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ONE-POINT SUSPENSIONS AND WREATH PRODUCTS OF POLYTOPES AND SPHERES

MICHAEL JOSWIG AND FRANK H. LUTZ

A. It is known that the suspension of a simplicial complex can be realized with only one additional point.
Suitable iterations of this construction generate highly symmetric simplicial complexes with various interesting
combinatorial and topological properties. In particular, infinitely many non-PL spheres as well as contractible
simplicial complexes with a vertex-transitive group of automorphisms can be obtained in this way.

1. I

McMullen [34] constructed projectively unique convex polytopes as the joint convex hulls of polytopes in
mutually skew affine subspaces which are attached to the vertices of yet another polytope. It is immediate that if
the polytopes attached are pairwise isomorphic one can obtain polytopes with a large group of automorphisms.
In fact, if the polytopes attached are simplices, then the resulting polytope can be obtained by successive
wedging (or rather its dual operation). This dual wedge, first introduced and exploited by Adler and Dantzig
[1] in 1974 for the study of the Hirsch conjecture of linear programming, is essentially the same as the one-point
suspension in combinatorial topology. It is striking that this simple construction makes several appearances in
the literature, while it seems that never before it had been the focus of research for its own sake. The purpose
of this paper is to collect what is known (for the polytopal as well as the combinatorial constructions) and to fill
in several gaps, most notably by introducing wreath products of simplicial complexes.

In particular, we give a detailed analysis of wreath products in order to provide explicit descriptions of highly
symmetric polytopes which previously had been implicit in McMullen’s construction. This is instrumental in
proving that certain simplicial spheres that occurred in the process of enumerating the types of combinatorial
manifolds with few vertices are, in fact, polytopal.

Non-PL spheres have been constructed by Edwards [11] and Cannon [8] by suspending (at least twice) any
arbitrary homology sphere. By enumeration, Lutz [31] obtained three 17-vertex triangulations of the Poincaré
homology 3-sphere with a vertex-transitive group action. The wreath products of the boundary of a simplex
with these triangulations form a new class of non-PL-spheres with a vertex-transitive automorphism group.

It is a — presumably difficult — open problem to decide whether or not there exist vertex-transitive non-
evasive simplicial complexes. It is even unclear if vertex-transitive collapsible complexes exist. If not, then
this would settle the long-standing evasiveness conjecture for graph properties of complexity theory; see Kahn,
Saks, and Sturtevant [19]. Few vertex-transitive contractible and Z-acyclic complexes are known. A new family
of vertex-transitive contractible simplicial complexes arises via the wreath product construction. However, we
can show that a non-evasive wreath product necessarily has a non-evasive factor. Thus wreath products do not
lead to a solution of the evasiveness conjecture.

One-point suspensions have recently been employed successfully to construct non-constructible, non-shell-
able, not vertex-decomposable, as well as non-PL spheres with few vertices; see [6], [7], [28], [29], and
[30]. Here, we will investigate, how these combinatorial properties are respected by one-point suspensions
and wreath products.

2. T P C

A convex polytope is the convex hull of finitely many points in Rd (interior description) or, equivalently, the
bounded intersection of finitely many affine halfspaces (exterior description). The two descriptions are dual
to each other by means of cone polarity. The dimension of a polytope is the dimension of its affine span. A
vertex is a point of a polytope which is not redundant in its interior description. Dually, for a full-dimensional
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polytope P, a facet is the intersection of P with the boundary hyperplane of an affine halfspace which is not
redundant in the exterior description of P. For an introduction to polytope theory the reader is referred to
Ziegler [42].

2.1. The dual wedge of a polytope. Let P ⊂ Rd be a d-dimensional polytope (or d-polytope for short), and
let v be a vertex. The (d + 1)-polytope

DW(v, P) = conv(P ⊕ 0 ∪ {v ⊕ 1, v ⊕ (−1)})

is called the dual wedge of P with respect to v. It has the same vertices as P (embedded into Rd+1: the notation
“⊕” is used to indicate which additional coordinate to append), except for v which splits into an “upper” copy
v ⊕ 1 and a “lower” copy v ⊕ (−1). The facets of DW(v, P) are the following: For each facet F of P which does
not contain v we obtain an upper cone conv(F ⊕ 0 ∪ v ⊕ 1) and a lower cone conv(F ⊕ 0 ∪ v ⊕ (−1)). And each
facet G which contains v re-appears as its dual wedge DW(v,G). Since the dual wedge of a point clearly is
a line segment, we recursively obtain a complete combinatorial description. In particular, the dual wedge is a
combinatorial construction: Given two polytopes P, P′ and a combinatorial isomorphism φ : P → P′ the dual
wedges DW(v, P) and DW(φ(v), P′) are combinatorially isomorphic for any vertex v of P.

The dual wedge of a line segment, with respect to any one of its two vertices, is a triangle. Therefore,
the recursive description immediately implies that DW(v, P) contains a triangular 2-face if d ≥ 2. Moreover,
DW(v, P) is a (d + 1)-simplex if and only if P is a d-simplex. This further implies that DW(v, P) is simplicial if
and only if P is.

The reflection at the hyperplane xd+1 = 0 in Rd+1 interchanges v⊕ 1 with v⊕ (−1) and fixes all other vertices
of DW(v, P).

Below we especially focus on iterated dual wedge constructions.

Proposition 2.1. Let P be a d-polytope with a vertex v. Then the (d + 2)-polytopes DW(v ⊕ 1,DW(v, P)) and
DW(v ⊕ (−1),DW(v, P)) are isometric.

Typically we are only interested in the combinatorial type of a dual wedge. Hence we abbreviate DW2(v, P)
for either DW(v⊕ 1,DW(v, P)) or DW(v⊕ (−1),DW(v, P)). Likewise we write DWk(v, P) for further iterations.

2.2. The wreath product of polytopes. Let P ⊂ Rd be a d-polytope, and let Q ⊂ Re be an e-polytope. Just
in order to simplify the description we assume that the vertex barycenters of both, P and Q, are zero. Let
v1, . . . , vm be the vertices of P, and let w1, . . . ,wn be the vertices of Q. For k ∈ {1, . . . , n} and p ∈ Rd we define
a vector pk ∈ Rnd as follows: Identifying Rnd with the set of matrices with n rows and d columns, we let pk be
the (n × d)-matrix with the k-th row equal to p and all other rows equal to zero. Then we call the polytope

P o Q = conv
{
(vi)

k ⊕ wk

∣∣∣ 1 ≤ i ≤ m, 1 ≤ k ≤ n
}
⊂ Rnd+e

the wreath product of P with Q. Clearly, the wreath product is full-dimensional and it has mn vertices.
We use the exponent notation also for subsets of Rd. Moreover, we write the joint convex hull of disjoint

polytopes R, S ⊂ Rnd+e as the join product R ∗ S .

Proposition 2.2. Take a facet G of Q, and assume that w1, . . . ,wg are the vertices of G. For each k > g, that
is, for each vertex wk of Q which is not contained in G, choose some facet Fk of P. Then the iterated join

F = (P1 ⊕ w1) ∗ · · · ∗ (Pg ⊕ wg) ∗ ((Fg+1)g+1 ⊕ wg+1) ∗ · · · ∗ ((Fn)n ⊕ wn)

is a facet of P o Q, and all facets arise in this way. We denote F by (Fg+1, . . . , Fn; G).

