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Abstract

The paper extends affine conjugate Newton methods from convex to
nonconvex minimization, with particular emphasis on PDE problems orig-
inating from compressible hyperelasticity. Based on well-known schemes
from finite dimensional nonlinear optimization, three different algorith-
mic variants are worked out in a function space setting, which permits an
adaptive multilevel finite element implementation. These algorithms are
tested on two well-known 3D test problems and a real-life example from
surgical operation planning.

MSC 2000: 49M15, 65K10, 74B20, 74G65
Keywords: affine conjugate Newton methods, nonconvex minimization, non-
linear elastomechanics, cranio-maxillofacial surgery

1 Introduction

It is well known, that the equations of compressible linear elastomechanics may
lead to unphysical results in the case of large deformations. In particular, re-
gions of local self-penetration are quite common in soft tissue predictions relying
on linear elastomechanics. Therefore, realistic models of large stress deforma-
tions will require both geometric and material nonlinearity. However, both
sources of nonlinearity necessarily lead to nonconvex stored energy functions
(see, e.g., Ciarlet [2]). Hence, solving the equations of nonlinear elasticity
means minimizing a nonconvex variational functional. In the recently published
monograph [5], adaptive affine conjugate Newton methods for convex optimiza-
tion problems have been elaborated. In the present paper, that paradigm is
extended to the nonconvex case.

In Section 2, we introduce three approaches: a Newton-like method (N-
lin), a Newton-Truncated-CG method (N-TCG), and two versions of a Newton-
Lanczos type method (N-Lanczos A or B). For these approaches, Section 3
presents a common theoretical framework based on some affine conjugate theory,
which, in Section 4, is specified to the three approaches. Finally, in Section 5,
numerical results for two notorious test problems and a complex real-life problem
arising from cranio-maxillofacial surgery are included.

†Supported by the DFG Research Center Matheon ”Mathematics for key technologies”
in Berlin.
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2 Three approaches to non-convex optimization

We consider the minimization problem

x = arg min f(ξ)

with sufficiently smooth but in general nonconvex functional f . A necessary
condition for x to be an isolated local minimizer is

F (x) := f ′(x) = 0 and F ′(x) := f ′′(x) positive definite.

An example of such a problem, to be used in Section 5, is the minimization of
stored energy in finite strain hyperelasticity, where f may be given, e.g., by an
Ogden-type material as

f(u) = a trE + b(trE)2 + c trE2 + dΓ(det(I +∇u)). (1)

The classical quadratic stored energy function of the St. Venant-Kirchhoff ma-
terial law obtained by setting a = d = 0 is convex. With large strains, however,
it often leads to unphysical solutions with local interpenetration. As worked
out in [2], any hyperelastic material law that prevents local interpenetration is
necessarily associated with a nonconvex stored energy function.

In finite-dimensional nonlinear programming, nonconvex optimization has a
long tradition that has led to a vast amount of available methods [3, 4, 13].
However, the infinite dimensional PDE setting in the focus here immediately
rules out several approaches which are limited to problems of low to medium
size dimension.

In convex unconstrained optimization, Newton’s method

F ′(xk)δxk = −F (xk), xk+1 = xk + λδxk, λ > 0 (2)

applied to the gradient F (x) = f ′(x) of a strictly convex functional f : X → R
can be used to obtain the solution. Due to F ′(xk) being positive definite, δxk

is always a descent direction. Within an adaptive affine conjugate algorithm [5,
6, 7] the step size λ for the Newton step is chosen such as to minimize an upper
bound of f on the one-dimensional subspace

δXk = span{δxk}.

This basic idea can be extended to the nonconvex case as well, when F ′(xk)
may be indefinite or even singular. In this case, the Newton direction, even if it
exists, need no longer be a descent direction. In view of (1), however, we have
a natural decomposition

F ′(xk) = M + N(xk),

where M = F ′(0) represents the linear elastomechanics part and

N(xk) = O(‖xk‖) for ‖xk‖ → 0

comprises the nonlinearity. Hence, M induces a convenient energy norm.
For actual computation, the infinite dimensional problem has to be dis-

cretized. In order to preserve as much of the original problem’s structure as
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possible, we aim at adaptive multilevel discretizations on a sequence of grids.
The Newton-type step is then necessarily chosen from the finite dimensional
discretization. In this context, the question of accuracy matching has to be ad-
dressed, that is, how to integrate convergence of the Newton-type method and
mesh refinement consistently.

The above decomposition inspires three Newton-type algorithms, arranged
in increasing order of computational complexity per step. Of course, their rela-
tive overall efficiency will additionally depend on their comparative number of
required iterations.

Newton-like method (N-lin). In this approach we drop the nonlinear con-
tribution N(xk) and simply select the positive definite operator M of linear
elastomechanics to produce a descent direction

Mδxk = −F (xk), xk+1 = xk + λδxk. (3)

Again, the step length λ can be chosen adaptively by minimizing an upper
bound of f on the one-dimensional subspace

δXk = span{δxk}.

