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Abstract

Modeling, simulation and analysis of interacting agent systems is a broad field of
research, with existing approaches reaching from informal descriptions of interaction
dynamics to more formal, mathematical models. In this paper, we study agent-based
models (ABMs) given as continuous-time stochastic processes and their pathwise ap-
proximation by ordinary and stochastic differential equations (ODEs and SDEs, respec-
tively) for medium to large populations. By means of an appropriately adapted transfer
operator approach we study the behavior of the ABM process on long time scales. We
show that, under certain conditions, the transfer operator approach allows to bridge
the gap between the pathwise results for large populations on finite timescales, i.e., the
SDE limit model, and approaches built to study dynamical behavior on long time scales
like large deviation theory. The latter provides a rigorous analysis of rare events in-
cluding the associated asymptotic rates on timescales that scale exponentially with the
population size. We demonstrate that it is possible to reveal metastable structures and
timescales of rare events of the ABM process by finite-length trajectories of the SDE
process for large enough populations. This approach has the potential to drastically
reduce computational effort for the analysis of ABMs.

Keywords: Agent-based models, continuous-time Markov jump process, stochastic differ-
ential equation, population scaling, metastability, large deviations, transfer operator ap-
proach

This article provides a lucid mathematical framework for describing and ana-
lyzing social interaction dynamics as described by agent-based models including
standard models for opinion formation or spreading of infectious diseases on so-
cial networks. For the setting of a moderate population size (i.e. many but not
infinitely many agents) an approximative stochastic model is analyzed which, in
contrast to the commonly used deterministic mean field limit, exhibits stochas-
tic effects like metastable behavior and can be used for studying timescales
of rare transitions. The theory of large deviations is used to characterize these
rare events completely for both, the agent-based model as well as for its stochas-
tic approximation. Our results are significant for the field of research because



they enable a twofold decrease of computational effort when studying systems
of interacting agents, which will considerably expand the possibilities of their
analysis.

1 Introduction

Social dynamics and collective social phenomena arise in systems of multiple agents that
act and interact, often based on incomplete information, within a social network embedded
in a common environment, which can be given by geographical conditions, infrastructure,
resources, etc., as well as by norms, rules, and narratives. An agent can represent an individ-
ual, a household, firm, political or administrative organization or any type of discrete entity.
A wide range of applications, such as innovation spreading (e.g., [32]) or infection kinetics
(e.g., [I7]) is addressed, using a wide spectrum of methods from data-based micro-simulation
of synthetic populations (e.g., [50]) to abstract individua]'} and agent-based models (ABM)
for studying underlying dynamic mechanisms. Comparatively compact models of social dy-
namics are present especially in the fields of socio- and econonophysics, see, e.g., the recent
special issue "From statistical physics to social sciences" [6]. A prime application lies in
opinion dynamics, a field that goes back to the introduction of the voter model by Clifford
and Sudbury [9] in the 1970s, and later on obtained its name by Holley [29]. The basic idea
is that agents imitate the opinion of neighbors. Various modifications in the representation
of opinions, imitation details, and the interaction structures exist, see, e.g., [31], 42, 48] for
recent overviews. Throughout the paper, we focus on basic ABMs of this kind.

While a focus on the individuals in social systems and their interactions was proposed
as early as 1957 by Orcutt [4I], only in the 1990ies, motivated by the increasing comput-
ing power, computer simulations of the resulting dynamics became a commonly used tool.
Also nowadays, many models are implemented with the help of (often object-oriented and
discrete-time) software frameworks for agent-based modeling (see, e.g., [1]). Not always the
model is precisely specified beforehand. The basics of an ABM are easily communicable,
e.g., to stakeholders, as individual (inter)action rules at the micro level and stepwise sim-
ulation of the overall system’s dynamics can be explained without requiring mathematical
expertise of the audience. However, the great freedom of the modeler in defining details
can make model documentation a challenge [25]. One point that often remains ambiguous
in ABMs with a discrete time step — which is the overwhelming majority — is scheduling,
that is, which agent(s) influence(s) which other agent(s) in which order in each time step.
As Weimer et al. [52] point out, most textbooks do not deeply reflect upon this topicE] and
models commonly use random interaction orders in each step. In this case, the question
arises whether agents "see" the changes already made within the same time step by other
agents acting earlier. For parallelisation of the ABM simulation, this may lead to problems,
however. When considering an ABM to be a representation of a real-world social system,
time discretization into steps in which each agent acts once is anyhow somewhat artificial.
As an alternative to the discrete-time description of ABMSs, there is a variety of approaches