Remark 2.3. The property that the polytopes P and Q both have the origin as their vertex barycenters is not
strictly necessary in order to obtain a valid facet description as above: It suffices that the origin is an interior
point. However, the vertex barycenter is a fixed point of any affine transformation of a polytope, and this way,
all affine transformations become linear.

We continue with the notation of the previous proposition. Since the vertex barycenter of Q is the origin,
there is a unique non-zero vector γ ∈ Re such that the linear inequality corresponding to G, with indeterminate x,
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is 1 + 〈x, γ〉 ≥ 0. Call γ the normalized facet normal vector of G. Similarly, let φg+1, . . . , φn ∈ R
d be the

normalized facet normal vectors of the facets Fg+1, . . . , Fn, respectively. It is easy to verify that


n∑

k=g+1

(1 + 〈wk, γ〉)(φk)k

 ⊕ γ ∈ R
nd+e

is the normalized facet normal vector of F.

Corollary 2.4. The wreath product PoQ is simplicial if and only if P is a simplex and Q is simplicial. Moreover,
P o Q is a simplex if and only if P and Q both are simplices.

In general, there is no closed formula known for the f -vector of the wreath product. For the important special
cases of Q being either simplicial or cubical we can, however, easily count the number of facets.

Corollary 2.5. Assume that each facet of Q has the same number of vertices, say c. Then the number of facets
of P o Q equals f Q

e−1( f P
d−1)n−c.

If Q is a point, then P o Q = P; likewise, if P is a point, then P o Q = Q. So the first non-trivial case is
P = Q = [−1, 1] and

P o Q = conv{(−1, 0,−1), (1, 0,−1), (0,−1, 1), (0, 1, 1)}

is a (non-regular) tetrahedron, see Figure 1.

(−1)1 ⊕ (−1)

(1)1 ⊕ (−1)

(−1)2 ⊕ 1

(1)2 ⊕ 1

0 ⊕ (−1)

0 ⊕ 1

F 1. Wreath product P oQ for P = Q = [−1, 1]. The wreath product contains an isometric
copy of Q = conv{0 ⊕ (−1), 0 ⊕ 1} as shown. For each vertex of Q the boundary of the wreath
product contains an isometric copy of P: conv{(−1)1 ⊕ (−1), (1)1 ⊕ (−1)} and conv{(−1)2 ⊕

(−1), (1)2 ⊕ 1}, respectively.

Our terminology is justified by the following observation.

Proposition 2.6. The wreath product of the automorphism groups Aut P o Aut Q = (Aut P)n
o Aut Q (where

the semi-direct product o is taken with respect to the natural action of Aut Q on the n vertices of Q) acts as a
group of automorphisms of P o Q. In particular, if Aut P and Aut Q both act transitively on the set of vertices
of P and Q, respectively, then also P o Q admits a vertex transitive group of automorphisms.

The example [−1, 1] o [−1, 1] above shows that the whole group of automorphisms of the wreath product can,
in fact, be larger: (Z/2) o (Z/2) is the quaternion group of order eight, while the automorphism group of the
3-simplex is the symmetric group of degree 4.

One interesting map is the linear projection π : P oQ→ P×Q induced by (vi)k ⊕wk 7→ vi ⊕wk. Additionally
we define the blocking map

β : (P o Q)∗ → Q∗ : (Fg+1, . . . , Fn; G)∗ 7→ G∗,

which is a linear map between the polar polytopes.
Of special interest is the case where the first factor in the wreath product is a simplex.
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F 2. The suspension of the circle C5.

Proposition 2.7. Let ∆d be a d-simplex, and let Q ⊂ Re be an e-polytope with vertices w1, . . . ,wn. Then the
wreath product ∆d o Q is combinatorially isomorphic to the iterated dual wedge

DWd(w1,DWd(w2, . . .DWd(wn,Q) . . . )).

3. T C C

Combinatorially, the dual wedge DW(v, P) of a simplicial polytope P with respect to a vertex v can be
described as a one-point suspension of the boundary sphere ∂P of P with respect to v. As we will see, also the
wreath product construction ∆d o Q of a d-dimensional simplex ∆d with a simplicial polytope Q has a natural
generalization to simplicial complexes. For a survey on combinatorial properties of simplicial complexes see
Bj örner [5].

3.1. One-point Suspensions, Reduced Joins, and Wreath Products of Simplicial Complexes. In the fol-
lowing, we consider finite simplicial complexes K , ∅. The link, the star, and the deletion of a vertex v of K
are the subcomplexes of K

linkK(v) := {F ∈ K | v < F and {v} ∪ F ∈ K} ,
starK(v) := {F ∈ K | v ∈ F} ,
delK(v) := {F ∈ K | v < F} ,

respectively.

Definition 3.1. Let K be a simplicial complex and let v be a vertex of K. The one-point suspension Susp1(v,K)
of K with respect to v is the simplicial complex

Susp1(v,K) := ((∂ v′v′′ ∗ K) \ (∂ v′v′′ ∗ starK(v))) ∪ v′v′′ ∗ linkK(v),

where v′ and v′′ are two copies of the vertex v that are not contained in K and which span the edge v′v′′.

Remark 3.2. The facets of Susp1(v,K) come in three kinds, depending on whether they contain v′, v′′, or both:
for each facet F of K which does not contain v, we obtain two coned copies v′ ∗F and v′′ ∗F, and for each facet
G which contains v, we obtain one coned copy v′v′′ ∗(G\{v}). The canonical projection βwhich maps the facets
of the one-point suspension to its base space by letting β(v′ ∗ F) = β(v′′ ∗ F) = F and β(v′v′′ ∗ (G \ {v})) = G
is not a simplicial map; it induces a retraction of the space |Susp1(v,K)| \ {v′, v′′} to K, where |Susp1(v,K)|
denotes a geometric realization of Susp1(v,K).

Since the standard suspension S 0 ∗ K of K, i.e., the join product of K with the 0-dimensional sphere S 0,
combinatorially is a subdivision of Susp1(v,K), we have that both spaces are PL-homeomorphic. In particular,
one-point suspensions provide an economic way of suspending a simplicial complex; see [6, 7, 28, 29, 30].
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F 3. The one-point suspension of the circle C5 with respect to one of its vertices.

Example 3.3. Figure 2 displays the 1-skeleton of the suspension S 0 ∗ C5 of the 5-gon C5. By “removing” the
original vertex v from the suspension, we obtain the one-point suspension Susp1(v,C5) of C5 with respect to v;
see Figure 3.

This one-point suspension has a higher-dimensional analog: Instead of the join product of a simplicial com-
plex K with S 0, which is the boundary of an 1-simplex, we can take the join product of K with the boundary
∂∆d of a d-dimensional simplex ∆d and then “remove” a vertex v of K.