Only the constant stiffness matrix M has to be assembled, which is significantly
sparser than N(xk). A similar approach has been suggested by Glowinski
and Le Tallec [10, 12] in the context of augmented Lagrangian methods for
incompressible nonlinear elastomechanics. The nonlinearity N(xk) is only re-
quired for few directional derivatives that arise in the adaptive selection of step
sizes. The expected convergence rate will typically be linear.

We explicitly want to point out that M = F ′(0) has the same affine conjugate
transformation behavior as F ′(x).

Newton-Truncated-CG (N-TCG). In this approach we use the exact sec-
ond order information M+N(xk) and try to cope with its possible indefiniteness
directly. Recall that in convex optimization any PCG method will be a candi-
date of choice within an inexact Newton method; in this case, even arbitrarily
poor Galerkin approximations give rise to functional descent. In nonconvex op-
timization, however, naive application of such an approach will fail as soon as
it encounters a direction pi of negative curvature at the iterate δxi

k. The idea
of using a PCG method nevertheless for nonconvex minimization problems and
truncating the iteration in a suitable way dates back to Toint [16] and Stei-
haug [15]. Several PCG variants in the setting of trust-region methods with
empirical adaptation of the trust-region radius are given in Conn, Gould, and
Toint [3, Section 7.5]. Inspired by these suggestions, we will define suitable
iterates by minimizing an upper bound of f on the two-dimensional subspace

δXk = span{δxi
k, pi}.

A particularly appealing feature of this approach is that in regions where the
functional is convex, the method reduces to the damped Newton method men-
tioned in (2) and analyzed in [7].
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Newton-Lanczos (N-Lanczos). When directions of negative curvature are
encountered early on in the PCG iteration, the Newton-Truncated-CG method
essentially reduces to a kind of steepest descent method. Since evaluating the
nonlinear stiffness matrix F ′(x) is quite expensive, it might be advantageous to
exploit r-dimensional Krylov subspaces

δXk = span{F ′(xk)jF (xk) : j = 0, . . . , r − 1} (4)

for minimization. Gould et al. [11] study the Lanczos process for solving non-
convex trust-region subproblems. Their numerical experiments, however, do not
indicate a clear performance gain compared to a truncated CG algorithm on a
subset of the CUTE test set [1].
In the following Section 3 we will present a unified theoretical framework, which
will be specified to the above three approaches in Section 4.

3 Affine conjugate adaptive Newton-type
algorithms: a unified derivation

In finite dimensional unconstrained nonconvex optimization, adaptive trust re-
gion techniques based on constrained quadratic models of the functional f are
well established — see [3, 4, 13]. In the present paper, we will construct adap-
tive Newton-type algorithms based on a cubic upper bound of the functional f ,
which arises naturally from affine conjugate theory. In order to follow this line,
we perform the four steps given in the recent monograph [5]:

1. derivation of a cubic upper bound for the functional f ,
2. construction of a theoretically optimal minimizer within the search sub-

space δX,
3. identification of computational estimates [ω] for affine conjugate Lipschitz

constants ω, and
4. proof of a bit counting lemma.

For good reasons, the notation to be chosen here will differ slightly from the
one in [5]. Throughout the paper, we set the following basic assumptions.

Assumptions 3.1. Let D be an open subset of some Hilbert space X and M ∈
L(X, X∗) a symmetric positive definite operator that induces the energy norms
‖x‖2

M := 〈x, Mx〉 on X and ‖y‖2
M−1 := 〈y, M−1y〉 on X∗. Here, 〈·, ·〉 denotes

the dual pairing between X and its dual X∗. Assume that f : D → R is a twice
continuously Fréchet-differentiable functional with gradient F (x) = f ′(x) and
bounded second derivative F ′(x) = f ′′(x) that satisfies the Lipschitz condition

‖(F ′(x + δx)− F ′(x))δx‖M−1 ≤ ω ‖δx‖2
M (5)

for some constant ω < ∞ and for all x, δx such that the convex hull co{x, x+δx}
of x and x + δx is contained in D. Moreover, let x0 ∈ D be given and suppose
that the level set L(x0) := {x ∈ D : f(x) ≤ f(x0)} is closed and bounded.

Lemma 3.2. At each x ∈ D, an upper bound on f is given by

f(x + δx) ≤ f(x) + 〈F (x), δx〉+
1
2
〈δx, F ′(x)δx〉+

ω

6
‖δx‖3

M . (6)
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Proof. In view of the Lipschitz condition (5) we derive an upper bound for
functional values by Taylor expansion around x as

f(x + δx) = f(x) + 〈F (x), δx〉+
1
2
〈δx, F ′(x)δx〉

+
∫ 1

0

∫ 1

0

〈tδx, (F ′(x + stδx)− F ′(x))δx〉 ds dt

The last term can then be estimated as∫ 1

0

∫ 1

0

〈tδx,(F ′(x + stδx)− F ′(x))δx〉 ds dt

=
∫ 1

0

∫ 1

0

t〈M1/2δx,M−1/2(F ′(x + stδx)− F ′(x))δx〉 ds dt

≤
∫ 1

0

∫ 1

0

t ‖δx‖M ‖(F ′(x + stδx)− F ′(x))δx‖M−1 ds dt

≤ ω

6
‖δx‖3

M ,

which confirms (6).

