⌊

3
2

bw(G)

⌋
.

It follows immediately that the problems T-PESP-FEASIBILITY and T-RPESP-OPTIMALITY

are NP-complete on networks with branchwidth 3. We prove below that the NP-completeness
is already given for branchwidth 2.

Lemma 3.13. For any SUBSET SUM instance (r, c, C), the event-activity network G of the instance
I(r, c, C) has branchwidth 2.

Proof. Figure 3 shows a branch decomposition of G, where the leaves are labeled with the
corresponding arc, and the edges are labeled with the cardinality of the corresponding ver-
tex separator. This is clearly a branch decomposition. Checking the cardinalities of the ver-

(0, 1) (0, 1)′ (1, 2) (1, 2)′ (2, 3) (2, 3)′ (n− 1, n) (n− 1, n)′

(0, n). . .

2 2 2 2 2 2 2 2

2 2 2 2 2 2

Figure 3: An optimal branch decomposition of width 2 for the I(r, c, C) network

tex separators is again straightforward, and hence bw(G) ≤ 2. The network G cannot have
branchwidth 1, as in any branch decomposition, the edge incident to the leaf representing (0, r)
always induces the vertex separator {0, r} of size 2.

Theorem 3.14. T-PESP-FEASIBILITY and T-RPESP-OPTIMALITY are NP-complete on networks
with branchwidth at most 2.

Proof. For T-PESP-FEASIBILITY, this follows from Lemma 3.3 and Lemma 3.13. Introducing
anti-parallel arcs in the network of I(r, c, C) does not increase the branchwidth of 2: In the
branch decomposition of the proof of Lemma 3.13, replace a leaf with a vertex of degree 3 adja-
cent to two new leaves corresponding to the two anti-parallel arcs. The new edges have vertex
separators of size 2. Consequently, the transformation in the proof of Theorem 2.6 does not
alter the branchwidth, and T-RPESP-OPTIMALITY is NP-complete on networks with branch-
width at most 2.

8

Another approach to prove Lemma 3.13 and Theorem 3.14 is to exploit that a graph of
treewidth at most 2 has branchwidth at most 2 (combine, e.g., Bodlaender and van Antwerpen-
de Fluiter, 2001, Lemma 3.5 with Robertson and Seymour, 1991, 4.2).

3.4 Carvingwidth

Carvingwidth is defined analogously to branchwidth, by labeling the leaves of an unrooted
binary tree with the vertices of the original graph instead of the edges.

Definition 3.15 (Seymour and Thomas, 1994). Given a graph G, a carving decomposition of G is
a pair (C, ψ), where C is a tree such that every non-leaf node has degree 3, and ψ is a bijection
from the leaves of C to V(G). Removing an edge e of C induces a partition of the leaves of C,
and hence via ψ also a partition V(G) = V1

e
.
∪ V2

e . Let δ(V1
e) (= δ(V2

e)) denote the set of cut
edges.
The maximum cardinality of δ(V1

e) taken over all e ∈ E(C) is the width of (C, ψ). The carving-
width of G is defined as

cw(G) := min
{

max
e∈E(C)

|δ(V1
e)|
∣∣∣∣ (C, ψ) is a carving decomposition of G

}
.

The definition of carvingwidth applies to multigraphs as well, but in contrast to branch-
and treewidth, it is sensitive to multiple edges: The carvingwidth is at least the maximum
vertex degree ∆(G), as cw(G) ≥ deg(v) = |δ(v)| for each v ∈ V(G). Carvingwidth is related
to branchwidth as follows:

Theorem 3.16 (Nestoridis and Thilikos, 2014; Eppstein, 2018). Let G be a graph with maximum
vertex degree ∆(G). Then

max
(

∆(G),
⌈

1
2

bw(G)

⌉)
≤ cw(G) ≤ ∆(G) · bw(G).

Theorem 3.17. T-PESP-FEASIBILITY is NP-complete on networks of carvingwidth at most 3, and
T-RPESP-OPTIMALITY is NP-complete on networks of carvingwidth at most 6.

Proof. Let r ≥ 2 and consider again an instance of the form I(r, c, C) with event-activity
network G. Then ∆(G) = 4, so that cw(G) ≥ 4. For all i ∈ {1, . . . , r − 1}, split vertex
i into two new vertices i+ and i−, connected by a single directed arc (i+, i−) with bounds
`i+,i− = ui+,i− = 0. The splitting is done in such a way that the arcs entering i are now entering
i+, and the arcs leaving i are leaving i−. Any periodic timetable has the same value at i+ and
i−, so that the proof of Lemma 3.3 carries over. However, the modified graph has maximum
degree 3. The carving decomposition in Figure 4, where the edges labeled with the number
of cut edges, has width 3. Hence T-PESP-FEASIBILITY is NP-complete on networks of carv-

0

1+ 1− 2+ 2− (r− 1)+ (r− 1)−

r. . .3 2 3 2 2 3

3 3 3 3 3 3

Figure 4: An optimal carving decomposition of width 3 of the modified I(r, c, C) network

ingwidth 3. As a consequence, keeping in mind the arc duplication occurring in the proof of
Theorem 2.6, T-RPESP-OPTIMALITY is NP-complete for carvingwidth 6.

9

Remark 3.18. T-PESP-OPTIMALITY is trivial to solve on graphs G with cw(G) = 1, as then
∆(G) ≤ 1 by Theorem 3.16. If cw(G) = 2, then ∆(G) ≤ 2, so that any weakly connected
component of G, seen as an undirected graph, is either a path or a cycle. T-PESP-OPTIMALITY

is solvable in linear time on paths (Lemma 2.7). We will see later in Theorem 5.6 that T-PESP-
OPTIMALITY admits a polynomial-time algorithm for bounded cyclomatic number, and in par-
ticular on a single cycle.

4 Dynamic Programs

The SUBSET SUM problem is weakly NP-complete and can be solved by pseudo-polynomial-
time algorithms. In the following, we present two dynamic programs for T-PESP-OPTIMALITY

running in pseudo-polynomial time for event-activity networks of bounded treewidth and
branchwidth, respectively. Since T-PESP-OPTIMALITY comprises both T-PESP-FEASIBILITY

and T-RPESP-OPTIMALITY, this implicitly gives pseudo-polynomial time algorithms for these
problems as well.

4.1 PESP and Vertex Separators

The key insight for our dynamic programming approach is the following decomposition prop-
erty: Let I = (G, T, `, u, w) be a T-PESP-OPTIMALITY instance. For any partition A(G) =

A1 .
∪ A2, we can partition I into two subinstances I1 resp. I2 restricted to the activities in A1

resp. A2. If y is a feasible periodic slack on I, then the restrictions y1 resp. y2 to I1 resp. I2 yield
feasible periodic slacks with the property

∑
a∈A(G)

waya = ∑
a∈A1

way1
a + ∑

a∈A2

way2
a. (3)

On the level of timetables, we obtain from a timetable π on I two timetables π1 resp. π2 on I1

resp. I2 such that π, π1 and π2 all coincide when restricted to the events of the vertex separator
S associated to the partition of A(G) as in Definition 3.11.

Conversely, we can glue two periodic timetables π1 and π2 together to a timetable π on I
if the restrictions to a vertex separator S satisfy π1|S = π2|S. For the corresponding periodic
slacks then holds Equation (3).

Definition 4.1. Let I = (G, T, `, u, w) be a T-PESP-OPTIMALITY instance, and let S ⊆ V(G).
For a vector ρ ∈ [0, T)S, define OPT(I, S, ρ) as the minimum weighted slack of a periodic
timetable π on I when additionally π|S = ρ is required.