Definition 3.4. Let K be a simplicial complex and let v be a vertex of K. The reduced join of K with the
boundary ∂∆d of a d-simplex ∆d with respect to v is the simplicial complex

∂∆d ∗v K = ((∂∆d ∗ K)\(∂∆d ∗ starK(v))) ∪ (∆d ∗ linkK(v)).

From the construction of the reduced join we see that ∂∆d ∗v K is obtained from ∂∆d ∗ K by a generalized
bistellar flip which removes ∂∆d∗starK(v) from ∂∆d∗K and inserts ∆d∗linkK(v) instead (cf. [6] for the definition
of and further references on bistellar flips). The reverse direction of this operation is called starring a vertex in
∆d in [3]. Since ∂∆d ∗ K is a subdivision of ∂∆d ∗v K, both spaces are PL-homeomorphic. In fact, the reduced
join ∂∆d ∗v K can be described as d iterated one-point suspensions of K with respect to v and copies of v that
are generated in each intermediate step.

The wreath product of polytopes has the following combinatorial analog.

Definition 3.5. Let K be a simplicial complex with n vertices and let ∂∆d be the (d − 1)-dimensional boundary
of an abstract d-simplex ∆d . We define the wreath product ∂∆d o K of ∂∆d with K as follows. As vertices of
∂∆d o K we take d + 1 copies v1

1, . . . , v
d+1
1 , . . . , v1

n, . . . , v
d+1
n of the vertices v1, . . . , vn of K. The facets of ∂∆d o K

are all those subsets S of vertices of ∂∆d o K of the form

S :=
⋃

v∈F

{v1, . . . , vd+1} ∪
⋃

v<F

{v1, . . . , /, . . . , vd+1},

where F is a facet of K and for the vertices v < F exactly one of the vertices {v1, . . . , vd+1} is omitted.

Remark 3.6. It follows from the construction that for d > 0 every facet S of ∂∆d o K arises from some facet F
of K as the multiple join product of copies of the full d-simplex ∆d for every v ∈ F with copies of facets of ∆d

for every v < F. If d = 0, then ∆d is a point and ∂∆d o K = K. Also ∂∆d o K = ∆d if K is a point.

Example 3.7. In Figure 4 we display one facet of the 14-dimensional simplicial complex ∂∆2 o ∂ octahedron
that arises from the upper front triangle of the octahedron. Every vertex of the upper front triangle contributes
a full simplex ∆2 to the facet of ∂∆2 o ∂ octahedron, all the other vertices contribute a 1-dimensional maximal
face of ∆2.
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F 4. One facet of ∂∆2 o ∂ octahedron.

Proposition 3.8. Let K be a simplicial complex with at least two (distinct) vertices v1, v2. The reduced join is
a commutative operation, i.e.,

∂∆d1 ∗v1 (∂∆d2 ∗v2 K) � ∂∆d2 ∗v2 (∂∆d1 ∗v1 K),

for d1, d2 ≥ 0. In particular, ∂∆d oK can be obtained from K by successive reduced joins (in an arbitrary order)
with ∂∆d with respect to all the vertices of K.

Proof. Let {v1, v2, . . . , vn} be the set of vertices of K. As the vertices of ∂∆d1∗v1 K we take v1
1, . . . , v

d1+1
1 , v2, . . . , vn.

Then we have as facets of ∂∆d1 ∗v1 K, for all facets F of K, all those subsets S of vertices of ∂∆d1 ∗vi K of the
form

S = (F\{v1}) ∪
⋃

v1∈F

{v1
1, . . . , v

d1+1
1 } ∪

⋃

v1<F

{v1
1, . . . , /, . . . , v

d1+1
1 },

where, if v1 is not in F, exactly one of the vertices {v1
1, . . . , v

d1+1
1 } is omitted. As vertices of ∂∆d1 ∗v1 (∂∆d2 ∗v2 K)

we take
v1

1, . . . , v
d1+1
1 , v1

2, . . . , v
d2+1
2 , v3, . . . , vn.

The facets of ∂∆d1 ∗v1 (∂∆d2 ∗v2 K) then are, for all facets F of K, all those subsets S of vertices of ∂∆d1 ∗v1

(∂∆d2 ∗v2 K) of the form

S = (F\{v1, v2}) ∪
⋃

v1∈F

{v1
1, . . . , v

d1+1
1 } ∪

⋃

v1<F

{v1
1, . . . , /, . . . , v

d1+1
1 }

∪
⋃

v2∈F

{v1
2, . . . , v

d2+1
2 } ∪

⋃

v2<F

{v1
2, . . . , /, . . . , v

d2+1
2 },

where, if v1 respectively v2 is not in F, exactly one of the vertices {v1
1, . . . , v

d1+1
1 } respectively {v1

2, . . . , v
d2+1
2 } is

omitted. The roles of v1 and v2 can clearly be exchanged, and hence the result follows. �

Similar to Proposition 2.6 for the corresponding polytopal construction, the wreath product allows us to
construct highly symmetric simplicial complexes.

Proposition 3.9. The wreath product of the automorphism groups Aut ∂∆d o Aut K = (S d+1)n
o Aut K, with

respect to the natural action of Aut K on the n vertices of K, acts as a group of automorphisms of ∂∆d o K.
In particular, if Aut K acts transitively on the set of vertices of K, then also ∂∆d o K admits a vertex-transitive
group of automorphisms.
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3.2. f -vectors of Wreath Products. An (e − 1)-dimensional simplicial complex K is called pure if all its
maximal faces are of dimension e − 1. Clearly, since the one-point suspensions have this property, the wreath
product ∂∆d o K is pure if and only if K is pure. The wreath product ∂∆d o K can be built from nd iterated
one-point suspensions. Since each one-point suspension step increases the dimension by one, we have that
dim ∂∆d o K = nd + e − 1.

Recall, that the f -vector of the (e − 1)-dimensional simplicial complex K is the sequence

f (K) = ( f0, f1, . . . , fe−1),

where fi is the number of i-dimensional faces of K, for 0 ≤ i ≤ e − 1.

Proposition 3.10. Abbreviating n = f0(K), the f -vector of ∂∆d o K has components

fi(∂∆d o K) =
min{e,b i+1

d+1 c}∑

j=max{0,i+1−nd}



f j−1(K) ·
∑

u1 · 1 + u2 · 2 + · · · + ud · d
= i + 1 − j(d + 1) with
uk ∈ N, 1 ≤ k ≤ d

[(
n − j

ud

)(
d + 1

d

)ud

·

(
n − j − ud

ud−1

)(
d + 1
d − 1

)ud−1

. . .

(
n − j − ud − ud−1 − · · · − u2

u1

)(
d + 1

1

)u1
]



for 0 ≤ i ≤ nd + e − 1. In particular

f0(∂∆d o K) = n(d + 1)

and

fnd+e−1(∂∆d o K) = fe−1(K)(d + 1)n−e.

Proof. By definition, the vertex set of the complex ∂∆d oK is formed of d+1 copies of the vertices of K. Hence,
f0(∂∆d o K) = n(d + 1).