On the basis of this lemma, we now study Newton-type algorithms in a
unified framework. Starting at some initial iterate x0 ∈ D, we successively
minimize the upper bound (6) of f around the current iterate xk over some low
dimensional subspace δXk, thus defining

δxk := arg min
δx∈δXk

(
〈F (xk), δx〉+

1
2
〈F ′(xk)δx, δx〉+

ω

6
‖δx‖3

M

)
(7)

Due to the symmetry of the second and third right hand terms w.r.t. δxk ↔
−δxk, we conclude that δxk is a descent direction, which means that

〈F (xk), δxk〉 ≤ 0. (8)

The three Newton-type methods considered in Section 2 above differ only in the
choice of the search subspace δXk.

Functional descent. Given a space δX of search directions δx, we first derive
general local descent results by means of the above upper bound for f .

Lemma 3.3. For simplicity, we drop the iteration index k. Let δX ⊂ X be the
low dimensional search subspace and let δx ∈ δX be the minimizer as defined
by condition (7). Assume that co{x, x + δx} ⊂ D. Then the functional value
reduces as

f(x + δx) ≤ f(x) +
2
3
〈F (x), δx〉+

1
6
〈F ′(x)δx, δx〉 ≤ f(x),

and its derivative satisfies

〈F (x), δx〉+ 〈F ′(x)δx, δx〉 ≤ 1
2
〈F (x + δx), δx〉 ≤ 0. (9)



6

Proof. First we notice that for δx = 0 the claims are trivially satisfied. Now
assume δx 6= 0. From (7) we obtain the directional derivative

0 =
〈

∂

∂δx

(
〈F (x), δx〉+

1
2
〈F ′(x)δx, δx〉+

ω

6
‖δx‖3

M

)
, δx

〉
=

〈
F (x) + F ′(x)δx +

ω

2
‖δx‖MMδx, δx

〉
= 〈F (x) + F ′(x)δx, δx〉+

ω

2
‖δx‖3

M

and hence,
ω

2
‖δx‖3

M = −
(
〈F (x), δx〉+ 〈F ′(x)δx, δx〉

)
. (10)

Note that (10) is an implicit equation for ω, since δx depends on ω via (7).
Inserting (10) into the upper bound (6) yields

f(x + δx) ≤ f(x) + 〈F (x), δx〉+
1
2
〈F ′(x)δx, δx〉

− 1
3
(
〈F (x), δx〉+ 〈F ′(x)δx, δx〉

)
= f(x) +

2
3
〈F (x), δx〉+

1
6
〈F ′(x)δx, δx〉.

With both (8) and 〈F (x), δx〉 + 〈F ′(x)δx, δx〉 ≤ 0 from (10), we obtain the
reduction property

f(x) +
2
3
〈F (x), δx〉+

1
6
〈F ′(x)δx, δx〉

= f(x) +
3
6
〈F (x), δx〉+

1
6

(〈F (x), δx〉+ 〈F ′(x)δx, δx〉) ≤ f(x).

As for the derivative estimate, we start from

F (x + δx) = F (x) + F ′(x)δx +
∫ 1

0

(F ′(x + tδx)− F ′(x))δx dx

and therefore obtain by (10)

|〈F (x+ δx)−F (x)−F ′(x)δx, δx〉| ≤ ω

2
‖δx‖3

M = −
(
〈F (x), δx〉+ 〈F ′(x)δx, δx〉

)
,

which is (9).

Computational estimates. We now substitute the unavailable Lipschitz
constant ω in actual computation by two different easily computable estimates
[ω], a third order value [ω3] ≤ ω, and a second order value [ω2] ≤ ω, defined as

[ω3] :=
6

‖δx‖3
M

∣∣∣∣f(x + δx)− f(x)− 〈F (x), δx〉 − 1
2
〈F ′(x)δx, δx〉

∣∣∣∣ (11)

[ω2] :=
2

‖δx‖3
M

|〈F (x + δx)− F (x)− F ′(x)δx, δx〉| (12)

These estimates [ω] may possibly be too small. In order to control their relative
accuracy, the following bit counting lemma is helpful.
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Lemma 3.4. Let δX ⊂ X be the low dimensional search subspace. Assume
that for some descent direction δx ∈ δX the following condition holds:

〈F (x), δx〉+
1
2
〈F ′(x)δx, δx〉+

[ω]
6
‖δx‖3

M = min . (13)

For σ ≤ 1
2 and 0 ≤ ω − [ω] ≤ σ[ω], the following reductions of the functional

and its derivative are obtained:

f(x + δx) ≤ f(x) +
1
2
〈F (x), δx〉 − 1− 2σ

12
[ω] ‖δx‖3

M ≤ f(x) (14)

and
−2 + σ

2
[ω] ‖δx‖3

M ≤ 〈F (x + δx), δx〉 ≤ σ

2
[ω] ‖δx‖3

M .

