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BENJAMIN MÜLLER , MARC E. PFETSCH ,
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Abstract The SCIP Optimization Suite provides a collection of software packages for
mathematical optimization centered around the constraint integer programming frame-
work SCIP. This paper discusses enhancements and extensions contained in version 7.0
of the SCIP Optimization Suite. The new version features the parallel presolving library
PaPILO as a new addition to the suite. PaPILO 1.0 simplifies mixed-integer linear op-
timization problems and can be used stand-alone or integrated into SCIP via a presolver
plugin. SCIP 7.0 provides additional support for decomposition algorithms. Besides im-
provements in the Benders’ decomposition solver of SCIP, user-defined decomposition
structures can be read, which are used by the automated Benders’ decomposition solver
and two primal heuristics. Additionally, SCIP 7.0 comes with a tree size estimation
that is used to predict the completion of the overall solving process and potentially
trigger restarts. Moreover, substantial performance improvements of the MIP core were
achieved by new developments in presolving, primal heuristics, branching rules, conflict
analysis, and symmetry handling. Last, not least, the report presents updates to other
components and extensions of the SCIP Optimization Suite, in particular, the LP solver
SoPlex and the mixed-integer semidefinite programming solver SCIP-SDP.

Keywords Constraint integer programming · linear programming · mixed-integer lin-
ear programming · mixed-integer nonlinear programming · optimization solver · branch-
and-cut · branch-and-price · column generation · Benders’ decomposition · parallelization
· mixed-integer semidefinite programming
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1 Introduction

The SCIP Optimization Suite comprises a set of complementary software packages de-
signed to model and solve a large variety of mathematical optimization problems:

− the modeling language Zimpl [50],

− the simplex-based linear programming solver SoPlex [79],

− the constraint integer programming solver SCIP [3], which can be used as a fast
standalone solver for mixed-integer linear and nonlinear programs and a flexible
branch-cut-and-price framework,

− the automatic decomposition solver GCG [29],

− the UG framework for parallelization of branch-and-bound solvers [73], and

− the presolving library PaPILO for linear and mixed-integer linear programs, a new
addition in version 7.0 of the SCIP Optimization Suite.

All six tools can be downloaded in source code and are freely available for use in non-
profit research. They are accompanied by several extensions for solving specific problem-
classes such as the award-winning Steiner tree solver SCIP-Jack [32] and the mixed-
integer semidefinite programming solver SCIP-SDP [27]. This paper describes the new
features and enhanced algorithmic components contained in version 7.0 of the SCIP
Optimization Suite.

Background SCIP has been designed as a branch-cut-and-price framework to solve
different types of optimization problems, most importantly, mixed-integer linear pro-
grams (MIPs) and mixed-integer nonlinear programs (MINLPs). MIPs are optimization
problems of the form

min c>x

s.t. Ax ≥ b,
`i ≤ xi ≤ ui for all i ∈ N ,
xi ∈ Z for all i ∈ I,

(1)

defined by c ∈ Rn, A ∈ Rm×n, b ∈ Rm, `, u ∈ Rn, and the index set of integer variables
I ⊆ N := {1, . . . , n}. The usage of R := R∪ {−∞,∞} allows for variables that are free
or bounded only in one direction (we assume that variables are not fixed to ±∞).

Another focus of SCIP’s research and development are mixed-integer nonlinear pro-
grams (MINLPs). MINLPs can be written in the form

min f(x)

s.t. gk(x) ≤ 0 for all k ∈M,

`i ≤ xi ≤ ui for all i ∈ N ,
xi ∈ Z for all i ∈ I,

(2)

where the functions f : Rn → R and gk : Rn → R, k ∈ M := {1, . . . ,m}, are possibly
nonconvex. Within SCIP, we assume that f and gk are specified explicitly in algebraic
form using base expressions that are known to SCIP.

SCIP is not restricted to solving MIPs and MINLPs, but is a framework for solving
constraint integer programs (CIPs), a generalization of the former two problem classes.
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The introduction of CIPs was motivated by the modeling flexibility of constraint pro-
gramming and the algorithmic requirements of integrating it with efficient solution tech-
niques available for MIPs. Later on, this framework allowed for an integration of MINLPs
as well. Roughly speaking, CIPs are finite-dimensional optimization problems with ar-
bitrary constraints and a linear objective function that satisfy the following property: If
all integer variables are fixed, the remaining subproblem must form a linear or nonlinear
program.

In order to solve CIPs, SCIP relies on the presence of a relaxation—typically the LP
relaxation. If the relaxation solution is not feasible for the current subproblem, the en-
forcement callbacks of the constraint handlers need to take measures to eventually render
the relaxation solution infeasible for the updated relaxation, for example by branching
or separation. Being a framework for solving CIPs, SCIP can be extended by plugins
to be able to solve any CIP. The default plugins included in the SCIP Optimization
Suite provide tools to solve MIPs and many MINLPs as well as some classes of instances
from constraint programming, satisfiability testing, and pseudo-Boolean optimization.
Additionally, SCIP-SDP allows to solve mixed-integer semidefinite programs.

The core of SCIP coordinates a central branch-cut-and-price algorithm. Advanced
methods like primal heuristics, branching rules, and cutting plane separators can be
integrated as plug-ins with a pre-defined interface. The release version of SCIP comes
with many such plug-ins needed to achieve a good MIP and MINLP performance. The
solving process is described in more detail by Achterberg [2] and, with focus on the
MINLP extensions, by Vigerske and Gleixner [76].

By design, SCIP interacts closely with the other components of the SCIP Optimiza-
tion Suite. Optimization models formulated in Zimpl can be read by SCIP. PaPILO
provides an additional fast and effective presolving procedure that is called from a SCIP
presolver plugin. The linear programs (LPs) solved repeatedly during the branch-cut-
and-price algorithm are by default optimized with SoPlex. GCG extends SCIP to
automatically detect problem structure and generically apply decomposition algorithms
based on the Dantzig-Wolfe or the Benders’ decomposition scheme. And finally, the
default instantiations of the UG framework use SCIP as a base solver in order to per-
form branch-and-bound in parallel computing environments with shared or distributed
memory architectures.

New Developments and Structure of the Paper The SCIP Optimization Suite 7.0 in-
troduces the new presolving library PaPILO as its sixth component. It is described in
Section 3. Moreover, the other packages of the SCIP Optimization Suite 7.0 provide
extended functionality. Updates to SCIP itself are presented in Section 4. The most
significant additions and improvements in SCIP 7.0 are

− a tree size estimation method that is used to report an estimate on the amount of
the search that has been completed and to trigger restarts,

− a data structure to store decomposition information, used by two primal heuristics
and the Benders’ decomposition framework,

− the extension of SCIP’s Benders’ decomposition to handle convex MINLP subprob-
lems, and

− a revision of SCIP’s symmetry handling methods that allows the combination of
polyhedral methods with orbital fixing.

An overview of the performance improvements for standalone MIP and MINLP is given
in Section 2. Section 5 describes the updates in the LP solver SoPlex 5.0. The most
recent version 3.0.3 of the generic column generation solver GCG is mainly a bugfix
release. Besides smaller fixes, the updates to GCG reflect the changes to the interface of
SCIP. The most recent version 3.3.9 of the Zimpl modelling language is a minor bugfix
release. The parallelization framework UG 0.8.5 now also provides parallelization for
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the Benders’ decomposition of SCIP, see Section 6. Release 3.2.0 of SCIP-SDP allows
to add the constraint that the matrices are rank-1, see Section 7. Moreover, it enables
to upgrade quadratic constraints and features more flexibility with reading and writing
files in CBF format.

2 Overall Performance Improvements for MIP and MINLP

A major use of the SCIP Optimization Suite is as an out-of-the-box solver for mixed
integer linear and nonlinear programs. Therefore, the performance of SCIP on MIP and
MINLP instances is of particular interest during the development process. Additionally,
most algorithmic extensions of SCIP like decomposition approaches or problem-specific
extensions profit directly from an improved performance on those basic problem classes.

Therefore, computational experiments were performed to evaluate the performance
improvement achieved with SCIP 7.0 compared to SCIP 6.0. The methodology and
the results of these experiments are discussed in the following.

2.1 Experimental Setup

The diversity of MIP and MINLP and the performance variability of state-of-the-art
solvers asks for a careful methodology when measuring performance differences between
solver versions. The experimental setup used during the SCIP development process
is described in detail in the release report for SCIP 5.0 [35]. This process continues
to be used; however, there have been some updates since the last release that will be
documented here.

Since the SCIP 6.0 release, MIPLIB 2017 [37] has been released. As a result, the
base testset for MIP evaluation was updated. Previously, it consisted of the union of
MIPLIB 3, 2003, and 2010 instance collections [51] as well as the COR@L testset [20].
The updated base testset also includes instances from MIPLIB 2017. In order to achieve
a good distribution of different MIP problems without overrepresenting particular ap-
plications, the selection methodology used to select the MIPLIB 2017 collection from
the set of submissions was also utilized to select a base MIP testset for SCIP consisting
of 514 instances.

For MINLP, the base testset consists of 200 instances that were manually selected
from MINLPLib [64], filtering overrepresented classes and numerically troublesome in-
stances.

Both testsets are restricted to a set of “solvable” instances to reduce the computa-
tional effort spent for regular performance testing. The solvable subsets are obtained by
selecting only those instances from the main set that could be solved by previous releases
or selected intermediate development versions with any of five different random seeds.
Performance reported in the following chapter often refers to the solvable testsets, which
gives a good estimate for the overall set. In particular, it should rather underestimate
the positive effect, if there is any, as instances that can only be solved with the new
feature are missing in the solvable subset, while those that are only solved with previous
versions are contained. For the comparison between SCIP 6.0 and SCIP 7.0 presented
in this section, however, the complete testsets were used.

In order to reduce the impact of performance variability [51], each instance is solved
five times with different random seed initializations, including seed zero, with which
SCIP is released. For MINLP, where the random seed has less impact, the permu-
tation seed is changed, resulting in a permutation of the problem constraints. In the
evaluation, every instance and seed/permutation combination is treated as an individ-
ual observation, effectively resulting in testsets containing 2570 MIPs and 500 MINLPs
instances. As a result, the term “instance” is often used when actually referring to an
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instance-seed-combination during the discussion of computational results, for example,
when comparing the number of solved instances. Note that for MINLP, an instance is
considered solved when a relative primal-dual gap of 0.0001 is reached; for MIP we use
gap limit zero.

Instances for which solver versions return numerically inconsistent results are ex-
cluded from the analysis. Besides the number of solved instances, the main measures of
interest are the shifted geometric means of the solving times and the branch-and-bound
node count. The shifted geometric mean of values t1, . . . , tn is(∏

(ti + s)
)1/n − s.

The shift s is set to 1 second and 100 nodes, respectively.
As can be seen in Tables 1 and 2, these statistics are displayed for several subsets

of instances. The subset “affected” filters for instances where solvers show differing
number of dual simplex iterations. The brackets [t, T ] collect the subsets of instances
which were solved by at least one solver and for which the maximum solving time
(among both solver versions) is at least t seconds and at most T seconds, where T is
usually equal to the time limit. With increasing t, this provides a hierarchy of subsets of
increasing difficulty. The subsets “both-solved” and “diff-timeout” contain the instances
that can be solved by both of the versions and by exactly one of the versions, respectively.
Additionally, MIP results are compared for the subsets of benchmark instances from
MIPLIB 2010, MIPLIB 2017, and the COR@L testset, which have a small overlap;
MINLP results are reported for the subsets of MINLPs containing “integer” variables
and purely “continuous” NLPs.

The experiments were performed on a cluster of computing nodes equipped with
Intel Xeon Gold 5122 CPUs with 3.6 GHz and 92 GB main memory. Both versions of
SCIP were built with GCC 7.4 and use SoPlex as underlying LP solver: version 4.0.0
(released with SCIP 6.0) and version 5.0.0 (released with SCIP 7.0). SCIP 7.0 uses
PaPILO 1.0 to enhance its presolving capabilities. Further external software packages
linked to SCIP include the NLP solver Ipopt 3.12.13 [45] built with linear algebra
package MUMPS 4.10 [6], the algorithmic differentiation code CppAD [19] (version
20180000.0), and the graph automorphism package bliss 0.73 [46] for detecting MIP
symmetry (with a patch applied that can be downloaded from scip.zib.de). The time
limit was set to 7200 seconds for MIP and to 3600 seconds for the MINLP runs.

2.2 MIP Performance

Table 1 presents a comparison of SCIP 7.0 and SCIP 6.0 with respect to MIP perfor-
mance. Overall, SCIP 7.0 is about 14% faster than SCIP 6.0. This number, however,
is dampened by the fact that more than 40% of the instances in the overall MIP testset
cannot be solved by any of the two SCIP versions within the time limit. When consid-
ering only instances that can be solved by at least one of the versions (see the [0,7200]
bracket), which gives a clearer picture of the actual speedup, a speedup of 24% can be
observed. The “affected” instance set is by definition a subset of the [0,7200] bracket.
It is worth noting that 97% of the instances are affected and consequently, the speedup
on the “affected” subset is the same as for the [0,7200] bracket. On the subset of harder
instances in the [100,7200] bracket, SCIP 7.0 is even 31% faster than SCIP 6.0; on the
relatively small [1000,7200] bracket, the speedup amounts to 58%.

SCIP 7.0 solves 27 more instances compared to SCIP 6.0. Additionally, the “diff-
timeout” subset shows a larger speedup of more than 80%, demonstrating that the
75 instances solved only by SCIP 7.0 are on average solved much faster than the 48
instances solved only by SCIP 6.0. But also on the “both-solved” subset a speedup of
20% can be observed, while the average tree size on this subset stays almost the same.
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Table 1: Performance comparison of SCIP 7.0 versus SCIP 6.0 on the complete
MIP testset using five different seeds.