The facets of ∂∆d o K of dimension nd + e − 1 arise from facets of K of dimension e − 1. For every
(e − 1)-dimensional facet F of K the corresponding facets of ∂∆d o K are of the form

⋃
w∈F{w

1, . . . ,wd+1} ∪⋃
w<F{w

1, . . . , /, . . . ,wd+1}. Since F has cardinality e, we take (a copy of) the full simplex ∆d for the e vertices
in F and (a copy of) a facet of ∆d for the remaining n − e vertices of K. The simplex ∆d has (d + 1) facets,
thus there are (d + 1)n−e facets of ∂∆d o K that arise from the (e − 1)-dimensional facet F of K. Moreover, as in
Corollary 2.5, fnd+e−1(∂∆d o K) = fe−1(K)(d + 1)n−e.

Let G be an i-dimensional face of ∂∆d o K. Every vertex of K either contributes a (copy of) a full simplex
∆d or a (copy of) a face of ∆d to G. The set of vertices of K that contribute a full simplex form a face H of
cardinality j of K. This face H therefore contributes j(d + 1) vertices to G. Since G is i-dimensional, there are
i+1− j(d+1) vertices of G left that are contributed to by the other n− j vertices of K. In fact, every of the n− j
vertices contributes between 1 and d vertices to ∂∆d oK, so let uk be the number of vertices of K that contribute
k vertices to G. Since G is i-dimensional, it follows that u1 · 1 + u2 · 2 + · · · + ud · d = i + 1 − j(d + 1). There
are

(
n− j
ud

)(
d+1

d

)ud
choices for ud of the n − j vertices to contribute d vertices to ∂∆d o K, etc. Altogether, there are

f j−1(K) faces H of cardinality j of K that can contribute for each vertex a full simplex ∆d to an i-dimensional
face G of ∂∆d o K. Observe, that j has to be restricted to the range max{0, i + 1 − nd} ≤ j ≤ min{e, b i+1

d+1c}. �

A simplicial complex K is called k-neighborly if fi(K) =
(

f0(K)
i+1

)
for 0 ≤ i ≤ k − 1, that is, every set of k (or

less) vertices is a face of K.
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Proposition 3.11. If K is a k-neighborly simplicial complex, then ∂∆d o K is (k(d + 1) + d)-neighborly. If K is
not k-neighborly, then ∂∆d o K is not k(d + 1)-neighborly.

Proof. Let K be k-neighborly and let F be a set of vertices of ∂∆d oK of cardinality k(d+1)+d. Every vertex of
K contributes at least d and at most d+ 1 vertices to every facet of ∂∆d oK. Since F has cardinality k(d+ 1)+ d,
there are at most k vertices of K for which all its d + 1 copies are present in F. However, K is k-neighborly, so
there is indeed a facet of K that contains these at most k vertices. One of the corresponding facets of ∂∆d o K
then contains F.

Let K be not k-neighborly, and suppose that every set of vertices of ∂∆d o K of cardinality k(d + 1) is a
face of ∂∆d o K. Since K is not k-neighborly, there is a set G of k vertices of K that is not a face of K. The
union of the d + 1 copies of these k vertices then is a set of cardinality k(d + 1) which is not a face of ∂∆d o K.
Contradiction. �

4. C D  O- S W P

Vertex-decomposability, shellability, and constructibility are three standard concepts to decompose a pure
simplicial complex into its collection of facets; see Bj örner[5]. We show that these properties are respected by
one-point suspensions and hence also by the wreath product construction. A pure (e−1)-dimensional simplicial
complex K is

. vertex-decomposable if either K is a simplex (possibly {∅}) or there is a vertex v such that the link
linkK(v) and the deletion delK(v) of v in K are both vertex-decomposable simplicial complexes;

. shellable if it has a shelling, i.e., there is a linear ordering F1, F2, . . . , F fe−1(K) of the fe−1(K) facets of K
such that (2F1 ∪ · · · ∪ 2Fk−1 )∩ 2Fk is a pure (e− 2)-dimensional simplicial complex for 2 ≤ k ≤ fe−1(K),
where 2F is the set of all faces of a simplex F;

. constructible if either K is a simplex or there are two (e − 1)-dimensional constructible subcomplexes
K1 and K2 of K such that their union is K and their intersection is an (e − 2)-dimensional constructible
simplicial complex;

. Cohen-Macaulay (with respect to some field F) if the reduced homology groups H̃i(linkK(G);F) vanish
for i , dim(linkK(G)) for all faces G ∈ K.

For pure simplicial complexes the following implications are strict (cf. [5]):

vertex-decomposable ⇒ shellable ⇒ constructible ⇒ Cohen-Macaulay.

Note that, due to Munkres [35], Cohen-Macaulayness over a field is not a combinatorial property but an
entirely topological one. Here we mention it for systematic reasons. Munkres result [35] already implies that
the one-point suspension of a Cohen-Macaulay complex (and hence also any wreath product) is again Cohen-
Macaulay. Conversely, Cohen-Macaulayness of K is necessary for the Cohen-Macaulayness of Susp1(v,K)
since K occurs as a link.

Proposition 4.1. (Provan and Billera [37, Proposition 2.5]) The one-point suspension Susp1(v,K) is vertex-
decomposable if and only if K is.

Corollary 4.2. The wreath product ∂∆d o K is vertex-decomposable if and only K is.

Proposition 4.3. The one-point suspension Susp1(v,K) is shellable if and only if K is.

Proof. Let F1, . . . , F fe−1(K) be a shelling order of the facets of K. As pointed out in Remark 3.2 we have three
kinds of facets in Susp1(v,K). Thus we obtain a shelling order of the facets of Susp1(v,K) by replacing each
facet Fi which does not contain v by the pair v′ ∗ Fi, v′′ ∗ Fi and each facet F j which contains v by the facet
v′v′′ ∗ (F j \ {v}).

For the converse observe that under the map β, defined in Remark 3.2, each shelling order of the facets
of Susp1(v,K) also induces a shelling order of the facets of K (after removing doubles). �

Example 4.4. Iteratively applying the construction in the proof of Proposition 4.3 yields shellings of wreath
products ∂∆ o K from shellings of K.
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In particular, if F1, F2, . . . , F fe−1(K) is a shelling of K, then we first partition the facets of ∂∆d oK into fe−1(K)
sets of facets B(Fk) that arise from the facets Fk, 1 ≤ k ≤ fe−1(K), according to Remark 3.6. Each collection
B(Fk) is a join product ∗w∈Fk∆d ∗w<Fk ∂∆d, and therefore it is a shellable ball. For an explicit shelling of the
first ball B(F1) we start with some of its facets and continue with those facets in B(F1) that differ from the first
facet by two vertices, then with those facets that differ by four vertices, etc.

As an example, we display in Figure 5 a corresponding shelling of the set of facets associated with the upper
front triangle of ∂∆2 o ∂ octahedron from Figure 4.

F 5. A shelling of the facets associated with the upper front triangle of ∂∆2 o ∂ octahedron.

The way that we have chosen the facets, we ensure that for every new facet in the ordering the intersection
with the previous facets is (nd + e − 2)-dimensional. Upon completion of the shelling of B(F1) we continue
with the facets of B(F2), etc; see Figure 6.

