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Abstract

In this paper we interpret clustering as a mapping of data into a sim-
plex. If the data itself has simplex struture this mapping becomes lin-
ear. Spectral analysis is an often used tool for clustering data. We will
show that corresponding singular vectors or eigenvectors comprise simplex
structure. Therefore they lead to a cluster algorithm, which consists of
a simple linear mapping. An example for this kind of algorithms is the
Perron cluster analysis (PCCA). We have applied it in practice to iden-
tify metastable sets of molecular dynamical systems. In contrast to other
algorithms, this approach provides an a priori criterion to determine the
number of clusters. In this paper we extend the ideas to more general
problems like clustering of bipartite graphs.
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1 Introduction - Clustering as a mapping of data
into a simplex

Spectral graph partitioning. Graph partitioning with spectral methods is
a widely used concept. The papers of Froyland et al.[10, 11, 9], Kamavar et
al.[18], Ng et al.[1] and Dhillon [7] are methods for spectral graph partitioning
and bipartite graph partitioning similar to the method we present in this paper.

The basic idea of spectral graph partitioning is the classification of points,
dynamical states, or molecular configurations etc. by using eigenvectors or sin-
gular vectors of matrices derived from the data. In these methods, the vectors
are used as input data instead of the original point set. The methods described
in the papers above classify the eigenvector or singular vector data with a k-
means routine or similar algorithms. Taking a closer look at the vector data
turning up in these cluster methods one can make an astonishing observation,
which led us to a new and very simple cluster algorithm.

The observation of an astonishing structure of the data. Our starting
point for an examination of cluster algorithms were the stochastic transition
matrices T of reversible Markov processes [5] arising in molecular dynamics.
Here, clustering is used to find a hidden block structure in T .

0

0

Figure 1: Simplex structure of 72 data points in the case of 3 clusters.

To give an example, a spectral analysis of a transition matrix T turning up
from an HIV protease inhibitor dynamic simulation led us to three clusters. As
we plotted the components of the eigenvectors corresponding to the three highest
eigenvalues of T as a three dimensional point set (details are discribed later),
we found an amazing structure, see a two dimensional projection in Fig. 1. The
data points nearly span a simplex. Other examples can be found in Fig. 4 and
Fig. 5 in [18]. Especially this structure implies a very simple cluster method.

Soft concept. Often the solution of a cluster problem is understood as a
decomposition of the original discrete and finite data set Ω, n = |Ω|, into sub-
sets with similar structure. In a vector space model, Ω consists of row-vectors
X(i, :) ∈ IRm, i = 1, . . . , n 1.

1Throughout this paper, we use matrix indices in MatLab style, i.e. M(i, j) instead of Mij ,
and also the colon style, i.e. M(:, j) and M(i, :), for the columns and the rows of M .
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In fuzzy clustering [14, 13], for every cluster i = 1, . . . , s there is an n-
dimensional vector χ(:, i) ≥ 0, whose components are the grades of membership
of every data point j ∈ Ω ' {1, . . . , n} to the cluster i [20].

Since altogether every data point should be assigned to one cluster, we have

s∑
i=1

χ(:, i) = 11Ω, (1)

where 11Ω ∈ IRn is the constant vector 11Ω = (1, . . . , 1)T .The solution of an
s-cluster problem is therefore a positive stochastic (n, s)-matrix χ.

Clustering as a mapping into a simplex. On input we have an (n, m)-
matrix X, on output we have the (n, s)-matrix χ. Each data point j = 1, . . . , n,
i.e. a row of X, is therefore mapped into the s-dimensional space, i.e a row of
χ.

Figure 2: 2-Simplex with vertices (1,0,0), (0,1,0), and (0,0,1).

But not every point in IRs lies in the range of this mapping. Since χ is
positive and (1) holds, only points out of the standard simplex σs−1, spanned
by the s unit vectors of IRs are possible, e.g. see Fig. 2 for s = 3. Therefore,
fuzzy clustering can be understood as a mapping of data points into a simplex.

Clustering as a linear mapping. Things become easy, if m = s and the
original data points X(1, :), . . . , X(n, :) already lie inside a general (s−1)-simplex
σ̃s−1, as it is the case in Fig. 1. If in addition the s vertices of this simplex
X(π1, :), . . . , X(πs, :) can be found among the data points, then the row indices
π1, . . . , πs are called representative and the mapping Ω → σs−1 becomes linear,
i.e. χ = X A (see [6, 19]), with an (s, s)-transformation matrix A, where

A−1 =

 X(π1, 1) . . . X(π1, s)
...

...
X(πs, 1) . . . X(πs, s)

 . (2)

In practice, we do not know the representatives a priori, but a simple algorithm
described in section 3.1 can find them since they are vertices of a simplex-like
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data set. We only have to know, that our data set has a simplex-like structure
and that the vertices of the simplex are among the data points.

Outline of this paper. In this paper we show that special matrices turning
up from dynamical clustering and biclustering problems lead to eigenvectors
or singular vectors having nearly simplex structure. This is a new theoretical
result. The main work is done in Lemma 2.2 and equation (14) for transition
matrices and in equations (18) and (19) for adjacency matrices of bipartite
graphs.

We also present some new results on how to fix the number of clusters a
priori. The main work on this topic is done in section 2.1.3 and in section 2.2.3.

