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Abstract

Let G = (V,E) be a graph and T ⊆ V be a node set. We call an edge set S
a Steiner tree with respect to T if S connects all pairs of nodes in T . In this
paper we address the following problem, which we call the weighted Steiner tree
packing problem. Given a graph G = (V,E) with edge weights we, edge capacities
ce, e ∈ E, and node sets T1, . . . , TN , find edge sets S1, . . . , SN such that each Sk is
a Steiner tree with respect to Tk, at most ce of these edge sets use edge e for each
e ∈ E, and such that the sum of the weights of the edge sets is minimal. Our
motivation for studying this problem arises from the routing problem in VLSI-
design, where given sets of points have to be connected by wires. We consider
the Steiner tree packing problem from a polyhedral point of view and define an
appropriate polyhedron, called the Steiner tree packing polyhedron. The goal of
this paper is to (partially) describe this polyhedron by means of inequalities. It
turns out that, under mild assumptions, each inequality that defines a facet for
the (single) Steiner tree polyhedron can be lifted to a facet-defining inequality
for the Steiner tree packing polyhedron. The main emphasis of this paper lies on
the presentation of so-called joint inequalities that are valid and facet-defining for
this polyhedron. Inequalities of this kind involve at least two Steiner trees. The
classes of inequalities we have found form the basis of a branch & cut algorithm.
This algorithm is described in our companion paper [GMW92].

� Introduction

Given a graph G = (V,E) and a node set T ⊆ V , we call an edge set S ⊆ E
a Steiner tree for T if, for each pair of nodes u, v ∈ T, S contains a [u, v]-path.
In this paper we investigate the following problem that we call the Steiner tree
packing problem. Given an undirected graph G = (V,E) with edge capacities
ce ∈ IN for all e ∈ E and a list of node sets N = {T1, . . . , TN}, N ∈ IN, find
Steiner trees Sk for Tk, k = 1, . . . , N such that each edge e ∈ E is contained in at
most ce of the edge sets S1, . . . , SN . Every collection of Steiner trees S1, . . . , SN
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with this property is called a Steiner tree packing. If a weighting of the edges
is given in addition and a (with respect to this weighting) minimal Steiner tree
packing must be found, we call this the weighted Steiner tree packing problem.

This problem has important applications in the layout of electronic circuits. One
of the major tasks in VLSI-design is the so-called routing problem. Roughly
speaking, this problem can be stated as follows. Given an area (typically a
rectangle with some “forbidden zones”) and a list of point sets (so-called nets).
The routing problem is to connect (route) the points of each net by wires on the
area such that certain technical side constraints are satisfied and some objective
function is minimized. The precise formulation of the routing problem depends
on the used technology and the given design rules. Many variants of the routing
problem, however, can be modelled as weighted Steiner tree packing problems. In
a companion paper [GMW92] we are going to discuss such modelling issues and
the relation between the routing and the Steiner tree packing problem in detail.

In this paper we consider the Steiner tree packing problem from a polyhedral
point of view. We define a polyhedron whose vertices are in a one–to–one cor-
respondence to the Steiner tree packings in the graph. The goal of the paper is
to investigate this polyhedron, i. e., we try to describe it (partially) by means of
equations and inequalities. The classes of inequalities we have found form the ba-
sis of a branch & cut algorithm for the (weighted) Steiner tree packing problem.
This algorithm, the associated separation routines and computational results are
described in our companion paper [GMW92].

This paper is organized as follows. In section 2 we list some graphtheoretic
concepts and notation and give a formal definition of the (weighted) Steiner tree
packing problem. In section 3 we introduce the Steiner tree packing polyhedron
and investigate its trivial facet-defining inequalities. In section 4 we address the
question how facet-defining inequalities change if the underlying graph is modified
by operations such as edge deletion or node contraction. In section 5 we show
that under certain conditions each facet-defining inequality for the Steiner tree
polyhedron can be lifted to a facet-defining inequality for the packing polyhedron.
Finally, we present several classes of so-called joint facets in section 6. Inequalities
of this kind involve at least two Steiner trees.

� De�nitions and Notation

In this section we describe the problem that will be considered in this paper
formally. We first sketch some graphtheoretic notation.
We denote graphs by G = (V,E), where V is the node set and E the edge set.
All graphs we consider are undirected and finite. For a given edge set F ⊆ E, we
denote by V (F ) all nodes that are incident to an edge in F . Given two node sets
U,W ⊆ V , we denote by [U : W ] the set of edges in G with one endnode in U
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and the other in W . For a node set W , we also use E(W ) instead of [W : W ]. A
set of node sets V1, . . . , Vp ⊂ V, p ≥ 2, is called a partition of V if all sets Vi are
nonempty, the node sets are mutually disjoint and the union of these sets is V .
(Note that we use “⊂” to denote strict set theoretic containment.) If V1, . . . , Vp is
a partition of V then δ(V1, . . . , Vp) denotes the set of edges in G whose endnodes
are in different sets. For W ⊂ V, W �= ∅, we write δ(W ) instead of δ(W,V \W )
and call this set the cut induced by W . If W = {v}, we abbreviate δ({v}) by
δ(v). For an edge set F , we define dF (v) = |δ(v) ∩ F |, this is the degree of v in
the subgraph (V, F ) of G.

We call a sequence of nodes and edges K = (v0, e1, v1, e2, . . . , vl−1, el, vl), where
each edge ei is incident with the nodes vi−1 and vi for i = 1, . . . , l, and where
the edges and nodes are pairwise disjoint (except possibly v0 and vl), a path (or
a [v0, vl]−path), if v0 �= vl, and a cycle, if v0 = vl and l ≥ 2. Each edge that
connects two nodes of a cycle (path) K and that is not in K is called a diagonal
of K. We say that two edges uv and u′v′ cross with respect to K if they appear in
the sequence u, u′, v, v′ or u, v′, v, u′ by walking along the cycle (path). Similiarily,
we call two sets of diagonals F1 and F2 cross free if, for all e1 ∈ F1 and e2 ∈ F2,
e1 and e2 do not cross. Otherwise, F1 and F2 are crossing. For our purposes it
is convenient to consider a path P or a cycle C , respectively, as a subset of the
edge set. We call an edge set B a tree if (V (B), B) is connected and contains no
cycle. The leaves of B are the nodes that are incident to exactly one edge of B.

Finally, we call a graph G a complete rectangular h × b grid graph, if it can be
embedded in the plane by h horizontal lines and b vertical lines such that the
nodes of V are represented by the intersections of the lines and the edges are
represented by the connections of the intersections. A column J (row J) of a
complete rectangular h× b grid graph is a subset of the edge set that has cardi-
nality h− 1 (b− 1) and whose edges correspond to the same vertical (horizontal)
line.

Definition 2.1 Let G = (V,E) be a graph and T ⊆ V a node set of G. An edge
set S is called a Steiner tree for T , if the subgraph (V (S), S) contains a path
from s to t for all pairs of nodes s, t ∈ T, s �= t.

Definition 2.1 differs from the terminology most frequently used in the litera-
ture. A Steiner tree is usually supposed to be a tree. For our purposes, however,
Definition 2.1 simplyfies notation and is more convenient for the polyhedral in-
vestigations in the following. A Steiner tree that is a tree and whose leaves are
terminals is called edge-minimal.

Using the above notation we define the Steiner tree packing problem as follows.
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Problem 2.2 (The Steiner tree packing problem)

Instance:
A graph G = (V,E) with positive, integer capacities ce ∈ IN, e ∈ E.
A list of node sets N = {T1, . . . , TN}, N ≥ 1, with Tk ⊆ V for all k =
1, . . . , N .

Problem:
Find edge sets S1, . . . , SN ⊆ E such that

(i) Sk is a Steiner tree in G for Tk for all k = 1, . . . , N ,

(ii)
N∑

k=1

|Sk ∩ {e}| ≤ ce for all e ∈ E.

In the application of Problem 2.2 we have in mind it is usual to call the list
of node sets N a net list. We follow this custom. The number N denotes the
cardinality of the net list. Any element Tk ∈ N is called a set of terminals or
a net and the nodes t ∈ Tk are called terminals. Instead of net Tk we will often
simply say net k.
For notational reasons it is convenient to order the sets Sk, thus, we call an N -
tupel (S1, . . . , SN ) of edge sets a Steiner tree packing or packing of Steiner trees
if the sets S1, . . . , SN form a solution of Problem 2.2. A Steiner tree packing
(S1, . . . , SN ) is called edge-minimal, if each Sk is edge-minimal.
We will also consider the following weighted variant of the Steiner tree packing
problem.

Problem 2.3 (The weighted Steiner tree packing problem)

Instance:
A graph G = (V,E) with positive, integer capacities ce ∈ IN and nonnegative
weights we ∈ IR+, e ∈ E.
A net list N = {T1, . . . , TN}, N ≥ 1 with Tk ⊆ V for all k = 1, . . . , N .

Problem:
Find edge sets S1, . . . , SN ⊆ E such that

(i) (S1, . . . , SN) is a Steiner tree packing,

(ii)
N∑

k=1

∑
e∈Sk

we is minimal.

In the following we will refer to an instance of the weighted Steiner tree packing
problem by (G,N , c, w) and to an instance of the Steiner tree packing problem
by (G,N , c).

