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Abstract

The mathematical modeling of a special modular catalytic reactor kit
leads to a system of partial differential equation in two space dimensions.
As customary, this model contains unconfident physical parameters, which
may be adapted to fit experimental data. To solve this nonlinear least
squares problem we apply a damped Gauss-Newton method. A method of
lines approach is used to evaluate the associated model equations. By an
a-priori spatial discretization a large DAE system is derived and integrated
with an adaptive, linearly-implicit extrapolation method. For sensitivity
evaluation we apply an internal numerical differentiation technique, which
reuses linear algebra information from the model integration. In order not
to interfere the control of the Gauss-Newton iteration these computations
are done usually very accurately and, therefore, very costly. To overcome
this difficulty, we discuss several accuracy adaptation strategies, e.g., a
master-slave mode. Finally, we present some numerical experiments.
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1 Introduction

Many chemical substances are produced by catalytic processes. For process de-
velopment and optimization the simulation of associated mathematical models
is a helpful tool. Usually, within these models there are parameters whose exact
values are not known. A common way of determining these values is parameter
identification with nonlinear least squares techniques.
We consider a two-dimensional, time-dependent model for a cylindrical reactor
module, which is part of a special modular catalytic reactor kit [3]. This kit
consists of standardised flange mounted reactor modules with different geomet-
rical and thermal properties. This allows a simple realisation of very different
reactor structures. A measurement module allows to place sensors at nearly
any requested position inside the catalyst fill of the reaction module.
In order to carry out parameter estimation for different models of that main
reactor module, we combine, and slightly modify, efficient and robust algorithms
for simulation [9, 10] and sensitivity analysis [19] with a sophisticated Gauss-
Newton (GN) algorithm, which has proven to work very reliably in complex
parameter identification problems, see, e.g., [5, 17].
In the next section we first briefly describe our modeling of the basic reaction
module. Then we shortly depict our method-of-lines treatment which yields a
large ODE model. In section 3 we present the numerical methods for the eval-
uation of the objective function of the GN-method (simulation), its derivative
(sensitivity computation), and, finally, the damped GN-method. In section 4
we discuss the problem of accuracy matching and propose a smoothness ori-
ented matching strategy. In section 5 some numerical examples are presented.
We end with a short conclusion and an outlook on future work.

2 Mathematical model

The mathematical model for the interior of the catalytic reaction module is
based on the usual balance equations for mass and energy using standard trans-
port models. Mixing processes are considered by the dispersion model. As heat
balance equation for the interior temperature T of the module we use

[ρcpε+ ρP cPp (1 − ε)]
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The balances for the mass fractions gi are expressed by
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The one dimensional model for the reactor wall includes axial heat conduction
and convection and heat capacity of the reactor jacket and the fluid. Interior
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temperature at the wall (TR) and temperature of the wall (TW ) are coupled by
the transport equation

λr ∂TR/∂r = αW (TR − TW ) . (3)

Otherwise the usual boundary conditions are applied. A detailed discussion of
equations (1-2) and an overview of heterogenious gas catalytic modelling can
be found in [1, 2].

In order to solve the model equations we apply a classical MOL-approach. In a
first step, all spatial derivatives of the model equations are replaced by centered,
2nd order finite difference approximations on appropriately chosen nonuniform
tensor product grids. With that, a very large system of differential-algebraic
equations (DAE) arises, which may be written in the form

B(y; p)ẏ = f(y; p) , y(t0) = y0 , (4)

where y(t) denotes the solution vector of dimension n at all spatial discretiz-
ation points (zl, rk), and p is the vector of dimension q of parameters to be
identified. Let nz and nr denote the number of grid point used for the spatial
discretization of the cylindrical coordinate system. Let nPDE denote the di-
mension of the system under consideration (temperature and mass fractions of
the chemical species). The dimension of our semi-discrete system (4) is then
given by n = nz × nr × nPDE. B is a possibly singular diagonal matrix and
f a general nonlinear mapping. Both functions may depend also explicitly on
the spatial coordinates (z, r) and time t. For ease of presentation we drop the
latter dependencies in our notation.