For the reason of illustration of the ideas of this paper, we wrote some non-
sophisticated software code in MatLab style in section 3.

In spectral s-partitioning methods often a smaller subset of m eigenvectors
m < s, is used as input data, e.g. m = dlog2 se in [7, 9]. In section 2.3 we show
that this may lead to a wrong classification result.

2 Special matrices and simplex structures

In this section two different matrices T and A are described. The first one is
an (n, n)-transition matrix T turning up from reversible Markov chains, e.g. for
the determination of almost invariant sets in conformational dynamics [5]. This
matrix leads to an eigenvalue problem

TX = XΛ (3)

with an (n, n)-eigenvector matrix X and a diagonal matrix Λ = diag(λ1, . . . , λn)
containing the eigenvalues λ1, . . . , λn in order along its diagonal. For a reversible
Markov chain the stochastic transition matrix T = D−1S is the product of a
positive (n, n)-diagonal weight matrix D with a nonnegative symmetric (n, n)-
matrix S. This is the so called detailed balance condition [5]. In this case the
eigenvalues and eigenvectors are real and the eigenvectors are orthogonal w.r.t.
the weighted inner product 〈x, y〉 = xT D y.

The second matrix is an (n, m)-adjacency matrix A, n > m, of a bipartite
graph, i.e. a rectangular matrix with entries 1 and 0. This matrix leads to a
singular value decomposition

AY = XΣ, AT X = Y ΣT (4)

with an orthogonal (n, n)-singular vector matrix X, an orthogonal (m,m)-
singular vector matrix Y , and a (n, m)-singuar value matrix Σ containing the
singular values σ1 ≥ . . . ≥ σm ≥ 0 in order along its diagonal. Such matrices
turn up, e.g., in search engines [15, 3] or document clustering [7, 3] as term-
document-matrices.

2.1 Stochastic transition matrix

Imagine a dynamical system in which we want to find sets of initial states that
are almost invariant with regard to the equation of motion evaluated for a certain
time span.
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Figure 3: Structure of a transition matrix in the case of s = 3 uncoupled Markov chains
after a suitable permutation of state indices.

For this purpose we decompose the space of interest into a finite set Ω of
n states. Then we sample the dynamics via computer experiments and count
the transitions between these states. From this Markov experiment we get an
(n, n)-matrix S of transitions. By dividing each row of S by its rowsum, we get
a stochastic matrix T = D−1S. Searching almost invariant sets is equivalent to
discovering a hidden block structure in T , as shown in Fig. 3.

Since in molecular dynamics the underlying Hamiltonian differential equa-
tion is reversible, the matrix S is symmetric. In the case where the matrix S
is symmetric, the Markov process is also reversible. Therefore, the stochastic
transition matrix T has a real-valued spectrum. For more details see [17].

2.1.1 Eigenvectors of a reducible transition matrix

If T (0) is the transition matrix of a Markov process having s ∈ N distinct
invariant index subsets, i.e. if it is realized by s uncoupled Markov chains, then
T (0), after suitable permutation, is a block diagonal matrix having s blocks, see
Fig. 3 for s = 3. Each of these blocks again is a stochastic matrix.

Eigenpairs of T (0). For a decomposition C1∪ . . .∪Cs = {1, . . . , n} according
to the block structure of T (0) we define the characteristic vectors 111, . . . , 11s ∈
IRn as

11i(j) =
{

1, if j ∈ Ci

0, else.

For the reducible transition matrix T (0) having s blocks we get an s-dimensional
eigenspace for the eigenvalues λ1, . . . , λs = 1 spanned by the characteristic vec-
tors 111, . . . , 11s.

This means, that if we solve the eigenvector problem for the Perron eigen-
value [16, 5] λ1 = . . . = λs = 1 of T (0) we get a basis of eigenvectors, which can
be linearly transformed into the solution 111, . . . , 11s of the cluster problem.

Perturbation. In practice we do not have reducible transition matrices with
perfect block structure. But we have slightly perturbed matrices T (ε) with a
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perturbation parameter ε and an expansion

T (ε) = T (0) + ε T (1) + O(ε2)

with a constant first order error matrix T (1). The s-fold Perron eigenvalue 1 of
T (0) degenerates into a single eigenvalue λ1 = 1 with a constant eigenvector 11Ω,
and s − 1 eigenvalues λ2, . . . , λs ≤ 1 of T (ε) near 1. This is called the Perron
cluster of eigenvalues and therefore we call the corresponding cluster algorithm
PCCA — Perron Cluster Cluster Analysis.

In this situation we are interested in almost invariant index sub-
sets, i.e. an ε-perturbation χ(:, 1), . . . , χ(:, s) ∈ IRn of the characteristic
vectors 111, . . . , 11s, such that the result χ ≥ 0 is a clustering in the sense
of equation (1).

For a detailed examination of the perturbed eigenvectors see [6] and Lemma
2.2 below. In the following we only consider perturbed transition matrices and
therefore write T instead of T (ε).

2.1.2 Simplex structure of perturbed eigenvectors

A spacial case of a perturbed transition matrix is an (n, n)-matrix T with s row
indices π1, . . . , πs and positive factors αki for k = 1, . . . , n and i = 1, . . . , s, such
that each row T (k, :) is a linear combination of the s representative rows, i.e.

T (k, :) =
s∑

i=1

αki T (πi, :).