For minimum weighted slacks, the above discussion shows the following:

Lemma 4.2. Let I = (G, T, `, u, w) be a feasible T-PESP-OPTIMALITY instance. Let A(G) =
A1 .
∪ A2 be a partition with vertex separator S giving subinstances I1 and I2 of I. Then

OPT(I) = min{OPT(I1, S, π|S) + OPT(I2, S, π|S) | π is a feasible periodic timetable on I}.

More generally, if additionally the timetable on W ⊆ V(G) is fixed to ρ ∈ [0, T)W , then

OPT(I, W, ρ) = min{OPT(I1, S ∪W1, π|S∪W1) + OPT(I2, S ∪W2, π|S∪W2) |
π is a feasible periodic timetable on I with π|W = ρ},

where W i = W ∩Vi denotes the intersection of W with the set of events Vi of Ii, i = 1, 2.

10

4.2 A Branch Decomposition Approach

Since branch decompositions naturally encode vertex separators, we describe at first a branch-
decomposition-based dynamic program for T-PESP-OPTIMALITY. Let I = (G, T, `, u, w) be
a T-PESP-OPTIMALITY instance. We assume that G is 2-edge-connected when seen as undi-
rected graph. Let (B, ϕ) be a branch decomposition of G with node set V(B) and edge set
E(B). Subdivide an arbitrary edge of E(B) and call the new node τ the root. Recall from
Definition 3.11 that every edge e ∈ E(B) corresponds to a partition A = A1

e
.
∪ A2

e with ver-
tex separator Se. We assume that A1

e is the subset of activities coming from the component of
B \ {e} not containing the root τ.

Algorithm 4.3. For each edge e ∈ E(B), we compute an |Se|-dimensional table Fe having an
entry for each π ∈ {0, . . . , T − 1}Se . The table Fe is filled by a dynamic program starting from
the edges e ∈ E(B) incident to leaves and with decreasing distance to the root:

1. If e ∈ E(B) is incident to a leaf corresponding via ϕ to an activity ij ∈ A(G), then set

Fe(π) :=

{
wij[πj − πi − `ij]T if [πj − πi − `ij]T ≤ uij − `ij,
∞ otherwise.

2. If e is incident to two edges e1, e2 with larger distance from the root, then set

Fe(π) := min{Fe1(π
′|Se1

) + Fe2(π
′|Se2

) | π′ ∈ {0, . . . , T − 1}Se1∪Se2 , π′|Se = π}.

3. If the tables of the two edges e1, e2 incident to τ have been computed, return

min{Fe1(π) + Fe2(π) | π ∈ {0, . . . , T − 1}Se1}.

Lemma 4.4. Let e ∈ E(B), π ∈ {0, . . . , T − 1}Se . Denote by Ie the subinstance of I containing
precisely the activities in A1

e .

1. If Fe(π) < ∞, then Fe(π) = OPT(Ie, Se, π).

2. If Fe(π) = ∞, then Ie is infeasible.

Proof. Recall from Section 2 that it suffices to consider timetables with values in the discrete set
{0, . . . , T − 1}, as ` and u are integer.

If e is incident to a leaf associated to an activity ij ∈ A(G), then A1
e = {ij} and Se = {i, j}, as

G is 2-edge-connected. Hence OPT(Ie, Se, π) is the minimum weighted slack of the activity ij
when the timetable at i resp. j is fixed to πi resp. πj. Therefore we set Fe(π) to wij[πj−πi− `ij]T
if the slack [πj − πi − `ij]T is feasible and otherwise to ∞.

Otherwise, let e be adjacent to e1, e2 ∈ E, with e1, e2 having larger distance from the root
than e. Then A1

e = A1
e1

.
∪ A1

e2
and hence Se ⊆ Se1 ∪ Se2 . Moreover, (Se1 ∪ Se2) \ Se is the vertex

separator of the partition of A1
e = A1

e1

.
∪ A1

e2
. Applying Lemma 4.2 for W = Se and S =

(Se1 ∪ Se2) \ Se yields the formula in Algorithm 4.3.

Lemma 4.5. If k = maxe∈E(B) |Se| and m = |A(G)|, then Algorithm 4.3 computes OPT(I) or decides
that I is infeasible in O(mTb3k/2c) time.

11

Proof. We first consider correctness. At the root τ with incident edges e1, e2, Algorithm 4.3 com-
putes the tables Fe1 , Fe2 such that Fei(π) = OPT(Iei , Sei , π) for all π and i = 1, 2 by Lemma 4.4.
Observe that A1

e1
= A2

e2
, A2

e1
= A1

e2
, and Se1 = Se2 , so that by the first equation in Lemma 4.2,

OPT(I) = min{OPT(Ie1 , Se1 , π) + OPT(Ie2 , Se2 , π) | π ∈ {0, . . . , T − 1}V feasible timetable}.

This is precisely reflected in the third step of Algorithm 4.3, treating infeasible subinstances
with infinite objective value.

Concerning running time, Step 1 can be done in O(T2) time and is called m times. Step 3
takes O(Tk) time since |Se1 | ≤ k. As any node in the rooted branch decomposition has either
0 or 2 children and there are m leaves, there are m− 1 edges for which Step 2 is called. Each
of the |Se| table entries requires to take a minimum over |(Se1 ∪ Se2) \ Se| previously computed
table entries.

We claim that
2|Se1 ∪ Se2 | ≤ |Se1 |+ |Se2 |+ |Se|.

If i ∈ Se1 \ Se2 , then i is adjacent to an activity a ∈ A1
e1

and a′ /∈ A1
e1

. Since A1
e1

and A1
e2

are
disjoint, a /∈ A1

e2
. As i /∈ Se2 , then also a′ /∈ A1

e2
, and consequently a′ /∈ A1

e = A1
e1
∪ A1

e2
. It

follows that i ∈ Se, and any such i appears hence twice in the right-hand side of the above
inequality. By symmetry, the same holds for all i ∈ Se2 \ Se1 . Clearly, any i ∈ Se1 ∩ Se2 is
counted both in |Se1 | and |Se2 |. This proves the claim. The relation between the separators is
also depicted in Figure 5.

A1
e1

A1
e2

S e1
Se2Se

Figure 5: Relation between Se, Se1 and Se2

Since the size of any of the three vertex separators is bounded by k, we obtain

|Se|+ |(Se1 ∪ Se2) \ Se| = |Se1 ∪ Se2 | ≤
⌊

3k
2

⌋
.

Thus, Step 2 accounts in total for a running time of O(mTb3k/2c), and this dominates the other
steps, as k ≥ 2 since |Se| = 2 for every edge e incident to a leaf of B.

Having presented the core dynamic program, we now turn to the surrounding problems:

Finding an optimal branch decomposition. If bw(G) ≤ k, then there is a linear-time algo-
rithm computing a branch decomposition of width ≤ k (Bodlaender and Thilikos, 1997).

Computing an optimal timetable. By additional bookkeeping, we can not only compute the
minimum weighted slack, but also a periodic timetable realizing this slack.

12

2-edge-connectedness. It is clear from the description of T-PESP-OPTIMALITY that the prob-
lem can be solved on each weakly connected component of G individually. Moreover, if one of
these components is not 2-edge-connected, then the optimal periodic slack of any bridge will
be zero (Borndörfer et al., 2019, §3.2). Hence one can safely assume w.l.o.g. that G is 2-edge-
connected. Note that this assumption implies bw(G) ≥ 2.

Fixing. If π is a feasible periodic timetable and d ∈ R, then the timetable π′ defined by
π′i := [πi + d]T for all i ∈ V(G) is feasible as well and produces the same periodic slack. In
particular, in Algorithm 4.3, for all e ∈ E, one can choose an event i ∈ Se and then fix πi = 0.
Thus Algorithm 4.3 can be adapted to run in O(mTb3k/2c−1) time.