'The term individual-based models is predominantly used in ecology, whereas social sciences rather refer
to agent-based models.

2Weimer et al. propose the SAS (Synchrony, Actor type, Scale) classification to simplify and generalize
discussions and comparisons between schedules, allowing standardization and reproduction of ABMs.



using continuous-time Markov processes, see, e.g., [2, [I1]; a corresponding software frame-
work is proposed in [5I]. In this paper, we will adopt this continuous-time description,
not only because it allows to circumvent the scheduling problem, but mainly because it
simplifies the mathematical approach taken herein.

Whether we consider simulation-oriented and rather informal ABMs or more precise math-
ematical modeling approaches for interacting agent dynamics, we always have to face severe
practical and theoretical challenges if the number N of agents and/or the timescale T of
interest become large. With increasing N and/or T', the computational effort increases dras-
tically (in terms of operations per timestep and in terms of the total number of timesteps
required), which renders simulation-based analysis of the dynamics practically infeasible for
ABMs with very large N and/or T

Since the emergence of ABMs, several approaches have been discussed for meeting this
challenge. The most prominent ones consider

(A) the large population limit N — oo for not too large, N-independent timescale T' by
constructing appropriate limit equations that describe the effective dynamics of the
ABM but themselves are much less demanding computationally and analytically, or

(B) the behavior of the ABM on exponentially long timescales T' < exp((/N) via WKB
approximations (after Wentzel, Kramers and Brillouin) or the large deviation principle
(LDP).

There are a lot of results and remarks on the relation between (A) and (B), but the picture
is far from being complete. This article contributes to making the picture clearer. In
particular, it bridges the gap between (A) and (B) by means of the so-called transfer operator
approach. For the sake of comprehensibility the subsequent considerations will be limited
to a voter-model like, network-based form of ABMs without any spatial component.

The main well-known result with regard to (A), the large population limit, is the insight
that, for large N, the ABM (described as Markov jump process) can be approximated by a
closed system of ordinary differential equations (ODE or mean-field ODE) [34] [16]. As we
will see later, this is a pathwise result, i.e., the rescaled trajectory (e.g. given by opinion
percentages) of the ABM converges to the trajectory of the ODE system for N — oo for
a fixed finite time interval [0,7]. For moderately large N, one will see deviations between
the trajectories that are due to the stochastic fluctuations of the ABM dynamics. These
fluctuations can be included into the description by an extension of the ODE system to a
stochastic differential equation (SDE) [35], [16], which allows to reproduce the fluctuations
up to second order. Since the ABM as well as the SDE process are of stochastic nature,
it is often omitted that this is a pathwise result for medium to large N and fixed finite
time interval [0,T], too, as we will also discuss in more detail below. In most articles on
the subject, the SDE-based description is not discussed directly, but instead in terms of a
mean-field approximation leading to the corresponding Fokker—Planck equations (see, e.g.,
131, 37]).