- SCIP 7.0.0+SoPlex 5.0.0 SCIP 6.0.0+SoPlex 4.0.0 relative

Subset instances solved time nodes solved time nodes time nodes

all 2557 1468 793.1 5217 1441 901.1 4679 1.14 0.90
affected 1476 1428 189.3 3160 1401 234.5 3147 1.24 1.00

[0,7200] 1516 1468 173.7 2874 1441 215.7 2863 1.24 1.00
[1,7200] 1468 1420 202.9 3213 1393 253.7 3204 1.25 1.00
[10,7200] 1372 1324 264.5 3972 1297 338.6 3984 1.28 1.00
[100,7200] 1023 975 592.6 8029 948 778.9 8038 1.31 1.00
[1000,7200] 508 460 1535.8 21040 433 2431.8 23695 1.58 1.13
diff-timeout 123 75 2902.4 38468 48 5254.0 51519 1.81 1.34
both-solved 1393 1393 135.3 2272 1393 162.5 2202 1.20 0.97

MIPLIB 2010 435 397 283.7 6175 378 345.5 5838 1.22 0.95
MIPLIB 2017 1195 606 1107.5 6811 617 1253.1 5712 1.13 0.84
COR@L 579 393 334.7 2264 375 408.7 2232 1.22 0.99

When considering individual testsets, a 22% speedup is achieved on instances from
the COR@L set and the MIPLIB 2010 benchmark set, while the MIPLIB 2017 bench-
mark set is solved 13% faster.

2.3 MINLP Performance

The focus of the SCIP 7.0 release is on MIP improvements; most work on MINLP was
spent for a rewrite of the MINLP constraint handler concept that will only be included
in the next SCIP release.

Nevertheless, SCIP 7.0 still provides a speedup on the MINLP testset, see Table 2.
All failing instances were excluded, for example instances for which one of the versions
returned a solution that was not feasible in tolerances or that a version could not solve
(note that the testset contains instances that SCIP 6.0 and SCIP 7.0 cannot solve, but
that the MINLP development branch is able to solve). A speedup of 8% can be observed
on the overall test set. When excluding instances that none of the versions could solve
(bracket [0,3600]), the speedup increases to 18%; for hard instances (bracket [100,3600]),
a speedup of 36% is achieved.

SCIP 7.0 solves 18 instances that SCIP 6.0 cannot solve in the time limit, while
the reverse holds for 7 instances. On the subset of instances that only one version can
solve, SCIP 7.0 is faster than SCIP 6.0 by a factor of more than 6, demonstrating that
SCIP 7.0 solves many of the additional instances well before the time limit.

Table 2: Performance comparison of SCIP 7.0 versus SCIP 6.0 on the MINLP
testset using five different permutations.

SCIP 7.0.0+SoPlex 5.0.0 SCIP 6.0.0+SoPlex 4.0.0 relative

Subset instances solved time nodes solved time nodes time nodes

all 919 460 218.3 3674 456 236.3 4932 1.08 1.34
affected 427 420 16.9 1319 416 20.2 2007 1.19 1.52

[0,3600] 467 460 13.6 1031 456 16.1 1524 1.18 1.48
[1,3600] 338 331 33.6 2422 327 41.8 4063 1.24 1.68
[10,3600] 232 225 89.4 4473 221 115.3 8532 1.29 1.91
[100,3600] 129 122 263.4 8909 118 357.8 24091 1.36 2.70
[1000,3600] 56 49 732.9 27254 45 1182.7 77255 1.61 2.83
diff-timeout 18 11 244.3 4746 7 1571.5 6559 6.43 1.38
both-solved 449 449 12.0 967 449 13.2 1435 1.10 1.48

continuous 239 74 420.1 1777 74 428.5 1483 1.02 0.83
integer 665 371 191.1 5065 367 210.6 8122 1.10 1.60
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3 PaPILO

The constraint-based view on the problem of SCIP allows for great flexibility and is
a major feature that enables SCIP to seamlessly integrate the handling of nonlinear
constraints. When it comes to MIP problems, however, it deprives SCIP of a global view
on the constraint matrix of the problem. Many presolve reductions for MIP problems
involve not only information of a single constraint, but of several rows or columns of the
constraint matrix. Acquiring this kind of information within SCIP is sometimes not
possible or too expensive for an expedient implementation of certain methods.

For this reason, the development of PaPILO, short for ”Parallel Presolve for Integer
and Linear Optimization”, has been initiated. PaPILO is a C++ software package for
presolving MIP problems, which is a less general class of problems than the problems
that can be solved by SCIP. This allows PaPILO to use tailored data structures for
holding a problem, particularly a row-major and column-major copy of the constraint
matrix. Moreover, PaPILO was designed to facilitate the exploitation of modern parallel
hardware and achieves this in a way that is unique for this type of software. Another
distinguishing feature is the multi-precision support via the use of C++ templates. This
allows the presolving routines to use exact rational arithmetic, or extended-precision
floating point arithmetic.

The release of PaPILO 1.0 does not implement any novel presolve reductions. The
implemented reductions are: coefficient tightening, constraint propagation, singleton
stuffing, dual fixing, removal of parallel rows and columns, substitution of (implied) free
variables, implied integer detection, dual reductions using the complementary slackness
conditions (see Section 4.1.3), probing, fixing of dominated columns, constraint spar-
sification. For more information on those presolve reductions the reader is referred to
Achterberg et al. [5].

3.1 A Deterministic Parallelization Scheme for Data and Task Parallelism

PaPILO exploits both data and task parallelism during presolving. A unique feature is
that multiple presolving rules can always be executed in parallel, because they receive
read-only access to all problem data. The presolvers scan this data for possible reductions
and return them to the core of the library.

Due to this approach, a reduction might be applied to a different state of the problem
than it was derived from. It is difficult to guarantee correctness under these circum-
stances, because a reduction found by one presolver might interfere with a reduction of
another presolver. To remedy this situation, the presolvers return the reductions embed-
ded within a transaction as it is done in database systems [10]. A transaction contains
a sequence of steps that can lock or reduce parts of the problem. The steps within the
transaction are composed in a way that guarantees correctness if the locked parts have
not been modified.

As an illustrative example, consider the following rows and bounds as part of some
problem.

. . .

x+ y ≥ 1 (row 1)

x+ y + z = 1 (row 2)

. . .

x, y, z ∈ [0, 1]

Here, x is a so-called implied free variable because the lower bound of x is implied by
row 1 and the upper bound of x is implied by row 2. Hence, the variable bounds on x
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can be dropped and the variable x can be substituted via x = 1−y−z and row 2 can be
removed. The transaction to communicate the substitution of x within PaPILO would
therefore consist of the following steps:

1. Lock the bounds of x

2. Lock row 1 (implies x ≥ 0)

3. Lock row 2 (implies x ≤ 1 and is used for substitution)

4. Substitute x using row 2

Together with the assumption that in PaPILO variable bounds are never relaxed, the
first three steps of the transaction are sufficient to guarantee that x is still an implied
free variable and the equation row 2 can be used to substitute it, regardless of other
transactions that are applied before or after. If one of the locks in steps 1 to 3 are
violated, the transaction is discarded.

Database systems use this approach to run multiple queries in parallel while guar-
anteeing a consistent state of the data. In PaPILO the approach allows presolvers to
propose reductions for a fixed copy of the problem that can still be applied after some
modifications have been made. This strategy allows presolvers to use the same copy of
the problem to search for reductions in parallel. Subsequently, PaPILO processes the
transactions sequentially, in a deterministic order, and might discard some of them.

Since the search for reductions is usually the expensive part of presolving routines,
compared to the modification of the problem that is typically cheap, the transaction
approach is expected to bring improved efficiency from parallelization. When data in
rows or columns is modified while a transaction is applied they are marked as such.
Before a transaction is applied all its locks are checked against the recorded states of
the rows and columns and the transaction is discarded if a lock is violated. The result
after applying the transactions only depends on the order in which the transactions are
applied, and not on the order they are found. As the reductions are applied in a fixed
order, the routine gives deterministic results regardless of the number of threads that
were used.

In addition to running multiple presolvers in parallel, some presolvers themselves can
exploit parallelization. This is currently the case for probing, detecting parallel rows and
columns, identifying dominated columns, and performing constraint sparsification. All
the parallel presolvers exploit data parallelism and sort all non-deterministically ordered
results before returning them.

This recursive nesting of data and task parallelism is effective when a suitable runtime
manager controls the load distribution. For this purpose the Intel TBB library [44] is
linked, which uses heuristics that check the load of the system at runtime when deciding
whether data parallel tasks should be further split or be processed sequentially by the
current thread.

The effectiveness of this parallelization scheme can be observed especially well on
instances that spent significant time in presolving. One example of such an instance is
ex10 of MIPLIB 2017, which is solved during presolving mostly by probing. The speedup
in solving time for different numbers of threads using SCIP 7.0 with PaPILO 1.0 is
depicted in Figure 1. One can see that the speedup is almost linear when assuming that
about 5% of the time is spent in sequential code. For up to 8 threads the speedup is
almost perfectly linear. Only for a bigger number of threads some amount of overhead
associated with a per-thread setup cost becomes visible.

3.2 Integration with SCIP

SCIP 7.0 includes a new presolver plugin that calls PaPILO if the problem being solved
is a MIP. To use an external presolve routine within SCIP, the plugin needs to convert
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Figure 1: Speedup of ex10 using SCIP 7.0 with PaPILO 1.0 for different
numbers of threads. Additionally shows ideal linear speedup curves when 0%
and 5% of the time are spent inside sequential code.

SCIP’s problem representation into matrix form to call PaPILO and susequently apply
the reductions found by PaPILO in a way that allows SCIP to convert solutions back
into the original problem space. Reductions of the variable space, including fixings
and substitutions, can be communicated to SCIP based on the postsolve information
returned by PaPILO. Changes to the constraint-matrix, on the other hand, require a
tighter integration to be communicated seamlessly into SCIP’s problem representation.
In the current version of the presolver this is implemented by deletion of all constraints
and subsequent recreation from PaPILO’s reduced problem. Therefore, SCIP 7.0, by
default, only communicates contraint modifications when the number of constraints or
nonzeros decreased by at least 20% due to PaPILO’s presolve. The removal of parallel
columns is currently not executed when PaPILO is called from SCIP. The reason is
that the necessary treatment in postsolve is not yet implemented in SCIP 7.0.

The performance impact within SCIP 7.0 is notable even when PaPILO runs in
sequential mode. Disabling the presolver plugin for PaPILO yields a 6% slowdown on
the internal MIP benchmark testset.

4 Advances in SCIP

The new 7.0 release of SCIP provides significant improvements for mixed-integer pro-
gramming, both for the classical branch-and-cut approach that SCIP applies by default
and for decomposition approaches like Benders’ decomposition. The most important
changes are described in the following.

4.1 Presolve

The improvements to presolving in SCIP 7.0 has lead to the development of three meth-
ods: LP-based bound tightening on two constraints, two-column nonzero cancellation
and exploiting complementary slackness. These three methods are based on using pairs
of constraints or variables to identify reductions. Further, a new presolver has been
added to enable calling PaPILO from within SCIP, see Section 3 for more details.
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4.1.1 LP-based Bound Tightening on Two Constraints

The idea of using two rows at once for bound tightening or recognizing redundant con-
straints has already been presented by Achterberg et al. [5]. Let two constraints be given
as follows:

ArUxU + ArV xV ≥ br,
AsUxU + AsWxW ≥ bs.

Then one can consider the following single-row LPs where the variables appearing in
both constraints form the objective:

ymax = max {ArUxU : AsUxU +AsWxW ≥ bs},
ymin = min {ArUxU : AsUxU +AsWxW ≥ bs}.

(3)

It has been shown by Dantzig [21] and Balas [9] that these single-row LPs can be solved
in linear time. Let j ∈ V , so xj is not contained in the overlap and write V ′ = V \ {j}.
Depending on the sign of arj one can now derive possibly stronger bounds via

xj ≥ br−sup(ArV ′xV ′ )−ymax

arj
for arj > 0,

xj ≤ br−sup(ArV ′xV ′ )−ymax

arj
for arj < 0.

(4)

Similarly, a constraint is redundant if the following condition holds:

inf(ArV xV ) ≥ br − ymin. (5)

Hashing Mechanism for Finding Row Pairs Since short runtimes are mandatory for
presolve methods, it is usually too expensive to apply reductions to each row pair in a
given problem. For the presolve method presented above, it is important to find row
pairs such that a large number of variables have coefficients of opposing sign in the two
constraints. One approach is to scan through the problem and create four hashlists
L++, L−−, L+−, L−+, one for each combination of signs of two variable coefficients.
Given a hash function H to hash pairs of variable indices, these lists then contain tuples
(h, r) consisting of a hash value h and a row index r. For the two pairs L++, L−− and
L+−, L−+, the two-row bound tightening methods are applied to all pairs of rows r, s
with (h, r) ∈ L++, (h, s) ∈ L−− or (h, r) ∈ L+−, (h, s) ∈ L−+ as for these row-pairs,
the hash-values h coincide and, unless a hash collision occured, there exist at least two
variables with opposing coefficient signs. To further limit runtime, several working limits
are used in our implementation. More precisely, the size of the four hashlists, the total
number of variable pairs considered are limited and the method stops after a limited
number of consecutive row-pairs evaluations without bound improvement. To reduce
redundant computations, our implementation uses a hashtable to check if a row pair has
already been processed before doing so. The method also stops after finding too many
consecutive already processed row pairs.

Chen et al. [18] evaluated the performance on the MIPLIB 2017 Benchmark Set.
Using the LP-based bound tightening resulted in an overall neutral performance impact
with positive impact of up to 4 % on instances in the subset [1000,7200].