The matrix T is stochastic, i.e. the sum of each row is 1. Therefore we get
s∑

i=1

αki =
s∑

i=1

αki · 1

=
s∑

i=1

αki

n∑
j=1

T (πi, j)

=
n∑

j=1

s∑
i=1

αki T (πi, j)

=
n∑

j=1

T (k, j)

= 1. (5)

The sum of the linear combination factors is 1, i.e. they are convex combination
factors.

The main idea of this paper is that the convex combination of representative
rows of T leads to the same convex combination of the components of the
eigenvectors. For k, l = 1, . . . n,with λl 6= 0, and convex combination factors
αki , i = 1, . . . , s this can be shown by

X(k, l) = λ−1
l T (k, :)X(: , l)

= λ−1
l (

s∑
i=1

αki T (πi, :))X(: , l)

= λ−1
l

s∑
i=1

αki T (πi, :)X(: , l)

=
s∑

i=1

αki X(πi, l).

(6)
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Equation (6) shows that the data points X(1, ind), . . . , X(n, ind) lie inside a
simplex spanned by the vertices X(π1, ind), . . . , X(πs, ind), where “ind” is the
set of indices l with λl 6= 0.

In general, the rows of T are not convex combinations of some representative
ones. In the following we extend equation (6) to more general matrices (see
equation (13)).

ps-transition matrices. Conformation dynamics of biomolecules is the ap-
plication field in which we use Perron Cluster Analysis.

The dynamics of a molecule is driven by a potential energy landscape.
Molecule geometries with low potential energy have a vanishing propability for
a transition into another conformation. These states are called pure states in
the transition matrix. We now define a pure state transition matrix. A special
structure which can often be found in conformation dynamics.

Definition 2.1 (ps-transition matrix) An (n, n)-transition matrix is called
a pure state transition matrix (ps-transition matrix), if there exists a disjoint
decomposition C1 ∪ . . . ∪ Cs = {1, . . . , n} of the index set such that there are s
row indices π1, . . . , πs ∈ {1, . . . , n}, such that for all i, j = 1, . . . , s

11j T (πi, :) = δij .

π1, . . . , πs are called pure states.

Lemma 2.2 Each row T (k, :) of a ps-transition matrix T can be written as a
convex combination of s representative rows with the exception of an additive
error vector X⊥

k ∈ IRn which is first order orthogonal w.r.t. the space spanned
by the eigenvectors X(:, 1), . . . , X(:, s), i.e. there exist α and π such that

T (k, :) = X⊥
k +

s∑
i=1

αki T (πi, :) (7)

with
X⊥

k X(:, l) = O(ε2), l = 1, . . . , s.

Proof: Since T is a ps-transition matrix there exist representative rows π1, . . . ,
πs of T with

11j T (πi, :) = δij (8)

as in Definition 2.1, where C1 ∪ . . .∪Cs is a decomposition of the index set and
defines the unperturbed case. Further, let the linear combination factors αki

equal the probability of a transition from state k into the index subset Ci, i.e.

αki = 11i T (k, :). (9)

Since these factors are positive and they meet the partition-of-one property, i.e.

s∑
i=1

αki = 1,

they are convex combination factors.
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It is left to show that with this choice of α and π the error vectors in (7) meet
the first order orthogonality. Equations (8) and (9) lead to the orthogonality
condition

X⊥
k 11j = (T (k, :)−

s∑
i=1

αki T (πi, :)) 11j = 0. (10)

Since C1 ∪ . . .∪Cs is the decomposition of the index set in the unperturbed
case, a perturbation result from Deuflhard et al. [6] (Lemma 1.1) is

X(:, l)−
s∑

j=1

bjl 11j = O(ε2), l = 1, . . . , s (11)

with suitable bjl ∈ IR, j, l = 1, . . . , s.
From equations (11) and (10) we get the first error orthogonality result

X⊥
k X(:, l) = O(ε2), l = 1, . . . , s. (12)

This completes the proof. �

Simplex structure. With this modification, equation (6) for l = 1, . . . , s and
k = 1, . . . , n becomes

X(k, l) = λ−1
l T (k, :)X(: , l)

= λ−1
l (X⊥

k +
s∑

i=1

αki T (πi, :))X(: , l)

= λ−1
l

s∑
i=1

αki T (πi, :)X(: , l) + O(ε2)

=
s∑

i=1

αki X(πi, l) + O(ε2)

(13)

i.e. the data points X(1, 1:s), . . . , X(n, 1:s) nearly span a simplex with the
vertices X(π1, 1:s), . . . , X(πs, 1:s).

Figure 4: Unlikely simplex structure of data for s = 3, because equation (14) contradicts
this situation.
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Better than O(ε2). In [6] Deuflhard et al. have shown by equation (11), that
the eigenvectors nearly span a simplex σ̃s−1, and the corresponding data points
X(1, 1 : s), . . . , X(n, 1 : s) lie in its vertices with a deviation O(ε2). This could
mean, that the data points are distributed around the vertices, as in Fig. 4.
In that case a k-means method would be preferable to cluster the data points.
However, equation (10) can be used to show that in molecular dynamics the
deviation of the data points from the simplex facets is much smaller. Therefore
Fig. 1 for s = 3 points up the true picture, which favours the soft concept
described in section 1.