As a consequence, in conjunction with Lemma 2.7 and Theorem 3.14, we obtain:

Theorem 4.6. For k ∈ N, there is an O(mTb3k/2c−1) algorithm solving T-PESP-OPTIMALITY

on event-activity networks G with m activities and bw(G) ≤ k. In particular, if k ≥ 2 is fixed,
then T-PESP-OPTIMALITY, T-PESP-FEASIBILITY and T-RPESP-OPTIMALITY are all weakly NP-
complete.

4.3 A Tree Decomposition Version

In this subsection, we develop a tree decomposition analogue of Algorithm 4.3. Let I =
(G, T, `, u, w) be a T-PESP-OPTIMALITY instance. Let (T ,X) be a tree decomposition. We
assume that (T ,X) is rooted, i.e., we pick an arbitrary leaf node τ ∈ V(T) and turn T into an
arborescence where all edges point away from τ. Further suppose that the tree decomposition
is nice (Kloks, 1994, Definition 13.1.15), i.e., each node t ∈ V(T) with bag Xt fits into precisely
one of the following categories:

• Root: t = τ,

• Leaf : t 6= τ, t has no children, and |Xt| = 1,

• Introduce: t has exactly one child u and one parent, Xu ⊆ Xt, and |Xt| = |Xu|+ 1,

• Forget: t has exactly one child u and one parent, Xt ⊆ Xu, and |Xt| = |Xu| − 1,

• Join: t has exactly two children u1, u2 and one parent, and Xt = Xu1 = Xu2 .

Algorithm 4.7. For each node t ∈ V(T), we compute a |Xt|-dimensional table Dt having an
entry for each π ∈ {0, . . . , T − 1}Xt . The table Dt is filled by the following dynamic program
from the leaves to the root, depending on the role of the node t in the nice tree decomposition:

• If t 6= τ is a leaf, then Xt = {i} for a single event i ∈ V. For all π ∈ {0, . . . , T − 1}, set
Dt(π) := 0.

• If t is an introduce vertex with child u, then Xt = Xu ∪ {i} for some event i. Put

Dt(π) := Du(π|Xu) + ∑
ij∈A(G): j∈Xu

wijyij + ∑
ji∈A(G): j∈Xu

wjiyji,

where, for ij ∈ A(G),

yij :=

{
[πj − πi − `ij]T if [πj − πi − `ij]T ≤ uij − `ij,
∞ otherwise.

13

• If t is a forget vertex with child u, then Xt = Xu \ {i} for some event i. Set

Dt(π) := min{Du(π
′) | π′ ∈ {0, . . . , T − 1}Xu , π′|Xt = π}.

• If t is a join vertex with children u1 and u2, then Xt = Xu1 = Xu2 . If Du1(π) < ∞ and
Du2(π) < ∞, define

Dt(π) := Du1(π) + Du2(π)− ∑
ij∈A: i∈Xt,j∈Xt

wij[πj − πi − `ij]T,

otherwise set Dt(π) := ∞.

• If t = τ is the root, then compute Dτ treating τ as a forget node. Return

min{Dτ(π) | π ∈ {0, . . . , T − 1}Xτ}.

For a node t ∈ V(T), define Gt as the subnetwork of G induced by the events in the bag
of Xt and the bags of all descendants of t in T . Denote by It the corresponding T-PESP-
OPTIMALITY subinstance of I.

Lemma 4.8. Let t ∈ V(T) be a node of the tree decomposition and π ∈ {0, . . . , T − 1}Xt .

1. If St(π) < ∞, then St(π) = OPT(It, Xt, π).

2. If St(π) = ∞, then there is no feasible peridoic timetable on It coinciding with π on Xt.

Proof. Let Gt = (Vt, At). If t 6= τ is a leaf, then At = ∅, and both statements are trivial.
Introducing an event i at t with child u means that

Vt = Vu
.
∪ {i}, At = Au

.
∪ ({ij ∈ A : j ∈ Xu}

.
∪ {ji ∈ A : j ∈ Xu}).

The latter is a partition of the activities of Gt whose vertex separator is contained in Xu. By
Lemma 4.2, Dt(π) must hence equal Du(π|Xu) plus the minimum weighted slack of the subin-
stance associated to At \ Au fixing the timetable at Xt, and the latter is precisely given by the
formula in Algorithm 4.7.

When forgetting an event i at t with child u, then Gt = Gu. However, the timetable has
to be fixed at Xt which containes one vertex less than Xu, so that we minimize over all table
entries where the timetable restricted to Xu is the same.

If t is a join vertex with u1 and u2 as children, then Gt = Gu1 ∪ Gu2 . We apply Lemma 4.2
to At = Au1

.
∪ (Au2 \ Au1) and to Au2 = (Au2 \ Au1)

.
∪ (Au1 ∩ Au2). Note that by the con-

nectedness property of the tree decomposition, any activity Au1 ∩ Au2 has both endpoints
in Xt = Xu1 = Xu2 , so that Xt contains the vertex separators of both partitions. Now the
minimum weighted slack on Gt is the sum of the minimum weighted slacks on Gu1 and Gu2 ,
subtracting the minimum weighted slack of the activities that have been counted twice, i.e.,
Au1 ∩ Au2 . Hence the minimum weighted slack on Gt can be computed as described in Algo-
rithm 4.7. If fixing the timetable π on Xt yields an infeasible timetable, then either Du1(π) or
Du2(π) must have been infinite, and vice versa.

Finally, if t = τ is the root, then τ has degree one and hence has a unique child u, so that
we can treat it as a forget node.

Lemma 4.9. If I is feasible, then Algorithm 4.7 returns OPT(I), and otherwise ∞. Moreover, Algo-
rithm 4.7 runs in O(|V(T)|Tk+1) time, where k := maxt∈V(T) |Xt| − 1.

14

Proof. By Lemma 4.8, at the root τ, the table entry Dτ(π) is the minimum weighted slack on
the subnetwork Gτ = G fixing the timetable at Xτ to π (or ∞). Minimizing over all entries in
Dτ hence gives the minimum weighted slack of the T-PESP-OPTIMALITY instance (or detects
infeasibility). The running time estimate is straightforward, as we need to fill each of the
|V(T)| tables with at most Tk+1 entries and only employ summation and minimization.

Theorem 4.10. For k ∈ N, there is an O(nTk) algorithm solving T-PESP-OPTIMALITY on event-
activity networks G with n events and tw(G) ≤ k.

Proof. By Bodlaender (1996), if tw(G) ≤ k, then a tree decomposition with O(n) nodes re-
alizing width tw(G) can be found in O(f (k) · n) time. This can be transformed into a nice
tree decomposition on O(n) nodes within O(n) time (Kloks, 1994, Lemma 13.1.3). Applying
Lemma 4.9 provides an O(nTk+1) algorithm. Using the same fixing strategy as for Theorem 4.6,
we obtain an O(nTk) algorithm.

Remark 4.11. The branch-decomposition based algorithm of Theorem 4.6 has a running time
of O(mTb3 bw(G)/2c−1) time, and the tree-decomposition based one runs in O(nTtw(G)), see The-
orem 4.10. By Theorem 3.12, if G is 2-edge-connected, then nTtw(G) ≤ mTb3 bw(G)/2c−1, so that
the tree-decomposition-based algorithm is expected to be asymptotically superior.

Remark 4.12. In terms of memory, Algorithm 4.3 with the fixing strategy needs to store at most
Tbw(G)−1 table entries per edge, whereas Algorithm 4.7 (with fixing) stores at most Ttw(G)−1

entries per node. In both cases, at most 3 tables need to be stored at the same time, as any node
in one of the decompositions has at most 2 children. Since bw(G)− 1 ≤ tw(G) if bw(G) ≥ 2,
the branch-decomposition-based method potentially requires less space.