When there is dynamical behavior on timescales that scale exponentially with N, i.e.,
T = exp(¢N), case (B) from above, formal approaches via asymptotic expansions using
the well-known WKB method [3] or by means of the mathematically more rigorous large
deviation principle (LDP) [39] allow to accurately characterize the associated rare events as
remote tail events. That is, there are rare events that appear with very small probability



p =< exp(—(N) as large deviations from the expected dynamical behavior of the ABM. As
one example, we consider ABM dynamics which exhibit so-called metastable sets or states
to which the process is attracted for long periods of time before the rare event of an exit
from the metastable sets and into another one occurs. For social systems, understanding
such rare events can be of great interest because they should be avoided (e.g., an outbreak
of pandemics or riots) or because, on the contrary, a transition is desirable (e.g., a shift
to environmentally friendly technologies or healthy lifestyles). Often, the respective rare
events, e.g., switching between metastable sets, cannot be described by the mean-field ODE;,
which typically exhibits asymptotically stable fixed points instead of metastable sets. Thus,
the ODE system often is irrelevant for studying the behavior of the ABM on the longest
timescales. As we will see below, the rare events can be understood and characterized by
LDP-based analysis, at least in theory. However, for large N the necessary computations
often are infeasible in practice. As has been observed and discussed in the literature [14], in
some cases they can be replaced by LDP-based computations for the associated mean-field
SDE, at least under certain precautions that will be discussed below in detail.

The connection between (A) and (B) lies in understanding the behavior of the system on
long (but not necessarily exponential) timescales connected to metastability. For this case,
several approaches utilizing transfer operators have been developed, e.g., so-called Markov
state models (MSM) [47, 8]. We will show how to adapt and use them for studying ABM
dynamics. As the main result, these techniques will allow to use results from (A) in order to
characterize rare events on long timescales for (fixed) medium or large N and to understand
how this characterization is related to (B). Similar questions related to metastability have
already been discussed in the literature, mainly for (discrete-time) Markov chain approaches
[26], and via the Fokker-Planck equation [20]. Herein, we will provide new insights illus-
trated by specific examples. The main point is that MSM building and related techniques
like extended dynamic mode decomposition (EDMD) — see [33] for a recent overview — re-
quire many short trajectories of finite length only, allowing, e.g., for parallel computing to
determine quantities of interest.

The paper is structured as follows: The agent-based model and its continuous-time de-
scription as a transition jump process are introduced in Section A guiding example
reappears in the subsequent sections for illustration. We rescale the transition jump process
and consider the large population limit processes given by ODE and SDE systems. Next,
long timescales and metastability are discussed and illustrated in Section [3| by means of
the transfer operator approach. Using MSMs and the projected transfer operator, we char-
acterize mean first exit times. These reappear in Section [4] where we analyze rare events
on exponentially long timescales using LDP-based approaches. We address the advantages
and limitations arising in both approaches. Finally, open questions and future work are
discussed in Section Bl

2 Modeling interacting agent systems

Starting point in this paper is a continuous-time ABM without spatial resolution where
agents are nodes in an interaction network, similarly to the discrete-time model given in
[4]. In analogy to the term interacting particle system, which is used in the context of
chemical reaction networks, we also refer to the considered model as an interacting agent



system. Each agent can switch according to given transition rules between finitely many
states (called types). If the type space is {1,...,n} and we consider N agents, then the
state space of the ABM is {1,... ,n}N , i.e., its size grows combinatorially like n'Y, which
poses a problem when N becomes very large.

Alternatively, the ABM can be described via the population state, which counts the
number of agents for each of the available types. That is, the size of population state space
scales asymptotically like N™ in the worst case. For the basic case of homogeneous agents
and a complete interaction network, or if agents randomly interact with each other, the
population space description is exact, otherwise it already entails an approximation due to
aggregation. In the following, we assume completeness of the interaction network for the
sake of simplicity. Then, the ABM transition rules between the types imply transition rules
between population states. The associated propensities depend on the total population
state.

The temporal evolution of the population state is given by the Markov jump process, called
transition jump process or ABM process, and can be characterized by a master equation, in
direct analogy to the reaction jump process considered in the context of chemical reaction
systems. By applying Gillespie’s algorithm [21] for the numerical simulation of the transition
jump process, the problems of scheduling described above are naturally avoided. However,
these simulations become computationally intensive for settings with numerous agents.