This can be shown as follows. If we define the error vector al ∈ IRn via

al := X(:, l)−
s∑

j=1

bjl 11j = O(ε2), l = 1, . . . , s,

then ‖al‖∞ = O(ε2) is the maximal deviation of the data points from the vertices
of σ̃s−1. For an irreducible stochastic matrix T it is true that ‖T (k, :) al‖∞ <
‖al‖∞, for any k = 1, . . . , n. From equation (10) we conclude

‖X⊥
k X(:, l)‖∞ = ‖X⊥

k al‖∞ < ‖al‖∞,

which leads to

‖X(k, :)−
s∑

i=1

αki X(πi, :)‖∞ < ‖al‖∞ = O(ε2)

for the deviation of data from the simplex facets in equation (13). Since the
deviation from constant level pattern of the eigenvectors of T is maximal for
“transition states”, and transition states have high fluctuation in molecular
dynamics (Bolzmann distribution), small values of T (k, i) coincide with high
values of al(i). Therefore we have ‖T (k, :) al‖∞ � ‖al‖∞ in that case, i.e.

‖X(k, :)−
s∑

i=1

αki X(πi, :)‖∞ � ‖al‖∞ = O(ε2). (14)

Cluster algorithm. We do not know the representative rows π1, . . . , πs of a
transition matrix T a priori. And we do not know α. But from Lemma 2.2
and especially from equation (14) we know that the corresponding data points
X(π1, 1:s), . . . , X(πs, 1:s) of the eigenvector matrix X are nearly the vertices of
a simplex including all other data points, if we assume T to be a ps-transition
matrix.

As we have seen in section 1 above, this is enough information, because we
can apply an algorithm that finds the vertices of a simplex-like data set and
then compute the solution χ of the cluster problem via χ = XA, see section 3.1
and equation (2).

χ may have negative elements, because the simplex structure is a first order
result. Therefore the indicator

−minχ ≥ 0 (15)

can be used to get the magnitude of deviation O(ε2). And perhaps as an a pos-
teriori criterion for the quality of the clustering [20, 19]. In addition, Theorem
2.1 in [6] describes the correspondence between uniqueness of the clustering and
minχ = 0.
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2.1.3 Eigenvalues of T and the number of clusters

To fix the number of almost invariant sets a priori, we could e.g. count the
number of eigenvalues of T which are greater than a preset lower bound MIN-
VALUE.

Note, that there are other heuristics to determine the number of clusters [4].
Since the detailed balance condition holds for T , we can write T = D−1S

with a diagonal (n, n)-matrix D and a symmetric (n, n)-matrix S. The following
lemma may be useful for a presetting of MINVALUE.

Lemma 2.3 For a stochastic transition matrix T = D−1S of a reversible Markov
chain we have λs(T ) ≥ 1−ρ(T −T ), where T = D−1S̄ is a stochastic, reducible
matrix having s blocks with a corresponding index set decomposition C1, . . . , Cs.
S̄ is defined as follows

S̄(i, j) =


S(i, j) , i 6= j

S(i, i) +
s∑

k=1;i 6∈Ck

∑
l∈Ck

S(i, l) , i = j.

Proof. By construction, T is detailed balanced, stochastic and has s blocks,
i.e. λs(T ) = 1. From [19] equation (1) we know that

D−0.5SD−0.5 and D−0.5S̄D−0.5

are symmetric matrices with the same eigenvalues as T and T , respectively.
From [12] Corollary 8.1.6 we get

1− λs(T ) = |λs(T )− λs(T )|

= |λs(D−0.5SD−0.5)− λs(D−0.5S̄D−0.5)|

≤ ‖D−0.5SD−0.5 −D−0.5S̄D−0.5‖2

= ‖D−0.5(S − S̄)D−0.5‖2

= max{|λ1(D−0.5(S − S̄)D−0.5)|, |λn(D−0.5(S − S̄)D−0.5)|}

= max{|λ1(D−1(S − S̄))|, |λn(D−1(S − S̄))|}

= max{|λ1(T − T )|, |λn(T − T )|}

= ρ(T − T ).

This completes the proof. �

Corollary 2.4 A direct consequence of Lemma 2.3 is

λs(T ) ≥ 1− ‖T − T‖

for any submultiplicative matrix norm ‖ · ‖.

Example 2.5 If we want the error ε = ‖T − T‖ to be small, then a necessary
condition is λs(T ) ≥ 1− ε.
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2.2 Adjacency matrix of a bipartite graph

We now consider the clustering of bipartite graphs. An undirected bipartite
graph G = (V1, V2, E) consists of two sets of vertices V1 = {1, . . . ,m}, V2 =
{1, . . . , n} and a set of edges E ⊆ V1 × V2 only connecting points of V1 with
points of V2. The corresponding (n, m)-adjacency matrix A is rectangular.

In this case, clustering or bi-clustering means, that we search for subgraphs
G′ = (V ′

1 , V ′
2 , E′) of G with V ′

1 ⊂ V1, V ′
2 ⊂ V2 and E′ = E∩ (V ′

1 ×V ′
2), such that

these graphs G′ are nearly bi-cliques.
In bi-cliques every vertex of V ′

1 is conected with every vertex of V ′
2 .

2.2.1 Reducible adjacency matrix

The ideal case is a bipartite graph with s disjoint bi-cliques. In this case the
adjacency matrix has got s distinct rectangular blocks where each element of
these blocks is 1 and the other elements are 0. For example s = 3 and

A =



1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 1 1 0
0 0 0 1 1 0
0 0 0 0 0 1


.