F 6. The shelling of a consecutive collection of facets of ∂∆2 o ∂ octahedron.

Corollary 4.5. The wreath product ∂∆d o K is shellable if and only if K is shellable.

Proposition 4.6. The one-point suspension Susp1(v,K) is constructible if and only if K is.

Proof. A construction order of a simplicial complex is a sequence of increasingly fine (special) equivalence
relations on the set of facets such that the final equivalence relation is the identity. Clearly, for each facet F of
K (not containing v) the simplicial complex of two facets v′ ∗ F and v′′ ∗ F is a constructible ball. So, by virtue
of the inverse β−1 of the blocking map, which maps sets of facets of K to sets of facets of Susp1(v,K), and by
an obvious induction on the dimension of K, each construction of K induces a construction of the one-point
suspension.
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Conversely, if a pure simplicial complex is constructible, then all its vertex-links are constructible (see [5]
and [16]). Since K appears as a vertex-link in every one-point suspension of K, a one-point suspension of K is
non-constructible if K is non-constructible. �

Corollary 4.7. The wreath product ∂∆d o K is constructible if and only if K is constructible.

4.1. Combinatorial Strengthenings and Topological Weakenings of Contractibility. Combinatorial no-
tions which imply contractibility appear in various contexts in topology and combinatorics. An (e − 1)-dimen-
sional simplicial complex K is

. non-evasive if either K is a single point or there is a vertex v of K such that both link K(v) and delK(v)
of v are non-evasive;

. collapsible if the Hasse diagram of K (seen as a graph whose edges are directed towards the higher-
dimensional faces, and ∅ counts as a face of K) admits a perfect matching which is acyclic, that is, the
graph remains acyclic if the orientations of the edges in the matching are reversed;

. contractible if K is homotopy equivalent to a point;

. Z-acyclic if all reduced homology groups of K with integer coefficients vanish.

For simplicial complexes the following implications are strict (cf. [5]):

cone ⇒ non-evasive ⇒ collapsible ⇒ contractible ⇒ Z-acyclic ⇒ χ̃ = 0,

where χ̃ denotes the reduced Euler characteristics of a simplicial complex. The perfect matching in the defini-
tion of collapsibility is a special case of a Morse matching in the sense of Chari [9]; see also Forman [12, 13].
In the sequel we call a perfect acyclic matching a perfect Morse matching and the unique vertex matched to the
empty face is called critical. The concept of evasiveness originally stems from the complexity theory of graph
properties and was reformulated in terms of simplicial complexes by Kahn, Saks, and Sturtevant [19]; see also
[5], [27], and [41].

Proposition 4.8. The one-point suspension Susp1(v,K) is a cone if and only if K is.

Proof. Suppose that K = a ∗ B is a cone with apex a. To prove that Susp1(v, a ∗ B) is a cone we distinguish
two cases: If v = a, then Susp1(a, a ∗ B) = a′ ∗ (a′′ ∗ B). If v , a, then v ∈ B and Susp1(v, a ∗ B) =
(a ∗ ∂v′v′′ ∗ B \ ∂v′v′′ ∗ a ∗ starB(v)) ∪ v′v′′ ∗ a ∗ linkB(v) = a ∗ Susp1(v, B).

For the converse assume that Susp1(v,K) = a ∗ B for some vertex a and some induced subcomplex B. If
a = v′ (or, symmetrically, a = v′′) then Susp1(v,K) = v′v′′ ∗ C where C is the subcomplex of Susp1(v,K)
induced on the complement of {v′, v′′}. Clearly, C = linkK(v) and K = v ∗C is a cone. Otherwise if a < {v′, v′′}
then a ∈ K \ starK(v) and K = starK(a) ∪ linkK(a) is a cone with apex a. �

Corollary 4.9. The wreath product ∂∆d o K a cone if and only if K is.

Proposition 4.10. The one-point suspension Susp1(v,K) is non-evasive if and only if K is.

Proof. Let K be non-evasive. Then clearly, linkSusp1(v,K)(v′) = K is non-evasive by assumption. Furthermore,
delSusp1(v,K)(v′) is a cone with apex v′′, and therefore it is also non-evasive.

If Susp1(v,K) is non-evasive, then there is a vertex w such that linkSusp1(v,K)(w) and delSusp1(v,K)(w) are non-
evasive. If w ∈ {v′, v′′}, then it follows that linkSusp1(v,K)(w) = K is non-evasive. Thus, let us assume that
w < {v′, v′′}. In this case, linkSusp1(v,K)(w) = Susp1(v, linkK(w)) and delSusp1(v,K)(w) = Susp1(v, delK(w)) are
non-evasive, so by induction, K is non-evasive. �

Corollary 4.11. The wreath product ∂∆d o K is non-evasive if and only if K is.

Proposition 4.12. If K is collapsible, then the one-point suspension Susp1(v,K) is collapsible.

Proof. We prove that each perfect Morse matching µ of K can be lifted to a perfect Morse matching µ̄ of
Susp1(v,K). This lifting is not canonical but it depends on choices.

Let (σ, τ) ∈ µ. Depending on the relative positions of the faces σ, τ to the special vertex v they may induce
up to three different matched pairs in µ̄, as it will be defined now. We distinguish the following cases:
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(1) σ, τ ∈ starK(v): Then we let (σ \ {v} ∪ {v′, v′′}, τ \ {v} ∪ {v′, v′′}) ∈ µ̄.
(2) σ ∈ starK(v) and τ < starK(v): In this case we necessarily have σ = τ ∪ {v}, and we let (σ \ {v} ∪
{v′}, τ), (σ \ {v} ∪ {v′, v′′}, τ ∪ {v′′}) ∈ µ̄.

(3) σ, τ < starK(v): Then we let (σ, τ), (σ ∪ {v′}, τ ∪ {v′}), (σ ∪ {v′′}, τ ∪ {v′′}) ∈ µ̄.

In order to prove that µ̄ is indeed a perfect matching in the Hasse diagram of Susp1(v,K) we cannot avoid a
somewhat tedious case distinction according to the six different types of pairs in µ̄ which we address as 1, 2a,
2b, 3a, 3b, and 3c, respectively: Let φ ∈ Susp1(v,K) be any face.

φ ∈ K \ starK(v): Let ψ be the match of φ in µ. If ψ ∈ K \ starK(v), too, then (type 3a) ψ is the unique match
of φ in µ̄. Otherwise ψ = φ ∪ {v} and (φ, ψ \ {v} ∪ {v′}) ∈ µ̄ (type 2a).

φ = φ′ ∪ {v′} and φ′ ∈ K \ linkK(v): Let (φ′, ψ′) ∈ µ. Then ψ′ < starK(v), and the unique match of φ is
ψ′ ∪ {v′} (type 3b).

φ = φ′ ∪ {v′} and φ′ ∈ linkK(v): Again let (φ′, ψ′) ∈ µ. If ψ′ < starK(v), then (type 3b) ψ′∪{v′} is the unique
match. Otherwise ψ′ ∈ starK(v) and hence φ′ ∪ {v} = ψ′, and thus (type 2a) the unique match is φ′.