It is not surprising that Problem 2.2 and Problem 2.3 are NP-complete or NP-
hard, respectively, even in special cases. For example, the following variants are
hard.
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If we restrict Problem 2.3 to N = 1 and ce = 1, for all e ∈ E, we obtain the
problem of finding a minimal Steiner tree in G. This problem is NP-hard even
if G is restricted to be planar or a grid graph ([K72], [GJ77]). Futhermore, it
is NP-complete to decide whether there exists a feasible solution for Problem
2.2. Results here are due to Kramer and van Leeuwen [KL84], who proved that
the problem of finding N edge-disjoint paths is NP-complete. Similiarily, it was
shown in [KPS90] that it is NP-complete to decide whether a packing of two
Steiner trees exists.

We close this section with some further definitions and notation frequently used
throughout this paper.
Let G = (V,E) be a graph and T a set of terminals. We call an edge e a Steiner
bridge with respect to T , if every Steiner tree for T in G contains e. For a Steiner
tree S for T in G, we define

Υ(S) :=
∑
t∈T

(dS(t)− 1) +
∑

v∈V \T
dS (v)>2

(dS(v)− 2).

It is easy to see that if S is an edge-minimal Steiner tree the following equation
holds,

(2.4) Υ(S) = |T | − 2.

Let S be an edge-minimal Steiner tree for T in G and let uv ∈ S be an edge of S.
If u and v are not leaves of S, then there exist edge sets S1, S2 ⊂ S, S1 ∩ S2 = ∅
such that S = S1 ∪S2 ∪ {uv} with u ∈ V (S1), v ∈ V (S2) and (V (Si), Si), i = 1, 2
are connected. We call S1 ∪ S2 ∪ {uv} an edge-disjoint dissection of S. If one of
the endnodes of the edge uv, say u, is a leaf of S, we also call S1 ∪ S2 ∪ {uv} an
edge-disjoint dissection of S, where S1 = ∅ and S2 = S \ {uv}. It is particularly
convenient in this case to set V (S1) := u and write u ∈ V (S1).

To make our unavoidably complicated notation a little less clumsy we slightly
abuse standard notation and introduce the following technically useful operations
on N -tupels of edge sets. Let P = (F1, . . . , FN), N ≥ 1, be an N -tupel of edge
sets and e ∈ E, F ⊆ E. We define

P \k e := (F1, . . . , Fk \ {e}, . . . , FN);
P ∪k e := (F1, . . . , Fk ∪ {e}, . . . , FN);
P \ e := (F1 \ {e}, . . . , FN \ {e});
P ∪ e := (F1 ∪ {e}, . . . , FN ∪ {e});
e ∈ P ⇔ e ∈ ∪N

k=1Fk;
P ⊆ F ⇔ ∪N

k=1Fk ⊆ F.

If we have a Steiner tree packing P = (S1, . . . , SN) it is sometimes convenient
to denote the k-th element Sk of the N -tuple by Pk. We call a net list N =
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{T1, . . . , TN} disjoint, if Ti ∩ Tj = ∅ for all i, j ∈ {1, . . . , N}, i �= j. If W is a
subset of V , we write N ⊆ W , if ∪N

k=1Tk ⊆ W .

To avoid the discussion of (trivial) special cases we assume from now on that
every terminal set of a net list N has at least cardinality two and that N ≥ 1.

� The Steiner Tree Packing Polyhedron� Some

Basic Results

In this section we introduce the polyhedron we are going to study. We assume
the reader to be familiar with polyhedral theory, see, for instance [S86].

Suppose we are given a Steiner tree packing problem by a graph G = (V,E) with
edge capacities ce ∈ IN, e ∈ E, and a net list N = {T1, . . . , TN}.
Vectors are considered as column vectors unless otherwise specified. The super-
script “T” denotes transposition. We denote by IRE the vector space where the
components of each vector are indexed by the elements of E, i. e., x = (xe)e∈E
for x ∈ IRE . For an edge set F ⊆ E we define the incidence vector χF ∈ IRE of
F by setting χF

e = 1, if e ∈ F , and χF
e = 0, otherwise. On the other hand, for

each 0/1-vector x ∈ IRE the set Fx := {e ∈ E | xe = 1} denotes the incidence
set of x. For an edge set F ⊆ E and a vector x ∈ IRE , we will often abbreviate∑

e∈F xe by x(F ).
In addition, we will consider in this paper the N · |E| – dimensional vector space
IRE × . . . × IRE . We will denote this vector space by IRN×E . The components
of a vector x ∈ IRN×E are indexed by xk

e for k ∈ {1, . . . , N}, e ∈ E. For a
vector x ∈ IRN×E and k ∈ {1, . . . , N} we denote by xk ∈ IRE the vector (xk

e)e∈E.
Instead of x = ((x1)T , . . . , (xN)T )T ∈ IRN×E we often write x = (x1, . . . , xN ) if
the meaning of the symbols is clear from the context. We define the support of a
vector a ∈ IRN×E in E by supp (a) := {e ∈ E | ake �= 0 for some k ∈ {1, . . . , N}}.
For a subset E ′ ⊆ E and a vector a ∈ IRN×E we define the vector a|E′ ∈ IRN×E′

by (a|E′)ke := ake for all k = 1, . . . , N and e ∈ E ′. Finally, for a subset S of a
vector space, we denote by dim (S) the dimension of S and by diff (S) := {x− y |
x, y ∈ S} the difference set of S.

We define now the Steiner tree packing polyhedron by

(3.1)

STP (G,N , c) := conv { (χS1 , . . . , χSN ) ∈ IRN×E |
(i) Sk is a Steiner tree for Tk in G

for k = 1, . . . , N ;

(ii)
N∑
k=1

|Sk ∩ {e}| ≤ ce, for all e ∈ E}.

If N = 1 and c = 1I, i. e., ce = 1 for all e ∈ E, we also refer to STP (G,N , c)
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as the Steiner tree polyhedron. We call the vector (χS1, . . . , χSN ) the incidence
vector of a Steiner tree packing P = (S1, . . . , SN ). We will often abreviate the
incidence vector of a Steiner tree packing P by χP . STP (G,N , c) is the convex
hull of the incidence vectors of Steiner tree packings.

Alternatively, the Steiner tree packing polyhedron can be formulated as the so-
lution set of an integer program as follows. Consider the following system of
inequalities.

(3.2)

(i)
∑

e∈δ(W )

xk
e ≥ 1, for all W ⊂ V, W ∩ Tk �= ∅, (V \W ) ∩ Tk �= ∅,

k = 1, . . . , N.

(ii)
N∑
k=1

xk
e ≤ ce, for all e ∈ E.

(iii) 0 ≤ xk
e ≤ 1, for all e ∈ E, k = 1, . . . , N.

(iv) xk
e ∈ {0, 1}, for all e ∈ E, k = 1, . . . , N.

Obviously, each incidence vector of a Steiner tree packing satisfies (3.2) (i) – (iv)
and vice versa, each vector x ∈ IRN×E satisfying (3.2) (i) – (iv) is the incidence
vector of a Steiner tree packing. Thus,

(3.3) STP (G,N , c) = conv {x ∈ IRN×E | x satisfies (3.2) (i), . . . ,(iv)}.

holds. The inequalities (3.2) (ii) are called the capacity inequalities and the ones
in (3.2) (iii) the trivial inequalities. The weighted Steiner tree packing problem
can be solved — in principle — via the following linear programm:

(3.4)
min

N∑
k=1

wTxk

x ∈ STP (G,N , c).

In order to apply linear programming techniques, a “good” description of the
Steiner tree packing polyhedron by means of equations and inequalities is inde-
spensable. The aim of our paper is to study STP (G,N , c) and to describe this
polyhedron partially by valid and facet-defining inequalities.

In the remainder of this section we investigate the dimension of the Steiner tree
packing polyhedron and characterize the conditions under which the trivial and
the capacity inequalities are facet-defining. Let us first consider the dimension
problem.
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Problem 3.5 (Dimension problem of the Steiner tree packing polyhed-
ron)

Instance:
A Graph G = (V,E) with edge capacities ce ∈ IN, e ∈ E, a net list N =
{T1, . . . , TN} with T1, . . . , TN ⊆ V and a nonnegeative number l.

Problem:
Is the dimension of STP (G,N , c) at least l ?

As we have mentioned above, the decision problem, “Does there exist a Steiner
tree packing for a given instance (G,N , c)?”, is NP-complete ([KL84], [KPS90]).
Therefore Problem 3.5 is also NP-complete even for the case l = 0.

Remark 3.6 The dimension problem 3.5 is NP-complete.

This result does not give much hope for a successful study of Steiner tree packing
polyhedra of general instances (G,N , c). Figure 1 shows some examples and the
corresponding dimensions. The affine hull of the polytope of Figure 1 (b) is given
by x1

34 = 0, x2
34 = 1; that of the polytope of Figure 1 (d) by x1

12 = 1, x2
12 =

0, x1
23 = 0, x2

23 = 1, for instance. The dimension jumps appear rather erratic.

We have decided to study the Steiner tree packing polyhedron for special prob-
lem instances for which the dimension can be determined easily and to look for
facet-defining inequalities for these special instances. Clearly, such an approach
is only sensible if the results can be carried over (at least partially) to practi-
cally interesting instances as they occur, for example, in the design of electronic
circuits.

It has turned out that an instance (G,N , c), where the graph G is complete, the
net list N = {T1, . . . , TN} is disjoint and the capacities are equal to one (c = 1I),
is an appropriate case. The following lemma shows that the Steiner tree packing
polyhedron is fulldimensional in this case.