Obviously we have rank(A) = s. In this case the singular value decomposi-
tion (SVD) of A, see eq. (4), has the following property

A = X(:, 1 : s)Σ(1 : s, 1 : s)Y (:, 1 : s)T
,

because we compute the singular values σi = 0 for i > s, see [15] pp. 53-57.
This means, that the whole information for A is contained is the first s singular
vectors.

In particular, the matrix Ak computed from the first k singular vectors and
the (k, k)-matrix Σk having the highest singular values on its diagonal is the
best rank-k approximation of A, i.e.

‖A−Ak‖F = min
rank(B)=k

‖A−B‖F =
√

σ2
k+1 + . . . + σ2

m (16)

for the Frobenius norm ‖ · ‖F , this follows from [15] (4.7).

2.2.2 Adjacency matrix with overlapping bi-cliques

Linear combination of representative rows. In this section we consider
adjacency matrices having s blocks and rank(A) = s, but the blocks in A may
overlap, see example 2.6 and Fig. 5. In that case some row or column indices
correspond to more then one bi-clique. If we take an arbitrary row index k then
there exist representative rows π11, . . . , π1s, such that

A(k, :) =
s∑

i=1

αki A(π1i, :), (17)
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with αik = 1 whenever the row k is a member of the bi-clique i and αik = 0
whenever k does not belong to bi-clique i. An analog equation can be found for
the columns of A.

Figure 5: A bipartite graph with “overlapping” bi-cliques.

Simplex structure. The factors α in equation (17) are not convex combi-
nation factors. But if we reweight the rows of A with a diagonal (n, n)-matrix
such that A1 = D−1

1 A is a stochastic matrix, then a short calculation as in
equation (5) shows, that the rows of A1 are convex combinations of the rep-
resentative ones. A similar approach is used in [7]. However, in [7] Dhillon
does not make use of transforming the simplex structure of the matrix A1 to its
singular vectors.

As we have shown, the rows of A1 are convex combinations

A1(k, :) =
s∑

i=1

α
(1)
ki A1(π1i, :)

of some representative ones with the row indices π11, . . . , π1s. For the singular
vector matrices X1 and Y1 of A1 according to equation (4) and the singular
values σ11, . . . , σ1s 6= 0 we get

X1(k, l) = σ−1
1l A1(k, :)Y1(: , l)

= σ−1
1l (

s∑
i=1

α
(1)
ki A1(π1i, :))Y1(: , l)

= σ−1
1l

s∑
i=1

α
(1)
ki A1(π1i, :)Y1(: , l)

=
s∑

i=1

α
(1)
ki X1(π1i, l).

(18)

Since α
(1)
ij are convex combination factors, the data points X1(1, 1:s), . . . ,

X1(n, 1:s) lie inside a simplex spanned by the vertices X1(π11, 1:s), . . . ,
X1(π1s, 1:s).

With an analog argument we reweight the columns of A such that AT
2 =

D2A
T is a stochastic matrix. The columns of A2 are now convex combinations

A2(: , k) =
s∑

i=1

α
(2)
ki A2(: ,π2i)

of some representative ones with the column indices π21, . . . , π2s. For the singu-
lar vector matrices Y2 and X2 of A2 according to equation (4) and the singular
values σ21, . . . , σ2s 6= 0 we get

12



Y2(k, l) = σ−1
2l A2(: , k)T

X2(: , l)

= σ−1
2l (

s∑
i=1

α
(2)
ki A2(: ,π2i)

T ) X2(: , l)

= σ−1
2l

s∑
i=1

α
(2)
ki A2(: ,π2i)

T
X2(: , l)

=
s∑

i=1

α
(2)
ki Y2(π2i, l).

(19)

The data points Y2(1, 1:s), . . . , Y2(n, 1:s) lie inside a simplex spanned by the
vertices Y2(π21, 1:s), . . . , Y2(π1s, 1:s).

Cluster algorithm. In both cases (18) and (19) we get a simplex structure
of the corresponding singular vectors. We can compute the indices of the repre-
sentative rows and columns via a routine searching the vertices of this simplex,
see section 3.1. But in contrast to equation (9) the convex combination factors
α

(i)
kl in the above equations have no stochastic interpretation anymore.

Therefore we use X1 and Y2 only to compute the indices of the representa-
tives and then apply the linear transformations χ(1) = XA1 and χ(2) = YA2 to
the singular vectors of A with

A−1
1 =

 X(π11, 1) . . . X(π11, s)
...

...
X(π1s, 1) . . . X(π1s, s)

 (20)

and

A−1
2 =

 Y (π21, 1) . . . Y (π21, s)
...

...
Y (π2s, 1) . . . Y (π2s, s)

 . (21)

According to equation (17) and the fact that linear combinations of rows
and columns of A transfer to its singular vectors X and Y , we get the solution
χ(1)(i, j) = 1 if the row index i belongs to bi-clique j, else χ(1)(i, j) = 0. And
analog, χ(2)(i, j) = 1 if the column index i belongs to bi-clique j, else χ(2)(i, j) =
0.