3 Numerical treatment

3.1 Simulation

System (4) is nonlinear, stiff and block structured. For integration, we apply
the linearly implicit extrapolation code LIMEX [9, 10]. It uses as an elementary
step the discretization

(B(y0) − hA)(yk+1 − yk) = hf(yk) − (B(yk) −B(y0))(yk − yk−1) , (5)

where A ≈ ∂
∂y

(f − Bẏ) |t=t0 is the (approximate) Jacobian of the residual of
(4) evaluated at a time point t0 ≤ tk.
Combined with extrapolation this one-step method permits an adaptive stepsize
and order control, for details see [6]. Applied to the discretized PDE-problem
4 the main amount of work for one step is the solution of the arising linear
equations. The associated matrix (B−hA) is very large but sparse and direct,
as well as iterative, sparse matrix techniques can alternatively be used for the
linear system solution.
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3.2 Sensitivity computation

Our parameter identification procedure requires the computation of the sens-
itivity matrix S(t) := dy(t)/dp. There are several well established ways to ap-
proximate S(t), see, e.g., [15]. One approach is the differentiation of the DAE
(4) with respect to p, yielding the q sensitivity equations for S = [s1| . . . |sq],

B(y; p)ṡi = d
dp
f(y; p) − d

dp
B(y; p)ẏ

= fy(y; p)si + fp(y; p) − (By(y; p)si +Bp(y; p))ẏ .
(6)

These equations are then solved simultaneously with the original equation.
Applying LIMEX to this coupled system yields an associated Jacobian matrix
A, which turns out to be

A =











A
A1 A
...

. . .

Aq A











, (7)

where A ≈ ∂
∂y

(f −Bẏ) |t=t0 , and Ai ≈ ∂
∂y

[fysi+fp− (Bysi+Bp)ẏ] |t=t0 . An in-
tegration of the coupled system using the matrix A would be rather expensive.
However, replacing A by its block diagonal part, i.e., A → Â = diag(A, . . . ,A)
would speed up linear algebra computation dramatically. Therefore, this sim-
plification is widely used, see, e.g., [16, 19].
The major drawback of this approach is the need for explicitly given functions
fy(t, y) and fp(t, y) in the case of constant B, and, additionally, By(t, y) and
Bp(t, y) in the general case.
To overcome this problem, we replace, in part, the differentiation d/dp in equa-
tion (6) by a finite difference approximation and get as sensitivity equations

B(y; p)ṡi = 1
∆p

{f(y + ∆psi; p+ ∆p) − f(y; p)−
(B(y + ∆psi; p+ ∆p) −B(y; p))ẏ} . (8)

Choosing ∆p =
√
epmach (epmach = relative machine precision) and integ-

rating with a prescribed tolerance tol, the precision of the sensitivity matrix
S will be of order tol +

√
epmach, cf. [15]. For a wide range of problems this

sensitivity computation turns out to be very efficient and robust [18].

3.3 Parameter identification

Assume that for some components of the state vector y(z, r, t; p) measure-
ments are available at some spatial points (zψ, rψ), ψ = 1, ...,Ψθ at times
tθ, θ = 1, ...,Θ. We arrange them in a vector yobs of dimension m. In or-
der to allow an unconstrained adaptation of temporal and spatial stepsizes
(either automatically or by hand) the measurement points and times should be
not necessarily part of their computational counterparts. Therefore we need
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a proper interpolation procedure to generate solution approximations at the
spatio-temporal measurement grid. For interpolation in time we use the global
solution representation of LIMEX. Spatial interpolation is done by means of a
monotone piecewise cubic hermite interpolation due to [12].
Having get with this procedure simulated counterparts ysim for all components
of the vector yobs we can calculate a weighted residual vector

F (p) =

m
∑

i=1

ysimi − yobsi
ywi

. (9)

To determine q uncertain parameters p = (p1, ..., pq)
T of the model equations

one may solve the nonlinear least squares problem

1/2||F (p)||22 = 1/2F TF = min. . (10)

A well established scheme for solving nonlinear least square problems is the
Gauss-Newton method. For so-called small residual problems the method is
known to converge superlinearly near the solution p∗. However, for bad initial
guesses the method may diverge. To overcome this difficulty, several globalisa-
tion techniques exist, e.g., the popular Levenberg-Marquard method. We use
another way of enlarging the convergence domain, which is due to [8]. This
method realizes a damped GN iteration, where the adaptive damping strategy
and the convergence monitor are based on monitoring only GN corrections and
not - as usual - the residuals. For a detailed mathematical derivation, analysis
and comparison with other algorithms we refer to the upcoming textbook [7].
Omitting details, the main algorithmic flow of the method is sketched in the
following informal algorithm.