2.1 The agent-based model

The considered system of interacting agents consists of
e a fixed number N € N of agents,

o aset {S;:i=1,...,n} of types S; available to the agents, i.e., at any point in time
each agent owns one of these types,

o aset {Ry,...,Rx} of transition rules Rj defining possible changes of the agents’
types, i.e., representing actions of and interactions between agents,

o a set of propensity functions specifying the rates at which transitions randomly occur
depending on the population state.

In the agent-based context, transition rules are mostly described from the perspective of a
single agent; they may also be referred to as update rules or decisions. To completely specify
the dynamics, in this case also a description of the interaction patterns and update orders
(scheduling) is needed. Here, we adopt the formulation used commonly in the chemical
context that takes a system level perspective, leading to a simpler and more transparent
description: each transition rule Ry is represented by an equation of the form

Rr: a1p:51+ ...+ apeSn — b1pS1+ ...+ bupSn, (1)

with the coefficients ajx, b € Ng denoting the numbers of agents of each type involved
in the transition as input and output interaction partners (see Example [2.1)). In order to
ensure that the total number of agents is not changed by such a transition, we assume



Yo @i = Yoiq b for each k. The associated vector vy, = (v1g, ..., Vnk) € Z™ is defined
by
Vil = il — @,

and describes the net change in the number of agents of each type S; due to transition
Ry. Note that different transitions can lead to identical net changes, accounting, e.g., for
different social mechanisms inducing a specific change. The population state of the system
(i.e., the system state) is given by a vector of the form

x = (z1,...,2n) € Ny,

where z; refers to the number of agents of type S;. As the total number of agents is assumed
to be constant, the population state spaceﬁ is given by

n
X = {x = (xi)izl,..‘,n € Ng : Z:l'Z = N} .
=1

Each transition R induces an instantaneous change in the population state of the form
T — T+ Vg,

which may occur at any point in time ¢ > 0. The probability for transition Rj to happen
in an infinitesimal time step dt is given by ay(a)dt, where oy, : X — [0, 00) is the propensity
function of this transition. We assume the propensity ax(x) to be proportional to the
number of combinations of interacting agents in x, and, moreover, to scale with the total
population size N.

Example 2.1 (Extended voter model: Imitation and exploration). Throughout the pa-
per, we consider the extended voter model as a guiding exemplary setting. This model is
well-known, e.g., as noisy multi-state voter model, for describing foraging ant colonies, or
chemical systems, see [28] 5], [40]. Consider two sorts of transition rules. Firstly, imitative
transitions R;j, i # j, are of the form

Rijt Si+5j —)25j,

which means that, given two agents of different types S; # Sj, one of the agents adopts the
type of the other agent. An example would be the adaption of another agent’s opinion or
technological innovation. Secondly, there are explorative transitions jo, 1 # 7, also known
as mutations, which have the form

R;ji Si — Sj

and describe the change of an agent’s type independently of other agents. Note that we
replaced the general index k by tuples (7, j) because this appears intuitive here and simplifies
the notation. For these transitions, the net change vectors are given by v;; = e; —e;, where

3This system description corresponds to the partition of the space of all possible configurations on which
Banisch et al. then define the macrodynamics of their general opinion model, see Section 4.3 in [4].



e; € Nij denotes a vector whose elements are all zero except the entry ¢ which is one. The
propensity functions o;; of imitative transitions R;; are given by

aj(x) = N :c,avj,
where 7;; > 0 are chosen rate constants. Here, the scaling by N reflects the fact that the
probability for two agents to meet within a population of size N is proportional to 1/N.

For explorative transitions Rw, on the other hand, we have

/ /
aij(iB) = TVijTi
for some rate constants 'ylfj > 0. A

Remark 2.2. The above description has been limited to the case of a complete interaction
graph for the sake of simplicity. Generalizations are possible, e.g., by weighting the edges
in the graph or by forming the interaction network out of some weakly connected, complete
components or clusters. In these cases, the form of the propensity functions and perhaps
the definition of the state space need to be adapted, but the general setting remains the
same.