Example 2.6 As an example we use a (6, 5)-matrix A with perfect and over-
lapping block structure having 2 bi-cliques

A =


1 1 1 0 0
1 1 1 0 0
1 1 1 1 1
0 0 0 1 1
0 0 0 1 1
0 0 0 1 1


This matrix leads to the following row and column normalization:

A1 =


1/3 1/3 1/3 0 0
1/3 1/3 1/3 0 0
1/5 1/5 1/5 1/5 1/5
0 0 0 1/2 1/2
0 0 0 1/2 1/2
0 0 0 1/2 1/2

 , A2 =


1/3 1/3 1/3 0 0
1/3 1/3 1/3 0 0
1/3 1/3 1/3 1/4 1/4
0 0 0 1/4 1/4
0 0 0 1/4 1/4
0 0 0 1/4 1/4

 .
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The singular value decomposition of A gives 2 positive singular values σ1 =
3.3166, σ2 = 2.4495. Therefore s = 2. The singular vectors used for the index
search algorithm are

X1 =


0.0553 0.6511
0.0553 0.6511
0.2557 0.3519
0.5563 −0.0970
0.5563 −0.0970
0.5563 −0.0970

 , Y2 =


−0.5438 −0.1938
−0.5438 −0.1938
−0.5438 −0.1938
−0.2374 0.6661
−0.2374 0.6661

 .

If we interpret the rows of X1 and Y2 as points in the 2-dimensional space,
then Y2 only consists of two points. One can chose e.g π21 = 1, π22 = 4. X1

consists of 3 points, where the point corresponding to the third row is a convex
combination of the other two points e.g. X1(3, :) = 0.6 ∗X1(1, :)+ 0.4 ∗X1(4, :),
i.e. π11 = 1, π12 = 4.

With the equations (20) and (21) and the singular value decomposition of A
one computes the matrices χ(1) and χ(2) as

χ(1) =


1 0
1 0
1 1
0 1
0 1
0 1

 , χ(2) =


1 0
1 0
1 0
0 1
0 1

 ,

where χ(1) gives the row clustering and χ(2) the column clustering.

Incomplete blocks. In practice, the adjacency matrix A has not this perfect
structure, some edges of the bipartite graph are missing and some may be in-
serted between different clusters. The result matrices χ(1) and χ(2) of the cluster
algorithm are perturbed and may have elements χ(i)(l, j) > 1. Since this does
not make sense, we normalize the rows of χ(i) such that the maximum of each
row is 1.

Again as in equation (15), the minimal element minχ(i) ≤ 0 can be used as
an indicator for the deviation of the data from simplex structure and therefore
as an a posteriori indicator for the quality of the solution.

Latent Semantic Indexing. A very similar method compared with the above
algorithm is the Latent Semantic Indexing (LSI) routine using SVD, see e.g.
Berry [2] pp. 7-15 or [3] pp. 103-122. Therein, also a set of representative in-
dices for rows and columns of A is computed and bi-clustering is done according
to the singular vector structure. But the LSI algorithm does not use the simplex
structure of X1 and Y2. Whereas our report focuses on this special structure.

2.2.3 Singular values of A and the number of clusters

How can we compute the number of clusters a priori? A simple method is to
count the number of singular values of A which are above a preset lower bound
MINVALUE. The new question is, how can we fix MINVALUE a priori?

The following lemmas can be used for a heuristical determination of MIN-
VALUE.
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Lemma 2.7 Let Ã be an (n, m)-adjacency matrix with s different complete
blocks and d ∈ N. Let the (n, m)-adjacency matrix A differ from Ã at most
in d elements per row and column. Then we have σs+1 ≤ d for the singular
values of A.

Proof: From the construction of Ã we get rank(Ã) = s. Since A differs from
Ã in at most d elements per row and column, for each row of matrix E =
(A− Ã)T (A− Ã) the sum of the absolute values of the row elements is less than
or equal to d2. From a Gershgorin estimate of eigenvalues of E the spectral
norm of the difference is therefore ‖A − Ã‖2 ≤ d. For real (n, m)-matrices B,
we further get

d ≥ ‖A− Ã‖2 ≥ min
rank(B)=s

‖A−B‖2 = σs+1,

where the last equality is shown in [12](Theorem 2.5.3). This completes the
proof. �

Lemma 2.8 Let again Ã be an (n, m)-adjacency matrix with s different com-
plete blocks. Let the (n′,m′)-matrix Ã′ be constructed from Ã by eleminating all
rows and columns, where the blocks in Ã overlap. Then

σs(Ã) ≥
√

cminrmin,

where cmin and rmin are the column size resp. row size of the minimal block in
Ã′. Furthermore, let d ∈ N and let the (n, m)-adjacency matrix A differ from
Ã in at most d elements per row and column. Then

σs(A) ≥
√

cminrmin − d.

Proof: It is known, that adding columns to Ã may only increase the singular
value σs [12] (Corollary 8.6.3). Therefore eleminating columns may only de-
crease σs. Since the transpose of Ã has the same singular values, there is an
analog argument for the rows, i.e. the singular value σs(Ã′) is not higher than
that one of Ã.