Damped Gauss-Newton algorithm

p0, λ0 given

do k = 0, . . . , kmax

∆pk = −J+(pk)F (pk)

(∗) pk+1 = pk + λk∆pk

∆pk+1 = −J+(pk)F (pk+1)

if ‖∆pk+1‖ < ‖∆pk‖ then

λk+1 = λprio
k+1 = min(1, ||∆pk−1||

||∆p
k
−∆pk||

λk)

else

λk = λpost
k = min(1,

λ2
k
‖∆pk−1‖

2)

2‖∆p
k+1−(1−λk)∆pk‖∆pk‖

)

goto (*)
endif

if ||∆pk−1|| ≤ εGN break
enddo

(11)
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Herein, J+ denotes the Moore-Penrose pseudoinverse of the Jacobian J(p) =
F ′(p), ∆pk is the so-called simplified Gauss-Newton correction, λpriok and λpostk

are the a-priori and a-posteriori estimates for the optimal damping factor. The
required tolerance is εGN .
In order to perform one iteration step, the main computational work is the
evaluation of the GN-Jacobian Jk, which requires the computation of the sens-
itivity matrix S. To calculate the corrections ∆pk and ∆pk+1 two linear least
square problems are solved by means of an QR-algorithm. If the monotonicity
test

‖∆pk+1‖ < ‖∆pk‖ (12)

is passed for the first trial iterate pk+1 just one function evaluation F (pk+1)
is required per step as this information is reused in the next iteration step. If
the monotonicity test fails, the damping factor is reduced, and an additional
function evaluation Fk+1 for a new trial value pk+1 is computed. If the iteration
converges to a solution p∗ the usual linearized statistical analysis is done, see,
e.g., [5], in order to get information on the statistical quality of the solution in
terms of standard deviations and confidence intervals.

3.4 Accuracy matching

A sophisticated least squares solver like (10) requires a certain smoothness
of the underlaying problem. In our case, the theoretical derivation requires,
that F (p) is twice continuously differentiable. So, even if F is an explicitely
given function, the finite machine precision destroys this property formally,
but for practical computations this roundoff error can be neglected. However,
if F is a discretized operator, then rather large errors δF may show up. In
general, as long as the temporal and spatial discretization remains fixed, not
only the true operator, say F̂ (p), but also the error δF depend smoothly on
p. Thus, the discretized operator F = F̂ + δF will vary smoothly with p
also. However, changing a temporal and/or spatial stepsize while computing,
e.g., F (pk) and F (pk+1), will introduce a certain roughness into F (p), as the
assumption δF (pk) ≈ δF (pk+1) is no longer valid. As a first consequence,
the monotonicity test (12) may give wrong answers, and, furthermore, the
evaluation of the a priory and a-posteriory damping factors may be corrupted.
To overcome these difficulties, one may evaluate the discretized function F (p)
and and its derivative J(p) = F ′(p) very accurately in order to mimic a smooth
behaviour of F and J . Typical required tolerances for F -evaluation, εF , and J-
evaluation, εJ , are in the range [10−4, 10−7]. But, using such stringend accuracy
requirements may be prohibitive for 2D time dependent problems. So, one way
to reduce the computational work is an adaptation of the tolerance with the
following general strategy. Relaxed accuracy requirement far from the solution
and successively more stringent tolerances when approaching the solution of the
parameter estimation problem. First steps in this direction have been made
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for damped Gauss-Newton schemes, combined with ODE models, in [5, 17].
However, it turns out that the adaptation procedures must work very carefully
in order not to disturb the GN-iteration severely. The main problem of such
adaptation strategies is still the introduction of roughness into the objective
function F (p).
So, we propose an adaptation strategy which is smoothness oriented. First of
all, we do not adapt the computational grid, neither within one time integration
nor within the course of the GN-iteration. Instead, we use an initially chosen
grid, which, however, may be non-uniform. Concerning the time stepping pro-
cedure of LIMEX, we use the idea of a master/slave integration which works
as follows.
In order to meet a prescribed time tolerance εtF , the very first GN function
evaluation, F (p0), is done with the adaptive stepsize and order control switched
on (master mode). All subsequent function and sensitivity evaluations are
performed in slave mode, i.e., using the stepsizes, orders and, if necessary, the
number of linear system iterations, of the master mode integration. During the
slave mode integration for F the error estimator of LIMEX is activated and
the maximum value over time is recorded. If this achieved precision, say ε̃tF is
much larger than the prescribed precision of the master run, e.g.,