φ = φ′′ ∪ {v′′} and φ′′ ∈ K \ linkK(v): Let (φ′′, ψ′′) ∈ µ. Then ψ′′ < starK(v) and (type 3c) the unique match
of φ is ψ′′ ∪ {v′′}.

φ = φ′′ ∪ {v′′} and φ′′ ∈ linkK(v): Again let (φ′′, ψ′′) ∈ µ. If ψ′′ < starK(v), then (type 3c) ψ′′ ∪ {v′′} is the
unique match of φ in µ̄. Otherwise ψ′′ ∪ {v} = φ′′, and the unique match is φ′′ \ {v} ∪ {v′, v′′} (type 2b).

φ = φ′′′ ∪ {v′, v′′}: Then φ′′′ ∈ linkK(v). Let (φ′′′ ∪ {v}, ψ′′′) ∈ µ. If ψ′′′ ∈ starK(v), then φ is matched to
ψ′′′ \{v}∪{v′, v′′} (type 1). Otherwise ψ′′′ ∈ linkK(v) and hence ψ′′′ = φ′′′. This is the case 2b, and we conclude
that (φ, φ′′′ ∪ {v′′}) ∈ µ̄.

The acyclicity of µ̄ is inherited from the acyclicity of µ; we omit the details. �

It seems to be an open question whether the converse of the previous proposition holds. However, there exist
perfect Morse matchings of one-point suspensions which are not induced by perfect Morse matchings of the
base space.

Example 4.13. Let π be the 1-dimensional simplicial complex on the vertex set {1, 2, 3, 4}with facets 12, 23, 34,
that is, π is a path on four vertices. In the Hasse diagram of π we consider the perfect Morse matching µ =

{(12, 1), (23, 2), (34, 3), (4, ∅)}. Figure 7 displays µ and its lifting µ̄ as defined in the proof of Proposition 4.12.

1 2 3 4

12 23 34

(a) The perfect Morse matching µ of the path π. The
vertex 4 is critical.

14’ 12 24’ 23 34’ 4’4"14" 24" 34"

1 2 3 4’ 4"

124’ 234’ 34’4"124" 234"

(b) The perfect Morse matching µ̄ of Susp(4, π). The
vertex 4′ is critical.

F 7. The dashed arrows pointing downwards form the respective matchings. In both
cases the empty face is omitted.

Corollary 4.14. If K is collapsible, then the wreath product ∂∆d o K is collapsible.
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The homology of a suspension is the same as the (reduced) homology of the base space, up to a shift in
dimension: H̃i(Susp1(v,K)) = H̃i−1(K), for i ≥ 1. Hence, the one-point suspension Susp1(v,K) is Z-acyclic if
and only if K is Z-acyclic, and likewise for the wreath products. Since the suspension of a Z-acyclic space is
even contractible (cf. [5] and [27]) we have the following stronger result.

Proposition 4.15. If K is Z-acyclic, then the one-point suspension Susp1(v,K) is contractible.

Corollary 4.16. If K is Z-acyclic, then the wreath product ∂∆d o K is contractible for d ≥ 1.

As vertex-transitivity translates to wreath products, the wreath product ∂∆d oK of a vertex-transitive Z-acyclic
simplicial complex K yields for d ≥ 1 a vertex-transitive contractible simplicial complex. A first example of
a vertex-transitive Z-acyclic simplicial complex was constructed by Oliver; for further examples, based on the
2-skeleton of the Poincaré homology 3-sphere in its description by Threlfall and Seifert [38] and Weber and
Seifert [40] as the spherical dodecahedron space, see [27]. In particular, the smallest currently known Z-acyclic
vertex-transitive simplicial complex is the 5-dimensional complex K3 with 30 vertices of Lutz [27].

Theorem 4.17. The wreath products ∂∆d o K3 of the vertex-transitive 5-dimensional Z-acyclic simplicial com-
plex K3 with 30 vertices give (30d + 5)-dimensional vertex-transitive contractible complexes with 30(d + 1)
vertices for d ≥ 1.

Remark 4.18. The previously known vertex-transitive contractible simplicial complexes with 60 vertices from
[27] are of dimension 11, 23, and 29. Therefore, the wreath product construction provides new examples.
These are of particular interest, since it is still open whether there are vertex-transitive collapsible simplicial
complexes, and, if such spaces exist, whether they can be constructed by starting with contractible or Z-acyclic
vertex-transitive complexes. Non-existence would, on the other hand, prove the long-standing evasiveness
conjecture for graph properties; cf. [19].

5. PL-T W P

A pure (e − 1)-dimensional simplicial complex K is a (weak) simplicial pseudomanifold (with boundary)
if every (e − 2)-dimensional face is contained in exactly two (at most two) (e − 1)-dimensional facets of the
complex K. Since the one-point suspension of a space is PL-equivalent to the ordinary suspension it is clear
that the one-point suspension is a pseudomanifold if and only if the base space is. Again this property extends
to wreath products.

5.1. Wreath Products of Spheres. As wreath products are iterated one-point suspensions it is clear that the
wreath product ∂∆d o S of a simplicial sphere S is again a simplicial sphere. This section is devoted to the study
of how additional structures on S behave with respect to wreath products.

Newman [36] proved that a constructible pseudomanifold (with boundary) is a PL sphere (PL ball); see
also Bj örner [5]. In Propositions 4.2, 4.5, and 4.7, we already proved that wreath products ∂∆d o K inherit
vertex-decomposability, shellability, or constructibility from the corresponding property of the base space K.

For simplicial pseudomanifolds we have the following implications:

polytopal sphere
u w

vertex-decomposable sphere

shellable sphere
⇓

constructible sphere
⇓

combinatorial sphere
⇓

simplicial sphere
⇓

homology sphere.
⇓

Cohen-Macaulay complex
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Proposition 5.1. The one-point suspension Susp1(v, S ) is a polytopal sphere if and only if S is.

Proof. If S = ∂P for some simplicial polytope P, then Susp1(v, S ) � ∂DW(v, P) is polytopal, too; see Sec-
tion 2.1. In order to prove the converse, suppose that Susp1(v, S ) = ∂Q for some simplicial polytope Q. Then
the vertex figure P/v′ of the vertex v′ is a simplicial polytope whose boundary is isomorphic to S (as a simplicial
complex). �

Corollary 5.2. The wreath product ∂∆d o S is a polytopal sphere if and only if S is.

A simplicial (e − 1)-sphere K is a combinatorial sphere if K is PL-homeomorphic to the boundary of the
standard e-simplex ∆e. In particular, all vertex-links of a combinatorial (e−1)-sphere are combinatorial (e−2)-
spheres. Observe that in all dimensions e − 1 , 4, every (e − 1)-simplicial sphere with the property that all its
vertex-links are combinatorial (e − 2)-spheres is itself a combinatorial sphere. In dimension e − 1 = 4, it is an
open problem whether exotic simplicial 4-spheres exist that are not combinatorial, but for which all vertex-links
are combinatorial 3-spheres. Since one-point suspensions are PL-equivalent to ordinary suspensions, one-point
suspensions (and thus also wreath products) of combinatorial spheres are again combinatorial spheres, and
conversely.