4.1.2 Two-Column Nonzero Cancellation

In SCIP 5.0 [35], a two-row nonzero cancellation presolver had been added. This pre-
solver now transfers the idea to columns. More precisely, consider the sum of two
columns 

AUj
AV j
AWj

xj +


AUk
AV k

AY k

xk, (6)

10



where j, k ∈ N and U , V , W , Y ⊆M are disjoint subsets of the row indices. Suppose
there exists a scalar λ ∈ R such that AUk−λAUj = 0 and AV k−λAV j 6= 0. In the case
of a continuous variable xj one can rewrite (6) as

AUj
AV j
AWj

 (xj + λxk) +

AV k−λAV j−λAWj

AY k

xk,
and introducing a new variable z := xj + λxk yields

AUj
AV j
AWj

 z +

AV k−λAV j−λAWj

AY k

xk. (7)

It follows that the lower and upper bounds on z are given by

`z =

{
`j + λ`k, for λ > 0,
`j + λuk, for λ < 0,

and uz =

{
uj + λuk, for λ > 0,
uj + λ`k, for λ < 0,

respectively. However, the constraint

`j ≤ z − λxk ≤ uj (8)

needs to explicitly be added to keep the bounds `j ≤ xj ≤ uj . Due to this additional
constraint, the difference in the number of nonzeros |U | − |W | must be larger than in
the two-row version. Full details and the exact procedure for integral variables xj as
well as a description of the hashing mechanism to find suitable column pairs is provided
by Chen et al. [18].

Chen et al. [18] evaluated the performance on the MIPLIB 2017 Benchmark Set. In
total, its impact can be considered neutral with two more instances being solved at the
cost of a slightly prolonged runtime for instances in the subset [1000,7200].

4.1.3 Exploiting Complementary Slackness on Two-Columns of Continuous Variables

A first version of this presolve method was previously implemented in SCIP 4.0 [60]. The
basic idea is to consider only those columns of the mixed-integer optimization problem
that belong to continuous variables and carry out a bound tightening on these columns
to determine bounds for the dual variables. The bounds of the dual variables can then be
used to apply implications of the complementary slackness theorem (see Schrijver [72]),
i.e., to fix variables or to determine that inequality constraints are actually equations in
an optimal solution.

If only individual columns are considered, this is usually very fast, but the bounds
for the dual variables are often weak. A reasonable compromise to be still fast but find
tighter bounds is to look at two continuous columns simultaneously. To achieve this,
one can simply reuse the hashing mechanism for finding row pairs from Section 4.1.1
and apply them to two columns. More details on the implementation of this presolve
method are given by Chen et al. [18].

Chen et al. [18] evaluated the performance of this presolve method on the MIPLIB
2017 Benchmark Set. The presolve method performs reductions on only 11 instances
and the overall impact is neutral. This is not necessarily due to the inefficiency of the
reductions themselves, but rather a consequence of the very low number of instances
where this method can be applied, because of missing continuous variables. However,
on the real-world supply chain instances used by Schewe et al. [71] a larger influence of
this presolve method is observed.
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4.2 Decomposition Structure

Most MIPs have sparse constraint matrices in the sense that the vast majority of columns
and rows have only very few nonzero entries. Due to sparsity, a (bordered) block-diagonal
form might be obtained by permuting the rows/columns of the matrix. Identifying such
a form allows for potentially rendering large-scale complex problems considerably more
tractable. Solution algorithms could be designed exploiting the underlying structure
and yielding smaller problems that are significantly easier to handle. In this sense, a
decomposition identifies subproblems (subsets of rows and columns) that are only linked
to each other via a set of linking rows and/or linking columns (border components), but
are otherwise independent. The special case of completely independent subproblems
(with no linking rows and columns), for example, can be handled by solving the much
smaller subproblems and concatenating their optimal solutions. This case has already
been integrated into SCIP as a successful presolving technique [31] within the default
plugin cons components.c.

For k ≥ 0, a partition D = (Drow, Dcol) of the rows and columns of the constraint
matrix A into k + 1 pieces each,

Drow = (Drow
1 , . . . , Drow

k , Lrow), Dcol = (Dcol
1 , . . . , Dcol

k , Lcol),

is called a decomposition of A if Drow
q 6= ∅, Dcol

q 6= ∅ for q ∈ {1, . . . , k} and it holds for all

i ∈ Drow
q1 , j ∈ Dcol

q2 that ai,j 6= 0 implies q1 = q2. The special rows Lrow and columns Lcol,
which may be empty, are called linking rows and linking columns, respectively. In other
words, the inequality system Ax ≥ b can be rewritten with respect to a decomposition
D by a suitable permutation of the rows and columns of A as the following equivalent
system

A[Drow
1 ,Dcol

1 ] 0 · · · 0 A[Drow
1 ,Lcol]

0 A[Drow
2 ,Dcol

2 ] 0 0 A[Drow
2 ,Lcol]

... 0
. . . 0

...
0 · · · 0 A[Drow

k ,Dcol
k ] A[Drow

k ,Lcol]

A[Lrow,Dcol
1 ] A[Lrow,Dcol

2 ] · · · A[Lrow,Dcol
k ] A[Lrow,Lcol]




x[Dcol

1 ]

x[Dcol
2 ]

...
x[Dcol

k ]

x[Lcol]

 ≥

b[Drow

1 ]

b[Drow
2 ]

...
b[Drow

k ]

b[Lrow]

 ,

(9)
where we use the shorthand syntax A[I,J] to denote the |I|-by-|J | submatrix that arises
from the deletion of all entries from A except for rows I and columns J , for nonempty
row and column subsets I ⊆ {1, . . . ,m} and J ⊆ {1, . . . , n}.

Structure Creation With SCIP 7.0, it is now easier to pass user decompositions to
SCIP that can be used within the BD framework or by user algorithms (see Section 4.3
and 4.9 for more details about the applications). A decomposition structure can be cre-
ated using the SCIP-API, specifying whether the decomposition belongs to the original
or transformed problem and the number of blocks. The variables and/or constraints can
be assigned labels by the user either one-by-one, or in batches. It is possible to complete
the decomposition, or ensure that it is internally consistent, by calling the automatic
label computation procedures. Alternatively, SCIP also provides a file reader for decom-
positions in constraints of the original problem. The standard file extension for this file
format is “.dec”, which is also supported by GCG. In what follows, the notion block is
used to define the submatrix A[Drow

q ,Dcol
q ∪L̄col] for q ∈ {1, . . . , k}, L̄col ⊆ Lcol, where it

holds for all i ∈ Drow
q , j ∈ Lcol that ai,j 6= 0 implies j ∈ L̄col.

The user decomposition file specifies the number of blocks in the decomposition, their
corresponding unique labels, the constraints (by their names) belonging to each block
as well as those identified as linking constraints.
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Upon reading a valid decomposition file, a decomposition structure is created, in
which the corresponding variable labels are inferred from the constraint labels, giving
precedence to block over linking constraints. Therefore, a variable is assigned

− the label of its unique block, if it only occurs in exactly one named block, and possibly
in the linking constrains;

− the special label of a linking variable if it occurs only in the linking constraints or in
two or even more named blocks.

The created structure is eventually added to the decomposition storage of SCIP for
the current problem, as each problem could have several applicable decompositions with
varying characteristics. Additionally, it is possible to override the existing labels of the
constraints, while inferring the new labels from the variable labels.

An alternative variable labeling is required if the supplied decompositions will be used
for the application of BD. SCIP is informed to use this alternative labeling by setting
the parameter decomposition/benderslabels to TRUE, or by passing the corresponding
flag when calling the decomposition constructor SCIPcreateDecomp(). The labeling
then proceeds as follows: Initially, all variables are unlabeled, and then receive a label
as “master only” or “block” if they are encountered in a linking constraint or block
constraint, respectively. The deviation from the default labelling occurs if the variable
is encountered in two or more constraints. If a master only variable is encountered in a
block constraint, or a block variable is encountered in a linking constraint or a constraint
from a different block, then these variables are re-labeled as linking.

Due to variables’ fixing or redundancy detection during presolving, the constraints
could be modified—or possibly deleted—in the transformed problem leading certain
decomposition blocks to become empty. Additionally, in the context of bound strength-
ening, some constraints could get merged, resulting in potential decomposition blocks’
merging. Therefore, the constraints’ labeling must be triggered again after presolv-
ing. When forming the transformed problem, SCIP automatically transforms all user
decompositions at the beginning of the root node based on the variables’ labels.

Decomposition Statistics The SCIP-API also provides the possibility to compute rel-
evant decomposition statistics in order to offer useful insights to the quality of the
considered problem’s decomposition or deduce correlations between certain aspects in
the structures and the performance of the invoked user algorithms. In particular, when
the labeling process is concluded, the following quantities are computed and displayed:

− number of blocks;

− number of linking variables and linking constraints;

− size of the largest and smallest block regarding the number of constraints;

− Area score: The area score (see also [36], Sec. 5) is used by GCG to rank de-
compositions during the automatic detection procedure. For a decomposition D =
(Drow, Dcol), the area score is defined as

areascore(D) = 1−
∑k
b=1|Drow

b ||Dcol
b |+ n|Lrow|+m|Lcol| − |Lrow||Lcol|

mn
.

In the case of a MIP, the area score intuitively measures the coverage of the re-
arranged matrix (9) by 0’s. Decompositions with few linking variables and/or con-
straints and many small blocks A[Drow

b ,Dcol
b ] will have an area score close to 1, whereas

coarse decompositions of a matrix have smaller area scores. The trivial decomposi-
tion with a single block has the worst possible area score of 0.

− Modularity: This measure is used to assess the quality of the community structure
within a decomposition. In the context of graph theory, communities can be defined
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as sets of vertices having inner dense connections. Khaniyev et al. [49] describe the
modularity quantity as the fraction of the edges in the graph that connect vertices
of the same type (within-community edges) minus the expected value of the same
quantity in a graph with random connections between vertices. Similarly, we use the
modularity quantity to assess the inner connectedness and density at the level of the
blocks in a certain decomposition and, hence, their independence and the potential of
their separation from the rest of the blocks. More precisely, we identify the presence
of an inner block connection (an inner edge) through the presence of a variable in
a constraint, both—the variable and the constraint—belonging to the same block.
The modularity of the decomposition is computed as follows:

k∑
i=1

ei
m

(
1− ei

m

)
,

where k is the number blocks, ei is the number of inner edges within block i and m
is the total number of edges.

− Block graph statistics: A block graph is constructed with the aim of depicting the
connection between the different blocks in a decomposition through the existing link-
ing variables in the constraints. Note that the linking constraints are intentionally
skipped in this computation. G = (V,E) denotes a block graph with vertex set V
and edge set E. Each vertex in the graph represents a block in the decomposition;
V = {v1, . . . , vk}. An edge e = {vs, vt} is added to G, if and only if there exists
a column ` ∈ Lcol, a row i ∈ Drow

s and a row j ∈ Drow
t , such that ai,` 6= 0 and

aj,` 6= 0. From the constructed graph, we compute the number of edges, articu-
lation points and connected components, as well as the maximum and minimum
degree. Note that building the block graph can become computationally expensive
with large and dense decompositions. Thus, it is possible through the user parameter
decomposition/maxgraphedge to define a maximum edge limit. The construction
process will be interrupted once this limit is reached, in which case only approximate
estimations of the block graph statistics will be displayed and accompanied with a
warning message.

4.3 Primal Heuristics

SCIP 7.0 introduces two new heuristics and an update to the GINS heuristic. A common
topic for two of the three heuristics is the exploitation of decomposition information.

4.3.1 Adaptive Diving

Diving heuristics explore an auxiliary path of the tree in a depth-first fashion. A de-
scription of most of the available diving heuristics in SCIP can be found in [2]. With the
release of SCIP 7.0 an adaptive diving heuristic extends the diving heuristics of SCIP.
Rather than defining an individual diving strategy, adaptive diving collects all diving
strategies defined by other primal heuristics, including user-defined ones. In the same
spirit as adaptive Large Neighborhood Search [38], adaptive diving learns during the
search which of the different diving strategies are most successful. Each time adaptive
diving is executed, it prefers strategies that are either uninitialized or that have shown
to yield useful conflict information. A description of adaptive diving and computational
results can be found in [39].

On the technical side, adaptive diving is implemented as a primal heuristic plugin
heur adaptivediving.c in SCIP. Statistics that were collected within adaptive diving
are stored separately from the statistics of an individual diving heuristic, but can be
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queried together. Finally, user diving strategies can now be declared as private to
exclude them from adaptive diving.

4.3.2 Penalty Alternating Direction Method

With SCIP 7.0 the new construction heuristic padm was added. This heuristic explicitly
requires a decomposition provided by the user via the new decomposition structure. A
detailed description of penalty alternating direction methods can be found in Geißler et
al. [34]. These methods were used as a primal heuristic for supply chain problems in
Schewe et al. [71].

The heuristic splits a general MINLP into several subproblems according to the user
decomposition, whereby the linking variables get copied and their difference between
copies is penalized. Linking constraints cannot be handled, but an attempt is made to
assign them to one of the blocks.

The first subproblem of iteration p can be written as

min
∑
i∈Lcol

∑
b∈{2,...,k}

µb,+i sb,+i + µb,−i sb,−i

s.t. gk(x, z1) ≤ bk for all k ∈M1,

z1
i + sb,+i − sb,−i = zb,pi for all i ∈ Lcol, b ∈ {2, . . . , k},
`i ≤ xi ≤ ui for all i ∈ N 1,

`i ≤ z1
i ≤ ui for all i ∈ Lcol,

xi, z
1
i ∈ Z for all i ∈ I ∩ (N 1 ∪ Lcol),

sb,+i , sb,+i ∈ R+ for all i ∈ Lcol, b ∈ {2, . . . , k}.

(10)

The sets M1 and N 1 contain all constraints or variables of the first block, index b
specifies the other blocks. The slack variables sb,+i and sb,−i represent the difference
between two copies of the linking variables zi.