ε̃tF > σ1ε
t
F (σ1 ≈ 10) (13)

this integration is repeated. Now again in master mode with εtF as required
tolerance.
In addition, a heuristical approach for checking the quality of the proposed
damping factors has shown to improve the GN-iteration considerably. If within
one step, say from k to k + 1 the achieved error ε̃tF (k + 1) increases too much,
i.e.,

ε̃tF (k + 1) > σ2 ε̃
t
F (k) (σ2 ≈ 10) (14)

the current damping factor is not accepted and reduced heuristically, e.g., by
factor of two. The subsequent re-evaluation of F is done still in slave mode.
For the spatial discretization a rather coarse tensor product grid Z ⊗ R is
used. With that, the overall computing time for the GN-iteration is drastically
reduced and the performance of the numerically disturbed iteration is rather
close to the ”optimal” performance, i.e., an iteration without discretization
errors.
However, convergence will not occur to the true solution (of the continuous
problem), but to a value which is corrupted by comparatively large temporal
and spatial discretization errors. We try to estimate these errors (at least the
order of magnitude) in the parameter estimates (not in the numerical solution
ysim(p∗)) by the following refinement procedure.
Starting with epstF (1) = epstF , Z(1) = Z and R(1) = R we refine seperately
the time tolerance and initial grid sizes and perform in each case a full GN-
iteration. Starting with the available solution p∗111 = p∗(epstF (1),Z(1),R(1))
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as a very good initial guess, just one or two iteration steps are required. As a
rough error estimate for p∗111 due to time discretization we use the differences
||p∗(epstF (1),Z(1),R(1))−p∗(epstF (2),Z(1),R(1) = ||p∗111 −p∗211|| . If the error
estimate is in the order of the statistical error of the parameters the refinement
is stopped, otherwise we continue the refinement process in order to get the
estimate ||p∗211 − p∗311|| (and so forth, if necessary). Similarily the error due to
spatial discretization in z-direction and r-direction , respectively, are estimated.

This procedure is finished with a final Gauss-Newton iteration using appropri-
ately refined tolerances and grids, i.e., for which the error estimates are in the
range of the statistical error.

4 Numerical examples

We present some numerical experiments for our parameter identification pro-
cedure, applied to a heat transfer problem and a carbon monoxide gas oxidation
model.

Heat conduction problem

To study heat transfer properties of our reactor module, we investigate a heat
conduction problem without chemical reaction. A fixed bed flown by cold air
will be heated up over a time period of several hours. The reactor allows
temperature measurements at different radial and axial positions as well as
in the reactor jacket. Smoothed measured temperature profiles were used to
prescribe the boundary conditions at the inlet of the fixed bed and at the
reactor walls. The measurements were realized for different tube diameters and
flow rates, at a temperature range from 20 up to 350 oC. So, a whole bunch of
parameter estimation problems have been solved, using the data provided by
[4]. The heat transport coefficients to be identified are the radial effective heat
conduction λr and the wall heat transfer coefficient αw of equation (3), and the
width of a laminar flow film δ, c.f. [13].

Concerning the numerical difficulty, the integration problem is rather easy to
solve. No steep spatial gradients appear and there is a moderate dynamical
behaviour in time. Using good starting values, the performance of the GN
scheme is generally very robust and reliable - nearly independent of the applied
accuracy matching strategy.

Things change, if we use rather bad initial guesses p0. Comparing our new
strategy with a standard approach where all F and J evaluations are done in
master mode (for a fixed prescribed time tolerance) the new strategy allows
to use tolerances of εtF = 10−2, wheras the standard strategy requires values
of about εtF = 104 in order to show a similar smooth behaviour as the new
strategy. In all cases we use a grid of size nz × nr = 31 × 16. Our a-posteriory
error estimator for the accuracy of the parameters characterized this grid as
sufficiently good for nearly all scenarios.