Vertex-transitive triangulations of combinatorial spheres with up to 15 vertices (except for some small sym-
metry groups) were enumerated in [26]. Among these, various examples are polytopal wreath product spheres.

Theorem 5.3. The vertex-transitive wreath-product spheres with n(d + 1) ≤ 15 are the following: The spheres
46 16

1 , 58 47
1 , 610 23

1 , 712 193
1 , and 814 38

1 of dimension 4, 5, 6, 7, and 8 with 6, 8, 10, 12, and 14 vertices from [26]
are the polytopal wreath product spheres ∂∆1 o ∂C2(n), 3 ≤ n ≤ 7, respectively. The spheres 79 34

1 , 912 299
1 , and

1115 86
1 of dimension 7, 9, and 11 with 9, 12, and 15 vertices from [26] are the polytopal wreath product spheres

∂∆2 o ∂C2(n), 3 ≤ n ≤ 5, respectively. We have the identities ∂∆k o ∂∆2 = ∂∆2 o ∂∆k = ∂∆3k+2, for 2 ≤ k ≤ 4, and
∂∆k o∂∆1 = ∂∆1 o∂∆k = ∂∆2k+1, for 1 ≤ k ≤ 6. Moreover, in the notation of [26], 812 294

1 = ∂∆1 o∂C∆3 = (∂∆3)∗3,
where C∆3 is the 3-dimensional cross-polytope; and for the cyclic 4-polytopes C4(6) and C4(7) we have that
912 299

1 = ∂∆1 o ∂C4(6) = ∂C10(12) = (∂∆5)∗2 and 1014 38
1 = ∂∆1 o ∂C4(7).

Remark 5.4. Mani [32] proved that every simplicial (nd+e−1)-sphere with n(d+1) vertices is polytopal when-
ever n(d+1) ≤ (nd+ e−1)+4, which settles the polytopality for most of the spheres of Theorem 5.3. However,
for the polytopality of the spheres 712 193

1 and 814 38
1 the characterization as wreath products of polytopal spheres

according to Corollary 5.2 is needed.

A (simplicial) homology (e − 1)-sphere is a manifold with the homology of the standard sphere S e−1.

Proposition 5.5. If K is a homology (e − 1)-sphere, different from the standard sphere S e−1, and d ≥ 1, then
∂∆d o K is a non-PL sphere.

Proof. By the double suspension theorem of Edwards [11] for the Mazur homology 3-sphere and its gener-
alization to arbitrary homology spheres by Cannon [8], the double suspension of every simplicial homology
sphere K (different from the standard sphere) is a non-PL sphere. If d ≥ 1, then already the double reduced join
∂∆d ∗vi (∂∆d ∗v j K) with respect to two distinct vertices vi and v j of K and therefore also the iterated reduced
join ∂∆d o K are PL homeomorphic to join products of spheres with the double suspension of K and thus are
simplicial spheres. They are non-PL spheres, since the homology sphere K appears as the link of some of their
faces. �

Corollary 5.6. If K is a vertex-transitive non-spherical homology sphere and d ≥ 1, then ∂∆d o K is a non-PL
sphere for d ≥ 1.

Examples of vertex-transitive non-spherical homology spheres exist: There are exactly three 17-vertex trian-
gulations Σi

17, i = 1, 2, 3, of the Poincaré homology 3-sphere Σ that have a vertex-transitive cyclic group action.
In fact, these are the only vertex-transitive non-spherical homology 3-spheres with n ≤ 17 vertices; see [31].

Theorem 5.7. The wreath products ∂∆d o Σ
i
17 of the vertex-transitive 17-vertex triangulations Σi

17, i = 1, 2, 3,
of the Poincaré homology 3-sphere Σ give (17d + 3)-dimensional vertex-transitive non-PL spheres.
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If instead of the wreath product we take the k-fold join product of these triangulations Σ i
17, then (Σi

17)∗k is a
vertex-transitive non-PL (4k − 1)-sphere for k ≥ 2; cf. [31]. In particular, the two constructions yield examples
of vertex-transitive non-PL spheres in different dimensions (unless d = 4l and k = 17l + 1 for l ≥ 1).

5.2. Neighborly Wreath Product Spheres. If K is a simplicial (e−1)-sphere, then it is either the boundary of
an e-simplex, which is e-neighborly, or it is at most b e−2

2 c-neighborly by the van Kampen-Flores Theorem; see
Gr ünbaum [15, 11.1.3]. Spheres that are be−2

2 c-neighborly are simply called neighborly. The wreath product
∂∆d o K of a k-neighborly simplicial sphere K with ∂∆d is a (k(d + 1) + d)-neighborly (nd + e − 1)-dimensional
sphere by Proposition 3.11. If ∆d is a point, then ∂∆d o K is neighborly if and only if K is neighborly, since
∂∆d o K = K. If K = ∂∆e+1, then ∂∆d o K is a simplex, which is neighborly.

Proposition 5.8. Let K be a simplicial (e − 1)-sphere, different from the boundary of a simplex, and d ≥ 1.
Then ∂∆d oK is neighborly if and only if K is neighborly and the parameters e− 1, n, and d obey the conditions
that e − 1 is odd, e + 2 ≤ n ≤ e + 3, and d = 1 in the case n = e + 3.

Proof. Let K be different from the boundary of a simplex (hence n ≥ e + 2), d ≥ 1, and ∂∆d o K be neighborly,
i.e., b nd+e

2 c-neighborly. For fixed d and e− 1, ∂∆d oK is at most (b e
2 c(d+ 1)+ d)-neighborly by Proposition 3.11.

Therefore, ∂∆d o K can be neighborly only for small n. Let n ≥ e + 4, then

b
nd + e

2
c ≥ b

(e + 4)d + e
2

c = b
e(d + 1) + 4d

2
c

>
e(d + 1) + 4d

2
− 1 ≥ b

e
2
c(d + 1) + 2d − 1

≥ b
e
2
c(d + 1) + d.

Thus, ∂∆d o K is not neighborly for n ≥ e + 4, and this is also the case for n = e + 3 and d > 1, since then

b
nd + e

2
c = b

(e + 3)d + e
2

c > b
e
2
c(d + 1) +

3d − 2
2

≥ b
e
2
c(d + 1) + d.

For n = e + 3 and d = 1, b (e+3)·1+e
2 c = b e

2c(1 + 1) + 1 if and only if e − 1 is odd. Finally, let n = e + 2. Then

b
(e + 2)d + e

2
c = b

e(d + 1) + 2d
2

c = b
e(d + 1)

2
c + d,

where the last expression is equal to b e
2c(d + 1) + d if and only if e − 1 is odd. Note that if K is less than

b e
2c-neighborly, then ∂∆d o K never is neighborly. �

Corollary 5.9. All neighborly simplicial spheres that are wreath products ∂∆d o K of the boundary ∂∆d of a
d-simplex ∆d of dimension d ≥ 1 and some simplicial sphere K with n vertices are polytopal. In particular,
e + 1 ≤ n ≤ e + 3 and K = ∂Ce(n). If n = e + 1, then ∂∆d o ∂Ce(n) = ∂∆nd+e(n(d + 1)). For odd e − 1 and
n = e + 2 we have ∂∆d o ∂Ce(n) = ∂Cnd+e(n(d + 1)), while for n = e + 3 the wreath product ∂∆1 o ∂Ce(e + 3) is a
neighborly polytopal simplicial sphere different from ∂C2e+3(2e + 6).