Lemma 3.7 Let G = (V,E) be the complete graph with node set V, |V | ≥ 3, and
edge capacities ce = 1, e ∈ E. Furthermore let N = {T1, . . . , TN} be a disjoint
net list with T1, . . . , TN ⊆ V . Then,

dim (STP (G,N , c)) = N · |E|.

Proof. Let λ be a vector with λTx = 0 for all x ∈ diff (STP (G,N , c)). We have
to show that λk

e = 0 for all e ∈ E und k ∈ {1, . . . , N}. Let e ∈ E be an arbitrary
edge with endnodes u and v. We choose Steiner trees Sk, k ∈ {1, . . . , N}, as
follows. If e ∈ E(Tk), set Sk = [t : Tk] for some t ∈ V \ {u, v}. Such a node
t exists since |V | ≥ 3. Otherwise, set Sk = E(Tk). Since N is a disjoint net
list, P = (S1, . . . , SN ) defines a packing of Steiner trees with e /∈ P . Thus,
λk
e = λT (χP ∪k e − χP ) = 0.
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(a)

1 2

dim(STP) = 12 dim(STP) = 8

(b)

1

3

434 3

34 2

dim(STP) = -1

(c)
dim(STP) = 2

(d)

Figures (a) to (d) show some examples and the dimension of the corresponding polyhedron. The two

terminal sets are drawn as rectangles or cycles respectively (T1={1,2},T2={3,4} or T2={2,3} resp.) and

STP abbreviates STP(G,N ,1I). The polyhedron in (a) is fulldimensional. Deleting edge {1,2} (Figure (b))

decreases the dimension by 4. If additionally edge {3,4} (Figure (c)) is deleted, there even does not exist

any feasible solution. Figure (d) shows an example in which the underlying graph is complete but the

corresponding polyhedron is not fulldimensional.

Figure 1:

In the next section we will prove some lifting results. These theorems imply that
results for the special instance described in Lemma 3.7 can be (partially) carried
over to any problem instance. So, it seems reasonable to study this special case.

Let us close this section with the characterization of those conditions under which
the trivial and the capacity inequalities are facet-defining. We will concentrate
here on the case N ≥ 2. The case N = 1 was solved in [GM90].

The proofs are easy, we only include them to make the reader familiar with the
proof technique used throughout the paper, and in particular, with the unavoid-
ably complicated notation.

Theorem 3.8 Let G = (V,E) be the complete graph with node set V and edge
capacities ce ∈ IN, e ∈ E. Furthermore, let N = {T1, . . . , TN}, N ≥ 2, be a
disjoint net list with T1, . . . , TN ⊂ V . Let e ∈ E be an arbitrary edge. Then, the
following statements hold:
(i) For all k ∈ {1, . . . , N}, the inequality xk

e ≥ 0 defines a facet of STP (G,N , c)
if and only if |V | ≥ 5 or e /∈ E(Tk).
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(ii) For all k ∈ {1, . . . , N}, the inequality xk
e ≤ 1 defines a facet of STP (G,N , c)

if and only if ce ≥ 2.
(iii) The inequality

N∑
k=1

xk
e ≤ ce

defines a facet of STP (G,N , c) if and only if ce ≤ N − 1.

Proof.
By definition all inequalities 0 ≤ xk

e ≤ 1 or
∑N

k=1 x
k
e ≤ ce, respectively, are valid.

(i). Since N contains at least two nets of size at least two, we have |V | ≥ 4. The
case |V | = 4 (see Figure 1 (a)) can be easily checked by hand. It turns out that
xk
e ≥ 0 defines a facet if and only if e /∈ E(Tk). We can therefore assume that

|V | ≥ 5.
Let e ∈ E be any edge and k be any net. Set F := {x ∈ STP (G,N , c) | xk

e = 0}.
To show that F is a facet of STP (G,N , c) we assume that bTx ≥ β defines a
facet of STP (G,N , c) and that F ⊆ Fb := {x ∈ STP (G,N , c) | bTx = β} holds.
Our aim is to prove that bTx = β is a positive multiple of xk

e = 0.
Suppose e = uv and let f = rs ∈ E\{e} be an arbitrary edge. Choose, moreover,
some node w ∈ V \ {u, v, r, s}. For i = 1, . . . , N we construct a Steiner tree Si as
follows. If at least three of the four nodes u, v, r, s are in Ti, set Si := E(Ti)\{e, f}.
If u, v ∈ Ti and r, s /∈ Ti, set Si := (E(Ti) ∪ {uw, vw}) \ {e}. If r, s ∈ Ti and
u, v /∈ Ti, set Si := (E(Ti) ∪ {rw, sw}) \ {f}. Otherwise set Si = E(Ti).
Since N is a disjoint net list, P = (S1, . . . , SN ) is a Steiner tree packing with
e, f /∈ P . Therefore, the incidence vectors of the Steiner tree packings P i :=
P ∪i e, i = 1, . . . , N (i �= k) and Qi := P ∪i f, i = 1, . . . , N are in F and thus in
Fb. This implies 0 = bTχP i − bTχP = bie (i �= k) and 0 = bTχQi − bTχP = bif (i =
1, . . . , N) and we conclude that big = 0, unless i = k and g = e. This observation
yields (i).

(ii). Let e ∈ E be any edge and k be any net. We will first prove that xk
e ≤ 1

defines a facet if ce ≥ 2. Set F := {x ∈ STP (G,N , c) | xk
e = 1} and suppose that

bTx ≥ β defines a facet of STP (G,N , c) and that F ⊆ Fb := {x ∈ STP (G,N , c) |
bTx = β} holds. Again, we want to show that bTx = β is a positive multiple of
xk
e = 1.

Let f = rs ∈ E \ {e} be an arbitrary edge. In addition, choose any node
w ∈ V \{r, s}. For i = 1, . . . , N we construct Steiner trees as follows. If r, s ∈ Ti,
set Si = E(Ti) \ {f} ∪ {rw, sw}. Otherwise, set Si = E(Ti). Since N is a
disjoint net list, P = (S1, . . . , SN) defines a packing of Steiner trees for (G,N , c)
satisfying

∑N
i=1 χ

Si
e ≤ 1 and f /∈ P . Since ce ≥ 2 holds, P ′ = P ∪k e is also a

packing of Steiner trees for (G,N , c) with f /∈ P ′ and χ
P ′
k

e = 1. We conclude
that χP ′

is in F and thus in Fb. Since f /∈ P ′, Qi = P ′ ∪i f (i = 1, . . . , N) are
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also Steiner tree packings and its incidence vectors are in F and thus in Fb. This
implies 0 = bTχQi − bTχP ′

= bif for i = 1, . . . , N and f ∈ E \ {e}.
It remains to be shown that bie = 0 for all i = 1, . . . , N, i �= k. To this end
let us choose Steiner trees Si, i = 1, . . . , N as follows. Assume that u and v
are the endnodes of e and select a node w ∈ V \ {u, v}. If u, v ∈ Ti, set Si =
(E(Ti) \ {e}) ∪ {uw, vw}. Otherwise, set Si = E(Ti). Since N is a disjoint
net list, P = (S1, . . . , SN) defines a packing of Steiner trees for (G,N , c) where
e /∈ P . Then, P ′ = P ∪k e is a packing of Steiner trees for (G,N , c) satisfying∑N

i=1 χ
P ′
i

e = 1 and χ
P ′
k

e = 1. So, χP ′
is in F and thus in Fb. Since ce ≥ 2, P ′ ∪i e

is also a Steiner tree packing for i = 1, . . . , N, i �= k. This implies bie = 0 for
i = 1, . . . , N, i �= k.

On the other hand, if ce = 1 then the inequality xk
e ≤ 1 is the sum of the

inequalities
∑N

i=1 x
i
e ≤ ce = 1 and −xi

e ≤ 0 for all i = 1, . . . , N, i �= k; therefore,
xk
e ≤ 1 is not facet-defining.

(iii). Let e ∈ E be any edge. Define a ∈ IRN×E such that aTx =
∑N

k=1 x
k
e .

Since aTx ≤ N is the sum of the valid inequalities xk
e ≤ 1, k = 1, . . . , N , aTx ≤ ce

does not define a facet if ce ≥ N holds.
We sketch the proof of the opposite direction. Set Fa := {x ∈ STP (G,N , c) |
aTx = ce} and let bTx ≥ β be valid such that Fb := {x ∈ STP (G,N , c) | bTx =
β} defines a facet of STP (G,N , c) with Fa ⊆ Fb. If ce ≤ N − 1, it is easy
to construct, for each edge f �= e and each net k ∈ {1, . . . , N}, a Steiner tree
packing P such that the k-th Steiner tree does not contain f and such that ce
of the Steiner trees contain e. Set P k := P ∪k f , then aTχP = aTχPk

= α and
hence 0 = bTχP − bTχPk

= bkf . Let us now choose any two nets i �= k. Since
ce ≤ N − 1 we can easily construct a Steiner tree packing P = (S1, . . . , SN ) such
that aTχP = ce, e ∈ Si and e /∈ Sk and such that Q := (P ∪k e) \i e is also a
Steiner tree packing. We therefore obtain 0 = bTχQ − bTχP , which yields that
bie = bke for all i, k ∈ {1, . . . , N}, i �= k. Hence b is a (positive) multiple of a which
proves that aTx ≤ ce defines a facet.

� Manipulating Facet�de�ning Inequalities

In this section we address the following question. Suppose we have a valid or
facet-defining ineqality aTx ≥ α of the Steiner tree packing polyhedron of some
graph and suppose we manipulate the underlying graph using operations such as
node splitting or addition, deletion or contraction of an edge, how do we have
to modify the inequality aTx ≥ α such that the resulting inequality is valid or
defines a facet of the Steiner tree packing polyhedron of the new graph?