2.2 The ABM process

One way to describe the temporal evolution of the system is to formulate a continuous-time
stochastic process X (t)|¢>0,

X (t) = (Xi(t))i=1,...n € X,

with X;(¢) denoting the number of agents of type S; at time ¢ > 0. The process X (t)|¢>0 is
a Markov jump process, i.e., it is piece-wise constant, with jumps of the form

X(t) = X(t) + vy

occurring at random jump times. The waiting times between the jumps follow exponential
distributions determined by the propensity functions. Let P(x,t) = P(X(t) = x | X(0) =
x() denote the probability to find the system in state x at time ¢ given some initial state xg.
In order to describe the time-evolution of the system we consider the Kolmogorov forward
equation of the transition jump process X (t)|;>0, which is given by

dP (z,1) Z (@ — vi) P(a — vy, t) — ag(z)P(x, )], (2)

where we set ai(x) := 0 and P(xz,t) := 0 for * ¢ Nf in order to exclude terms in the
right-hand side of where the argument & — vy, contains negative entries. In the context
of chemical reaction networks, is called chemical master equation [22].

Alternatively, the evolution of the probability P(x,t) can be described by the transfer
operator P! acting on functions of x as

(Plo)(y) = > v(@)P(X(t) =y | X(0) = ).



That is, the transfer operator is the evolution operator P! = exp(tG) generated by the master
equation dP/dt = GP with G denoting the operator on the right hand side of . Generally,
the master equation cannot be solved analytically. Instead, the process’ distribution is
typically estimated by Monte Carlo simulations of the underlying Markov jump process
X (t)|t>0, which may be generated using Gillespie’s stochastic simulation algorithm [21].
With an increasing population size N, the jumps in the population process X (¢)|;>¢ occur
more and more often, while the size of an individual jump relative to the agent numbers z;
decreases. In particular, in social systems it is also obvious that in a larger system, more
actions take place and that generally the influence of the single agent diminishes. Stochastic
simulations of the jump process using Gillespie’s algorithm become inefficient for large N,
since they track each of the individual stochastic jump events, and thus time advance in
each iteration becomes extremely small. Thus, simulation of the ABM process may become
computationally infeasible for very large values of N.

2.3 Population limits for finite time intervals

For large N, an appropriate rescaling of the dynamics may lead to effective approximate
dynamics given by stochastic or ordinary differential equations. In what follows, we sum-
marize the corresponding results which are mainly based on the law of large numbers and
the central limit theorem.

Let X (t)|s>0 denote the transition ABM process as defined in Section [2.2| given the total
number IV of agents. Also for the propensity functions we now use the notation a{CV in order
to indicate their dependence on N. We introduce the relative frequencies ¢ = /N and
rewrite the master equation of the interacting agent system in terms of the frequency-
based probability distribution

N (e t) :=P(XN(t) = N¢) = P(Ne,t),
together with the propensities
ai(c) = N (eN),

where € ;== N1 denotes the smallness parameter. Then, with adapted notation, the master
equation (the forward Kolmogorov equation) reads

dp 2! %Z (c —evy)p®(e — v, t) — ag(c) p*(e,1)]. (3)

The transfer operator associated with the rescaled process will be denoted by 75}5\,, ie.,
75]tv = exp(té ~N/€) where Gn /e denotes the generator of the rescaled master equation .

It is well-known that in the limit N — oo and assuming convergence of the scaled propen-
sity functions &;, =29 &y, the rescaled jump process XV (t)/N|t>0 converges to the frequency
process C(t)|s>0 given by the ODE

K
)= a(C(t)vy (4)
k=1



with initial state C'(0) = limy_o X™(0)/N [36]. The order of convergence is given by
N~—1/2 [36, [16], i.e., we have the pathwise approximation

sup HXN )/ N —C(t H<CN 1/2
t€[0,T]

for every finite T" and an a.s. finite constant (, both independent of N, where { will in
general depend on T'. Here, || - || refers to the Euclidean norm (or any other norm) on R™.