Remark 4.13. We omit a carving-decomposition-based algorithm. Bounding the carvingwidth
by k means that the branchwidth is bounded by 2k according to Theorem 3.16 and we can
invoke Algorithm 4.3.

5 Fixed-parameter tractable algorithms

We have already seen in Lemma 2.8 that fixing the number of events or the number of activi-
ties leads to fixed-parameter tractable algorithms for T-PESP-OPTIMALITY. In this section, we
discuss fixed-parameter tractability by cyclomatic number, diameter, and vertex cover num-
ber. The cyclomatic number is a common measure for the difficulty of PESP instances, as it
counts the number of integral variables in a cycle-based mixed integer programming formula-
tion (Borndörfer et al., 2019). The size of a minimum vertex cover has led to fixed-parameter
algorithms for several coloring problems where bounding the treewidth does still result in
NP-hard problems (Fiala et al., 2011), as it is the case for the PESP family.

5.1 Cyclomatic Number

Definition 5.1. Let G be a graph on n vertices, m edges and c weakly connected components.
The cyclomatic number of G is defined as µ(G) := m− n + c.

Alternatively, the cyclomatic number is the dimension of the cycle space of G.

Lemma 5.2. Let G be a graph. Then tw(G) ≤ µ(G) + 1.

15

Proof. We give a proof by induction on µ(G). If µ(G) = 0, then G is a forest and therefore
tw(G) = 1.

Now let G be a graph with µ(G) > 0. Then G contains a cycle and hence an edge e such that
G′ := G \ {e} has the same number of connected components as G, and µ(G′) = µ(G)− 1. By
induction hypothesis, tw(G′) ≤ µ(G′)+ 1 = µ(G), so that we find a tree decomposition (T ,X)
of G′ with maximum bag size at most µ(G) + 1. If there is a bag containing both endpoints of
e, then (T ,X) is also a valid tree decomposition for G, and so tw(G) ≤ µ(G). Otherwise let
i be an endpoint of e and add i to each bag of (T ,X). This is a tree decomposition for G of
width µ(G) + 1, so that tw(G) ≤ µ(G) + 1.

While it is true that treewidth and branchwidth can be bounded in terms of each other (see
Theorem 3.12), this does not hold for treewidth and cyclomatic number:

Lemma 5.3. For k ≥ 2, there is a class Ck of simple connected graphs such that tw(G) ≤ k holds for
all G ∈ Ck, but for any N ∈N, there is a graph G ∈ C with µ(G) ≥ N.

Proof. Let C be the class of graphs G built from a finite disjoint union of cliques of size k with
vertex sets V1, . . . , Vr together with one additional vertex v joined to each vertex from each
clique. Let T be a path on the vertices {1, . . . , r}, and set Xi := Vi ∪ {v}, i = 1, . . . , r. Then
(T ,X) is a tree decomposition of G and, as |Xi| = k + 1, we have tw(G) ≤ k. The cyclomatic
number of G is given by

µ(G) =

(
r · k(k− 1)

2
+ rk

)
− (rk + 1) + 1 = r · k(k− 1)

2
,

and for k ≥ 2, this goes to infinity as r → ∞.

Theorem 5.4. On networks where no vertex has degree 2, T-PESP-OPTIMALITY is fixed-parameter
tractable when parameterized by the cyclomatic number.

Proof. Let (G, T, `, u, w) be a T-PESP-OPTIMALITY instance. We can safely remove all i ∈ V(G)
with deg(i) = 1, as in any optimal solution, the incident activity must have periodic slack 0.
Hence we can assume that G has minimum degree 3. By the Handshaking Lemma,

2m = ∑
i∈V(G)

deg(i) ≥ 3n,

and hence
µ = m− n + c ≥ n

2
+ 1,

so that n ≤ 2µ− 2. This means that fixing µ provides a fixed bound on the number n of events,
and we conclude by Lemma 2.8.

Corollary 5.5. T-PESP-FEASIBILITY is fixed-parameter tractable when parameterized by the cyclo-
matic number.

Proof. Let (G, T, `, u) be a T-PESP-FEASIBILITY instance. Remove all events of degree 1 from
G, as this does neither affect feasibility nor alter the cyclomatic number. Now all degree 2
vertices of G are arranged on (undirected) paths between two vertices of degree ≥ 3. Consider
such a path from s to t with deg(s), deg(t) ≥ 3, forward activities a1, . . . , ar and backward
activities b1, . . . , bs. Delete all intermediate vertices between s and t and insert a single activity
a from s to t with

`a :=
r

∑
i=1

`ai −
s

∑
j=1

ubj and ua :=
r

∑
i=1

uai −
s

∑
j=1

`bj .

16

Clearly, if x is a feasible tension with `ai ≤ x ≤ uai and `bj ≤ xbj ≤ ubj for all i and j, then also
`a ≤ xa ≤ ua with xa := ∑r

i=1 xai −∑s
j=1 xbj . Conversely, any xa with `a ≤ xa ≤ ua can be split

into feasible tensions on all ai and bj. Thus, this transformation preserves feasibility. Moreover,
contracting vertices of degree 2 does not change the cyclomatic number, so that we can assume
that G has minimum degree 3. Invoke Theorem 5.4.

Theorem 5.6. For fixed cyclomatic number µ, T-PESP-OPTIMALITY is polynomial-time solvable.

Proof. Let F be a spanning forest of G and let γ1, . . . , γµ be its fundamental cycles, seen as
incidence vectors {−1, 0, 1}A(G). Then (e.g., Nachtigall, 1998) x ∈ RA(G) is a feasible periodic
tension if and only if

` ≤ x ≤ u and ∀i ∈ {1, . . . , µ} : γt
i x ≡ 0 mod T.

Decomposing γi = γi,+ − γi,− into positive resp. negative part γi,+, γi,− ∈ {0, 1}A(G), the
modulo constraints are equivalent to

∀ ∈ {1, . . . , µ} : γt
i x = Tzi,

⌈
γt

i,+`− γt
i,−u

T

⌉
≤ zi ≤

⌊
γt

i,+u− γt
i,−`

T

⌋
, zi ∈ Z.

These are the so-called cycle inequalities (Odijk, 1994). In particular, for each i, one has to check
at most ⌊

γt
i,+u− γt

i,−`

T

⌋
−
⌈

γt
i,+`− γt

i,−u
T

⌉
+ 1 ≤ (γi,+ + γi,−)

t(u− `)

T
+ 1

values for zi. Since, as in the proof of Theorem 2.6, we can assume w.l.o.g. that u− ` < T, we
have the estimate

zi ≤ |{a ∈ A(G) : γi,a 6= 0}|+ 1 ≤ n + 1,

as the γi are simple cycles and hence contain at most n vertices.
The description of the polynomial-time algorithm is now: Enumerate all O((n + 1)µ) inte-

gral vectors (z1, . . . , zµ) satisfying the cycle inequalities and solve the problem

Minimize wtx subject to ` ≤ x ≤ u and ∀ ∈ {1, . . . , µ} : γt
i x = Tzi.

This is a minimum cost network tension problem and can be solved in polynomial time by net-
work flow approaches (Hadjiat and Maurras, 1997; Nachtigall and Opitz, 2008). Alternatively,
the above minimization problem can be solved by linear programming.

It remains open whether T-PESP-OPTIMALITY can be solved with a fixed-parameter al-
gorithm w.r.t. the cyclomatic number. The main problem is that the cyclomatic number does
not bound the number of vertices. However, if, e.g., one additionally fixes the diameter of a
graph, i.e., the maximum length of an undirected shortest path between two vertices, then also
T-PESP-OPTIMALITY becomes fixed-parameter tractable:

Corollary 5.7. T-PESP-OPTIMALITY is fixed-parameter tractable when parameterized by cyclomatic
number and diameter.