To be formally precise we should distinguish between incidence vectors, capacity
vectors, net lists etc. taken with respect to the old and new graph. This formalism
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would make our notation even more clumsy. Thus, we have decided to drop the
distinguishing super or subscripts and hope that it is clear from the context with
respect to which of the two used graphs incidence vectors, inequalities etc. are
considered.

Lemma 4.1 (Deleting an edge)
Let (G,N , c) be an instance of the Steiner tree packing problem. Let aTx ≥ α
be a valid inequality of STP (G,N , c) and suppose f ∈ E is deleted from G.
Then âTx ≥ α is a valid inequality of STP (G \ f,N , c) where âke = ake for all
e ∈ E \ {f}, k ∈ {1, . . . , N} (where G \ f denotes the graph that is obtained by
deleting edge f).

Proof. This observation follows from the fact that every Steiner tree packing of
(G \ f,N , c) is also a Steiner tree packing of (G,N , c).

Unfortunately, a facet-defining inequality for STP (G,N , c) is not always facet-
defining for STP (G \ f,N , c) as the following example shows.

Example 4.2 Consider the instance drawn in Figure 1 (a). It is easily checked
that the inequality x2

13+x2
23+x2

34 ≥ 1 defines a facet for STP (G, {T1, T2}, 1I). By
deleting edge {1, 2} we obtain the picture shown in Figure 1 (b). However, the
above inequality does not define a facet for STP (G \ f, {T1, T2}, 1I), since it is a
positive linear combination of the inequalities x2

23 ≥ 0, x2
13 ≥ 0 and the equation

x2
34 = 1.

The following is a typical sequential lifting result.

Lemma 4.3 (Adding an edge)
Let (G,N , c) be an instance of the Steiner tree packing polyhedron. Let f ∈ E
with cf = 1 and âTx ≥ α be a facet-defining inequality of STP (G\f,N , c). Then,
aTx ≥ α defines a facet for STP (G,N , c) with ake = âke for all e ∈ E \ {f}, k ∈
{1, . . . , N} and akf = α−min{âTχP | P is a packing of Steiner trees for (G,N , c)
with f ∈ Pk} for all k = 1, . . . , N .

Proof. Suppose P is a Steiner tree packing for (G,N , c). If f �∈ P , P obviously
defines a Steiner tree packing for STP (G \ f,N , c). Therefore, aTχP ≥ α. Oth-
erwise let f ∈ Pk for k ∈ {1, . . . , N}. Since cf = 1, aTχP = akf + aTχP\f ≥
akf +min{âTχP̃\f | P̃ is a packing of Steiner trees for (G,N , c) with f ∈ P̃k} = α.
This implies that the above inequality is valid.

To prove that aTx ≥ α is also facet-defining let us assume that bTx ≥ β defines a
facet for STP (G,N , c) such that Fa := {x ∈ STP (G,N , c) | aTx = α} ⊆ Fb :=
{x ∈ STP (G,N , c) | bTx = β}. Since âTx ≥ α defines a facet for STP (G\f,N , c)
and ake = âke for all e ∈ E \ f, k ∈ {1, . . . , N} we know that there exists λ > 0
such that bke = λake for all e ∈ E\{f}, k ∈ {1, . . . , N} and α = λβ. Let P ′ denote
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a Steiner tree packing for (G,N , c) with f ∈ P ′
k0

and âTχP ′\f = min{âTχP\f} |
P is a packing of Steiner trees for (G,N , c) with f ∈ Pk0}. Due to the choice of
ak0f we obtain âTχP ′

= α. In addition we already know that λâke = λake = bke for

all e ∈ E \ {f}, k ∈ {1, . . . , N}. This implies λα = β = bTχP ′
= bk0f + λâTχP ′\f .

Therefore, bk0f = λak0f . This completes the proof.

Lemma 4.4 (Splitting a node)
Let (G,N , c) be an instance of the Steiner tree packing polyhedron. Let f ∈ E with
cf = 1 and let âTx ≥ α be a valid inequality of STP (G/ f,N , c) (note that G/ f
denotes the graph that is obtained by shrinking edge f). Then, aTx ≥ α defines a
valid inequality for STP (G,N , c) with ake = âke for all e ∈ E\{f}, k ∈ {1, . . . , N}
and akf = 0 for all k = 1, . . . , N .

Proof. If STP (G,N , c) = ∅, there is nothing to show. Otherwise, let P be a
Steiner tree packing for (G,N , c). Obviously, P \ f is a solution for (G/f,N , c).
Thus, aTχP ≥ âTχP\f ≥ α, since akf = 0 for all k = 1, . . . , N . This implies that
aTx ≥ α is a valid inequality for (G,N , c).

Unfortunately, again not every facet-defining inequality for STP (G / f,N , c)
defines a facet for STP (G,N , c). Even worse, STP (G,N , c) may be empty,
although STP (G / f,N , c) is not.

Example 4.5 Consider the graph G′ in Figure 2 (a) and the graph G in Figure
2 (b), with T1 = {1, 4, 5, 7} and T2 = {2, 3, 6}. Let G′ = G / {3, 3′}. Ob-
viously, there does not exist any Steiner tree packing for (G, {T1, T2}, 1I) and
STP (G, {T1, T2}, 1I) = ∅. However, STP (G′, {T1, T2}, 1I) is a fulldimensional
polytope.

Finally, let us consider the reverse operation of Lemma 4.4, i. e., the contraction
of an edge. In this case a valid inequality aTx ≥ α for STP (G,N , c) is not always
valid for STP (G / f,N , c). This remains true even in the case when ak

f = 0 for
all k = 1, . . . , N .

Example 4.6 Consider the graph G in Figure 3 (a) and the graph G′ in Figure
3 (b) with T1 = {1, 9} and T2 = {2, 10}. Let G′ = G / {3, 6}. Obviously,
x1
47 + x1

58 + x2
47 + x2

58 ≥ 1 is a valid inequality for STP (G, {T1, T2}, 1I), but this
does not hold for STP (G′, {T1, T2}, 1I).

	 Lifting Facets from Steiner Tree Polyhedra

to Steiner Tree Packing Polyhedra

In this section we will make an important observation, namely, that, under mild
assumptions, all nontrivial facets of the (single) Steiner tree polyhedron can

13



3

3

2

1

4

2

1

4

7

6

5

3’

5

6

7

(a)

(b)

Figure 2:

be lifted to the Steiner tree packing polyhedron. This implies that, in order
to obtain a complete characterization of some Steiner tree packing polyhedron
STP (G,N , c), for all nets of the net list, all individual Steiner tree polyhedra
STP (G, {T}, c), T ∈ N , must be known completely.
We begin this investigation by stating a trivial lemma.

Lemma 5.1 Let G = (V,E) denote a connected graph that does not contain a
Steiner bridge with respect to T ⊆ V . Let aTx ≥ α be a facet-defining inequality
of STP (G, {T}, 1I). Then, either aTx ≥ α is an inequality of the form −x1

e ≥ −1
for some edge e ∈ E or ae ≥ 0 holds for all e ∈ E.

It is somewhat surprising that, for the Steiner tree packing polyhedron, even it
is fulldimensional, a similiar statement is no longer true. In [M92] the inter-
ested reader can find an example of a facet-defining inequality with positive and
negative coefficients.

Lemma 5.2 Let G = (V,E) be the complete graph on node set V and let N =
{T1, . . . , TN}, N ≥ 2, be a disjoint net list. Furthermore, let aTx ≥ α be a
nontrivial facet-defining inequality of STP (G, {T1}, 1I) with a ∈ IRE , a ≥ 0. Then
the following two statements are true:

(i) For every edge e ∈ E there exists a Steiner tree packing P for (G,N , 1I)
with e /∈ P and aTχP1 = α.
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(ii) For every edge-minimal Steiner tree S1 for T1 with aTχS1 = α there exist
edge sets S2, . . . , SN such that (S1, . . . , SN) defines a Steiner tree packing
for (G,N , 1I).

Proof. We start by proving (i). Let e ∈ E and let S1 be an edge-minimal
Steiner tree with aTχS1 = α and e /∈ S1. Such a Steiner tree S1 does exist,
because aTx ≥ α is a nontrivial facet-defining inequality with a ≥ 0. Since S1 is
edge-minimal, it follows from (2.4) that

(∗) Υ(S1) = |T1| − 2.

We set Sk = ([T1 : Tk] ∪ E(Tk)) \ {S1 ∪ e} for k = 2, . . . , N . By l(k) we denote
the number of (connected) components in (V (Sk)∪ Tk, Sk). Consider any t ∈ T1.
If e ∈ [t : Tk0 ] for some k0 ∈ {2, . . . , N} we obtain dS1(t) ≥

∑N
k=2(l(k) − 1) − 1;

otherwise we have dS1(t) ≥
∑N

k=2(l(k) − 1). This is true, because otherwise two
components of some net k could be connected via t. We get

Υ(S1) ≥ ∑
t∈T1

(
N∑

k=2

(l(k)− 1)− 1) − 1

= |T1| ·
N∑

k=2

(l(k)− 1) − |T1| − 1

≥ |T1| − 1, if
N∑
k=2

(l(k)− 1) ≥ 2.