Let S′ ⊂ IRm′
and 111, . . . , 11s ∈ IRm′

be the (orthogonal) characteristic
vectors of the column indices of the blocks 1, . . . , s in Ã′. For computation of
σs we can use the fact [12] (Theorem 8.6.1) that

σs(Ã) = max
dim(S)=s

min
0 6=x∈S

‖Ãx‖2

‖x‖2
,

where S is a subspace of IRm. We get the following estimate

σs(Ã) ≥ σs(Ã′)

= max
dim(S′)=s

min
0 6=x∈S′

‖Ã′x‖2

‖x‖2

≥ min
0 6=x∈span(111,...,11s)

‖Ã′x‖2

‖x‖2
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= min
θ1,...,θs∈IR

√√√√√√√
s∑

i=1

θiric2
i

s∑
i=1

θici

=
√

cminrmin,

where ci and ri is the column size resp. row size of block i in Ã′. The second
inequality of the lemma can be shown as follows. From [12] (Corollary 8.6.2)
we know that

|σs(A)− σs(Ã)| ≤ ‖A− Ã‖2

and from the proof of Lemma 2.7 that ‖A− Ã‖2 ≤ d. �
These two lemmas have shown, that we can choose e.g. MINVALUE= d

for the computation of the number of biclusters, if the expected number d of
maximal deviation from perfect block structure has an upper bound d < 0.5 ∗√

cminrmin.

Example 2.9 If we assume, that A has non-overlapping blocks with at least size
3 × 2 and that A differs from perfect block structure only in 1 element per row
and column (like in Example 3.1), then 1 ≤MINVALUE<

√
6− 1 are possible

presettings.

Another possibility to compute the number of clusters with the Frobenius
norm instead of the 2-norm can be derived from equation (16).

2.3 Less input vectors lead to a wrong data classification

In spectral k-partitioning methods often a smaller number of eigenvectors or
singular vectors, s < k, is used as input data, e.g. s = dlog2 ke in [7, 9]. If the
simplex-like data is well separated as in Fig. 4 then a projection of the point set
into a low dimensional subspace may be successful. But by means of a counter-
example we show that the projection into lower subspaces may cause failures in
classification.

E.g. with transition matrices in molecular dynamics we do not get data
spread around the vertices of a simplex. We have “full” simplices, see Fig. 1.
A projection of this figure into a one-dimensional subspace conceils the differ-
ence between transition states (A ↔ B) and states corresponding to another
representative (C), see Fig. 6.

That this situation is the rule and not an exception can be seen by equa-
tion (9), because therein the convex combination factors determining the simplex
structure are equal to certain transition probabilities. Since, in general, transi-
tion states occur in molecular dynamics, there are also points at the facets of
the corresponding simplex.

Therefore especially successive algorithms working only on the eigenvector
corresponding to the 2nd largest eigenvalue may fail. A famous algorithm of
this type is the Fiedler Cut for the Laplacian of a graph, see e.g. [8].
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?

A

C

B

Figure 6: Projection leads to a wrong data classification. No difference between transition
states and representative states.

3 Cluster algorithms

3.1 Search routine for the vertices of a simplex

For a detailed description of this algorithm see [6]. The input of this algorithm
is an eigenvector or a singular vector matrix, and the number of vertices that
should be produced. The output is a vector of the indices of the vertices. All
algorithms are written in MatLab style.

function [ind]=indsearch(Evs, NoOfClus)

C=Evs(:, 1:NoOfClus);

OrthoSys=C;

maxdist=0.0;

ind=zeros(NoOfClus,1);

% First vertex having maximal norm

for i=1:size(Evs,1)

if norm(C(i,:)) > maxdist

maxdist = norm(C(i,:));

ind(1)=i;

end;

end;

for i=1:size(Evs,1)

OrthoSys(i,:)=OrthoSys(i,:)-C(ind(1),:);

end;

% Further vertices via Gram-Schmidt orthogonalization

for k = 2:NoOfClus

maxdist=0.0;

temp=OrthoSys(ind(k-1),:);

for i=1:size(Evs,1)

OrthoSys(i,:)=OrthoSys(i,:)-(temp*transpose(OrthoSys(i,:)))*temp;

distt=norm(OrthoSys(i,:));

if distt > maxdist

maxdist = distt;

ind(k)=i;

end;

end;

OrthoSys=OrthoSys./norm(OrthoSys(ind(k),:));

end;
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3.2 Almost invariant sets and biclustering

For a better understanding we present two simple cluster algorithms for the
above problems: finding almost invariant sets, and biclustering.

In both algorithms the number of clusters may be unknown a priori. A
suggestion for determining the number of clusters is to count the eigenvalues or
singular values which are above a preset lower bound MINVALUE.

There are more sofisticated methods [6, 4] to identify the number of clusters.
Furthermore, for conformation analysis there has to be a post-processing routine
to compute a clustering χ with only positive entries [6], which leads to an
optimization problem.

The presented algorithms are simple to implement and gives the main idea
for clustering as a linear transformation of eigenvectors or singular vectors.