Proof. We adapt the proof of Theorem 5.6. In our final estimate of zi, the number of activities
contained in γi can be bounded from above by 2d if d denotes the diameter of the graph.

We want to remark that fixing both cyclomatic number and diameter does not bound the
number of vertices:

17

Lemma 5.8. For any k ∈N, there is an infinite class of simple connected graphs of diameter at most 2
and cyclomatic number at most k.

Proof. For r ≥ k, let G be a star graph on r leaves. Connect k distinct pairs of leaves by an edge.
Then µ(G) = (k + r)− (r + 1) + 1 = k and G has diameter 2.

5.2 Vertex Cover Number

Definition 5.9. For a graph G, its vertex cover number vc(G) is defined as the minimum cardi-
nality of a vertex cover of G.

Lemma 5.10 (Fiala et al., 2011, §2). Let G be a graph. Then tw(G) ≤ vc(G) + 1.

The vertex cover number does neither limit the number of vertices (consider star graphs)
nor the cyclomatic number (complete bipartite graphs K2,q), but it does bound the diameter: On
a simple path of length d, at least d/2 vertices have to be part of a vertex cover. It follows that
fixing both cyclomatic number and vertex cover number gives a fixed-parameter algorithm for
T-PESP-OPTIMALITY by Corollary 5.7. We show in the following that T-PESP-FEASIBILITY

is W[1]-hard when parameterized by the vertex cover number only, so that the existence of
a fixed-parameter algorithm is unlikely. It remains unclear if T-PESP-OPTIMALITY admits a
polynomial-time algorithm for fixed vertex cover number.

Theorem 5.11. T-PESP-FEASIBILITY is W[1]-hard when parameterized by the vertex cover number.

Proof. We provide a fixed-parameter reduction of the LIST COLORING problem, which is known
to be W[1]-hard (Fiala et al., 2011, Theorem 1). An instance consists of a graph H together with
a finite list L(v) ⊆ Z≥0 for each v ∈ V(H), and the task is to find a vertex coloring of H such
that each vertex v is colored with a color in L(v).

Given (H, L), we construct a T-PESP-FEASIBILITY instance (G, T, `, u) as follows: Define
T := maxv∈V(H) L(v) + 1. Let G be any orientation of H. For each edge of G, the corresponding
activity a in A(G) obtains the bounds `a := 1 and ua := T − 1. Further add a new vertex v0
to G. Let v ∈ V(H) with L(v) = {c1, . . . , cr}, c1 < · · · < cr. Add r parallel activities a1, . . . , ar
from v0 to v, with bounds

`ai := ci, uai := ci−1 + T, i = 1, . . . , r,

where we set c0 := cr − T. This way, we model the disjunctive constraints of choosing a color
in L(v) as a PESP instance (Liebchen and Möhring, 2007, §3.3).

We claim that (H, L) has a feasible list coloring if and only if (G, T, `, u) admits a feasible
periodic timetable. Thus, let π ∈ [0, T)V(H) be a list coloring for (H, L). If ij ∈ A(H), then
πj 6= πj, so that [πj − πi − 1]T ≤ T − 2 is a feasible periodic slack. Extend π to a timetable
on G by setting πv0 := 0. Let v ∈ V(H), and assume that v is colored with the j-th color from
its list, i.e., πv = cj ∈ L(v). For i ∈ {1, . . . , r}, for the i-th activity ai from v0 to v, the periodic
tension would be

[πv − πv0 − `ai]T + `ai = [cj − ci]T + ci =

{
cj if i ≤ j,
cj + T if i > j.

In the first case cj ≤ T ≤ ci−1 + T, and in the second ci > cj implies cj + T ≤ ci−1 + T. We
conclude that π is a feasible periodic timetable.

Conversely, consider a feasible periodic timetable π ∈ [0, T)V(G). By a shift replacing π by
[π − πv0]T, we can assume that πv0 = 0. By restriction, using that πj 6= πi for all ij ∈ A(H),

18

π yields a coloring of H. It remains to check that this is a feasible list coloring. The periodic
tension on an activity ai from v0 to v must satisfy

[πv − πv0 − `ai]T + `ai = [πv − ci]T + ci ≤ ci−1 + T for all i ∈ {1, . . . , r}.

Suppose that there is an index j such that cj ≤ πv < cj+1. Then the above inequality for
i = j + 1 means

πv + T = [πv − cj+1]T + cj+1 ≤ cj + T,

hence πv = cj. If πv ≥ cr, then πv ≤ c0 + T = cr. Finally if πv < c1, then πv ≤ cr − T < 0,
contradicting πv ≥ 0. This shows that πv ∈ {c1, . . . , cr}, so that π is indeed a feasible list
coloring.

Since all arcs in G not present in H are connected to v0, we obtain vc(G) ≤ vc(H) + 1. In
particular, any fixed-parameter algorithm for T-PESP-FEASIBILITY yields a fixed-parameter
algorithm for LIST COLORING.

6 Structure of Realistic Event-Activity Networks

In this section, we discuss the size of the so far discussed graph parameters on realistic periodic
timetabling instances. We consider networks with a special structure based on line networks.
This structure is the direct outcome of a typical modeling process (Nachtigall, 1998; Liebchen
and Möhring, 2007; Schöbel, 2017; Pätzold et al., 2017). For example, the railway networks in
the benchmarking library PESPlib (Goerigk, 2012) are found as subgraphs of networks with
this structure. For this type of networks, we give lower and upper bounds on the branchwidth
in terms of the underlying line network. We use this theoretical result to compute bounds on
the branchwidth of the smallest PESPlib instance R1L1.

6.1 Line-Based Event-Activity Networks

Public transportation systems of cities, but also railway services, are typically organized in
lines.

Definition 6.1. A line network (N,L) is a directed multigraph N, together with a set L of di-
rected walks on G such that the arc set A(N) is the disjoint union of A(`) over all lines ` ∈ L.

Line networks reflect the maps public transport companies offer for passenger information,
displaying stations and lines. Depending on the precise application, lines may also constitute
non-simple paths or contain cycles (e.g., London’s Circle Line or Berlin’s Ringbahn). In the
context of line planning, we interpret a line network as a frequency-expanded line plan, i.e.,
some lines might have the same vertex sequence. Given a line network (N,L), construct an
event-activity network G as follows:

1. For each line ` ∈ L and each arc ij ∈ A(`), create a departure event (i, `, dep) and an arrival
event (j, `, arr), and connect these by a driving activity ((i, `, dep), (j, `, arr)).

2. For each vertex i ∈ V(N) and each line ` ∈ L, add a dwelling activity ((i, `, arr), (i, `, dep))
if both events exist.

3. For each vertex i ∈ V(N) and each pair (`1, `2) of distinct lines, add a transfer activity
((i, `1, arr), (i, `2, dep)) if both events exist.

Definition 6.2. An event-activity network G is line-based if it arises from a line network (N,L)
by the above construction. Shortly, G is based on (N,L).

19

Denote by deg+(i) resp. deg−(i) the number of outgoing resp. ingoing arcs at i. We summa-
rize some straightforward structural properties of line-based networks in the following lemma:

Lemma 6.3. Let G be based on (N,L).

1. G is bipartite, the parts being the departure and arrival events, respectively.

2. Every departure event has a unique outgoing activity and every arrival event has a unique ingoing
activity. In both cases, these are driving activities.

3. The driving activities in G form a perfect matching in G.

4. Deleting the driving activities from G and undirecting the arcs results in the disjoint union of
complete bipartite graphs Kdeg+(i),deg−(i) over i ∈ V(N).