Proof. Inserting ω ≤ (1 + σ)[ω] into (6), we arrive at

f(x + δx) ≤ f(x) + 〈F (x), δx〉+
1
2
〈F ′(x)δx, δx〉+

1 + σ

6
[ω] ‖δx‖3

M . (15)

Upon differentiating (13) in the direction δx, we have

0 = 〈F (x), δx〉+ 〈F ′(x)δx, δx〉+
[ω]
2
‖δx‖3

M . (16)

Insertion into (15) above yields

f(x + δx) ≤ f(x) +
1
2
〈F (x), δx〉 − [ω]

4
‖δx‖3

M +
1 + σ

6
[ω] ‖δx‖3

M ,

which is just the left hand inequality of statement (14). The right hand inequal-
ity is evident from (8). Again with (16) the derivative reduction then reads
as

|〈F (x + δx)− F (x)− F ′(x)δx, δx〉| ≤ ω

2
‖δx‖3

M

≤ (1 + σ)[ω]
2

‖δx‖3
M = −(1 + σ)

(
〈F (x), δx〉+ 〈F ′(x)δx, δx〉

)
,

which completes the proof.

Recall from [5] that with such a bit counting lemma, the precise form of a
monotonicity test is now prescribed.

Adaptive trust region strategy. In view of (14) we require a sufficient
accuracy of the estimate [ω] and request a functional decrease corresponding to
σ ≤ 1

3 . A step δx is accepted, if

f(x + δx) ≤ f(x) +
1
2
〈F (x), δx〉 − [ω3]

36
‖δx‖3

M (17)

holds. For small δx, e.g. close to the solution, both this acceptance test and the
computation of [ω3] according to (11) become numerically unstable, which has
to be monitored carefully. In this case, the following substitute is to be used
together with [ω2] as defined by (12):

〈F (x + δx), δx〉 ≤ [ω2]
6

‖δx‖3
M . (18)
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Lemma 3.5. Whenever the monotonicity tests (17) or (18), respectively, fail,
the new Lipschitz estimate [ω]new computed by (11) or (12), respectively, satis-
fies

[ω]new >
4
3
[ω]old.

Proof. We start with the third order estimate. From (16) we obtain

[ω3]new =
6

‖δx‖3
M

∣∣∣∣f(x + δx)− f(x)− 〈F (x), δx〉 − 1
2
〈F ′(x)δx, δx〉

∣∣∣∣
>

6
‖δx‖3

M

(
1
2
〈F (x), δx〉 − [ω3]

36
‖δx‖3

M − 〈F (x), δx〉 − 1
2
〈F ′(x)δx, δx〉

)
=

6
‖δx‖3

M

(
− [ω3]

36
‖δx‖3

M +
[ω]
4
‖δx‖3

M

)
=

4
3
[ω3].

As for the second order estimate, again (16) yields

[ω2]new =
2

‖δx‖3
M

|〈F (x + δx), δx〉 − 〈F (x), δx〉 − 〈F ′(x)δx, δx〉|

=
2

‖δx‖3
M

∣∣∣∣〈F (x + δx), δx〉+
[ω]
2
‖δx‖3

M

∣∣∣∣
>

2
‖δx‖3

M

(
[ω]
6
‖δx‖3

M +
[ω2]
2

‖δx‖3
M

)
=

4
3
[ω2].

Whenever the monotonicity tests (17) or (18), respectively, fail, the updated
estimate [ω] is increased according to Lemma 3.5, until at last ω ≤ (1 + σ)[ω]
holds. At this point, Lemma 3.4 guarantees that the coresponding step δxk

passes the monotonicity test. The consequence is that after finitely many itera-
tions of this scheme a functional reduction is obtained. Following the notation
used for one-dimensional search subspaces δXk, we refer to this iteration as
stepsize reduction loop. In practice, we have rarely rarely observed more than
one reduction. In passing we note that we also deliberately use a heuristic in-
crease of the computational estimate [ω], whenever the computed corrections
leave the definition domain D.

Termination criterion. In contrast to convex optimization, where the en-
ergy norm of the Newton correction can be used to formulate the termination
criterion

〈δxk,Mδxk〉 < ETOL2, (19)

the iterate xk may be far away from the solution even if the energy norm of
the Newton correction is small. For x∗ to be a local minimum it is necessary
that F ′(x∗) be positive semidefinite. Therefore we will additionally require that
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F ′(xk) is positive semidefinite on δXk for any iterate xk to be accepted as
approximate solution.