Carbon monoxide oxidation
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The carbon monoxide oxidation reaction (CuO catalyst) [11] is prescribed by

CO +
1

2
O2 ⇒ CO2 . (15)

The effective reaction rate is determined by the mole fraction of the carbon
monoxide and the Arrhenius approach

reff = xCO k∞ exp
−EA
R T

. (16)

The specific enthalpy of the exothermal reaction is ∆HR = −290 ·103 kJ/kmol.

The mathematical model for this problem consists of a system of type (1-2) for
temperature T and 3 chemical species. The dynamics of this system is drastic-
ally more challenging than in the previous example. For slightly improperly
chosen parameter values one can observe reactor runaway, as illustrated in Fig.
1. As local overheating (hot spots) causes catalyst damage, we stop the simu-
lation whenever a temperture value T > 650K is observed. Real measurement
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Figure 1: Reactor runaway (temperature an CO concentration)

data are available for the stationary state only. So, in order to study the effect
of our temporal master/slave accuracy adaptation we generate artificial meas-
urement data for 50 spatial positions at 10 time points. To generate these data,
we use parameter values close to the one identified using the stationary data
only. The artificial measurements are perturbed (relatively) using normally
distributed random numbers with standard deviation σ = 0.02. Solution and
measurement values for temperature and CO, in stationary state, are depicted
in Fig. 2.

In our numerical experiments we try to re-identify the four diffusive parameters
λr = 0.8, λz = 0.18, Dr = 10−3, Dz = 5 × 10−6.

In a first step, we choose starting guesses p0 for our GN method by a random
selection, uniformly distributed in the cube [pT /2, 2pT ]. About 20% of them
turn out to be ”too bad” in the sense, that the initial function evaluation F (p0)
fails, i.e., was terminated by indicating reactor runaway. For about 30% of the
test runs a smooth convergence of our GN scheme can be observed. A solution
p∗ is found typically within 5-6 GN iterations with at most 1-2 damped steps.
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Figure 2: Solution and measurement data for stationary state

The remaining test cases turn out to be very critical. The restart condition (13)
and/or the reject condition (14) are activated at least one time, sometimes up
to three times. Nevertheless, the highest GN iteration count was 11 (successful)
steps using 7 damped updates.
For all these test runs a fixed spatial grid nz ×nr = 31× 16 and an initial time
tolerance of εtF = 10−2 was used.
In order to illustarte our a posteriori refinement procedure we have collected
some results for one specific test run in Tab. 1. Note that the coarse tolerance
solution depends on the choice of p0. However, the results given in Tab. 1 are
quite representative.

Solution λr λz Dr Dz

Reference 0.708 0.181 0.995(−3) 0.479(−5)
Coarse 0.604 0.182 0.950(−3) 0.404(−5)
Refined 0.668 0.181 0.979(−3) 0.4590(−5)

Num. Err. 3% 1% 2% 4%
Stat. Err. 40% 1% 4% 8%

Table 1: Accuracy comparison of parameter estimates

In the first row of Tab. 1 a set of reference parameters, calculated on a very fine
spatial grid, using a very stringent time tolerance, are given. Due to the meas-
urement errors they differ from the values used to create the artificial measure-
ments. In the second row the estimated parameters of the corase grid/tolerance
GN solution are given. The third row contains the values using the final GN
solution with the automatically refined grid/tolernace values nz = 69, nr = 36,
εtF = 0.25 × 10−2. The last two lines display the relative errors of this solu-
tion and the estimated relative error due to statistical uncertainty in terms of
the individual confidence intervals. Obviously, the numerical errors are below
the latter level. Computing numerically more accurate parameters would just
waste computing time.
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5 Conclusion and outlook

An adaptive accuracy matching strategy was developed, which enables a robust,
reliable and efficient performance of a self-adaptive, damped Gauss-Newton
scheme. Within the course of one GN-iteration the temporal and spatial discret-
ization is chosen initially and then frozen in order to have a discrete functional
changing smoothly with changes in p. The nonlinear least squares solution may
be refined by repeated GN-iterations with varying, more accurate discretiza-
tions until a reasonable level of accuracy is reached, i.e., only slightly more
accurate than the statistical uncertainty in the parameters to be estimated.

Further testing is required to check the quality of some of the heuristic para-
meters in our procedure. Furthermore, techniques for a locally oriented spatial
refinement will be investigated.
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