6.2 Branchwidth of Line-Based Networks

To give bounds on the branchwidth of line-based event-activity networks, we start with a well-
known result on the branchwidth of minors:

Theorem 6.4 (Robertson and Seymour, 1991, 4.1). If G is a graph and H is a minor of G, then
bw(H) ≤ bw(G).

By Lemma 6.3, this implies that if G is based on (N,L), then

bw(G) ≥ max
i∈V(N)

bw(Kdeg+(i),deg−(i)).

As we did not manage to find a reference in the literature for the branchwidth of complete
bipartite graphs, we give a proof here:

Lemma 6.5. The complete bipartite graph Kp,q has branchwidth min(p, q).

Proof. Assume p ≤ q. Let P and Q denote the two parts, |P| = p, |Q| = q. The vertex separator
associated to any neighborhood δ(w) for w ∈ Q is given by P. Moreover, if E (δ(w) is a
proper subset, then the cardinality of the corresponding vertex separator is |E|+ 1 ≤ p. Take
any ternary tree with q leaves labeled with the vertices in Q. Then replace each leaf w by any
ternary tree with p leaves, labeled by the edges in δ(w). The result is a branch decomposition
of Kp,q of width p. This shows bw(Kp,q) ≤ p.

To show that bw(Kp,q) ≥ p, we make use of tangles. That is, if we can find a collection T of
subsets of E(Kp,q) such that

1. for each A ∈ T , the size of the corresponding vertex separator is at most p− 1,

2. for each A ⊆ E(Kp,q) inducing a separator of size ≤ p− 1, either A or its complement is
in T ,

3. for any three sets A1, A2, A3 ∈ T , their union is not E(Kp,q),

4. for each A ∈ T , the subgraph induced by A does not contain all vertices of Kp,q,

then bw(Kp,q) ≥ p or p ≤ 2 holds (Robertson and Seymour, 1991, 4.3). Clearly, bw(K1,q) = 1,
as these are star graphs, and bw(K2,q) = 2, as these are series-parallel and contain cycles.
Hence suppose p ≥ 3 and define

T := {A ⊆ E(Kp,q) | sep(A) ≤ p− 1, |V(Kp,q[A]) ∩ P| ≤ p− 1, |V(Kp,q[A]) ∩Q| ≤ p− 1},

where sep(A) denotes the cardinality of the vertex separator associated to A, and Kp,q[A] is the
subgraph induced of Kp,q by A. We check the above properties:

20

1. This is clear.

2. Let A ⊆ E(Kp,q) with sep(A) ≤ p− 1 and suppose that Kp,q[A] contains all vertices of P.
Then there must be a vertex v ∈ P incident to some edge of A, but not contained in the
separator. Hence, A must contain δ(v), and every vertex w ∈ Q is incident to the edge
vw ∈ A. Similarly, if A contains at least p vertices from Q, then it contains δ(w) for at
least |V(Kp,q[A]) ∩Q| − (p− 1) vertices w ∈ Q.
This means if sep(A) ≤ p− 1 and A /∈ T , then A contains δ(v) for some v ∈ P and δ(w)
for at least q− (p− 1) vertices w ∈ Q. The subgraph induced by the complement of A
hence does not contain v, and it also does not contain at least q− (p− 1) vertices of Q.
Therefore the complement of A is in T .

3. It follows by the argument in 2. that for each A ∈ T , the vertex separator is given by
V(Kp,q[A]). Now Kp,q[A] is a simple bipartite graph on at most p− 1 vertices. It follows
that |A| ≤ (p− 1)2/4. Now if A1, A2, A3 ∈ T , the cardinality of their union is at most
3(p− 1)2/4 < p2 ≤ pq = |E(Kp,q)|.

4. This follows as |V(Kp,q[A])| ≤ 2p− 2 < 2p ≤ p + q = |V(Kp,q)|.

Hence we conclude bw(Kp,q) = p.

Theorem 6.6. Let G be a line-based event activity network, based on the line network (N,L). Then

max
i∈V(N)

min(deg+(i), deg−(i)) ≤ bw(G) ≤ cw(N),

and both bounds are sharp.

Recall from Subsection 3.4 that cw(N) denotes the carvingwidth of N, and that

cw(N) ≥ max
i∈V(N)

(deg+(i) + deg−(i)).

Speaking more intuitively, the carvingwidth is hence bounded by the maximum number of
lines departing and arriving at a stop of the line network. In practice, line networks are often
planar, and the carvingwidth of planar graphs can be computed in polynomial time by the
ratcatcher algorithm (Seymour and Thomas, 1994).

Proof. The lower bound follows from Lemma 6.3, Theorem 6.4 and Lemma 6.5. For r ∈ N,
let Nr be a graph on the vertex set {0, 1, . . . , 2r}, and arcs (i, 0) for i ∈ {1, . . . , r} and (0, i) for
i ∈ {r + 1, . . . , 2r}. The lines are given by L := {(i, 0, i + r) | i ∈ {1, . . . , r}}. The resulting
line-based event-activity network Gr has the structure of a complete bipartite graph Kr,r plus
2r activities connecting the Kr,r with events of degree 1 each. It follows that

bw(Gr) = r = max
i∈V(Nr)

min(deg+(i), deg−(i)).

As Nr is a star graph on 2r rays, its carvingwidth is easily determined to be 2r. Hence, we
found a family of graphs for which the lower bound is sharp, and the upper bound is larger
than the lower bound.

Concerning the upper bound, we first partition the activities of G: For each i ∈ V(N), let
Ai denote the set of all activities incident to some departure event at i. Then {Ai | i ∈ V(N)}
partitions A(G) because of the bipartite structure of G. For i ∈ V(N), let (Bi, ϕi) be a branch
decomposition of the subgraph of G induced by Ai. Add a root bi to each Bi by subdividing

21

Parameter Value
no. of vertices 3664
no. of arcs 6385
cyclomatic number 2722
vertex cover number 1832
diameter 88
maximum degree 26
branchwidth ∈ [58, 70]
treewidth ∈ [57, 97]
carvingwidth ∈ [29, 1820]

Table 1: Parameters of R1L1

an arbitrary edge. Let (C, ψ) be an optimal carving decomposition of N. Attach to every leaf v
of C the tree Bψ(v), identifying v with bψ(v). This results in a branch decomposition (B, ϕ) of G.

Now let e ∈ E(B) and let A(G) = A1
e

.
∪ A2

e be the induced partition. If e ∈ E(Bi), then
one of A1

e , A2
e is contained in Ai, so that the vertex separator Se has size at most deg+(i) +

deg−(i): Se contains at most all deg−(i) arrival events at i, and every other vertex in Se must
be either a departure event or the unique arrival event following a departure event. Observe
that deg+(i) + deg−(i) ≤ cw(N) due to Theorem 3.16. In the other case that e ∈ E(C), there is
a subset We ⊆ V(G) such that A1

e =
⋃

i∈We
Ai. Each vertex of the vertex separator Se is hence

an arrival event at some i ∈ We. The set Se is in bijection to δ(We) by mapping (j, `, arr) to
ij ∈ A(`) ⊆ A(N), where (i, `, dep) is the unique driving activity entering (j, `, arr). Hence, as
C was chosen to be optimal, |Se| = |δ(We)| ≤ cw(N).

Finally, we show that the upper bound is sharp: For r ∈N, let N′r be a directed simple cycle
on r vertices. Then cw(N′r) = 2. The event-activity network G′r based on N′r is then a directed
simple cycle on 2r vertices and has branchwidth 2. On the other hand, the lower bound does
not equal 2, as maxi∈V(N′r) min(deg+(i), deg−(i)) = 1.

6.3 Parameters of R1L1

The benchmarking library PESPlib contains 20 difficult T-PESP-OPTIMALITY instances, cre-
ated with the LinTim toolbox with data of the German railway network (Goerigk et al., 2013).
None of the instances is currently solved to proven optimality.