A stricter alternative is to require that when xk → x∗, then F ′(x∗) has to
be positive definite. Under the assumption that the ordinary Newton method
converges towards x∗, the distance ‖x∗ − xk‖M is bounded by

ω ‖x∗ − xk‖M ≤
∞∑

j=k

ω
∥∥F ′(xj)−1F (xj)

∥∥
M

=
∞∑

j=k

hj ≤
∞∑

j=k

(
hk

2

)j−k

hk ≤
2hk

2− hk

where hk = ω
∥∥F ′(xk)−1F (xk)

∥∥
M

. With a somewhat more general Lipschitz
condition than (5) we may then arrive at

〈ξ, F ′(x∗)ξ〉 = 〈ξ, F ′(xk)ξ〉+ 〈ξ, (F ′(x∗)− F ′(xk))ξ〉
≥ 〈ξ, F ′(xk)ξ〉 − ‖ξ‖M ‖(F ′(x∗)− F ′(xk))ξ‖M−1

≥ 〈ξ, F ′(xk)ξ〉 − ‖ξ‖2
M ω ‖x∗ − xk‖M .

Hence, F ′(x∗) is positive definite if

inf
ξ 6=0

〈ξ, F ′(xk)ξ〉
‖ξ‖2

M

>
2hk

2− hk
.

As a computationally available approximation of this criterion we may impose
the lower dimensional requirement

min
ξ∈δXk,ξ 6=0

〈ξ, F ′(xk)ξ〉
‖ξ‖M

>
2[hk]

2− [hk]
with [hk] = [ω]

∥∥δxk
∥∥

M

in addition to (19) for any iterate xk to be accepted as local minimizer.

4 Specification to the three approaches

We are now ready to apply the above general framework to each of the three
Newton-type methods introduced in Section 2.

4.1 Newton-like algorithm

With the Newton-like correction given by Mδxk = −F (xk), the one-dimensional
search subspace δXk = span(δxk) permits a representation of the above setting
in terms of a stepsize λ, which can be computed explicitly by minimizing (13)
as

λ = − 2〈F (xk), δxk〉

ε +
√

ε2 − 2[ω]
∥∥δxk

∥∥3

M
〈F (xk), δxk〉

(20)

with ε = 〈δx,F
′(x)δxk〉. The resulting algorithm reads as follows.
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Algorithm 4.1.
1: solve Mδxk = −F (xk)
2: compute λk from (20)

set δxk = λkδxk

check monotonicity test (17)
update [ωk] according to (11)
if the monotonicity test (17) has been violated: goto 2
set xk+1 = xk + λkδxk, [ωk+1] = [ωk]
if (19) is satisfied and 〈δxk, F ′(xk)δxk〉 ≥ 0: stop
increase k and goto 1

Accuracy matching. In PDE applications, the exact computation of the N-
lin correction δxk by solving (3) is in general infeasible, since a discretization
error remains. Even in finite dimensional problems, truncation errors of iterative
solvers are unavoidable, if only the dimension is sufficiently large. In both cases,
we can only compute an inexact correction δ̂xk by solving

Mδ̂xk = −F (xk) + rk

up to some inner residual rk. Now the question arises, how large an inner
residual, may it stem from discretization errors or iteration errors, we may
accept without spoiling the convergence of the N-lin algorithm. At least, δ̂xk

has to be a descent direction. We suggest to require

〈F (xk), δ̂xk〉 ≤ (1− δk)〈F (xk), δxk〉 ≤ 0

for some δk ∈]0, 1[, which is equivalent to

‖rk‖M−1 ≤
√

δk ‖F (xk)‖M−1 .

If M is a good approximation to F ′(x∗) at the solution point, choosing δk close
to 0 leads to faster convergence. If, on the other hand, M differs significantly
from F ′(x∗), a more accurate approximation δ̂xk of δxk cannot be expected to
improve the linear convergence of the method in the same way. Since we aim
at nonlinear elasticity including large deformations, we expect the latter case to
be quite common, and recommend to just choose δk = 1

2 .

4.2 Newton-Truncated-CG algorithm

The second approach constructs the search subspace δXk from a PCG algo-
rithm applied to the linear system δF ′(xk)δxk = −F (xk). If at inner iterate
δxi

k in the PCG method a search direction pi
k with nonpositive curvature is en-

countered, i.e. if 〈pi
k, F ′(xk)pi

k〉 ≤ 0, then the PCG iteration is terminated and
the search subspace is defined as δXk = span{δxi

k, pi
k}. Any numerical method

for solving the low dimensional cubic minimization problem (13) can be used
to compute δxk ∈ δXk. The computational complexity of this subproblem is
actually negligible compared to the PCG iteration.