The main part of the algorithm is organized in two loops: In the inner loop, the
subproblems are solved on an alternating basis until they arrive at the same values of
the linking variables. If they do not reconcile after a couple of iterations (controlled by
the user parameter heuristics/padm/admiterations), the penalty parameters µ are
increased in the outer loop and the subproblems are solved again on an alternating basis.

The subproblems can be warmstarted by using the old solution. Let (x, z, s)p−1 be

the solution of the last iteration of block q and zb,pi be the current assignment of the
linking variables. Then (xp−1, zp−1, s̃) with

s̃b,+i := max{zb,pi − z
p−1
i , 0}

and s̃b,−i := max{zp−1
i − zb,pi , 0} for all i ∈ Lcol, b ∈ {1, . . . , k} \ {q}

is a feasible solution of block q in iteration p and can be used as start solution.
As per default the heuristic padm is called before the root node and the linking vari-

ables zb,0i are initialized with zero. By changing the parameter heuristics/padm/timing
it can also be called after the root node where the linking variables are initialized with
the LP solution value.

If a suitable decomposition is available, preliminary results on MIPs showed that the
heuristic finds a feasible solution in 62% of the cases.

4.3.3 GINS Adjustments to Exploit Decomposition Information

Since version 4.0 [60], SCIP has featured graph induced neighborhood search. This
Large Neighborhood Search heuristic explores an auxiliary problem corresponding to
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a connected subgraph of the bipartite graph G = (V,E) whose nodes correspond to
the variables and constraints and whose edges correspond, in the case of a MIP, to the
nonzero entries of the constraint matrix A.

The variable neighborhood is selected around a variable node v ∈ V and contains all
variables whose nodes have a breadth-first distance of at most 6 from v in G. Since its
introduction, GINS seeks to find such a neighborhood of maximum potential, by which
we denote the objective difference between the current LP and incumbent solutions,
restricted to the neighborhood. A neighborhood with large potential is created by trying
out several variable nodes as center, evaluating the potential of its neighborhood, and
keeping the neighborhood that maximizes the potential among the neighborhoods tried.

With SCIP 7.0, GINS has been extended to also consider user-provided decomposi-
tion labels. Given a decomposition D = (Drow, Dcol) of an instance, the heuristic merges
variable blocks from the partition Dcol = (Dcol

1 , . . . , Dcol
k , Lcol) into neighborhoods and

processes them in a rolling horizon [53] fashion. Without loss of generality, we assume
Dcol

1 , . . . , Dcol
k are sorted by decreasing potential. From the front, the first block Dcol

i∗ is
searched that meets the fixing rate of GINS (66 % by default), i.e., the first block with
less than 34 % integer variables. The tentative variable set U := Dcol

i∗ is then extended
by

1. the linking variables Lcol,

2. further blocks Dcol
i∗+1, Dcol

i∗+2, . . . , D
col
i∗+q,

as long as U still meets the fixing rate of GINS. GINS then searches an auxiliary problem
by fixing all integer variables outside of U to their values in the current incumbent
solution. The continuous overlap parameter heuristics/gins/overlap controls how
many blocks are kept in the tentative variable set between subsequent calls. An overlap
of 0.0 means that there is no overlap, i.e.,Dcol

i∗+q+1 is the first considered block, whereas

with an overlap of 1.0, only Dcol
i∗ is skipped.

The parameter heuristics/gins/consecutiveblocks can be used to set the sorting
order for the blocks. The default value of TRUE sorts the blocks by increasing label order.
Setting this parameter to FALSE will sort the blocks by decreasing potential. By default,
GINS falls back to its original neighborhood initialization if the decomposition does not
yield a suitable neighborhood.

4.4 Improvements in Branching Rules

SCIP 7.0 comes with several improvements in branching, ranging from improvements in
its default branching rules for MIP and MINLP to branching rules tailored to specific .

4.4.1 Degeneracy-aware Hybrid Branching

The default hybrid branching rule [4] of SCIP has been extended by the option to
adjust the weights of the different scores based on the degree of dual degeneracy in the
current LP solution. In a basic LP solution, a nonbasic (structural or slack) variable
is called dual degenerate, if its reduced cost is zero. As a consequence, such variables
can be pivoted into the basis and potentially change their value without changing the
LP objective value. Therefore, dual degeneracy typically leads to alternative LP optima
being present.

SCIP uses two measures for dual degeneracy: the degeneracy share of nonbasic
variables and the variable-constraint ratio of the optimal face. For an LP relaxation in
standard form with m constraints and n variables (possibly including slack variables), let
n̄ be the number of dual degenerate nonbasic variables. The degeneracy share α ∈ [0, 1]
is defined as α = n̄

n−m , where 0 corresponds to no dual degenerate variables and 1 means
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Figure 2: Dual degeneracy measures for the final root LP (MMMC testset).

all nonbasic variables are dual degenerate. The latter measure may capture the effects
of degeneracy better than the former measure in cases where the number of variables is
much larger than the number of constraints. In such cases, the degeneracy share may
still be small even though the number of nonbasic dual degenerate variables exceeds the
basis size drastically. The variable-constraint ratio is 1 if no dual degeneracy is present
and can increase up to n

m , if all nonbasic variables are dual degenerate. Both measures
can be queried via the method SCIPgetLPDualDegeneracy.

Figure 2 illustrates these measures of dual degeneracy for the final root LPs of the
instances in the MMMC testset consisting of the benchmark sets of MIPLIB 3, 2003,
and 2010, and the COR@L testset. Only 55 instances show no dual degeneracy in the
final root LP; for 149 instances, 80 % or more of the nonbasic variables are degenerate.
166 instances have a variable-constraint ratio no larger than 1.1; on the other hand,
66 instances have ratios larger than 2.0, one even has a ratio of 120. For a more de-
tailed analysis of dual degeneracy at the root node and throughout the tree, we refer to
Gamrath et al. [33].

Computational experiments showed that a high dual degeneracy implies that for each
branching candidate, there is a high probability that an alternative optimal LP solution
exists where the candidate’s value is integer, see Gamrath et al. [33]. In such a case, the
dual bound improvement of at least one of the two potential child nodes is zero for each
of the candidates. If the exact dual bound improvements would be known, for example,
by strong branching, the product score that SCIP uses to combine the improvements
of the two child nodes would be close to zero as well. In that case, the other scores
used by hybrid branching (conflict, inference, and cutoff score) become more important
for the final branching decision. As a consequence, SCIP aims at selecting a branching
variable that provides an improvement for the first child as well, if not in dual bound,
then in variables being fixed by domain propagation or in moving closer to an infeasible
problem.

Degeneracy-aware hybrid branching uses this observation and adjusts the weights
based on degeneracy information. To this end, it computes factors ψ and ω based on
the degeneracy share α and the variable-constraint ratio β as follows:

ψ(α) =

{
1010(α−0.7) if α ≥ 0.8

1 else
(11)
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and

ω(β) =

{
10β if β ≥ 2.0

1 else.
(12)

Then, the weight for dual bound improvement, which is 1 by default, is divided by the
product of the two factors. In contrast, the weights for conflict score (0.01 by default),
inference, and cutoff scores (both 0.0001 by default) are multiplied by the product. As
a result, as soon as the degeneracy share α is at least 80 % or the variable-constraint
ratio β is 2.0 or higher, conflict information is weighted at least as much as dual bound
improvement. If those degeneracy measures increase, the impact of the dual bound gets
smaller and may even fall behind cutoff and inference score.

Additionally, strong branching is disabled completely at the current node if ψ(α) ·
ω(β) ≥ 10, that is, if any of the two conditions mentioned before is fulfilled. The
motivation for this is that, as other measures are more important now than the dual
bound improvement, the additional effort for strong branching is deemed unnecessary.
As a consequence, this allows to apply strong branching at a later node where the LP
solution is less degenerate if the pseudocosts of the variables did not become reliable
until then. Thus, the benefit of this modification is not necessarily the time saved in
strong branching, but also that the time for strong branching is spent where it pays off
more because the strong branching information is more useful and also provides a better
initialization of the pseudocosts. For more details, we refer to Berthold et al. [13].

Degeneracy-aware hybrid branching is enabled by default in SCIP 7.0. Note that
the standard hybrid branching is performed at the root node and the degeneracy-aware
version is only used afterward. This choice resulted from the observation that strong
branching at the root node has the added benefit that infeasible strong branching LPs
result in bound changes which often lead to a restart at the root node. Therefore,
standard hybrid branching is performed to ensure that these root restarts are still trig-
gered. Performance experiments performed at the time when degeneracy-aware hybrid
branching was included into SCIP indicated a 18.6 % speedup on the about 30 % of the
instances in our MIP testset that are affected by the change.

4.4.2 Treemodel Scoring Rules

The treemodel method is a new way of scoring branching candidates based on their up
and down (predicted) dual bound changes. Its theory and its SCIP implementation
are based on the paper by Le Bodic and Nemhauser [54] and improved in the follow-up
paper by Anderson, Le Bodic, and Morgan [8].

In SCIP, the default scoring function for branching candidates is the product score.
Suppose that a variable x would result in a dual bound change of ` > 0 on the “left”
child and r > 0 on the “right” child, then the product rule gives a score

product(`, r) = max (`, ε) ·max (r, ε), (13)

where ε > 0 is a small constant. Experimentally, this produces smaller and balanced
trees.

Le Bodic and Nemhauser [54] introduce two new scoring functions: the Ratio and the
Single Variable Tree Size (SVTS) methods. Both are based on the abstract theoretical
models developed in [54]. In a nutshell, Ratio corresponds to the growth rate of an
abstract branch-and-bound tree, which would recursively branch on the same variable
x and improve the dual bound of its children by ` and r, until all leaves reach or exceed
a given gap value G > 0 (we simply refer to variable x as (l, r)). This is defined by the
recurrence:

t(G) =

{
1 if G ≤ 0,

1 + t(G− l) + t(G− r) if G ≥ 0,
(14)
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where t(G) is the size of the tree required to close a gap G, starting from 0 at the root
node, by repeatedly branching and improving the dual bound by l at the left child and
r at the right child. In this setting the growth rate of a single-variable tree is the Ratio

ϕ = lim
G→∞

t(G+ 1)

t(G)
.

For a large enough G, a variable (l, r) with the smallest Ratio ϕ requires the smallest
single-variable tree. Therefore the Ratio scoring rule selects the variable with minimum
Ratio ϕ among all candidates.

For the values l and r, we use the left and right dual bound changes predicted or
computed by SCIP—these values could come from pseudocosts or strong branching. The
Ratio ϕ is computed numerically using the methods given in [54], with some implemen-
tation improvements, namely a better parameter to choose the root-finding method and
a caching of the previous fixed points for the fixed point method. The Ratio scoring
function is particularly good for large trees, and can be used when the gap is infinite. It
can be coupled with another scoring method to be used when the node being branched
on is close to its leaves (according to a simple heuristic).

The second scoring function, SVTS, is based on the same abstract model, but is more
complex than Ratio. Instead of characterizing the growth rate of an abstract tree when
G is infinite, it takes a finite G as input and computes the size t(G) of the abstract tree
based on the single variable being evaluated for branching. The best variable according
to SVTS is naturally the one which requires the smallest tree to close the gap G. The
paper [54] gives a closed-form formula for SVTS, as well as an approximation that can be
used when G is large, both of which are more efficient than using (14). One advantage
of SVTS over Ratio is that it will not select variables that are good asymptotically when
we are actually in the case where G is small and thus the expected size of the subtree
is also small. If G is large, then SVTS will essentially behave like Ratio. When G is
infinite, SVTS falls back to Ratio.

The implementation of the treemodel functions in SCIP is independent of any
branching rule. Therefore, it could be employed by all branching rules that base their
decision on the predicted dual bound improvements of the two child nodes, even though
so far, only the hybrid branching rule of SCIP was adjusted to allow replacing the
product score with the treemodel function.

The performance of SCIP with the product rule and the two treemodel functions
on the MIPLIB 2017 benchmark set is given in Table 3. In the evaluation, instances
solved in under one second, at the root node, or not solved by any scoring function, are
ignored. Each instance is solved three times, with different random seed initializations.

Table 3 provides the number (resp. additional number) of instances solved by the
product (resp. ratio and SVTS) scoring function. Relative differences compared to the
product are given for time and number of nodes. We first consider all instances, then
filter by number of nodes required by at least one scoring function, with thresholds at
10k, 50k and 100k. In this setup, SVTS is a clear winner, with a minor improvement
over all instances (1% time), and a substantial improvement (11% time) for instances
requiring at least 100k nodes for some setting.

Due to the relatively small improvement over all instances and the increased complex-
ity of SVTS compared to product rule, the latter remains the default scoring function
of SCIP. The treemodel rules can be turned on by the user (see “treemodel” setting
files in the coverage directory), as they can be extremely beneficial on some instances,
especially those with large trees.

19



Table 3: Performance results on instances of the MIPLIB 2017 benchmark set.
From top to bottom: all instances, instances which require more than 10k, 50k
and 100k nodes.

Results (set) product Ratio SVTS

# Time Nodes # Time Nodes # Time Nodes

Total (all) 305 296.61k 135.63m +1 1.04 0.88 +3 0.96 0.82
sh. geo. mean 351.50 4.84k 1.02 1.05 0.99 1.00

Total (≥10k) 141 216.35k 135.49m +4 1.01 0.88 +5 0.92 0.82
sh. geo. mean 882.15 92.93k 0.99 1.04 0.93 0.94

Total (≥50k) 93 144.30k 134.87m +4 1.00 0.87 +5 0.86 0.81
sh. geo. mean 1.03k 327.19k 0.96 1.02 0.89 0.89

Total (≥100k) 83 125.22k 134.50m +3 1.03 0.87 +3 0.89 0.81
sh. geo. mean 1.09k 441.84k 0.96 1.01 0.89 0.89

4.4.3 Vanilla Full Strong Branching

Vanilla full strong branching is a textbook implementation of full strong branching
for scientific experimentation purposes. It contrasts with SCIP’s default full strong
branching implementation, fullstrong, which includes additional features such as early
variable domain reduction, early node cutoff, and propagation.