As a result, there exists at most one net k1 with l(k1) = 2. If there does not exist
such a net k1, then (i) is already shown. We extend Sk1 by the unused edges in
E(T1) and set Sk1 = Sk1 ∪ (E(T1)\ (S1∪{e})). If (V (Sk1)∪Tk1 , Sk1) is connected,
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we are finished. Otherwise let (V̄1, Ē1) and (V̄2, Ē2) denote the two (connected)
components with |V̄1| ≤ |V̄2|. Note that t ∈ V̄1 or t ∈ V̄2 for all t ∈ T , since
otherwise S1 would contain a cycle. We distinguish the following two cases.
(1) e /∈ [V̄1 : V̄2].

Here, |V̄1| = 1. Otherwise S1 would contain a cycle, which contradicts the
fact S1 being edge-minimal. For {v} = V̄1 we obtain dS1(v) ≥ |T1|+ |Tk1|−1,
and so Υ(S1) ≥ |T1|+|Tk1|−1−2 ≥ |T1|−1, which contradicts (∗). Therefore,
l(k) = 1 for all k = 2, . . . , N .

(2) e ∈ [V̄1 : V̄2].
Again, we have to distinguish two subcases.
(a) |T1| ≤ |V | − 3.

If |Tk1 | = 2, there exists a node v /∈ Tk1 ∪T1, since |T1| ≤ |V | − 3. Then,
Sk1 ∪ [v : Tk1] defines a Steiner tree for Tk1 (note that [v : Tk1] ∩ Sk = ∅
for all k �= k1). So, the remaining case is |Tk1| ≥ 3. This however
implies that |V̄1| + |V̄2| ≥ 5 holds. Therefore, |V̄1| = 1, otherwise S1

would contain a cycle. Let {v} = V̄1. Then Υ(S1) ≥ dS1(v) − 2 =
(|Tk1| − 1) + |T1| − 2 − 1 ≥ |T1| − 1, which contradicts (∗).

(b) |T1| = |V | − 2.
Since N is disjoint, we know that N = 2, |T2| = 2 (say T2 = {t, t′} and
T1 = {t1, . . . , t|T1|}). This case is inconvinient in the following sense.
We can not show statement (i) for any Steiner tree S1 being defined
similiarily to above. For example for S1 = [t : T1] and e = tt′ there does
not exist a Steiner tree packing with e /∈ P . In this case we prove the
statement indirectly. Suppose, the statement

(�) “For each Steiner tree packing P with aTχP1 = α, edge e is an
element of P”

is correct. Let us first consider the case |V̄1| = 1. Without loss of
generality we can assume that V̄1 = {t}.
First, suppose e = tt′. Then, S1 = [t : T1]. Due to the assumption (�)
we know (
) atti < atitj for all i, j ∈ {1, . . . , |T1|}, i �= j. Since aTx ≥
α defines a nontrivial facet with a ≥ 0, there exists an edge-minimal
Steiner tree S ′

1 for T1 with aTχS′
1 = α, e /∈ S ′

1 and S ′
1 ∩ E(T1) �= ∅,

(suppose, there does not exist such a S ′
1; due to the properties of a

Tx ≥ α
there exists an edge-minimal Steiner tree S for T1 with aTχS = α and
|S ∩ E(T1)| > 0; the assumption implies that e ∈ S; thus, there exist
i, j with t′ti, titj ∈ S; since aTχS = α and tjt /∈ S we obtain atitj ≤ atjt,
which contradicts (
)). W. l. o. g. let t1t2 ∈ S ′

1. The assumption (�)
lets us conclude that tt1 ∈ S ′

1 or t′t1 ∈ S ′
1 and tt2 ∈ S ′

1 or t′t2 ∈ S ′
1. If

tt1 ∈ S ′
1, then tt2 /∈ S ′

1, and due to att2 < at1t2, S̄1 = S ′
1 \ {t1t2} ∪ {tt2}

is a Steiner tree for T1 with aTχS̄1 < α, a contradiction. Analogously, it
can be shown that tt2 /∈ S ′

1. Hence, t′t2 ∈ S ′
1 and t′t1 ∈ S ′

1, which is a
contradiction to the property that S ′

1 is edge-minimal.
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Now suppose e = tti for some i ∈ {1, . . . , |T1|}; without loss of generality
say i = 1. Then, S1 = [t : T1\t1]∪{tt′, t′t1}. The assumption (�) implies
that att2 < at2t1 and att′+at′t1 < at2t1. Since a

Tx ≥ α defines a nontrivial
facet with a ≥ 0, there exists an edge-minimal Steiner tree S ′

1 for T1 with
aTχS′

1 = α and t1t2 ∈ S ′
1. Due to the assumption (�) we can conclude

that tt′ ∈ S ′
1 or tt1 ∈ S ′

1. Both alternatives however are leading to a
contradiction, tt′ ∈ S ′

1 due to att2 < at2t1 and at′t1 < at2t1, and tt1 ∈ S ′
1

due to att2 < at2t1 .

Finally, the case |V̄1| ≥ 2 must be investigated. Here we know that
|V̄1| = 2 and |V̄2| = 2 (especially |T1| = 2), otherwise S1 would contain a
cycle. Without loss of generality let V̂1 = {t, t1} and V̂2 = {t′, t2}. Since
S1 is edge-minimal, only the case e = t1t2 remains to be considered.
Then, S1 = {t1t′, t′t, tt2}. The assumption (�) implies, att2 + att′ < at′t2
and at′t1 + att′ < at′t1. Since aTx ≥ α defines a nontrivial facet with
a ≥ 0, there exists an edge-minimal Steiner tree S ′

1 for T1 with aTχS′
1 = α

and t′t2 ∈ S ′
1. Due to (�) we can conclude that S ′

1 = {t2t′, t′t, tt1}.
Since att2 < at′t2 and at′t1 < at′t1 hold, we obtain the contradiction
aTχS1 < aTχS′

1 = α.
Summing up it may be said that all cases in (b) lead to a contradiction.
Therefore, the assumption (�) does not hold.

So we can conclude that there exists a Steiner tree packing with the properties
in statement (i).

Statement (ii) can be shown similiarily. Since “e /∈ P” is not required any more,
we obtain Υ(S1) ≥ |T1|, if

∑N
k=2(l(k) − 1) ≥ 2, and only case (1) has to be

considered. This completes the proof.

The two lemmas enable us to prove the main result of this section.

Theorem 5.3 Let G = (V,E) be the complete graph with node set V and N =
{T1, . . . , TN}, N ≥ 2, a disjoint net list. Let āTx ≥ α, ā ∈ IRE , be a nontrivial
facet-defining inequality for STP (G, {T1}, 1I). Then, aTx ≥ α defines a facet of
STP (G,N , 1I), where a ∈ IRN×E denotes the vector with a1e = ā1e, a

k
e = 0 for all

k = 2, . . . , N, e ∈ E.

Proof.
Since āTx ≥ α defines a nontrivial facet for STP (G, {T1}, 1I) Lemma 5.1 implies
ā ≥ 0. Therefore, Lemma 5.2 can be applied.

The inequality aTx ≥ α is surely valid. Let bTx ≥ β be a facet-defining inequality
for STP (G,N , 1I) with Fa := {x ∈ STP (G,N , 1I) | aTx = α} ⊆ Fb := {x ∈
STP (G,N , 1I) | bTx = β}. Statement (i) of Lemma 5.2 implies that for every
edge e ∈ E there exists a Steiner tree packing P with e /∈ P and χP ∈ Fa.
Therefore, bke = 0 for all k = 2, . . . , N and all e ∈ E. Since āTx ≥ α defines a
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facet for STP (G, {T1}, 1I) and ā ≥ 0, there exist edge-minimal packings of Stei-

ner trees S1
1 , . . . , S

|E|
1 for T1, such that χS1

1 , . . . , χS
|E|
1 are affinely independent and

āTχSi
1 = α for i = 1, . . . , |E|. From Lemma 5.2 part (ii) follows that every S i

1 can
be extended to a Steiner tree packing P i with P i

1 = Si
1. So, we can conclude that

aTχP i
= α and bTχP i

= β for i = 1, . . . , |E|. Since bke = 0 for all k = 2, . . . , N and

all e ∈ E, we obtain b1
T
χP i

= β. Due to the choice of S1
1 , . . . , S

|E|
1 it follows that

there exists λ > 0 such that b1e = λā1e = λa1e for all e ∈ E. Thus, we have shown
that b and a are identical up to multiplication with a scalar. This completes the
proof.

Remark 5.4 The trivial facets of STP (G, {T1}, 1I) do not necessarily define
facets of STP (G,N , 1I). As an example let us consider the instance of Figure
1 (a). From Theorem 3.8 we know that neither x1

12 ≥ 0 nor any of the inequal-
ities x1

e ≤ 1 defines a facet of STP (G,N , 1I). On the other hand, each of these
inequalities defines a facet for STP (G, {T1}, 1I) (see [GM90]).


 Joint Facets

In this section we consider inequalities that combine two or more nets. We will
proceed in the following way. First, we describe each inequality. All inequalities
we are going to consider are of the form aTx ≥ α, a ≥ 0. The coefficients of some
of the edges will turn out to be zero for all nets. We call these edges zero edges
and the graph induced by the zero edges the zero graph. We will use the structure
of the zero graph to name the inequalities. This has the following reasons. The
zero graph is structured in such a way that there exists no Steiner tree packing
for the nets involved in this graph. Therefore, each feasible solution must use
edges whose coefficients are different from zero. This means that each inequality
is in some sense (but not necessarily uniquely) determined by the zero graph.