If no such direction is encountered until the PCG iteration achieves the
required accuracy at some iterate δxj

k, the search subspace is defined by the
inexact Newton direction as δXk = span{δxj

k}.
The resulting algorithm then reads as follows.
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Algorithm 4.2.
1: compute δXk = PCG(F ′(xk),−F (xk))
2: solve (13) for δxk

check the monotonicity test (17)
update [ω]k according to (11)
if the monotonicity test was violated: goto 2
set xk+1 = xk + δxk, [ω]k+1 = [ω]k
if (19) is satisfied and 〈ξ, F ′(xk)ξ〉 ≥ 0 for all ξ ∈ δXk: stop
increase k and goto 1

In case no nonconvex search direction is encountered, which naturally oc-
curs in the neighborhood of a local minimum with F ′(x∗) positive definite, the
method reduces to the affine conjugate Newton method for convex minimiza-
tion [5, 7] and inherits its local convergence properties. As for the Newton-like
method above, the step δxk = λkδxj

k can be expressed in terms of a step size λ
given by (20).

Accuracy matching. If the PCG method does not produce a search direction
pk with negative curvature of the functional, we are left with the decision when
to terminate the iteration. Since in this case the functional is convex at xk

to our current best knowledge, a situation that is to be expected close to the
solution, we rely on the accuracy matching for convex problems worked out
in [6, 7]. Minimizing the information gain per unit work, we arrive at different
choices for δk for finite dimensional problems and infinite dimensional problems,
where a mesh refinement loop takes the place of the PCG iteration.

For finite dimensional problems we therefore choose a relative tolerance

δk = min
(
[ω]

∥∥∥δxj
k

∥∥∥
M

, 10−2
)

for the PCG Algorithm and recover the locally quadratic convergence of New-
ton’s method.

In the infinite dimensional setting, we accept a mesh refinement level as soon
as (i) the PCG method on this refinement level generates directions of negative
curvature of f , or (ii) the error estimator indicates a relative error of δ < 1.
Ultimately, we end up with the linear convergence of inexact Newton methods.

4.3 Newton-Lanczos algorithm

The third approach aims at minimizing the cubic model (6) over the complete
Krylov space (4) of sufficiently large dimension r. An M -orthonormal basis
v0, . . . , vr−1 of δXk can be obtained by preconditioning the Lanczos process
with M , which transforms (13) into the simpler low-dimensional and sparse
problem

h = arg min
h∈Rk

γ0〈h, e1〉+
1
2
〈h, Th〉+

[ω]
6
‖h‖2

2,

δxk = V h, (21)

where T is tridiagonal and V = [v0, . . . , vr−1]. The Newton-type correction
defined by (21) may be assumed to provide a better functional decrease than the
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truncated CG solution for two reasons: (i) a larger search subspace is considered
in case nonconvex directions are encountered, and (ii) the cubic term affects the
choice of δxk from a much higher dimensional space than it does in the truncated
CG case.

Numerical results for a similar Lanczos approach have been reported in [11]
in the context of trust-region methods. Therein the number of iterations tended
to be smaller compared to the truncated CG approach. Due to its higher com-
putational effort, however, it provided no clear advantage over the truncated
CG version in overall computing time.

Since in nonlinear elastomechanics the assembly of F ′(x) tends to dominate
the computational cost, a moderate reduction of iteration numbers could be suf-
ficient to decrease the overall computational cost in this application. However,
using the stiffness matrix M of linear elastomechanics as a preconditioner, it is
necessary to solve a static linear problem in each step of the Lanczos method,
which is prohibitively expensive. That is why, in practice, a suitable approxi-
mation M̂ ≈ M will be used, and one of the auxiliary functionals

JA = 〈F (x), δx〉+
1
2
〈δx, F ′(x)δx〉+

ω

6
‖δx‖3

M̂

or

JB = 〈F (x), δx〉+
1
2
〈δx, F ′(x)δx〉+

ω

6
‖δx‖3

M

will be minimized.
Variant A preserves the simple tridiagonal structure of (21), but generates

only a suboptimal search direction w.r.t. (7). As a consequence, a stepsize has to
be chosen as in the N-lin and N-TCG settings. Together with the search direc-
tion, the number of Newton-Lanczos steps can be expected to depend directly
on the quality of the preconditioner M̂ .

Variant B preserves the original minimization property (7), but produces
dense matrices, the dimension of which is the number of Lanczos iterations.
Thus, solving the low dimensional minimization problem (7) is significantly
more expensive, but the number of Newton-Lanczos steps may be expected to
be essentially independent of the choice of the preconditioner M̂ .

Accuracy matching. There is no natural exit point in case directions of
negative curvature are encountered. In fact, the procedure is designed to proceed
past such iterates. However, if the functional is nonconvex at the current iterate
xk, the solution cannot be assumed to be close, even in case ‖F (xk)‖M−1 is
small. Thus, a highly accurate determination of δxk is unlikely to improve the
overall performance significantly. As a heuristic, we suggest to monitor the
eigenvalues σi of the projected matrix T . If all of them are positive, we impose
the same termination criterion as in the N-TCG. Otherwise we proceed with the
Lanczos iteration until an allocated budget of computing time tk is exhausted.
In order to balance possible progress and computing time, we suggest to set tk
to about 20% of the time needed for assembling F ′(xk) and F (xk). As for mesh
refinement, we employ the same strategy as outlined for the N-TCG method.
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5 Numerical comparisons

This section is devoted to a numerical evaluation of the algorithms developed up
to now. In view of a multilevel approximation of PDE problems on a sequence
of grids, we do not employ the CUTE testset of problems with fixed finite
dimension. We choose examples from elastomechanics with both geometric and
material nonlinearity. Hence we switch to the usual notation in elastomechanics
and substitute the variable x by the displacement u.