Here is a summary of the features specific to the vanillafullstrong branching rule,
with respect to the features of the fullstrong branching rule:

− propagation is deactivated;

− node cutoff and variable domain reduction are deactivated. The vanillafullstrong
branching rule can only result in SCIP BRANCHED or SCIP DIDNOTRUN;

− idempotent (optional, default FALSE): when activated, this feature leaves SCIP, as
much as possible, in the same state before and after the branching call. Basically,
vanillafullstrong will not update any SCIP statistic related to or resulting from
strong branching computations;

− donotbranch (optional, default FALSE): when activated, no branching is done,
and vanillafullstrong always results in SCIP DIDNOTRUN. This allows for users
to call the branching rule as an oracle only, that is, asking on which variable full
strong branching would branch, without performing the actual branching step. The
best branching candidate of the last branching call can then be retrieved by calling
SCIPgetVanillafullstrongData();

− scoreall (optional, default FALSE): when activated, vanillafullstrong will com-
pute the strong branching score of all branching candidates, even if one of them
results in node infeasibility (highest strong branching score possible). Otherwise, a
candidate resulting in node infeasibility will cause vanillafullstrong to consider
that candidate the best one for branching, and the remaining candidates not already
processed will not be evaluated (and will have score -SCIPinfinity);

− collectscores (optional, default FALSE): when activated, vanillafullstrong

will store the computed strong branching scores from the last call. The scores
can then be retrieved by calling SCIPgetVanillafullstrongData(). Otherwise,
vanillafullstrong will not store the scores, and SCIPgetVanillafullstrongData()

will return a NULL pointer for the scores;

− integralcands (optional, default FALSE): when activated, vanillafullstrong

will consider all non-fixed integer variables as candidates for branching, not only
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those taking a fractional value in the current LP solution. More specifically, the
branching candidates are obtained from SCIPgetPseudoBranchCands() instead of
SCIPgetLPBranchCands().

4.4.4 Updates to the Lookahead Branching Rule of SCIP

SCIP 7.0 comes with an updated version of the lookahead branching rule introduced in
SCIP 6.0 [36]. First, new scoring schemes have been introduced to compute a score for
a candidate variable based on the LP bounds predicted for the child nodes and potential
grandchild nodes. The new default scheme computes the score as the product of the
products of the dual bound gains for the two best pairs of grandchild nodes, with one
pair per child node. This approach is similar to the product score (13). Additionally,
the relative number of infeasible grandchild nodes is added, weighted with the average
score obtained from any pairs of grandchild nodes. In computational experiments on the
MMMC testset, the new scoring scheme reduced the average solving time, tree size, and
fair node number [30] for instances solved within the time limit of two hours by more
than 15 % compared to the old SCIP default.

Second, domain propagation was included into the lookahead branching scheme and
grandchild node information is buffered and re-used if the same grandchild is evaluated
again. A filtering mechanism was added that filters out unpromising candidates after the
corresponding child nodes have been processed, but before grandchild node evaluation
starts. Finally, pseudocost-based candidate selection in abbreviated lookahead branching
uses pseudocosts (if already reliable) to select the most promising candidates for the
lookahead evaluation.

The default setting for lookahead in SCIP 7.0 uses the abbreviated version and
evaluates the best four candidates with lookahead branching, thereby evaluating the two
most promising pairs of grandchild nodes per potential child node. In computational
experiments on the MMMC testset, this version was able to reduce the average tree
size by more than 20 %, but also leads to an increase in the average solving time by
almost 20 %. Therefore, it is particularly suited for applications where tree size is a
more important factor than sequential running time, for example, in a massive parallel
environment with UG. Another prime application are machine-learning-based branching
rules that aim at imitating a given reference rule. So far, the reference rule is typically
full strong branching, but with just a bit more effort spent by lookahead branching in
the offline training phase, the quality of the learned branching rule could be improved
further. More details on the updated lookahead branching rule and computational results
can be found in the PhD thesis of Gamrath [28].

4.4.5 Updated Branching Point Selection for External Candidates

The external branching candidates pool in SCIP allows constraint handlers to register
variables as candidates for branching that are not necessarily integer variables with
fractional value in the current relaxation solution. For example, the nonlinear constraint
handlers use this feature to implement spatial branching.

If a constraint handler does not provide a value where to split the domain for an
external branching candidate xi, i ∈ N , SCIP selects a branching point by taking
the value of the variable in the current LP solution x̂, if such solution was available.
This point was moved further away from the variable bounds by projecting it onto
[`loci + α(uloci − `loci ), uloci − α(uloci − `loci )]. Here, `loc and uloc denote the lower and upper
bounds, respectively, on the variables at the current node of the branch-and-bound tree.
The value of α can be set via the parameter branching/clamp (default 0.2)

Motivated by Fischetti and Monaci [23], SCIP 7.0 moves the branching point for
bounded variables even closer to the middle of the variable domain to ensure that the
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current point is outside the domain for at least one child. Initially, the branching point
is set to

β(`loci + uloci )/2 + (1− β)x̂i

and then projected on [`loci + α(uloci − `loci ), uloci − α(uloci − `loci )], where β can be set
via the parameter branching/midpull and defaults to 0.75. If the local domain of a
variable is small, compared to its global domain, then this shifting towards the middle
of the domain is reduced. That is, if (uloci − `loci )/(ui − `i) < γ, then β is replaced
by β(uloci − `loci )/(ui − `i) in the previous formula. The value of γ can be set via the
parameter branching/midpullreldomtrig and defaults to 0.5.

At the time this feature was added to SCIP, it lead to increasing the number of
solved instances by 8 (1.4% of the MINLP testset) and reducing the mean solving time
by 10% on those instances that were affected by this change.

4.5 Conflict Analysis

Conflict analysis, as it is implemented in SCIP and many other MIP solvers, relies on
globally valid proofs of the form

ỹ>Ax ≥ ỹ>b, (15)

where ỹ ∈ Rm+ . This type of infeasibility proof is used as a starting point for conflict
graph analysis and dual proof analysis [77]. Usually, LP-based infeasibility with respect
to the bounds ` ≤ `′ ≤ u′ ≤ u is proven by a ray (ỹ, r̃) ∈ Rm+ ×Rn in the dual space of
the LP relaxation

max

{
y>b+

∑
i∈N : ri>0

ri`
′
i +

∑
i∈N : ri<0

riu
′
i | y>A+ r> = c>, y ∈ Rm+ , r ∈ Rn

}
.

Farkas’ lemma [22] states that if the relaxation of (1) is infeasible with respect to `′ and
u′, then there exist (y, r) ∈ Rm+ ×Rn satisfying

y>A+ r = 0,

y>b+
∑

i∈N : ri>0

ri`
′
i +

∑
i∈N : ri<0

riu
′
i > 0. (16)

An infeasibility proof of form (15) is a direct consequence of (16) and is called dual proof.
The dual proof is a globally valid constraint, since it is a non-negative aggregation of
globally valid constraints. However, if locally valid constraints are present in the LP
relaxation, e.g., local cuts, the resulting proof constraint might not be globally valid.
In that case, conflict analysis is not directly applicable because so far conflict graph
and dual proof analysis rely on globally valid proofs, see, e.g., [63, 1, 77]. The same
situation appears when applying conflict analysis during LP-based spatial branch-and-
bound for non-convex MINLPs. Here, linearization cuts are applied that might rely on
local variable bounds. Consequently, these linearization cuts are only locally valid. In
a computational study on general MINLPs, Witzig et al. [78] observed that for only
5% of all analyzed infeasible LP relaxations a globally valid infeasibility proof could be
constructed. To “learn” from the remaining LP-based infeasibilities, local dual proofs
are introduced with SCIP 7.0.

Let us distinguish between constraints needed for the definition of the model and
additional constraints, that might be only locally valid, separated during the solving
process. Without loss of generality, we assume that A represents all model constraints.
For every subproblem s with local bounds `′ and u′, let Gs be the index set of additional
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constraints valid at s, Gs ∈ Rp×n be the constraint matrix representing all those con-
straints and ds ∈ Rp be the corresponding right-hand side. At every subproblem s, the
LP relaxation reads

min {c>x | Ax ≥ b, Gsx ≥ ds, `′ ≤ x ≤ u′}.

Further, we denote the index set of all additionally separated constraints that are globally
valid by G0. During the branch-and-bound process, the set of additional constraints
expands along each path of the tree, i.e., it holds that G0 ⊆ Gs1 ⊆ . . . ⊆ Gsp ⊆ Gs for
every path (0, s1, . . . , sp, s). Consequently, the infeasibility proof of form (15) changes
to

ỹ>Ax+ w̃>Gsx ≥ ỹ>b+ w̃>ds, (17)

where w̃ ∈ Rp+ denotes the vector of dual multipliers associated with all rows of Gs

derived from a slight modification of (16). For a more detailed explanation we refer
to [78].

In the previous releases of SCIP, only globally valid constraints were considered
when constructing infeasibility proofs, i.e.,

ỹ>Ax+ w̄>G0x ≥ ỹ>b+ w̄>d0, (18)

where w̄j := w̃j if j ∈ G0 and w̄j := 0 otherwise. The drawback of this approach is
that (18) does not prove local infeasibility within the local bounds `′ and u′ in general.
In this case, the constraint of form (18) is not used for further considerations during
conflict analysis. In other words, if locally valid constraints are needed to render LP-
based infeasibility, conflict analysis was not applicable.

With SCIP 7.0, conflict analysis incorporates locally valid constraints to construct
locally valid dual proofs of infeasibility of form

ỹ>Ax+ ŵ>Gsx ≥ ỹ>b+ ŵ>ds, (19)

incorporating all local constraints represented in the index set Ĝ, with G0 ⊆ Ĝ ⊆ Gsp ,
where ŵj := wj if j ∈ Ĝ and ŵj := 0 otherwise. The infeasibility proof (19) is valid for
the search tree induced by subproblem q with

q := argmin
q∈{0,s1,...,s}

{
Gq−1 ⊆ Ĝ, Ĝ ∩ (Gq−1 \ Gq) = ∅

}
.

Hence, the infeasibility proof might be lifted to an ancestor q of the subproblem that it
was created for, if all local information used for the proof was already available at sub-
problem q. In SCIP 7.0, local infeasibility proofs are only used for dual proof analysis,
and not for conflict graph analysis. However, it would be possible to apply conflict graph
analysis to (19). Unfortunately, this would introduce a computational overhead because
the order of locally applied bound changes and separated local constraints needs to be
tracked and maintained. Since conflict graph analysis already comes with some over-
head due to maintaining the so-called delta-tree, i.e., complete information about bound
deductions and its reasons within the tree, we omit applying conflict graph analysis on
locally valid infeasibility proofs.

When this feature was contributed to SCIP, we did not observe a performance impact
on our internal MIP test set over 5 random seeds. However, 9 additional instances could
be solved. On our internal MINLP test set, we did observe a performance improvement
of 4.1% on affected instances over 5 permutations.
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4.6 Tree Size Estimation and Clairvoyant Restarts

Traditionally, SCIP reports the quality of the current incumbent solution in terms of
the (primal-dual) gap. While the gap provides a guarantee on the maximum percentage
deviation from the optimal value, its use as a measure of the MINLP search progress is
very limited. We expect that many users of SCIP have experienced situations where the
gap was already closed to 99 % after a few seconds, but most of the runtime is spent on
closing the remaining 1 %. With version 7.0, SCIP has been extended by several methods
that can be used instead of the gap as a more accurate “progress bar” to approximate
the remaining time of the search. In this section, we only give a high-level explanation
of these methods to help the user understand the extended SCIP output. We refer
the interested reader to the technical report by Hendel et al. [40], which explains the
underlying concepts in greater detail.

In total, we have four atomic measures of the search completion, by which we denote
the fraction of already solved nodes of the final search tree. Besides the current amount
of closed gap, which lies between 0 and 1, we implemented the Sum of Subtree Gaps
(SSG) [67], which aggregates the gaps of different local subtrees into a monotone measure
that reaches 0 when the search terminates. The other two measures of search completion
are the tree weight and the leaf frequency. The tree weight accumulates the weights of
leaf nodes (nodes that were (in-)feasible or pruned by bound) of the search tree, where a
leaf at depth d weighs 2−d. The tree weight is monotone and equals 1 at the end of the
search in the default case of binary branching decisions. The leaf frequency measures
the ratio of leaf nodes among all nodes, a quantity that reaches 1

2 when the search ends.
Experimental results confirm that all three measures—SSG, tree weight, and leaf

frequency—constitute substantially better approximations of search completion than
the (closed) gap, and therefore better estimations of the final tree size. The search
completion approximations consitute the first group of techniques to estimate tree size.
Another group of techniques considers the above measures as time series and applies
forecasting techniques such as double-exponential smoothing [43], which also takes into
account changes in the trend of a measure. Initially, each leaf node of the search tree
corresponds to one time series step. Later, we aggregate k > 1 leaf nodes into a single
time series step. We increase k, which we call the resolution, in powers of 2 to adapt
the time series representation to larger search trees.

As third and final group of techniques, we provide two models that combine features
from several of the above time series. The first model computes a linear combination of
the tree weight and SSG. This linear combination is again a measure of search completion
and can be calibrated to specific problem instances to be more accurate than the two
individual measures by themselves. Since both SSG and tree weight are monotone,
we call this method monotone linear regression. By default, SCIP outputs the current
value of this monotone linear regression alongside gap in a new display column for search
completion.