We will always define the inequalities for an arbitrary instance without guaran-
teeing that the inequality is also valid for the corresponding polyhedron. In the
succeeding theorem we characterize the instances for which the inequality defines
a facet of the corresponding polyhedron. In addition, edges get value zero for
some single nets (we typically denote these sets by F1, . . . , FN). These edge sets
F1, . . . , FN must usually satisfy very technical restrictions in order that the in-
equality defines a facet. The results can often be generalized, for example, by
modifying the net list or by adding a node. Due to the rich variety of possibilities
we typically only sketch the ideas and hint at possible extensions. In order to
remain within the scope of the paper we have also decided, to concentrate on the
validity of the corresponding inequalities at the expense of giving detailed proofs
that the inequalities are facet-defining. In particular, to prove that the corre-
sponding inequalities are facet-defining requires essentially the same scheme. We
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illustrate this scheme in one sample. For specific proofs of the remaining state-
ments we refer the interested reader to [M92].

Alternating Cycle Inequalities

Definition 6.1 Let G = (V,E) be a graph and N = {T1, T2} a net list. We
call a cycle F an alternating cycle with respect to T1, T2, if F ⊆ [T1 : T2] and
V (F ) ∩ T1 ∩ T2 = ∅ (see Figure 4). Moreover, let F1 ⊆ E(T2) and F2 ⊆ E(T1)
be two sets of diagonals of the alternating cycle F with respect to T1, T2. The
inequality

(χE\(F∪F1), χE\(F∪F2))Tx ≥ 1
2
|F | − 1

is called an alternating cycle inequality.

T

T

1

2

1

2

F

F

F

Figure 4:

It is not difficult to see that the basic form of an alternating cycle inequality, i. e.,
F1 = F2 = ∅, is valid for STP (G,N , 1I), but in general, it is not facet-defining.
The sets F1 and F2 are used to strengthen the basic form; in fact, choosing them
appropriately we can obtain facet-defining inequalities.

The sets of diagonals F1 ⊆ E(T2) and F2 ⊆ E(T1) are called maximal cross free
with respect to F , if F1 and F2 are cross free, and each diagonal e1 ∈ E(T1) \ F2

crosses F1 and each diagonal e2 ∈ E(T2)\F1 crosses F2 (see Figure 4). Then, the
following theorem holds.

Theorem 6.2 Let G = (V,E) be the complete graph with node set V and let
N = {T1, T2} be a disjoint net list with T1 ∪ T2 = V and |T1| = |T2| = l, l ≥ 2.
Furthermore, let F be an alternating cycle with respect to T1, T2 with V (F ) = V
and F1 ⊆ E(T2), F2 ⊆ E(T1). Then the alternating cycle inequality

(χE\(F∪F1), χE\(F∪F2))Tx ≥ l − 1

defines a facet of STP (G,N , 1I) if and only if F1 and F2 are maximal cross free.
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Proof. Set Ek = E \ (F ∪Fk), k = 1, 2 and a := (χE1, χE2). First, we prove that
aTx ≥ l − 1 is valid if F1 and F2 are cross free. It suffices to show that for every
packing of Steiner trees (S1, S2), |(S1 ∩ E1) ∪ (S2 ∩ E2)| ≥ l− 1 holds (note that
c = 1I).
Let (S1, S2) be any Steiner tree packing. W. l. o. g. S1 and S2 are edge-minimal.
Set T ′

1 := {t ∈ T1 | δ(t) ∩ F ⊆ S2} and T ′
2 := {t ∈ T2 | δ(t) ∩ F ⊆ S1}. Since

S1 and S2 are edge-minimal and |F | = 2l, we have that |T ′
1|+ |T ′

2| ≤ l − 1. This
implies that T1 \T ′

1 and T2 \T ′
2 are nonempty. Therefore, at least |T ′

1|+ |T ′
2| edges

e ∈ S1∩E1∪S2∩E2 are necessary to connect T ′
1 with T1 \T ′

1 and T ′
2 with T2 \T ′

2.
Consider the remaining terminals T1 \T ′

1 and T2 \T ′
2. Set ki := κ((V (Si), Si \Fi))

for i = 1, 2, where κ(Ĝ) denotes the number of components of graph Ĝ. Since F1

and F2 are cross free, we obtain k1 + k2 ≤ l + 1. Thus,

aT (χS1 , χS2) ≥ (|T ′
1|+ |T ′

2|) + (|T1 \ T ′
1|+ |T2 \ T ′

2| − (k1 + k2))
≥ |T1|+ |T2| − (k1 + k2) ≥ l− 1.

Let us now outline the proof that aTx ≥ l − 1 defines a facet of STP (G,N , 1I).

Suppose bTx ≥ β is a facet-defining inequality of STP (G,N , 1I) such that Fa :=
{x ∈ STP (G,N , 1I) | aTx = l − 1} ⊆ Fb := {x ∈ STP (G,N , 1I) | bTx = β}. In
the following we show that b is a multiple of a.

In the first two steps we show that for any coefficient ake = 0, k ∈ {1, 2} there
exists a Steiner tree packing P with aTχP = l−1 and e /∈ P . This implies bke = 0.

(1) bke = 0 for e ∈ F, k = 1, 2.
Choose S1 = F \ {e} and S2 = [t : T2], t ∈ T2. Furthermore set S ′

1 = S1 ∪ {e}.
Then P = (S1, S2) and P ′ = (S ′

1, S2) are Steiner tree packings with χP , χP ′ ∈ Fa

and 0 = bT (χS′
1, χS2)− bT (χS1, χS2) = b1e. Analogously we obtain b2e = 0.

(2) bke = 0 for e ∈ Fk, k = 1, 2.
Choose S1 = F and S2 = [t : T2], t ∈ T2. Furthermore set S ′

1 = S1 ∪ {e}. Then
P = (S1, S2) and P ′ = (S ′

1, S2) are Steiner tree packings with χP , χP ′ ∈ Fa and
0 = bT (χS′

1 , χS2)− bT (χS1, χS2) = b1e. Analogously we obtain b2e = 0.

Next, we prove that the coefficients of edges that connect terminals of the same
net are equal. Typically this can be done by constructing two Steiner trees inside
the subgraph induced by the corresponding terminal set that differ only in two
edges.

(3) bke = bke′ for e, e
′ ∈ E(Tk), k = 1, 2.

Let e = uv with u, v ∈ T1. Set S2 = F and S1 = [v : T1]. Let e′ ∈ [u : T1] \ {e}
and S ′

1 = S1 \ {e} ∪ {e′}. Then P = (S1, S2) and P ′ = (S ′
1, S2) are Steiner tree

packings with χP , χP ′ ∈ Fa and 0 = bT (χS′
1 , χS2)− bT (χS1, χS2) = b1e′ − b1e for all

e, e′ ∈ δ(u), u ∈ T1. Analogously we obtain b2e = b2e′.

In the remainder of the proof set k̄ := 1, if k = 2, and k̄ := 2, if k = 1.

In steps (4) and (5) we fix the remaining coefficients of one net. To this end we
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use the structure of the zero graph, the properties fullfilled by F1 and F2 and the
fact proved in (3).

(4) bke = bke′ for e
′ ∈ E(Tk), e ∈ [Tk : Tk̄], k = 1, 2.

Let e = uw with u ∈ T1, w ∈ T2 and v ∈ T1 such that vw ∈ F . Choose
S2 = F \ δ(v), S1 = [u : T1] and S ′

1 = S1 \ {uv} ∪ {uw} ∪ {vw}. Then P =
(S1, S2) and P ′ = (S ′

1, S2) are Steiner tree packings with χP , χP ′ ∈ Fa and 0 =
bT (χS′

1 , χS2)−bT(χS1 , χS2) = b1uw+b1vw−b1uv = b1uw−b1uv, because b
1
vw = 0 (see (1)).

This together with (3) proves the statement. Analogously we obtain b2e = b2e′.

(5) bke = bke′ for e ∈ E(Tk̄) \ Fk, e
′ ∈ E(Tk), k = 1, 2.

Let e = uv ∈ E(T2) \ F1. Since F1 and F2 are maximal cross free, there exists
an edge u2v2 ∈ F2 which crosses e. Let u−, v+ ∈ T1 such that u−u, vv+ ∈ F
and uv crosses u−v+. Choose S1 = [u− : E(T1)] and S2 = F . Furthermore set
S ′
1 = S1 \ {u−v+} ∪ {u−u, uv, vv+} and S ′

2 = S2 \ {u−u, vv+} ∪ {u2v2}. Then
P = (S1, S2) and P ′ = (S ′

1, S
′
2) are Steiner tree packings with χP , χP ′ ∈ Fa and

0 = bT (χS1, χS2)− bT (χS′
1 , χS′

2) = b1u−v+ − b1uv. This together with (3) proves the
statement. Analogously we obtain b2e = b2e′.

It remains to be shown that the coefficients of different nets are equal. This is
typically done by constructing two Steiner tree packings; in the first solution the
Steiner tree for net 1 uses only zero edges, whereas in the second solution zero
edges are only used by net 2.

(6) b1e = b2e′ for e ∈ E(T1), e
′ ∈ E(T2).

Let e = uv ∈ E(T1) and e′ = wx ∈ E(T2). Choose S1 = [u : E(T1)], S2 =
F, S ′

1 = F and S ′
2 = [w : E(T2)]. Then P = (S1, S2) and P ′ = (S ′

1, S
′
2) are

Steiner tree packings with χP , χP ′ ∈ Fa and 0 = bT (χS′
1, χS′

2) − bT (χS1, χS2) =∑
i∈T2\{w} b

2
iw − ∑

i∈T1\{u} b
1
iu = (l − 1) · b2xw − (l − 1) · b1vu because of (3). So we

obtain b1e = b2e′.