The algorithms are tested on three different geometries. In all cases we
consider a hyperelastic Ogden material [14] as discussed in [2, §4.10], with
stored energy function

f(u) = a trE + b(trE)2 + c trE2 + dΓ(det(I +∇u)), F (u) = f ′(u), (22)

where

a = −dΓ′(1) b =
1
2
(λ− d(Γ′(1) + Γ′′(1)))

c = µ + dΓ′(1) d > 0, Γ(s) = s2 − ln s.

Here, E = 1
2 (∇uT + ∇u + ∇uT∇u) is the Green-St. Venant strain tensor and

λ = 7.76 · 105 and µ = 8.62 · 104 are the Lamé constants corresponding to
Young’s modulus 2.5 · 105 and Poisson ratio 0.45. The most appealing feature
of this material law is that near the undeformed reference state it is a second
order approximation to the linear St. Venant-Kirchhoff material to λ and µ [2,
Thm. 4.10-2], which is recovered asymptotically for d → 0. We do refer to the
linear St. Venant-Kirchhoff material as the case d = 0, even though the two
material laws coincide only for orientation preserving deformations.

The natural choice for the energy metric is given by the always positive def-
inite stiffness matrix M = F ′(0) of linear elastomechanics. It exhibits the same
transformation properties as F ′(u) and therefore conserves the affine conjugacy
of Newton’s method. A particularly convenient feature of this choice is that M
is usually sparser than F ′(u) and has to be assembled only once on each grid
refinement level.

In comparing the algorithms we give iteration numbers and general com-
plexity considerations rather than actual CPU times, which are highly subject
to implementation details.

Example 1: Ubiquitous cube. The ubiquitous test example is defined on
the cube Ω = [−1, 1]3. We impose Dirichlet boundary conditions of u = 0 on the
bottom face [−1, 1]2×{−1} and u = (0, 0,−0.8)T on the top face [−1, 1]2×{1}
and no boundary conditions on the remaining four sides.

As initial iterate for the methods we choose the deformation given by linear
elastomechanics with the same material constants λ and µ. The computation
is performed on fixed uniform grids with Cartesian structure. The obtained
solutions are shown in Figure 1. As it is well known, large deformations can
lead to local self-penetration of the material (det(I +∇u) < 0) unless the stored
energy tends to infinity for det(I + ∇u) → 0. Thus the case d = 0 leads to
unphysical solutions with inverted elements. In contrast, the logarithmic term
prevents interpenetration and leads to a solution that is quite close to the one
given by linear elastomechanics. Iteration numbers for the linear material law
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Figure 1: Example 1. Left : linear elastomechanics. Center : geometric non-
linearity with linear St. Venant-Kirchhoff material (d = 0). Right : geometric
nonlinearity with nonlinear Ogden material (d = 105).

with only geometric nonlinearity and for the completely nonlinear model are
given in Table 1. As expected, the former case is more difficult due to the larger
distance between initial iterate and solution, as well as the existence of a large
number of local minima.

material nodes N-lin N-TCG N-Lanczos (A/B)

d = 0 729 265 27 24/fail
4913 401 91 54/fail

d = 105 729 21 7 7/7
4913 34 7 11/8

Table 1: Example 1. Number of iterations for different uniform mesh sizes.
Termination criterion (19) with relative tolerance ETOL = 10−3

∥∥uk
∥∥

M
.

Example 2: Hexagonal 3D beam. A more flexible structure with still
trivial reference geometry is given by a hexagonal prism with aspect ratio 1:10.
Again the top face is moved downwards about 40% of the length of the beam.
The solution of linear elasticity shown in Figure 2 (left) is chosen as initial iter-

Figure 2: Example 2. Left : linear elastomechanics. Center : geometric nonlin-
earity with linear St. Venant-Kirchhoff material. Right : geometric nonlinearity
with Ogden material (d = 105).
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material nodes N-lin N-TCG N-Lanczos (A/B)

d = 0 779 (3000) 69 81/fail
4142 59 242/fail

d = 105 779 (2500) 44 93/23
4142 56 1556/29

Table 2: Example 2. Number of iterations for different uniform mesh sizes.
Termination criterion (19) with relative tolerance ETOL = 10−3

∥∥uk
∥∥

M
. Values

in parentheses estimated.

ate. A similar example with quadratic base has been considered by Glowinski
and LeTallec [10, 12]. Here, the stable non-symmetric solutions of nonlinear
elastomechanics (with or without material nonlinearity) deviate significantly
from the unstable symmetric solution, which, in turn, is close to the solution of
linear elastomechanics.