The second model uses both values and time series trends of all four measures, as
well as the trend in the open nodes, to approximate search completion via random
forest regression [15]. In our experiments, a suitably trained random forest outperforms
all other tested methods by a considerable margin. It cannot be expected that there
is a single regression forest that works well for all possible input instances. Therefore,
SCIP 7.0 can read and use regression forests that are provided by the user in an extended
CSV-format via the new string parameter estimation/regforestfilename. We also
provide an R-script to train a regression forest on user data and output the forest in the
required format, see the SCIP documentation for instructions.
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Table 4: Meaning of values for parameter misc/usesymmetry.

value meaning

0 no symmetry handling
1 for each component, use orbitopes if applicable, otherwise use symresacks
2 orbital fixing for each component
3 for each component, use orbitopes if applicable, otherwise use orbital fixing

(default)

4.7 Clairvoyant Restarts

In versions prior to 7.0, SCIP restarted the search only if a certain fraction of integer
variables could be fixed during the root node. In SCIP 7.0, we now enable in-tree restarts
based on tree size estimation, which we call clairvoyant restarts [7]. In a nutshell,
the search process is restarted from the root node if, after a suitable initialization of
the search tree when at least 1k leaf nodes have been explored, the estimated search
completion is less than 2 %, based on a forecast of the tree weight time series By default,
at most one clairvoyant restart is performed.

Enabling clairvoyant restarts is responsible for a 10 % speed-up on the harder in-
stances of our internal MIP test set, and 2 % overall. Interestingly, clairvoyant restarts
result on average in a smaller number of search nodes, even if the two trees before and
after the restart are combined. We explain this by the fact that the search information
collected during the first tree search can be reused to make more informed branching
decisions. This in turn helps to reduce the size of the second, final search tree. Collected
search information that is reused after a restart includes primal solutions, cutting planes,
conflict constraints and variable branching history, such as pseudo costs,.

4.8 Improvements in Symmetry Handling

Symmetries in mixed-integer programs typically have an adverse effect on the running
time of branch-and-bound procedures. This is typically due to symmetric parts of the
branch-and-bound tree being explored repeatedly without providing new information to
the solver.

Since computing the full symmetry group of an integer program is NP-hard, see
Margot [62], SCIP only computes the symmetry subgroup that keeps the problem for-
mulation invariant. Define the image of a permutation γ of an n-dimensional vector x
to be γ(x) := (xγ−1(1), . . . , xγ−1(n)). The formulation symmetry group of an integer pro-

gram min {c>x : Ax = b, x ∈ Zn} with m constraints is the largest permutation group
that satisfies for every γ ∈ Γ:

− γ(c) = c and

− there exists a permutation π of the rows of A such that π(b) = b and Aπ(i)γ(j) = Aij .

In the following, we assume that Γ is the (formulation) symmetry group, which is cur-
rently computed within SCIP using the graph isomorphism package bliss [46]; see [68]
for details of the approach.

To handle symmetries on binary variables, two symmetry handling approaches have
been implemented and are available in SCIP since version 5.0: a pure propagation
approach, orbital fixing (OF) [61, 65, 66], and a separation-based approach via symre-
topes [42]. The latter approach is implemented using three constraint handler plugins
that take care of different kinds of symretopes: orbitopes [48], orbisacks [47, 56], and
symresacks [41, 42]. In both approaches, the user has the possibility to use the sym-
metries of the original or the presolved problem as the basis for symmetry reductions.
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Symmetry is controlled via the misc/usesymmetry parameter; its meaning is described
in Table 4.

The SCIP 7.0 implementation of computing and handling symmetries is relatively
involved. We therefore provide a flow diagram for the computation of symmetries in
Figure 3. The described mechanism is triggered during the presolve phase if symretopes
shall be added and whenever orbital fixing is called.

General Enhancements With the release of SCIP 7.0, the symmetry code has been
completely restructured. In the previous releases, the presolver plugins presol symmetry

and presol symbreak stored symmetry information and added symretope constraints,
respectively. Moreover, the propagator plugin prop orbitalfixing was responsible for
running orbital fixing. In the current release, this functionality has been unified in the
new propagator plugin prop symmetry, avoiding the storage of the same symmetry infor-
mation in different plugins. General symmetry related methods like orbit computations
are implemented in the new file symmetry.c.

Besides refactoring the code structure, new data structures have been introduced to
enhance the implementation. If the symmetry group is generated by k permutations of n
variables, the previous release stored this information in a k × n matrix. In SCIP 7.0,
also the transposed n× k matrix is stored to perform, for example, orbit computations
more (cache) efficiently.

Another feature of SCIP 7.0 is to check whether the (formulation) symmetry group Γ
is a product group Γ = Γ1⊗· · ·⊗Γk in which the factors Γi act independently on pairwise
distinct variables. We call the factors components of the symmetry group. By taking
components into account, again orbit computations and other symmetry related methods
can be performed more efficiently. But the main advantage is that different symmetry
handling methods can be used on the different components. For example, it is possible
to use orbital fixing for one component and symretopes for another. To implement
this, the symmetry control parameter misc/usesymmetry has been extended. It is an
integer parameter with range {0, . . . , 3} encoding a bitset: the 1-bit encodes whether
symretopes are active; the 2-bit encodes if orbital fixing is enabled, see Table 4 for a
description. The exact behavior is as follows: If both symretopes and orbital fixing are
activated, SCIP 7.0 will try to use orbitopes if available, and otherwise will fall back
to orbital fixing. If only symretopes are activated, then SCIP 7.0 will try orbitopes
first, and fall back to symresacks. Note that symretope constraints currently can be
only added during presolving. That is, if the symretopes are selected, symmetries are
computed at the end of presolving (the current default). If only orbital fixing is selected,
symmetries are computed when the branching process starts (the default in the previous
SCIP release).

Since memory consumption for storing the permutations matrices can be large for
large instances, SCIP 7.0 allows the compression of symmetry information. If com-
pression is enabled via the parameter propagating/symmetry/compresssymmetries,
all variables that are not affected by the symmetry group are removed from the permu-
tation matrices if the percentage of affected variables is below a threshold. The threshold
can be adapted via the parameter propagating/symmetry/compressthreshold.

To speed up symmetry detection, SCIP 7.0 checks whether all objective coefficients
in the problem formulation are different. In this case, no formulation symmetry can
be present, because no non-trivial permutation can fix the objective coefficient vector,
compare the second paragraph of this section. Moreover, since SCIP is currently only
able to handle symmetries of binary variables, SCIP computes symmetries and checks
whether a binary variable is affected by the computed symmetry group. If this is not the
case, all symmetry handling methods are disabled. Otherwise, if symmetries have been
detected, SCIP forbids multi-aggregation of affected binary variables. The reason for
this is that the symmetry handling methods may fix binary variables, and transferring
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Figure 3: Flow diagram for computing symmetries.
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the fixing of a multi-aggregated variable to the active variables in the multi-aggregation
might not be possible.

To increase the number of instances in which symmetries can be detected, the sym-
metry detection routine of SCIP 7.0 can also deal with certain bound disjunction con-
straints. Further, the routine can negate equations to be able to detect symmetric
equations with flipped signs. Finally, with the release of SCIP 7.0 it is possible to re-
compute symmetries after a restart, even if symretope constraints have been added to
handle symmetries.

Enhancements Regarding Symretopes To be able to recompute symmetries in the pres-
ence of symretope constraints, these constraints have been endowed with a flag encoding
whether they are model constraints, i.e., present in the original formulation or have been
added to handle symmetries. In the latter case, these constraints can be removed from
the problem which allows the symmetry detection routine to recompute the full set of
symmetries.

In contrast to orbisack and symresack constraints, an orbitope constraint is not
defined by a single permutation. Instead it requires the presence of a symmetry group
with a certain structure, i.e., a full symmetric group acting on the columns (or rows) of
a 0/1 matrix. For each component of the symmetry group, SCIP 7.0 checks whether
the group restricted to the component has the required structure. If symretopes are
enabled, the corresponding orbitope constraint is added to the problem. Since stronger
symmetry handling inequalities are available if, additional to the correct group structure,
certain set packing or partitioning constraints are present, SCIP also checks for the
presence of these constraints. If the necessary set packing or partitioning constraints
are present, orbitopes are upgraded to packing and partitioning orbitopes. While a
detection mechanism for the required set packing or partitioning structures was already
contained in previous releases, a more efficient implementation is available in SCIP 7.0.

If orbitopes cannot be upgraded to packing or partitioning orbitopes, the orbitope is
a full orbitope. For full orbitopes, Bendotti et al. [11] developed a complete propagation
algorithm, that is, an algorithm that detects all symmetry-based variable fixings that can
be deduced at a node of the branch-and-bound tree. Their algorithm can be implemented
in a static way or in a dynamic fashion. The static version uses the natural variable
order for symmetry reductions, whereas the dynamic version adapts the variable order to
the branching decisions made from the root node to the current node. In SCIP 7.0, an
implementations of the static version and a modified dynamic version are available. The
modified version uses a global variable order that is based on branching decisions instead
of an adapted order for each node of the branch-and-bound tree. The global ordering
allows the use of more efficient data structures. The idea for this variable order is the
same as the global rank used by Margot [61]. The trade-off is that the full potential of
the dynamic version cannot be exploited.

Similar to orbitopes, symresacks can be upgraded to packing and partitioning symre-
sacks if certain packing/partitioning constraints are present, see [41]. While this feature
was only available for certain permutations in previous releases, the user can enable this
upgrade for arbitrary permutations in SCIP 7.0. By default, this feature is disabled
because the data structures for general permutations are less efficient and only specially
structured permutations seem to appear in practice.

Enhancements Regarding Orbital Fixing Orbital fixing is a propagation method that
deduces variable fixings at a node of the branch-and-bound tree based on the branching
decisions that have been carried out from the root node to the current node. To ensure
correctness of orbital fixing, all variable fixings that are deduced by other components of
SCIP have to be compatible with orbital fixing. This is guaranteed if the components
implement strict setting algorithms, i.e., if a variable x is fixed to some value a, then the
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components are (in principle) able to also fix γ(x) = a for each symmetry γ ∈ Γ, see
Margot [61]. Previous releases of SCIP ensured correctness of orbital fixing by disabling
plugins that might interfere with orbital fixing. Since fixings can only be in conflict with
orbital fixing if they have been performed after symmetry has been computed, SCIP 7.0
now stores all binary variables that have been fixed globally and takes these variables
into account while performing orbital fixings. Other components of SCIP thus do not
have to be disabled if orbital fixing is active.

4.9 Updates to the Generic Benders’ decomposition Framework

SCIP 7.0 greatly extends the functionality of the Benders’ decomposition (BD) frame-
work and improves its computational performance. Two major features have been in-
troduced to the framework—parallelization and the ability to handle convex MINLP
subproblems. Additionally, a number of key enhancement techniques have been im-
plemented, such as cut strengthening and new primal heuristics. Finally, additional
parameter settings have been introduced to provide more control over the features of
the BD framework. For a detailed overview of the BD framework and a number of the
features highlighted here, the reader is referred to Maher [58].

Many of the features and enhancements that are described here are implemented
directly in the BD core of SCIP. As such, they are available to all BD plugins that are
developed for SCIP, such as the default and gcg plugins. The runtime parameters
associated with the features and enhancements can be controlled for each BD plugin,
thus the parameters are identified by the BD plugin name. In the following, <X> will be
used to represent benders/<benderspluginname>.

4.9.1 Features

Parallelization There is a long history of employing parallelization techniques to reduce
the wall clock time when applying BD [55, 59]. This typically stems from the fact that the
application of BD exposes a set of disjoint subproblems that can be solved concurrently.
In the traditional implementation of BD [55, 59], parallelization can be employed to
accelerate the solving process of the master problem and subproblems independently. In
this case, parallel branch-and-bound can be used to solve the master MIP, then given a
master solution the disjoint subproblems can be solved concurrently. In modern branch-
and-cut implementations [58], these two uses of parallelization must be integrated. The
current release of the SCIP Optimization Suite, to the best of our knowledge, is the
first Benders’ decomposition framework to combine master problem and subproblem
parallelization.

The traditional parallelization of BD, solving the disjoint subproblems concurrently,
is executed during constraint enforcement and solution checking. OpenMP [16] is used
to parallelize the subproblem solving process. As explained in Maher [58], all of the
subproblems are solved prior to the generation of Benders’ cuts. The cut generation,
including addition to the master problem, then proceeds in a set subproblem order,
independent of the solving time for the individual subproblems. Thus, the solution
algorithm will remain deterministic even with the use of parallelization. After building
SCIP with the option -DTPI=omp, the parameter <X>/numthreads will set the number
of threads available for solving the BD subproblems in parallel.

An important aspect of parallel algorithms is ensuring an equal amount of work
is distributed to all processes—known as load balancing. To support load balancing
when solving the BD subproblems in parallel, a priority queue has been implemented to
define the solving order. If all subproblems are solved in each call to the BD constraint
handlers, then harder subproblems—identified as having a higher average number of
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LP/NLP iterations—will take a higher priority. Otherwise, load balancing is ignored
and the subproblem that has been called the least often is prioritized to ensure that
all subproblems are called regularly. If not all subproblems are solved in each call
to the BD constraint handlers, but they have been solved the same number of times,
then the hardness metric described above is used to form the priority order. The tie
breaker in all cases is the subproblem index, where the lower index will be prioritized.
This comparison of subproblems can be modified in custom BD implementations by
providing a comparator to the function SCIPsetBendersSubproblemComp.

The parallelization of the branch-and-cut algorithm when employing BD has been
achieved primarily by extensions to UG. Within SCIP, the transfer of cuts between
SCIP instances, which was previously only used for the Large Neighborhood Benders’
Search [57], has been improved. The function SCIPstoreBendersCut can be called
from Benders’ cut plugins to store the constraint information for the corresponding cut,
specifically variables, coefficients, left-hand side and right-hand side. The stored cuts
can be retrieved by calling SCIPbendersGetStoredCutData. Applying all stored cuts to
a given SCIP instance is achieved using the function SCIPapplyBendersStoredCuts. In
order to use the branch-and-cut parallelization of UG with BD, the Benders’ cuts must
be representable as linear constraints and stored in the Benders’ cut plugins when they
are created. The extensions to UG that enable the parallelization of the branch-and-cut
approach for BD will be described in Section 6.