A higher order approximation can be obtained by considering the stochastic Langevin
process C',(t)|¢>0 given by the SDE

K
dCy(t) = Z a(CL(t))vedt + Z \/;“ak (CL(t))dBg(t) v, (5)
k=1

which, in the context of chemical reaction kinetics, is known as the chemical Langevin
equation [23]. Here, B(t), k =1,..., K, are independent Brownian motion processes. For
the pathwise approximation error, one gets from [35, [16] that

t:‘ng]HXN )IN = CrLb)|| < Clog]E,N) (6)

for finite T" and an a.s. finite constant (, both independent of N, again as above. Also,
the estimate is a pathwise result again. It is valid if in one uses a realization of the
Brownian motion that is adapted to the realization of the rescaled Poisson process used for
the jump process, for details visit [I6]. Note that these approximation results only hold for
finite time intervals that are independent of V.

Remark 2.3. Another commonly used approach to approximate the ABM process defined
by the master equation is the linear noise approximation given by the leading-order term
of the corresponding system size expansion. In contrast to the ODE limit model, both the
non-linear SDE approach given by and the linear noise approximation allow to recover
not only distributions of the ABM process but also power spectra which provide a means
to detect oscillations as given, e.g., in predator-prey cycles [38] [49]. As for estimations of
the systems first- and second-order moments, however, the non-linear SDE approach turns
out to be more accurate than the linear noise approximation [24].

The Fokker—Planck equation associated with the SDE limit process has the form

0 " 1 & 02
(e ; (@) pnien) + 55 z: Gege, (Zu@piet). (D
with
K K
Z ar(e)vg, and X(e) = Z vy, (8)

see [31] for the discrete-time case. The forward transfer operator T3 associated with the
SDE limit process again is the evolution operator

T = exp(tGn)



generated by the Fokker—Planck equation 0/0; p1, = Gnpr, that is, by the operator Gy on the
right hand side of Equation . Just as the master equation of the Markov jump process,
also the Fokker—Planck equation in general cannot be solved analytically. However,
trajectories of the Langevin process may be generated using the standard Euler—-Maruyama
scheme. Here, possible stepsizes are asymptotically independent of the population size N,
which makes the model more efficient than the jump process model if the number of agents
is large.

Invariant measure. Under some technical conditions (e.g. regarding growth of b and X
at infinity), a unique invariant measure (stationary density) exists, however, perhaps only
on the accessible part of the state space. The SDE dynamics is reversible (i.e., satisfies
detailed balance with respect to this measure) under some technical conditions (e.g. growth
at infinity), if and only if there exists a smooth function V' such that [54]

blc) = —X(e)-VV(e)+ %V -¥(e),

with the more explicit form

1

K
kz_jlak(c) (vi - [vV - o Viogan(e)] + 1) v =0. (9)

If a solution V' with sufficient growth at infinity exists, the invariant measure ji of the SDE
dynamics (more exactly the density associated with it) is given by

file) = & exp(~2NV (e)),

where Z is a normalization factor.

In order to motivate the investigations in Section 3] we now calculate the invariant measure
for the guiding example depending on N, observing that its properties cannot fully be
explained by large population limits.

Example 2.4 (Limit SDE and ODE for two types of agents). Let us return to the voter
model from Example 2.1] and let us restrict our considerations to the case with two types.
Then, the SDE solution C', has two components satisfying (C1,)1(t) = cand (Cy)2(t) = 1—c¢
with

de = ((y1 =yz)e(l = ¢) = ipe+ (1 — ) dt
+;N@Wﬁmm—@d&+¢£wa—@ﬂw
+\/1N( — e dBs + 45, (1= o) dBy).