Numerical solutions for different settings are shown in Figure 2. Iteration
numbers are given in Table 2. The result of an adaptive computation starting at
a regular mesh with 147 nodes and resulting in 4236 nodes is shown in Figure 3.

Figure 3: Example 2. Result of mesh adaptation.

Example 3: Cranio-maxillofacial surgery. In cranio-maxillofacial surgery,
the post-operative appearance of the patient is of vital interest. Therefore, a
prediction of the facial soft tissue deformations induced by surgical bone dis-
placement is a decisive tool for therapy planning. In cooperation with surgeons,
a therapy planning tool that allows to cut and move bone parts of virtual pa-
tient models has been developed by the ZIB working group Computer Assisted
Surgery inside the visualization package Amira (Zachow et al. [17, 18]). First
predictions of the post-operative apprearence of patients have been computed by
Gladilin [8] predominantly using linear elastomechanics. However, the bone
displacements usually lead to large deformations of the soft tissue in certain ar-
eas, so that linear elastomechanics cannot be expected to yield reliable results.
In view of this property, first steps towards nonlinear models have already been
undertaken in [9]. With the algorithms presented here, a robust and reliable
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Figure 4: Example 3. Displacement of soft tissue due to bone movement.
Opaque surface: with geometric nonlinearity. Mesh lines: linear elastomechan-
ics.

computation of stable configurations is now possible.
Out of a large set of problems (http://www.zib.de/visual/projects/

cas/cas-gallery.en.html), we pick one test case where the maxilla is ad-
vanced by 5mm. Due to geometrical constraints we chose a St. Venant-Kirchhoff
material law together with geometric nonlinearity. The result obtained by the
N-TCG algorithm within 17 steps is compared in Figure 4 with the solution of
linear elastomechanics.

Remark 5.1. When using constitutive laws that are defined only on the orien-
tation-preserving subset of all possible configurations, e.g. Ogden materials,
it is necessary to start the Newton-type algorithms from an admissible initial
deformation u0. Depending on the complexity of the geometry and the boundary
conditions, such a starting point may be difficult to obtain. In simple situations,
explicit interpolation of boundary conditions (Example 1) or the solution of
linear elastomechanics (Example 2) can provide an orientation-preserving initial

http://www.zib.de/visual/projects/cas/cas-gallery.en.html
http://www.zib.de/visual/projects/cas/cas-gallery.en.html
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iterate. More complex cases require some kind of homotopy, e.g. incremental
load or a shift of the logarithmic barrier in (22).

In biomedical applications with their complex geometries, it may even hap-
pen that the prescribed boundary conditions enforce a self-penetrating deforma-
tion. This is indeed the case for all examples from cranio-maxillofacial surgery
tested so far, which is the reason why we restricted Example 3 to geometric
nonlinearity and used a St. Venant-Kirchhoff material. In order to overcome
this kind of difficulty, a closer cooperation between geometric modeling, grid
generation, and PDE solution will be necessary. This topic is certainly beyond
the scope of the present paper and on the agenda for further investigation.

Comparative performance. It is evident from Tables 1 and 2, that the N-
lin method needs much more iterations especially in more complex situations.
However, since only F (uk) but not F ′(uk) has to be assembled in every step,
each step can be significantly cheaper to compute than in the N-TCG or the
N-Lanczos methods. In our code, the CPU time ratio for computing F (uk) and
F ′(uk), respectively, is about 1:5. Neglecting any overhead such as solving linear
systems, error estimation and evaluation of f(u) and directional derivatives
〈F ′(uk)δuk, δuk〉, we can roughly estimate that N-lin needs more CPU time
than N-TCG, if it requires more than six times as many iterations. Note that
this estimate is quite conservative in favor of N-lin. Taking this correction factor
into account, we see that N-lin is on par with N-TCG in Example 1 and much
slower in the more challenging Example 2.

The comparison between N-TCG and N-Lanczos/A comes out less clear.
The computational complexity per iteration is about the same. However, the
iteration count of N-Lanczos/A depends highly on the effectivity of the precon-
ditioner, which may lead to extremely high iteration numbers as encountered in
Table 2. Here the mesh dependence of the SSOR preconditioner is inherited by
the N-Lanczos/A method. Additionally, the implementation complexity of the
N-Lanczos methods is significantly higher than that of N-TCG.

In contrast to that, the N-Lanczos/B version shows the lowest number of
iterations. However, its computational complexity for solving the system is
significantly higher than that of N-TCG or N-Lanczos/A, which easily outweighs
the lower number of iterations reported in Table 2.

Conclusion

In this paper we have developed three different approaches to nonconvex prob-
lems in finite strain elasticity: Newton-like, Newton-Truncated-CG, and New-
ton-Lanczos.

Summarizing, for both theoretical and computational complexity reasons,
the Newton-Truncated-CG method comes out as our preferred candidate.
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