(1) - (6) imply that b is a multiple of a.

It remains to be shown that F1 and F2 are maximal cross free if aTx ≥ l − 1
defines a facet of STP (G,N , 1I).

First, we show that F1 and F2 have to be cross free. Suppose, F1 and F2 are
not cross free. Then, there exist two crossing diagonals e1 = u1v1 ∈ F1 and
e2 = u2v2 ∈ F2. Let u−

1 , v+1 ∈ T1 such that u−
1 u1, v1v

+
1 ∈ F and u1v1 crosses

u−
1 v

+
1 . Choose S1 = [u−

1 : E(T1)] \ {u−
1 v

+
1 } ∪ {u−

1 u1, u1v1, v1v
+
1 } and S2 = F \

{u−
1 u1, v1v

+
1 }∪{u2v2}. Then, (S1, S2) is a Steiner tree packing with aT (χS1, χS2) =

l − 2, a contradiction.

Finally, we show that F1 and F2 are maximal cross free. Suppose, this is not the
case. Let F ′

1 ⊆ E(T2) and F ′
2 ⊆ E(T1) such that F1 ∪ F2 ⊂ F ′

1 ∪ F ′
2 and F ′

1 and
F ′
2 are maximal cross free. Due to part 1 of this proof (χE\(F∪F ′

1), χE\(F∪F ′
2))Tx ≥

l− 1 defines a facet of STP (G,N , 1I). Summing up this facet-defining inequality
together with the valid inequalities x1

e ≥ 0 for all e ∈ F ′
1 \ F1 and x2

e ≥ 0 for all
e ∈ F ′

2 \ F2 we obtain aTx ≥ l − 1. Thus, aTx ≥ l − 1 does not define a facet of
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STP (G,N , 1I), a contradiction.

A consequence of the proof is that the alternating cycle inequality is valid if and
only if F1 and F2 are cross free. Let us now focus on some extensions of the
alternating cycle inequalities.

First, we consider the case where parallel edges are added to the complete graph.
The coefficients of the new edges that are not parallel to an edge of the alternating
cycle F obtain the value of the coefficients of the “original edge”. The coefficients
of the edges that are parallel to an edge of F obtain the value 1.

Theorem 6.3 Let G = (V,E) be a graph that contains the complete graph on
node set V as a subgraph and let N = {T1, T2} be a disjoint net list with T1 ∪
T2 = V and |T1| = |T2| = l, l ≥ 2. Furthermore let F be an alternating cycle
with respect to T1, T2 with V (F ) = V and F1 ⊆ E(T2), F2 ⊆ E(T1). Then the
alternating cycle inequality

(χE\(F∪F1), χE\(F∪F2))Tx ≥ l − 1

defines a facet of STP (G,N , 1I) if and only if F1 and F2 are maximal cross free.

The proof of Theorem 6.3 is very similiar to that of Theorem 6.2, so we omit it
here. A complete proof can be found in [M92].

Next, let us consider the case where an additional node z is added to the complete
graph in Theorem 6.2. We address the question how the coefficients of the edges
that are incident to the extra node z must be chosen to obtain a facet-defining
inequality for the corresponding Steiner tree packing polyhedron.

Suppose we have given a complete graph G = (V ∪ {z}, E) and a net list N =
{T1, T2} such that T1 ∩ V, T2 ∩ V is a partition of V with |T1 ∩ V | = |T2 ∩ V | =
|V |
2
. Note that we do not require N to be disjoint. Furthermore, let F be an

alternating cycle with respect to T1, T2 with V (F ) = V and let F1 ⊆ E(V ∩ T2)
and F2 ⊆ E(V ∩ T1) be maximal cross free.
Suppose â ∈ IRN×E is a vector such that â|E(V ) = (χE(V )\(F∪F1), χE(V )\(F∪F2)) and
the other coefficients are yet undetermined. It turns out that there are many
ways to specify the coefficients such that the resulting inequality âTx ≥ α is
facet-defining for STP (G,N , 1I). In fact, the coefficients âke , e ∈ δ(z) can be
independently chosen from the following list of alternatives for each net k.

Definition 6.4 (Possible choices for the new coefficients by adding an
additional node)

Let k ∈ {1, 2} with k̄ = 1, if k = 2, and k̄ = 2, if k = 1.

(1) If z is a terminal of net k (z ∈ Tk), all coefficients obtain value 1, that is
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âke = 1, for all e ∈ δ(z).

(2) If z is not a terminal of net k (z /∈ Tk), there are the following possibilities.

(i) âke =
|V |−2
|V | , for all e ∈ δ(z).

(ii) âkzt = 0, for one t ∈ Tk;
âke = 1, for all e ∈ δ(z) \ {zt}.

(iii) âkzt = 0, for one t ∈ Tk̄;
âkzt′ = 0, for all t′ ∈ Tk̄ with tt′ ∈ Fk;
âke = 1, for all remaining edges e ∈ δ(z).

Theorem 6.5 Let G = (V ∪{z}, E) be the complete graph with node set V ∪{z}
and let N = {T1, T2} be a net list such that T1 ∩ V, T2 ∩ V is a partition of V
with |T1 ∩ V | = |T2 ∩ V | = l, l ≥ 2. Furthermore let F be an alternating cycle
with respect to T1, T2 with V (F ) = V and let F1 ⊆ E(T2 ∩ V ), F2 ⊆ E(T1 ∩ V )
be maximal cross free. Let â ∈ IRN×E be a vector such that â|δ(z) satisfies one
of the alternatives of 6.4 and â|E\δ(z) = (χE(V )\(F∪F1), χE(V )\(F∪F2)). Finally, let
αk = |{z} ∩ Tk| for k = 1, 2. Then

âTx ≥ l − 1 + α1 + α2

defines a facet of STP (G,N , 1I).

We give a rough idea of the proof. The proof of validity can be reduced to that of
Theorem 6.2, i. e., for an arbitrary Steiner tree packing P it can be shown that
there exists a Steiner tree packing P ′ with âTχP ′ ≤ âTχP and |δ(z) ∩ P ′

k| = αk

for k = 1, 2; this implies the validity. To show that the inequality is also facet-
defining it remains to fix the new coefficients. This can easily be done, see [M92].

Obviously, in the same manner we can add an arbitrary number of additional
nodes z1, . . . , zc to the complete graph G = (V,E) of Theorem 6.2. For each of
the nodes zi we can independently choose the coefficients of the edges in [zi :
V ] according to Definition 6.4. The coefficients of the edges that connect two
different nodes zi and zj can be determined by applying Lemma 4.3.

Grid Inequalities

Definition 6.6 Let G = (V,E) be a graph and N = {T1, T2} be a net list.
Furthermore, let Ĝ = (V̂ , Ê) be a subgraph of G such that Ĝ is a complete rect-
angular h × 2 grid graph with h ≥ 3. Assume that the nodes of V are numbered
such that V̂ = {(i, j) | i = 1, . . . , h, j = 1, 2}. Moreover, let (1, 1), (h, 2) ∈ T1 and
(1, 2), (h, 1) ∈ T2. We call the inequality

(χE\Ê, χE\Ê)Tx ≥ 1

a h× 2 grid inequality.

23



If we consider in the following a complete rectangular h×2 grid graph, which is a
subgraph of a given graph G = (V,E), we always assume for the ease of notation
that the node set V is numbered such that the nodes of the grid graph have a
numbering as assumed in Definition 6.6.

Let G = (V,E) be a graph, F ⊂ E and u, v ∈ V . We call a path QF (u, v) from
u to v in G a quasi path from u to v with respect to F , if there exists an edge
e ∈ QF (u, v) such that e ∈ E \ F and QF (u, v) \ {e} ⊆ F . Then, the following
theorem holds.

Theorem 6.7 Let Ĝ = (V̂ , Ê) be a complete rectangular h × 2 grid graph with
h ≥ 3. Let J1 and J2 be the two columns of Ĝ. Let N = {T1, T2} be a net list
where T1 = {(1, 1), (h, 2)} and T2 = {(1, 2), (h, 1)}. Furthermore, let G = (V,E)
be a graph with V̂ ⊆ V, Ê ⊆ E such that [V (J1) : V (J2)] is a cut in G. Set F := Ê
and let F1, F2 ⊂ E \F , then the following holds. STP (G,N , 1I) is fulldimensional
and the inequality

(χE\(F∪F1), χE\(F∪F2))Tx ≥ 1

defines a facet of STP (G,N , 1I) if and only if F1 and F2 satisfy the following
properties (see Figure 5):
(i) For all i ∈ {1, . . . , h} (at least) one of the following conditions is fullfilled

in (V,E \ F ):
(a) There exists a quasi path QFk

((r, l), (s, l)), k, l ∈ {1, 2}, r, s ∈ {1, . . . , h}
with r ≤ i− |k − l| and s ≥ i+ 2 − |k − l|.

(b) There exists a quasi path
QFkl

((rl, l), (sl, l)), kl ∈ {1, 2}, rl, sl ∈ {1, . . . , h} with
rl ≤ i < i+ 1 ≤ sl for l = 1, 2

and a quasi path
QFk

((r, l), (s, l)), k, l ∈ {1, 2}, r, s ∈ {1, . . . , h}, r < s that satisfies:
s− r ≥ 2, if r ∈ {i− 1, i},
r �= i, if k �= l,
s �= i, if k = l.