For the event-activity network G of the smallest PESPlib instance R1L1, the values of the
parameters discussed in this paper are summarized in Table 1. Most of the parameters are easy
to obtain, therefore we elaborate only on the width parameters.

An upper bound on branchwidth

The network G in its original shape does not satisfy the properties of Lemma 6.3. However,
with small modifications, we can find a line network N such that G is a subgraph of an event-
activity network based on N.

Transfer activities a ∈ A(G) are in practice typically recognized by a large span ua − `a.
As the period time is T = 60, we let At := {ij ∈ A(G) | ua − `a ≥ 59}. We call any vertex i
with ij ∈ At for some j an arrival event, and analogously any vertex j with ij ∈ At for some i
is called a departure event. This is well-defined and extends to a bipartition of G into arrival
resp. departure events.

22

3664

53

68

69

84

177

216

217

256
[0, 0]

pa
th

[0, 0]

pa
th

[0, 0]

pa
th

[0, 0]

pa
th

Figure 6: Removed part of R1L1, events recognized as departures are marked yellow

Now we interpret any activity from a departure to an arrival is called a driving activity.
The set of driving activities is not quite a perfect matching in G: There are two arrival events
(84 and 256) with two ingoing driving activities, and two arrival events (53 and 177) with no
ingoing driving activity. This is due to four mysterious activities with lower and upper bound
0 breaking the structure at this particular spot, see Figure 6. However, the vertices 53 to 84
and 177 to 256 can be removed from G by sequentially deleting vertices of degree 1. Since the
remaining network has branchwidth at least two, removing vertices of degree 1 has no effect
on branchwidth:

Lemma 6.7. Let G be a connected graph, and let v ∈ V(G) be a vertex of degree 1. If bw(G \ {v}) ≥ 2,
then bw(G) = bw(G \ {v}).

Proof. By Theorem 6.4, bw(G \ {v}) ≤ bw(G). For the reverse inequality consider a branch
decomposition (B, ϕ) of G \ {v}. Since G is connected, v is adjacent to some vertex w of degree
≥ 2. Choose an edge e 6= {v, w} incident with w, and replace the leaf of B corresponding to e
by a node with the two children e and {v, w}. This is a branch decomposition of G. The size of
the vertex separator corresponding to {v, w} is 1, the size of the separator w.r.t. e is at most 2,
and all other vertex separators remain unchanged. This shows bw(G) ≤ bw(G \ {v}).

With this adjustment, G has 3552 vertices and 6273 arcs. G satisfies now properties 1-3 of
Lemma 6.3. Deleting the driving activities yields a disjoint union of bipartite graphs Gi, but
they are not all complete. We define N now as the network obtained from G by contracting
all these bipartite graphs Gi to a single vertex i. Then G is a subgraph of an event-activity
network based on N, choosing, e.g., L as the set of all single-arc walks. By Theorem 6.4 and
Theorem 6.6, bw(G) ≤ cw(N).

The network N obtained in this way is unfortunately not planar. The maximum degree in
N is 62, so that cw(N) ≥ 62. To compute an upper bound, we first preprocess N by removing
vertices of degree 2, as this does not alter carvingwidth (Belmonte et al., 2013, Lemma 6). We
use then the Kuratowski subgraph detection algorithm implemented in the Python package
networkx (Hagberg et al., 2008) to recursively remove (multi-)arcs from N until the graph be-
comes planar. We prefer arcs of low multiplicity, and a sequence of 20 removals of simple arcs
finally yields a planar graph N′. We implemented the ratcatcher method of Robertson and
Seymour to compute cw(N′) = 62 and an optimal carving decomposition. As V(N′) = V(N),
this is also a carving decomposition of N, but the width increases to 70. We hence conclude
cw(N) ∈ [62, 70] and bw(G) ≤ 70.

23

A lower bound on branchwidth

Since G is only realized as a subgraph of an event-activity network based on N, we cannot
use Theorem 6.6 directly. Of course, it remains true that bw(G) is at least the branchwidth of
the (disconnected) subgraph G′ obtained by deleting the driving activities. G′ is reasonably
small, but there seems to be no freely available software for exact branchwidth computations.
However, there are treewidth codes, and we use the algorithm by Tamaki (2019), which has
been implemented for the PACE 2017 challenge on exact treewidth computations (Dell et al.,
2018). It turns out that tw(G′) = 20, hence bw(G) ≥ 14.

The largest of the components of G′ is a bipartite graph with maximum part size 31. If this
component were complete, then Theorem 6.6 would have predicted bw(G) ≥ 31.

To obtain a better bound on bw(G), we use balanced vertex separators:

Lemma 6.8 (Robertson and Seymour, 1995, 3.1). Let G be a graph. Then there is a vertex separator
S with |S| ≤ bw(G) and

max(|V1|, |V2|) ≤ 2
3
|V(G)| − 1

2
|S|,

where V(G) = V1 .
∪V2 .

∪ S, and no vertex in V1 is adjacent to a vertex in V2 and vice versa.

We now compute a minimum cardinality vertex separator subject to the balance constraint
of Lemma 6.8 by plugging in a straightforward integer program into the CPLEX1 12.10 solver.
We do not use the full network G as input, but take a smaller network that is obtained after
standard preprocessing for T-PESP-OPTIMALITY instances (Borndörfer et al., 2019, §3.2). This
network is a minor of G, so that we obtain a valid bound on the branchwidth. CPLEX finds a
vertex separator of cardinality 58 and is able to solve the instance to optimality. We conclude
bw(G) ≥ 58.

Treewidth and Carvingwidth

Since bw(G) ∈ [58, 70], we obtain by Theorem 3.12 that tw(G) ∈ [58, 104]. As the maximum
degree in R1L1 is 26, cw(G) ∈ [29, 1820] by Theorem 3.16. Determining the exact treewidth
of G turns out to be computationally infeasible. We instead use TCS-Meiji (Tamaki, 2019) and
FlowCutter (Hamann and Strasser, 2018), the best two submissions of the PACE 2017 challenge
on heuristic treewidth computations (Dell et al., 2018), with different random seeds to obtain
a better upper bound on tw(G). The best bound we could find was tw(G) ≤ 97.

Practical Implications

The instance R1L1 has a period time of T = 60. It becomes clear from Table 1 that nei-
ther the dynamic programs of Section 4 nor the algorithms presented in Section 5 can be ap-
plied for solving R1L1 in practice. E.g., storing Tbw(G)−1 ≥ 6057 table entries for the branch-
decomposition based algorithm 4.3 as 32-bit integers would require roughly 9 · 10101 bytes of
space.

7 Conclusion

The results of this paper underline that PESP is a notoriously hard problem. Although there
are several primal heuristics available, the promising global approaches fail to compute prov-
ably optimal solutions: E.g., Mixed-integer programming formulations suffer from weak linear

1https://www.ibm.com/analytics/cplex-optimizer

24

https://www.ibm.com/analytics/cplex-optimizer

programming relaxations and transformations to Boolean satisfiability problems scale badly.
It fits into this picture that exploiting structural parameters such as treewidth does not lead
to a polynomial-time algorithm unless P 6= NP. Moreover, the pseudo-polynomial dynamic
programs of Section 4 are only of theoretical interest. It is even unclear for tentatively large
parameters as cyclomatic number and vertex cover number if T-PESP-OPTIMALITY becomes
fixed-parameter tractable.

On the positive side, it has been demonstrated in (Lindner and Liebchen, 2019) that bal-
anced edge separators lead to benefits when computing lower bounds of T-PESP-OPTIMALITY

instances. We think that this should also carry over to vertex separators, and that good heuris-
tic tree or branch decompositions may be useful as a source for separators in order to tackle
PESP by a divide-and-conquer approach.