3.2.1 Almost invariant sets

The input parameters of the almostinvar algorithm are the transition matrix of
a reversible Markov chain and, optionally, the number of clusters. The outputs
are the matrix χ and a vector of the s highest eigenvalues. If you want to find
out if the cluster method works well, the smallest entry of χ should be near 0
[19, 20].

function [Chi, Lambda]=almostinvar(matrix,NoOfClus)

% solve the eigenvalue problem

% sort the eigenvectors (NoOfClus may be unknown)

if nargin == 1

[X Lambda]=eig(eye(size(matrix,1))-matrix);

[Lambda sind]=sort(diag(Lambda)); Lambda=1-Lambda;

X=X(:,sind);

else

[X Lambda]=eigs(matrix+eye(size(matrix,1)),NoOfClus);

[Lambda sind]=sort(diag(-Lambda)); Lambda=-Lambda-1;

X=X(:,sind);

end

% determine the number of clusters

if nargin==1

NoOfClus=0;

for i=1:size(Lambda,1)

if Lambda(i) > MINVALUE

NoOfClus = NoOfClus +1;

end;

end;

X=X(:,1:NoOfClus);

Lambda=Lambda(1:NoOfClus);

end;

% linear transformation of eigenvectors

ind = indsearch(X, NoOfClus);

Chi=X*inv(X(ind,:));

3.2.2 Clustering of bipartite graphs

The input parameters of the bipartclus algorithm are the adjacency matrix of
a bipartite graph and, optionally, the number of clusters. The output are the
matrices χ(1) and χ(2) and a vector of the s highest singular values.
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function [Chi1, Chi2, S] = bipartclus(matrix,NoOfClus)

% singular value decomposition of matrix

% (number of clusters may be unknown)

if nargin==1

S=svd(matrix);

else

[X S Y]= svds(matrix,NoOfClus);

end;

% determination of NoOfClus

if nargin==1

NoOfClus=0;

for i=1:size(S,1)

if S(i) > MINVALUE

NoOfClus = NoOfClus +1;

end;

end;

[X S Y]=svds(matrix, NoOfClus);

end;

S = diag(S);

% special matrices for index searching routine

matrixL = matrix*inv(diag(sum(matrix)));

matrixR = inv(diag(sum(transpose(matrix))))*matrix;

[XL SL YL]=svds(matrixL, NoOfClus);

[XR SR XR]=svds(matrixR, NoOfClus);

% clustering is a linear transformation

% followed by a special normalization

ind = indsearch(XR,NoOfClus);

X = X(:,1:NoOfClus);

Chi1 = X * inv(X(ind,:));

Chi1 = inv(diag(max(transpose(Chi1))))*Chi1;

ind = indsearch(YL,NoOfClus);

Y = Y(:,1:NoOfClus);

Chi2 = Y * inv(Y(ind,:));

Chi2 = inv(diag(max(transpose(Chi2))))*Chi2;

Example 3.1 We present an example for a biclustering of a (12, 9)-adjacency
matrix A with the bipartclus algorithm from above and MINVALUE = 1.0.

>> A

A =

1 0 1 1 0 1 1 0 1

0 1 0 0 1 0 0 1 0

1 0 0 1 0 1 0 0 0

0 0 1 0 0 0 0 0 1

0 0 1 0 0 0 1 0 1

0 1 1 0 1 0 1 1 1

1 0 0 1 0 0 0 0 0

0 0 1 0 0 0 1 0 1

1 0 0 1 0 1 0 0 0

1 0 0 1 0 1 0 0 0

0 0 1 0 0 0 1 0 0

0 1 0 0 1 0 0 1 0

>> [Chi1,Chi2]=bipartclus(A)

Chi1 =

0.0031 1.0000 0.9666
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1.0000 0.0000 -0.0000

-0.0029 0.0124 1.0000

0 1.0000 0.0000

0.0060 1.0000 0.0057

0.6901 1.0000 0.0057

-0.0000 -0.0000 1.0000

0.0060 1.0000 0.0057

-0.0029 0.0124 1.0000

-0.0029 0.0124 1.0000

0.0000 1.0000 0.0000

1.0000 -0.0000 0.0000

Chi2 =

1.0000 0.0134 -0.0380

-0.0000 1.0000 0.0000

-0.0366 -0.0492 1.0000

1.0000 0.0134 -0.0380

-0.0000 1.0000 0.0000

1.0000 0.0000 0.0000

0.0000 -0.0000 1.0000

-0.0000 1.0000 0

-0.0000 0 1.0000

The result is s = 3. χ(1) and χ(2) lead to a clustering of row and column indices, the per-
mutation of indices in A according to this clustering shows the three overlapping, incomplete
blocks in A.

>> ind1=[2,12, 6,4,5,8,11,1, 3,7,9,10]; ind2=[1,4,6, 2,5,8, 3,7,9];

>> A(ind1, ind2)

ans =

0 0 0 1 1 1 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 1 1 1 1 1 1

0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 1 1 0

1 1 1 0 0 0 1 1 1

1 1 1 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0

4 Conclusion

In this paper we described a spectral graph partitioning method for dynamical
cluster problems and for bipartite graphs. Despite the fact that neither spectral
clustering nor the “soft concept”, i.e. fuzzy clustering, are new, there are several
new constributions of this paper:

• First, we proved that the Perron eigenvector data turning up in molecular
dynamics really has simplex structure, which had not been shown in our
last papers [20, 19, 6].
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• Second, we have shown that the idea of using a simplex structure in cluster
algorithms can be extended to adjacency matrices of bipartite graphs,
which leads to routines that are easy to implement, because clustering
becomes a linear mapping.

• Third, we have shown that the heuristics of using less singular or eigenvec-
tors than the number of clusters in spectral graph partitioning may lead
to wrong data classification.

We have given some simple examples for the presented cluster algorithms.
However, it is left to show, that these routines work well for larger problems,
too. The algorithms have proved to be suitable in conformational dynamics and
analysis [4]. Here, they give additional information about transition states of
the examined biomolecules.
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