(ii)
⋂

Q∈QQ = ∅, where Q = {Q ⊂ E \ F | there exist u, v ∈ V such that Q is a
quasi path from u to v with respect to F1 or F2 in (V,E \ F ) }.

(iii) For all u, v ∈ V (F ), u �= v there does not exist a path from u to v in (V, Fk)
for k = 1, 2.

(iv) F1 and F2 are maximal with respect to the properties (i) – (iii).

Proof. The validity of the inequality is easy to see. There obviously does not
exist a Steiner tree packing in (V (F ), F ), since all nodes of V (F ) have degree
at most three (with respect to F ) and the terminal nodes have degree two (with
respect to F ). This together with property (iii) implies that the inequality is
valid.
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Figure 5:

Note, that the underlying graphs G in Theorem 6.7 need not be complete. In the
following we give a formulation for the complete graph.

Theorem 6.8 Let G = (V,E) be the complete graph with node set V and let
E ′ ⊂ E be an edge set such that (V,E \ E ′) is a complete rectangular h× 2 grid
graph with h ≥ 3. Let N = {T1, T2} be the net list, where T1 = {(1, 1), (h, 2)} and
T2 = {(1, 2), (h, 1)}. Set F := E ′ and let F1, F2 ⊂ E \ F . Finally, set k̄ := 3 − k
for k = 1, 2. Then, the inequality

(χE\(F∪F1), χE\(F∪F2))Tx ≥ 1

defines a facet of STP (G,N , 1I) if and only if F1 and F2 satisfy the following
properties (see Figure 6):
(i) Fk ⊆ Fk := {[(i, k̄), (i+ 1, k)] | i = 1, . . . , h− 1} for k = 1, 2.
(ii) For all [(ik, k̄), (ik + 1, k)] ∈ Fk, k = 1, 2 holds i1 �= i2.
(iii) F1 and F2 are maximal with respect to (i) and (ii).

T

T

1

2

1

2

F

F

F

Figure 6:
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Proof. Let P = (S1, S2) be an arbitrary Steiner tree packing. W. l. o. g. S1

and S2 are paths. Suppose that aTχP = 0. For the same reason as in the
proof of Theorem 6.7 there does not exist a Steiner tree packing in (V, F ). This
implies that (S1 ∩ F1) ∪ (S2 ∩ F2) �= ∅. Let [(ik, k̄), (ik + 1, k)] ∈ (S1 ∩ F1) ∪
(S2 ∩ F2) such that ik is minimal. We consider the case k = 1 (the case k = 2
can be shown analogously). Obviously, Jk ⊂ Sk for k = 1, 2, where Jk :=
{[(i, k), (i + 1, k)] | i = 1, . . . , i1 − 1}. Since [(ik, k̄), (ik + 1, k)] ∈ S1 and S1

is a path, we obtain that either [(i1, 1), (i1, 2)], [(i1 + 1, 1), (i1 + 1, 2)] ∈ S1 or
[(i1, 1), (i1 + 1, 1)], [(i1, 2), (i1 + 1, 2)] ∈ S1. In the first case set W = {(i, j) |
i = 1, . . . , i1 − 1, j = 1, 2} ∪ ⋃

i∈I{[(i, 2), (i+ 1, 2)]}, where I = {i ∈ {i1, . . . , h} |
[(i, 2), (i+1, 1)] ∈ F1∩S1 and [(i′, 2), (i′+1, 1)] ∈ F1∩S1 for all i′ = i1, . . . , i−1}.
In the second case set W = {(i, j) | i = 1, . . . , i1, j = 1, 2}. Property (i) and (ii)
imply that (δ(W ) ∩ (F ∪ F2)) \ S1 = ∅. Since (1, 2) ∈ W and (h, 1) ∈ V \W , it
follows that (a2)TχS2 ≥ 1, a contradiction.

Critical Cut Inequalities

In this subsection we will describe a quite “small” class of facet-defining inequali-
ties. Nevertheless, they turn out to be very helpful in solving practical problems.

Definition 6.9 Let G = (V,E) be a graph with edge capacities ce ∈ IN, e ∈ E.
Moreover, let N = {T1, . . . , TN} be a net list. For a node set W ⊆ V we define
S(W ) := {k ∈ {1, . . . , N} | Tk ∩W �= ∅, Tk ∩ (V \W ) �= ∅}.
(a) We call a cut induced by a node set W critical for (G,N , c), if s(W ) :=

c(δ(W ))− |S(W )| ≤ 1.
(b) If V1, V2, V3 is a partition of V such that δ(V1) is a critical cut and if T1∩V1 =

∅ and T1 ∩ Vi �= ∅ for i = 2, 3, we call the inequality

x1([V2 : V3]) ≥ 1

a critical cut inequality with respect to T1. (See Figure 7.)

Theorem 6.10 Let G = (V,E) be a graph with V = {u, v, w} and let N =
{T1, . . . , TN} be a net list with T1 = {u, v}. Set Eij := {e ∈ E | e is incident to u
and v} for i, j ∈ V and Ni = {k ∈ {1, . . . , N} | i ∈ Tk} for i ∈ V . Assume that
|Euv| ≥ 2, |Nw| = N−1, |Nu|+ |Nv| = N+1, |Euw| ≥ |Nu|−1, |Evw| ≥ |Nv|−1
and |Euw|+ |Evw| = |Nu|+ |Nv| − 1. Then, the inequalilty

x1(Euv) ≥ 1

defines a facet of STP (G,N , 1I).
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Consider the partition V1,V2,V3 in Figure 7. Suppose the capacities of the edges are equal to one. Then,

δ(V1) is a critical cut. The critical cut inequality says that the net depicted by black rectangles must use

at least one of the edges of [V2:V3].

Figure 7:

Proof. Let S1 be a Steiner tree for T1 with S1 ∩ Euv = ∅. Then we know that
S1∩Euw �= ∅ and S1∩Evw �= ∅. So we obtain that |δ(w)\S1| ≤ |Nu|+ |Nv|−3 =
N−2. Since |Nw| = N−1 and 1 /∈ Nw there cannot exist Steiner trees S2, . . . , SN ,
such that P = (S1, . . . , SN) defines a Steiner tree packing. Thus, the inequality
is valid.

We now give a formulation of an inequality for an instance that is very similiar to
the one described in Theorem 6.10. We reduce as many parallel edges as possible
and require of the edge capacities the necessary conditions. But it is not possible
to dispense with parallel edges at all. See also the succeeding remark.

Theorem 6.11 Let G = (V,E) be a graph with V = {u, v, w} and E = {e1, e2,
e3, e4} where e1 = uw, e2 = vw and e3 and e4 are both connecting u and v. Let
N = {T1, . . . , TN} be a net list with T1 = {u, v}. Suppose that |Nw| = N − 1 and
|Nu|+ |Nv| = N +1, where Ni := {k ∈ {1, . . . , N} | i ∈ Tk} for i ∈ V . Moreover,
assume that ce3 + ce4 ≥ 3, if Nu \ {1} �= ∅, and ce1 ≥ |Nu| − 1, ce2 ≥ |Nv| − 1
such that ce1 + ce2 = |Nu|+ |Nv| − 1. Then, the inequality

x1
e3
+ x1

e4
≥ 1

defines a facet of STP (G,N , c).

Proof. The proof that the inequality is valid is just the same as the one of
Theorem 6.10. Let S1 be a Steiner tree for T1 with e3, e4 /∈ S1. Then, we have
S1 = {e1, e2}. So we obtain for the updated capacities c′e1 = ce1 − 1, c′e2 =
ce2 − 1, c′e3 = ce3 and c′e4 = ce4. Thus, c′(δ(w)) = c(δ(w)) − 2 = N − 2. Since
|Nw| = N − 1 and 1 /∈ Nw, there cannot exist Steiner trees S2, . . . , SN such that
P = (S1, . . . , SN) is a Steiner tree packing. So, the inequality is valid.
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Conclusions

Research in polyhedral combinatorics in the past years concentrated on easily
describable “primal” problems such as the matching, the traveling salesman, the
spanning tree or the stable set problem. Very little work has been done on “dual”
problems like the edge or node colouring or packing problems. One of the reasons
for this is certainly that the latter problems may give rise to integer programming
models with an exponential number of rows and columns, that they often com-
bine the difficulties of various subproblems and that additional subtilities creep
in by considering graph structures, capacities etc. jointly. The technicalities in-
volved require enormous mathematical machinery and seem insurmountable in
the general case.

We have encountered the Steiner tree packing problem in practice and considered
it worthwhile to engage in a study of Steiner tree packing polytopes in order to
get some experience in the investigation of packing problems from this point of
view. As can be seen from the results of this paper, all expected difficulties turned
up. The dimension of the Steiner tree packing polyhedron is hard to determine.
Thus one has to resort to a “handy” but representative special case. The dif-
ficulties of the individual Steiner tree polyhedrons are inherited by the packing
polytope. Finding rich classes of valid joint inequalities and describing them in
an understandable manner is a considerable challenge; characterizing the facet-
defining inequalities in these classes leads to tremendous technical difficulties. To
keep this paper within acceptable space limits we have given only a few complete
proofs and restricted ourselves to the presentation of a few classes of joint facets,
namely those that have been used in [GMW92]. Further classes of facet-defining
inequalities will be presesented in a forthcoming paper, see [GMW93].

The most important objective of our research project, however, was to see whether
the machinery of polyhedral combinatorics can help solve practical instances of
Steiner tree packing problems. Indeed, it can — to some extend. This topic will
be discussed in our companion paper [GMW92].
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