References

Arnborg, S. and Proskurowski, A. (1989). Linear time algorithms for NP-hard problems re-
stricted to partial k-trees. Discrete Applied Mathematics, 23(1):11–24.

Belmonte, R., [van ’t Hof], P., Kamiński, M., Paulusma, D., and Thilikos, D. M. (2013). Charac-
terizing graphs of small carving-width. Discrete Applied Mathematics, 161(13):1888–1893.

Bodlaender, H. L. (1996). A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal on Computing, 25(6):1305–1317.

Bodlaender, H. L. and Thilikos, D. M. (1997). Constructive linear time algorithms for branch-
width. In Degano, P., Gorrieri, R., and Marchetti-Spaccamela, A., editors, Automata, Lan-
guages and Programming, pages 627–637, Berlin, Heidelberg. Springer Berlin Heidelberg.

Bodlaender, H. L. and van Antwerpen-de Fluiter, B. (2001). Parallel algorithms for series par-
allel graphs and graphs with treewidth two. Algorithmica, 29:534–559.

Borndörfer, R., Lindner, N., and Roth, S. (2019). A concurrent approach to the Peri-
odic Event Scheduling Problem. Journal of Rail Transport Planning & Management, pages
100–175.

Dell, H., Komusiewicz, C., Talmon, N., and Weller, M. (2018). The PACE 2017 Parameterized
Algorithms and Computational Experiments Challenge: The Second Iteration. In Loksh-
tanov, D. and Nishimura, N., editors, 12th International Symposium on Parameterized and Exact
Computation (IPEC 2017), volume 89 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 30:1–30:12, Dagstuhl, Germany. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

Eppstein, D. (2018). The effect of planarization on width. Journal of Graph Algorithms and
Applications, 22(3):461–481.

Fiala, J., Golovach, P. A., and Kratochvı́l, J. (2011). Parameterized complexity of coloring prob-
lems: Treewidth versus vertex cover. Theoretical Computer Science, 412(23):2513–2523. Theory
and Applications of Models of Computation (TAMC 2009).

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability. W. H. Freeman and Com-
pany, San Francisco.

Goerigk, M. (2012). PESPlib – A benchmark library for periodic event scheduling. http:

//num.math.uni-goettingen.de/~m.goerigk/pesplib/.

25

http://num.math.uni-goettingen.de/~m.goerigk/pesplib/
http://num.math.uni-goettingen.de/~m.goerigk/pesplib/

Goerigk, M., Schachtebeck, M., and Schöbel, A. (2013). Evaluating line concepts using travel
times and robustness. Public Transport, 5:267–284.

Hadjiat, M. and Maurras, J. F. (1997). A strongly polynomial algorithm for the minimum cost
tension problem. Discrete Mathematics, 165-166:377–394. Graphs and Combinatorics.

Hagberg, A. A., Schult, D. A., and Swart, P. J. (2008). Exploring Network Structure, Dynam-
ics, and Function using NetworkX. In Varoquaux, G., Vaught, T., and Millman, J., editors,
Proceedings of the 7th Python in Science Conference, pages 11–15, Pasadena, CA USA.

Hamann, M. and Strasser, B. (2018). Graph bisection with pareto optimization. J. Exp. Algorith-
mics, 23.

Karp, R. M. (1972). Reducibility among Combinatorial Problems, pages 85–103. Springer US,
Boston, MA.

Kloks, T. (1994). Treewidth, Computations and Approximations, volume 842 of Lecture Notes in
Computer Science. Springer.

Liebchen, C. (2006). Periodic timetable optimization in public transport. PhD thesis, Technische
Universität Berlin.

Liebchen, C. and Möhring, R. H. (2007). The modeling power of the Periodic Event Scheduling
Problem: railway timetables – and beyond. In Algorithmic methods for railway optimization,
pages 3–40. Springer.

Lindner, N. and Liebchen, C. (2019). New Perspectives on PESP: T-Partitions and Separators.
In Cacchiani, V. and Marchetti-Spaccamela, A., editors, 19th Symposium on Algorithmic Ap-
proaches for Transportation Modelling, Optimization, and Systems (ATMOS 2019), volume 75
of OpenAccess Series in Informatics (OASIcs), pages 2:1–2:18, Dagstuhl, Germany. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik.

Nachtigall, K. (1993). Exact solution methods for periodic programs. Technical Report 14/93,
Hildesheimer Informatikberichte.

Nachtigall, K. (1998). Periodic Network Optimization and Fixed Interval Timetables. Habilitation
thesis, Universität Hildesheim.

Nachtigall, K. and Opitz, J. (2008). Solving Periodic Timetable Optimisation Problems by Mod-
ulo Simplex Calculations. In Fischetti, M. and Widmayer, P., editors, 8th Workshop on Algo-
rithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS’08), vol-
ume 9 of OpenAccess Series in Informatics (OASIcs), Dagstuhl, Germany. Schloss Dagstuhl–
Leibniz-Zentrum für Informatik.

Nestoridis, N. V. and Thilikos, D. M. (2014). Square roots of minor closed graph classes. Discrete
Applied Mathematics, 168:34–39. Fifth Workshop on Graph Classes, Optimization, and Width
Parameters, Daejeon, Korea, October 2011.

Odijk, M. A. (1994). Construction of periodic timetables, part 1: A cutting plane algorithm.
Technical Report 94-61, TU Delft.

Pätzold, J., Schiewe, A., Schiewe, P., and Schöbel, A. (2017). Look-ahead approaches for in-
tegrated planning in public transportation. In ATMOS, volume 59 of OASICS, pages 17:1–
17:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

26

Robertson, N. and Seymour, P. (1984). Graph minors. III. Planar tree-width. Journal of Combi-
natorial Theory, Series B, 36(1):49–64.

Robertson, N. and Seymour, P. (1991). Graph minors. X. Obstructions to tree-decomposition.
Journal of Combinatorial Theory, Series B, 52(2):153–190.

Robertson, N. and Seymour, P. (1995). Graph Minors. XIII. The Disjoint Paths Problem. Journal
of Combinatorial Theory, Series B, 63(1):65–110.

Schrijver, A. (1986). Theory of Linear and Integer Programming. John Wiley & Sons, Inc.

Schöbel, A. (2017). An eigenmodel for iterative line planning, timetabling and vehicle schedul-
ing in public transportation. Transportation Research Part C: Emerging Technologies, 74:348–365.

Serafini, P. and Ukovich, W. (1989). A mathematical model for periodic scheduling problems.
SIAM Journal on Discrete Mathematics, 2(4):550–581.

Seymour, P. and Thomas, R. (1994). Call routing and the ratcatcher. Combinatorica, 14(2):217–
241.

Tamaki, H. (2019). Positive-instance driven dynamic programming for treewidth. J. Comb.
Optim., 37(4):1283–1311.

van Heuven van Staereling, I. (2018). Tree Decomposition Methods for the Periodic Event
Scheduling Problem. In Borndörfer, R. and Storandt, S., editors, 18th Workshop on Algorith-
mic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2018), vol-
ume 65 of OpenAccess Series in Informatics (OASIcs), pages 6:1–6:13, Dagstuhl, Germany.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

27

	Introduction
	The Periodic Event Scheduling Problem
	PESP on Networks of Treewidth Two
	Subset Sum
	Treewidth
	Branchwidth
	Carvingwidth

	Dynamic Programs
	PESP and Vertex Separators
	A Branch Decomposition Approach
	A Tree Decomposition Version

	Fixed-parameter tractable algorithms
	Cyclomatic Number
	Vertex Cover Number

	Structure of Realistic Event-Activity Networks
	Line-Based Event-Activity Networks
	Branchwidth of Line-Based Networks
	Parameters of R1L1

	Conclusion