Improved Handling of MINLPs The BD framework is designed to handle general CIP
subproblems; however, in the previous release convex Benders’ cuts could only be gen-
erated from LP subproblems. SCIP 7.0 extends the BD framework to enable the gener-
ation of Benders’ cuts from the NLP relaxation of convex MINLPs. Primarily, this in-
volved extending the default subproblem solving methods from the BD core to solve NLP
relaxations of the subproblem if they exist. Additionally, the classical optimality and
feasibility Benders’ cuts—the benderscut opt and benderscut feas plugins—include
methods for generating cuts from the result from solving the NLP relaxation.

A convexity check has been added to identify whether an MINLP or NLP contains
only convex constraints. Currently, an MINLP or NLP is identified as convex if it is com-
prised only of linear constraints and nonlinear constraints of type abspower, nonlinear,
and quadratic and these constraints are convex. If the MINLP or NLP contains any
other constraints, then it is identified as non-convex and thus classical optimality and
feasibility Benders’ cuts will not be generated.

Finally, an additional feasibility Benders’ cut plugin has been implemented to support
convex MINLP subproblems. Consider a Benders’ subproblem of the form,

z(x̂) = min {d>y : g(y) ≥ h− T x̂, y ∈ Rn+}, (20)

where g is a convex nonlinear function and x̂ is a master problem solution provided as
input. If the subproblem is infeasible, an auxiliary subproblem, given by

z′(x̂) = min {1>ν : g(y) + ν ≥ h− T x̂, y ∈ Rn+, ν ∈ Rm+}, (21)

is solved to generate a feasibility cut. The auxiliary subproblem z′(x̂) minimizes the
violation of the constraints in the infeasible problem. The dual solution from this aux-
iliary problem can be used to generate a feasibility cut using the methods provided in
benderscut opt.

Apply Benders’ decomposition using Supplied DEC File Section 4.2 presents the new
feature for handling used-defined decompositions within SCIP. Upon supplying a used-
defined decomposition, it is possible to directly perform an automatic reformulation
and apply BD. Importantly, the parameter decomposition/benderslabels must be
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set to TRUE to ensure that the appropriate variable labels are assigned. Then setting
decomposition/applybenders to TRUE will inform SCIP that a Benders’ decomposition
must be applied using the highest priority decomposition.

Applying BD using a decomposition in the DEC format will invoke the default BD
plugin and cut generation methods. However, it is still possible to customize the BD
algorithm. This can be achieved by designing and including custom BD cut generation
methods as part of a user-defined SCIP solver.

Generate Optimality Cuts from External Subproblem Solutions In the previous release,
the Benders’ cut plugin for the classical optimality cut required the solution of a SCIP
instance to compute the relevant linear constraint. This limited the flexibility of the
BD framework, since the default Benders’ cut plugin could not be used with custom
subproblem solving methods. The API of the optimality Benders’ cut plugin has been
modified to enable the generation of optimality cuts from external subproblem solutions.

4.9.2 Algorithmic Enhancements

Cut Strengthening A simple in-out cut strengthening approach has been implemented
to accelerate the convergence of the BD algorithm. The approach follows the method
described in Fischetti et al. [24].

Given some core point xo and the current LP relaxation solution x, the separation
point that is provided to the BD subproblems to generate cuts is xSEP = λxo+(1−λ)x,
where 0 ≤ λ ≤ 1. If, after k calls to the BD subproblems for constraint enforcement,
no improvement in the lower bound is observed, then the separation point is set to
xSEP = x + δ, where the entries of δ are chosen uniformly at random from [0, ε) with
ε � 1. If, after a further k calls to the BD subproblems for constraint enforcement,
no improvement in the lower bound is observed, then the separation point is set to
xSEP = x. Also, after each call to the BD subproblems for constraint enforcement the
core point is updated as xo ← λxo + (1− λ)x.

The values of λ, ε and k are set by runtime parameters. The respective parameters
are <X>/cutstrengthenmult, <X>/corepointperturb and <X>/noimprovelimit, with
default values of 0.5, 10−6 and 5.

A number of initialization solutions are provided for the core point xo. The possible
initialization solutions are i) the first LP relaxation solution, ii) the first primal feasible
solution, iii) a solution vector of all zeros, iv) a solution vector of all ones, v) a relative
interior point for the master problem and vi) the first primal feasible solution but reset to
each new incumbent solution. The run time parameter <X>/cutstrengtheninitpoint

is used to set the initialization point and is v) by default. The impact of the different
initialization points on the effectiveness of cut strengthening is examined in Maher [58].

Trust Region Heuristic Trust region methods are applied within the BD algorithm
to reduce the distance between the master problem solutions that are passed to the
subproblems in consecutive calls. Limiting the distance between consecutive master
solution has been shown to improve the convergence of the BD algorithm [55, 70, 69].
While many previous approaches applied a trust region directly to the master problem,
this is not possible for the BD framework in SCIP since it requires a modification to
the master problem’s objective function.

Since the traditional usage of trust regions is not possible in SCIP, this concept
was used to devise a BD-specific primal heuristic. The full details of the trust region
heuristic can be found in Maher [57].
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Feasibility Phase The application of BD involves the partition of problem constraints
between a master problem and a set of subproblems. This partition may assign structural
constraints to the subproblems that are necessary to ensure feasibility for the original
problem. As a result, master problem solutions x̂ induce infeasible instances of the
subproblems, requiring the generation of feasibility cuts.

Classical feasibility cuts are well known to be weak, requiring a large number to
escape a region of the master problem that induces infeasible subproblems. Also, the
strengthening technique described above cannot be used to improve the quality of fea-
sibility cuts. To address this limitation of feasibility cuts, a feasibility phase has been
developed for the BD framework.

The feasibility phase is modeled after the phase 1 of the simplex method. This
approach is only executed while solving the root node of the master problem. Hence,
this requires the three-phase method to be enabled [58], which is achieved by setting
constraints/benderslp/active to TRUE.

The feasibility phase replaces (20) with

z′′(x̂) = min {d>y +M1>ν : g(y) + ν ≥ h− T x̂, y ∈ Rn+, ν ∈ Rm+}, (22)

where M is a positive weight, initially set to a small value, to penalize the violation
of constraints. Importantly, (22) is guaranteed to always be feasible. The feasibility
property of this subproblem is important, since it enables the generation of classical
optimality cuts and the use of cut strengthening methods. While (22) is similar to (21),
the inclusion of d>y in the objective function ensures that the optimality cuts generated
from (22) provide a valid underestimator for the subproblem objective value.

The default BD algorithm is employed to solve the LP relaxation of the master
problem in the root node. Thus, valid BD optimality cuts are generated by solving
(22) as the BD subproblem. If the master problem LP relaxation supplies x̂ to the
subproblems for which no optimality cut can be generated, but there is a non-zero value
in the solution vector ν, then M is set to 10M . Following the modification of the
subproblem objective function, the BD algorithm is restarted. This process continues
until no optimality cuts can be generated for x̂ and the solution vector ν = 0.

The parameters <X>/execfeasphase and <X>/slackvarcoeff are used, respectively,
to enable the feasibility phase and set the initial value of M , which is 106 by default.

Enabling Presolving and Propagation with Benders’ decomposition The handling of the
master problem variables has been improved allowing the use of SCIPs presolving and
propagation methods. Specifically, within the Benders’ decomposition constraint handler
(cons benders), an up and down lock is added for every master problem variable. For
every auxiliary variable a down lock is added. The addition of the locks ensures that no
invalid reductions are performed on the master problem.

4.9.3 New Parameters for Benders’ decomposition

A number of new parameters have been added to control the behavior of the BD algo-
rithm within SCIP.

Implicit Integer Auxiliary Variables If the BD subproblem is defined as a CIP, then it is
possible that the objective function is always integral. In this situation, this means that
the auxiliary variables are also always integer in the optimal solution. The parameter
<X>/auxvarsimplint can be set to TRUE so that if the subproblem objective is always
integral then the auxiliary variables are set as implicit integer variables. By default, this
parameter is set to FALSE.
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Cutting on All Solutions For the completeness of the BD algorithm when using the
branch-and-cut approach, Benders’ cuts need only be generated during the enforcement
of constraints. While the BD subproblems are solved during the checking of primal solu-
tions, cuts need not to be generated. However, cuts generated while checking solutions
feasible for the master problem may be stronger, as these solutions are more likely to be
in the interior of the master feasible region.

The parameter <X>/cutcheck can be set to TRUE so that Benders’ cuts are also
generated while checking primal solutions. The effectiveness of generating Benders’ cuts
while checking primal solutions is examined by Maher [58].

Improved Handling of the Large Neighborhood Benders’ Search The Large Neighbor-
hood Benders’ Search was introduced in the previous release and described in more
detail by Maher [57]. Since the last release, two additional parameters have been in-
troduced to limit the number of calls to the Benders’ decomposition subproblems while
solving the auxiliary problem of large neighborhood search heuristics. The parameter
<X>/lnsmaxcallsroot will limit the number of calls to the BD subproblems while solv-
ing the root node of the auxiliary problem. Similarly, <X>/lnsmaxcalls will limit the
total number of calls to the BD subproblems.

Three-phase Method The three-phase method is a classical technique that involves solv-
ing the root node relaxation of the master problem by BD. Since the three-phase method
is implemented using a constraint handler in SCIP, it is also possible to apply BD to
solve relaxations at other nodes throughout the branch-and-cut tree. This is facilitated
through the introduction of four parameters:

− constraints/benderslp/maxdepth: the maximum depth at which BD is used to
solve the node relaxation. Default is 0 (only the root node), while −1 means all
nodes and maxdepth > 0 means all nodes up to a depth of maxdepth.

− constraints/benderslp/depthfreq: if maxdepth > 0 and depthfreq = n > 0,
then after maxdepth is reached, BD is used to solve the relaxation at nodes of depth
d = n, 2n, 3n, . . . If depthfreq = 0, then BD is only used to solve the node relaxation
up to maxdepth.

− constraints/benderslp/stalllimit: if stalllimit > 0, then BD will be used to
solve the relaxation of the next processed node after n nodes are processed without
a lower bound improvement.

− constraints/benderslp/iterlimit: at most iterlimit relaxation solutions at
each node will be used to generate BD cuts, regardless of the other parameter settings.

4.9.4 Miscellaneous Changes

− When calling SCIPcreateBendersSubproblem, no SCIP pointer for the subproblems
is needed anymore. It is possible to supply a NULL pointer if the subproblem is to be
solved by an alternative algorithm, such as a shortest path algorithm.

− The handling of subproblem solving results has been improved. These have been
standardized to SCIP RESULT. The result from solving the convex relaxation and the
CIP will use the SCIP RESULT codes.

− The SCIPcopyBenders and the copy callback in the Benders’ decomposition plugins
now have a parameter threadsafe. If threadsafe is set to TRUE, then the actions
performed during the copy and the resulting copy must be thread safe. More details
regarding the use of the threadsafe parameter will be given in Section 6.
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4.10 Technical Improvements and Interfaces

A set of smaller technical changes and improvements have been implemented with
SCIP 7.0.

Numerical Emphasis Setting SCIP 7.0 comes with a new parameter emphasis setting
“numerics” for numerically difficult problems that require safer numerical operations.
In rare cases, such as SCIP solutions that are not feasible for the original problem
after retransformation, the reason often lies in repeated (multi-)aggregations of vari-
ables. Because of SCIP’s constraint-based design, the numerical consequences of multi-
aggregations are not always visible to the responsible presolver. The numerical emphasis
setting restricts the maximum dynamism in multi-aggregations and modifies or disables
some other numerically critical operations, mostly in presolving. Note that this setting
may slightly deteriorate performance. In troublesome cases where this emphasis setting
does not resolve encountered infeasibilities in the original space, it is recommended to
tighten the feasibility tolerance and/or completely disable multi-aggregations.

Relaxation-only Variables To formulate strong relaxations, it can be beneficial to add
new variables that are only used to tighten a relaxation but do not appear in any CIP
constraint. Within SCIP, this could lead to wrong results, for example when a copy of
such a variable was fixed in a sub-SCIP (because no constraint was locking the variable)
and this fixing was transferred back to the main SCIP instance. In SCIP 7.0, it is
now possible to mark a variable with zero objective coefficient as “relaxation-only”.
As relaxation-only variables must not appear in any constraint, they can be and are
excluded by the problem copying methods. Thus, if constraint compression is also
disabled, sub-SCIPs can now potentially have less variables than the main SCIP.

Extended Constraint Upgrades The structure recognition in nonlinear constraints has
been slightly extended. Expressions of the form |x|p x in a general nonlinear constraint
are now replaced by a new variable-constraint pair z and z = |x|p x, where the new
constraint is handled by the abspower constraint handler.

When checking whether a quadratic constraint can be reformulated as a second-
order-cone (SOC) constraint, binary variables are now handled as if they were squared,
as this might allow for more SOC reformulations. For example, x2

i +xj ≤ x2
k for some i,

k ∈ N and j ∈ I with `j = 0, uj = 1, and `k ≥ 0 is reformulated to the SOC constraint√
x2
i + x2

j ≤ xk.

LP Solution Enforcement by Tightening the LP Feasibility Tolerance Constraint han-
dlers may struggle to enforce the solution of a relaxation if the relaxation has not
been solved to a sufficient accuracy. For a (simplified) example, consider a constraint
x5 = 32 and let x be fixed to 2 in the current node of the branch-and-bound tree.
As the relaxation solver is allowed to compute solutions that violate variable bounds
up to a certain tolerance, it may return a solution x̂ with value x̂ = 2.000001. As
2.0000015 = 32.00008 . . ., the constraint handler for x5 = 32 cannot claim feasibility
with respect to the default absolute feasibility tolerance of 10−6. However, as the vari-
able is already fixed, it also has no way to enforce the constraint by a bound tightening
or branching. Thus, for LP relaxations, SCIP 7.0 now allows to (temporarily) reduce
the primal feasibility tolerance of the LP solver and request a resolve of the LP (by
returning SCIP SOLVELP as result in a constraint handler’s ENFOLP callback). The LP
primal feasibility tolerance is reset to its original value when the node has been solved.