Proof. Let a neighborly simplicial sphere be the wreath product ∂∆d oK of a simplicial sphere K with n vertices
with the boundary of a simplex of dimension d ≥ 1. By Proposition 5.8 and the comments before, K is
neighborly and e + 1 ≤ n ≤ e + 3. According to Barnette and Gannon [4] every (e − 1)-dimensional simplicial
manifold with n ≤ e + 4 vertices for e − 1 = 3 and e − 1 ≥ 5, and with n ≤ e + 3 vertices for e − 1 = 4,
is a combinatorial sphere. Moreover, Mani [32] showed that combinatorial (e − 1)-spheres with n ≤ e + 3
are polytopal. Hence, K is polytopal. Is also follows from Proposition 5.8 that if K is not the boundary of
a simplex ∆e with e + 1 vertices, then e − 1 is odd. Furthermore (see [15, Ch. 6 & 7] for a discussion and
additional references), the number of odd-dimensional (even-dimensional) neighborly simplicial spheres with
n vertices is equal to one if and only e + 1 ≤ n ≤ e + 3 (e + 1 ≤ n ≤ e + 2). Therefore, K = ∂∆e(n) and
∂∆d o ∂∆e(n) = ∂∆nd+e(n(d + 1)) for n = e + 1. For odd e − 1, K = ∂Ce(n) for e + 2 ≤ n ≤ e + 3 and
∂∆d o ∂Ce(n) = ∂Cnd+e(n(d + 1)) for n = e+ 2. If n = e+ 3, then d = 1 by Proposition 5.8, so ∂∆1 o ∂Ce(e+ 3) is
a sphere of even dimension 2e+2. Since the odd-dimensional sphere ∂Ce(e+3) has a vertex-transitive dihedral
(combinatorial and geometric) symmetry group De+3, the (2e+2)-sphere ∂∆1 o∂Ce(e+3) with 2e+6 vertices has
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the group Z2 o De+3 as vertex-transitive symmetry group. However, the automorphism group of ∂C2e+3(2e + 6)
is Z2 × Z2; cf. [20]. Thus, ∂∆1 o ∂Ce(e + 3) is distinct from ∂C2e+3(2e + 6). �

Remark 5.10. The existence of this series of odd-dimensional neighborly simplicial (2e + 3)-polytopes ∆1 o

Ce(e + 3) on 2e + 6 vertices with a vertex-transitive symmetry group Z2 o De+3 for even e ≥ 2, can also
be derived from the results in Gr ünbaum [15, §6.2]. The numbers of different odd-dimensional neighborly
simplicial (2e + 3)-polytopes with (2e + 3) + 3 vertices can be found in [2]. However, it seems to be unknown
whether there are vertex-transitive neighborly simplicial polytopes other than the simplex, even-dimensional
cyclic polytopes, and the odd-dimensional series ∆1 o Ce(e + 3) for even e ≥ 2. Further examples of odd-
dimensional vertex-transitive neighborly simplicial spheres can be found in [26]; for these examples it is open
whether or not they are polytopal.

Example 5.11. For all m ≥ 1, the cyclic polytope C4m−2(4m) has the following descriptions, C4m−2(4m) =
(∆2m−1)∗2 = ∆m−1 oC2(4) = ∆1 oC2m−2(2m). In particular, C6(8) = (∆3)∗2 = ∆1 oC2(4) and C10(12) = (∆5)∗2 =
∆2 o C2(4) = ∆1 oC4(6).

Note that the cyclic polytopes in odd dimensions are dual wedges over cyclic polytopes in one dimension
less.

Example 5.12. The 7-polytope ∆1 o C2(5), with f -vector f = (10, 45, 120, 205, 222, 140, 40), is the smallest
neighborly wreath product polytope which is not a cyclic polytope. The affine Gale diagram of ∆1 o C2(5) is
1-dimensional, and it arises from the Gale diagram of the pentagon by doubling the vertices; it is displayed in
Figure 8.

F 8. Affine Gale diagram of ∆1 oC2(5).

6. R  R P

Another interesting application of one-point suspensions is for the construction of counterexamples to the
Hirsch conjecture for simplicial spheres, which states that the diameter of the dual graph of a (d−1)-dimensional
simplicial sphere with n vertices is bounded above by n − d. In fact, the original Hirsch conjecture, formulated
by Hirsch in 1957 (cf. [10, p. 168]), plays an important role in the study of the computational complexity of
the simplex algorithm of linear programming (see the surveys in [24] and [37]); it asserts that the diameter of
the graph of a d-polytope with n facets, in other words, the number of pivot steps that an edge-following LP
algorithm needs for this polytope in the worst case with respect to a best possible choice of the pivots, is smaller
or equal to n − d.

While the best bound known for the diameter is super-polynomial [21, 22], it also turns out to be a non-trivial
problem to actually construct simple (or, dually, simplicial) polytopes for all possible parameters (n, d) which
can attain the Hirsch bound. Interestingly, in the known constructions by Holt, Klee, and Fritzsche [14, 17, 18]
(dual) wedges play a key role.

Provan and Billera [37] showed that all vertex-decomposable simplicial spheres (or even more general, all
vertex-decomposable simplicial complexes) satisfy the Hirsch conjecture. Moreover, they proved that trian-
gulated 2-dimensional spheres are vertex-decomposable, thus, in particular, verifying the Hirsch conjecture
for 3-dimensional polytopes. Nevertheless, the Hirsch conjecture for (simplicial) d-polytopes is still open for
d ≥ 4. For simplicial spheres the Hirsch conjecture was disproved in 1978 by Walkup [39] who provided a
27-dimensional counterexample with 56 vertices. A much smaller counterexample of dimension 11 with 24
vertices was constructed by Mani and Walkup [33]. Their construction is based on a 3-dimensional sphere D
with 16 vertices for which there is a pair of disjoint tetrahedra such that every path of adjacent facets joining
these two tetrahedra revisits at least one vertex that has previously been left behind. In other words, the 3-
sphere D of Mani and Walkup provides a counterexample to the simplicial version of the Wv-path conjecture
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by Klee and Wolfe [23] ruling out such revisiting paths. If we successively one-point suspend D with respect
to all vertices except for those eight vertices of the two tetrahedra for which we have the revisiting paths, then
it follows from work of Adler and Dantzig [1] (cf. [25] and [33]) that the resulting 11-dimensional sphere with
24 vertices is a counterexample to the Hirsch conjecture. (In fact, if {v1, v2, v3, v4} and {v5, v6, v7, v8} are the two
disjoint tetrahedra in D for which we have the revisiting paths, then {v1, v2, v3, v4, v′9} and {v5, v6, v7, v8, v′′9 } are
two disjoint 4-simplices in the one-point suspension Susp1(v9,D), which as well are joined by revisiting paths
only, etc.)
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