Raspbian Installers SCIP 7.0 has been compiled and tested on Raspberry Pi machines
and Raspbian installers are available for download.
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Glop LPI SCIP 7.0 now contains an interface to the LP solver Glop, which is part of
the Google OR-Tools1. SCIP works quite reliably together with Glop, although it is
currently slightly slower than other open source solvers.

Support for Continuous Linking Variables in Linking Constraint Handler A linking
constraint in SCIP is represented by two equations

y =
∑
i

ai xi,
∑
i

xi = 1, xi ∈ {0, 1},

to model the domain of the linking variable y. The linking variable and the coefficients
previously had to be of integer type. The linking constraint handler has been refactored
to additionally allow for linking variables of continuous type.

Calculation of Dual Integral During Solving Besides the computation of the primal-
dual integral that is updated at each change of the primal or dual bound during the
search, SCIP now also computes a primal and a dual reference integral with respect to a
user-specified reference objective value. The computed values correspond to the primal
integral [12] and its dual counterpart if the reference value is the known optimal solution
value of an instance. Note that the reference objective value is only used for statistics
and exploited at no time during the solving process.

Reformulation of Binary Products The quadratic constraint handler reformulates prod-
ucts of binary variables during presolving by introducing additional variables and con-
straints. Until the release of SCIP 7.0, the constraint handler avoided using AND
constraints for reformulating these products. For SCIP 7.0, this behavior changes by
adjusting the default value of the parameter constraints/quadratic/empathy4and,
which forces the constraint handler to use AND constraints whenever it is possible.

5 SoPlex

SoPlex 5.0 is a major update on the last version, incorporating many technical changes.

5.1 Multiprecision Support

In previous versions, the arithmetic precision of the simplex routines had to be fixed at
compile time and could only be selected from float, double and long double precision.
With SoPlex 5.0, it has become possible to set an arbitrary arithmetic precision at
runtime. For this purpose, SoPlex uses the Boost multiprecision library [14], which
wraps either MPFR [25] (if available), or uses its own implementation of multi-precision
floating-point numbers. The precision can be set by running SoPlex with parameters
solvemode and precision set to 3 and the desired number of decimal digits, respectively.
Note that other parameters, such as feasibility tolerances, are not changed automatically
when increasing the precision of computations.

5.2 Technical Improvements

SoPlex has been fully templatized. All old classes, such as SoPlex, still remain avail-
able. New template classes have been introduced by adding the suffix “base” to the class
name, e.g., SoPlex = SoPlexBase<Real>. General template functions are now located

1Available in source code at https://developers.google.com/optimization.
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in a .hpp file corresponding to the original header. SoPlex now uses the Boost library
program options to parse command line arguments, and supports printing all available
parameters to the command line with the --help option.

Additionally, the SoPlex log prints the total number of violations in the solving log
for better understanding of the solving process. The new parameter int:stattimer con-
trols time measurement for statistics, and real:min markowitz controls the Markowitz
stability threshold.

5.3 New Build Requirements

While Boost is now required to build the SoPlex command line interface, the So-
Plex library can still be built without any additional dependencies. In such cases, the
multi-precision functionality would not be available. More detailed information on the
installation is available in the install guide of SoPlex.

6 Parallel Benders’ Decomposition with the UG Framework

The Ubiquity Generator (UG) is a generic framework for parallelizing branch-and-bound
solvers. The SCIP Optimization Suite contains UG parallelizations of SCIP for both
shared and distributed memory computing environments, namely FiberSCIP [75] and
ParaSCIP [74]. A more detailed recent overview of the UG framework is given by
Shinano [73].

The application of Benders’ decomposition (BD) separates an original problem into
a master problem and a collection of disjoint subproblems. The solution algorithm
associated with BD exposes a simple and intuitive parallelization scheme, especially
when there are a large number of subproblems: For each candidate master solution
the subproblems can be solved in parallel. This particular parallelization scheme is
well suited to the traditional BD implementation, where an iteration of the algorithm
involves solving the master problem to optimality before the subproblems are solved to
generate cuts. However, the branch-and-cut approach—used by the BD framework in
SCIP [58]—reveals alternative parallelization schemes for the BD algorithm.

Numerous methods have been proposed for the parallelization of the branch-and-
cut algorithm. However, to the best of the authors knowledge only Langer et al. [52]
have proposed the use of parallelization for BD when employing the branch-and-cut
approach. In the current release, the parallelization of SCIP by the UG framework has
been exploited to develop an alternative parallel BD algorithm.

In Section 4.9.1, the extensions made to the API of SCIP to enable the paralleliza-
tion of the BD algorithm are presented. These extensions were necessary to support the
use of UG to parallelize the branch-and-cut BD algorithm. In particular, the UG frame-
work relies on being able to transfer a node in the branch-and-bound tree from one solver
to another. In addition to the necessary information that defines a node in the branch-
and-cut tree, all cuts generated by the BD constraint handlers need to be collected and
transferred with the node information. The function SCIPstoreBendersCut is necessary
within the BD cuts plugins for storing the generated cuts. Within the UG framework
the functions SCIPbendersGetStoredCutData and SCIPapplyBendersStoredCuts are
called to collect the stored cuts from the current node-processing solver and then apply-
ing these cuts to the node-receiving solver, respectively.

To ensure that all necessary plugins are available in each of the solvers, the UG
framework uses the copying mechanisms available in SCIP. In a sequential execution
of SCIP, the copying of the BD subproblems is not necessary since the second stage
constraints are typically relevant for any first stage problem [57]. In the context of
parallel branch-and-bound, this is not longer true since potentially many solutions need
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to be checked by solving the BD subproblems at the same time. Thus, when copying
the BD plugins, i.e. during the executing of the copy callback in a user-defined BD
plugin, the subproblems must also be copied. To indicate whether the copy of the BD
plugins must be thread-safe, a parameter threadsafe is set to TRUE and passed to the
copying callback. At present, the threadsafe parameter is only set to TRUE within the
UG framework.

To support the use of BD within UG a number of settings files have been provided.
The settings benders-default and benders-det can be used for the default and de-
terministic execution of UG, respectively. Also, for the default settings the directory
benders racing contains settings for performing racing ramp-up with BD. For more
details regarding racing ramp-up, the reader is referred to Shinano et al. [74]. Finally,
scip-benders contains SCIP settings that are useful when using BD with UG.

7 SCIP-SDP

SCIP-SDP is a framework to solve mixed-integer semidefinite programs (MISDP) of the
following form

sup b>y

s.t. C −
m∑
i=1

Ai yi � 0,

`i ≤ yi ≤ ui for all i ∈ [m],

yi ∈ Z for all i ∈ I,

(23)

where C ∈ Rn×n and Ai ∈ Rn×n are symmetric matrices for all i ∈ [m]. Furthermore,
b ∈ Rm, ` ∈ (R ∪ {−∞})m, u ∈ (R ∪ {∞})m, and I ⊆ [m] is an index set of integer
variables. Here M � 0 denotes the fact that the symmetric matrix M is positive
semidefinite. Problem (23) is a semidefinite program (SDP) in dual form with additional
variable bounds and integrality constraints. A detailed overview of MISDPs is given by
Gally [26] and Gally et al. [27]. SCIP-SDP is able to read MISDP instances using
an extended SDPA-format or the Conic Benchmark Format (CBF), see http://cblib.

zib.de.
Version 3.2.0 of SCIP-SDP contains the following new features: Enhanced read-

ing functionality of the CBF format, rank-1 constraints on the matrices, upgrading of
quadratic constraints, and several bug fixes.

CBF Format The specification of the CBF-format supports SDPs in dual form (23),
but without variable bounds, as well as SDPs in primal form

inf C •X
s.t. Ai •X = bi, for all i ∈ [m],

X � 0.

(24)

Here A • B =
∑n
i,j=1AijBij for A, B ∈ Rn×n. Moreover, the CBF-format allows for

SDPs with both primal and dual variables, both primal and dual constraints, and a
mixed objective function of the form

inf / sup {C •X + b>y}.

With the new version of SCIP-SDP, reading of SDPs in primal form (24) and mixed
form is supported. Since SCIP-SDP internally works with the dual form (23) of an SDP,
the primal variable X is replaced by a set of scalar variables Xij with 1 ≤ j ≤ i ≤ n.
The constraints Ai •X = bi, i ∈ [m], are transformed to linear constraints in the new
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Table 5: Specification of rank-1 constraints in an extended CBF file.

PSDVARRANK1 PSDCONRANK1

r number of rank-1 dual constraints r number of rank-1 primal variables
m1 v1

... indices of rank-1 dual constraints
... indices of rank-1 primal variables

mr vr

variables Xij , which are then represented by diagonal entries in the SDP-constraint.
Moreover, the constraint X � 0 is transformed into a dual constraint∑

1≤j≤i≤n

EijXij � 0

in the new variables Xij , where Eij is an n × n matrix with a 1 at entry (i, j) and 0
otherwise. Furthermore, the CBF-reader of SCIP can now parse arbitrary orders of the
conic constraints (signs of linear or SDP constraints).

Rank-1 Cosntraints As a second new feature, SCIP-SDP is able to handle rank-1
constraints on both a matrix variable X � 0 and a dual constraint C −

∑m
i=1A

i yi � 0.
This is done by using the fact that a nonzero symmetric positive semidefinite n × n
matrix Z has rank 1 if and only if all of its 2× 2 principal minors are zero, see [17]. If a
constraint rank(X) = 1 is present in a mixed primal/dual SDP, the quadratic inequalities
are

XiiXjj −X2
ij = 0, (25)

for all 1 ≤ j < i ≤ n. In case a constraint rank(C −
∑m
i=1A

i yi) = 1 is present, the
following quadratic equalities are added to the problem during ConsInitSol.

CiiCjj − C2
ij −

m∑
k=1

yk
(
CiiA

k
jj + CjjA

k
ii − 2CijA

k
ij

)
+

m∑
k,`=1

yky`
(
AkiiA

`
jj −AkijA`ij

)
= 0,

for all 1 ≤ j < i ≤ n. In order to specify rank-1 constraints for a dual constraint or
a primal matrix variable, the CBF-reader of SCIP-SDP supports the two additional
keywords PSDVARRANK1 and PSDCONRANK1 with the specification given in Table 5.

Upgrading of Quadratic Constraints It is also possible to automatically upgrade quadratic
constraints

α ≤
n∑

i,j=1

aijxixj +

n∑
i=1

bixi ≤ β

to rank-1 SDP constraints. To this end, variables Xij are added, which should be equal
to xi · xj or equivalently xx> = X. This is enforced by the SDP rank-1 constraint(

1 x>

x X

)
� 0, rank

(
1 x>

x X

)
= 1.

In fact, if a symmetric matrix has rank 1, there exists a vector
(
y0
y

)
such that(

y0

y

)
(y0, y

>) =

(
y2

0 y0y
>

y0y yy>

)
=

(
1 x>

x X

)
.
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This implies that y0 = ±1, y = ±x. Then yy> = xx> = X, which is the constraint
that we want to enforce. Note that the SDP constraint is redudant, but strengthens the
relaxation. The quadratic constraint then becomes the linear constraint

α ≤
n∑

i,j=1

aijXij +

n∑
i=1

bixi ≤ β.

This upgrading is enabled with the parameter constraints/SDP/upgradquadconss. It
is only applied if the number of variables appearing in quadratic constraints is not too
big (as specified by the parameter maxnvarsquadupgd, default: 1000).

8 Final Remarks

The SCIP Optimization Suite 7.0 release provides significant improvements both in
terms of performance and functionality. Thereby, the focus of the release is mainly on
MIP solving and extensions.

With the first release of PaPILO included into the SCIP Optimization Suite 7.0,
a parallelized, highly effective presolving library is available, which already extends
the SCIP presolving routines and will replace SoPlex presolving in a future release.
Additionally, both PaPILO 1.0 and SoPlex 5.0 provide new multiprecision support
for improved numerical accuracy.

Within SCIP, new features like the decomposition structure and the tree size esti-
mation open new options for future developments. In SCIP 7.0, they already allowed for
the inclusion of two primal heuristics based on decomposition structures and dynamic
restarts during the tree search. Additionally, SCIP 7.0 comes with many more features
improving its performance, including presolving methods, branching rules, and extended
conflict analysis and symmetry handling.

Moreover, the performance and usability of the Benders’ decomposition framework
improved considerably, including two forms of parallelization. Finally, SCIP-SDP pro-
vides support for rank-1 SDP constraints which allows for upgrades from quadratic
constraints.

These developments combine to a significant speedup on MIPs compared to SCIP 6.0.
Since there were only very few changes tailored to MINLPs, no big performance change
on this type of problems can be observed. However, MINLP will be a major focus of
the next release, which will change the way how nonlinear constraints are handled in
SCIP.
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[25] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann. MPFR: A multiple-
precision binary floating-point library with correct rounding. ACM Trans. Math. Softw.,
33(2), 2007. doi:10.1145/1236463.1236468.

[26] T. Gally. Computational Mixed-Integer Semidefinite Programming. Dissertation, TU
Darmstadt, 2019.

[27] T. Gally, M. E. Pfetsch, and S. Ulbrich. A framework for solving mixed-integer semidefinite
programs. Optimization Methods and Software, 33(3):594–632, 2018.

[28] G. Gamrath. Enhanced Predictions and Structure Exploitation in Branch-and-Bound. PhD
thesis, Technische Universität Berlin, 2020.
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