That is, the accessible state space is just one-dimensional. This one-dimensional SDE
process can be shown to be reversible by using condition @ If yi2 = 721 = v > 0,
Yig =9 =7 >0, and k = /7, the solution V of (9] is given by

V(e) = % log(2ve(1 —¢) +4') — i log(2ke(1 —¢) + 1)

10



Figure 1: Invariant measure of SDE dynamics for y12 = 721 = 1, 745 = 74; = 0.005, and
k = 200. Red/solid: N = 60, blue/dashed: N = 1000, green/dotted: N = 5000.

such that

N_q

(2&0(1 —c)+ 1) ;

R 1

file) = 5 exp(-2NV (@) =
This invariant measure is shown in Figure [I] for different values of N. We see that the
invariant measure exhibits maxima around ¢ = 0 and ¢ = 1 for N = 60, while it shows a
unique maximum at ¢ = 0.5 for N = 1000 and N = 5000 with sharper concentration around
the maximum for larger N. In comparison, the limit ODE for this case is given by

%c =-27c++,

with a unique stable fixed point at ¢, = 0.5. That is, for N — oo the SDE as well as the ABM
dynamics will fluctuate around this fixed point because the limit ODE will asymptotically
converge to it, and gets close in finite time. This explains why the invariant measure of the
SDE exhibits a unique maximum around ¢ = 0.5 but it does not explain why it has maxima
elsewhere for N = 60. We will see that this is also the case for the ABM dynamics, and
that this behavior is explained by the existence of metastable sets, see Figure A

Remark 2.5. Let us shortly return to Example with two types. By setting 75, = 0,
d =21 — 712 > ¥j2 > 0, the limit ODE has one stable fixed point ¢, = 1 — §/7],, and one
unstable fixed point referring to the trap state C*P = (0,1) of the ABM dynamics. For
appropriate initial values, the ODE limit dynamics converges asymptotically to the stable
fixed point C$*P'® and will stay there unconditionally. The SDE and ABM dynamics will
behave similarly for large IV and finite time interval. However, on very large time intervals
(scaling exponentially with N), both, the ABM process as well as the SDE process, will
rarely deviate from the narrow cylinder around the stable fixed point, approach and finally
end up in the trapping state.

11



3 Transfer operator approach

For appropriately chosen rate constants «;; and %{j the ABM process of the guiding example
given in Section [2.1] can exhibit metastable behavior, where one type predominates the
population for a long period of time before another type will take over eventually and then
dominates for another long period of time. In many (but not all) cases for moderate to
large N, such metastable behavior can be reproduced by the SDE limit process, while the
ODE limit process often fails to reproduce it. As finite timescales (i.e., independent of N)
may not be sufficient to understand this, we first introduce the transfer operator approach
to metastability and then show how it can be applied to the ABM and limit SDE process.

3.1 Transfer operators and dominant timescales

In the following, we will consider the transfer operators ﬁ]tv of the transition jump (ABM)
process and T}, of the corresponding limit SDE, where the subindex N indicates for which
number of agents the respective dynamics is considered.

For the next step we assume that both, the ABM dynamics and the SDE limit dynamics,
are (geometrically) ergodic on the respective accessible state space, and there are respective
invariant measures u, respectively fi. Moreover, we assume that both kinds of dynamics are
reversible. This assumption makes most of the following constructions much shorter and
easier to comprehend because, for reversible dynamics, the associated transfer operators
are self-adjoint in the Hilbert space L2 (with m = u or ™ = [i, respectively) and thus pos-
sess real-valued spectral decompositions. The assumption of reversibility is not necessary;
without it, one has to replace real-valued spectral decompositions by the more involved
complex ones, alternatives like the Schur decomposition [12] or the respective singular value
decompositions.

Predominant eigenvalues. Let \! be the eigenvalues of 75}\,, sorted by decreasing absolute
real value, and 1; the corresponding eigenfunctions, where [ = 1,2.... Under our assump-
tions it holds that A\; = 1 is independent of ¢, isolated and the sole eigenvalue with absolute
value 1. Furthermore, 1)y = p. The subsequent eigenvalues satisfy A} = exp(—;t) for some
v >0,0=2,3,..., and thus decrease monotonously to zero both for increasing index and
time. That is,

lim [A\]| =0 and lim || =0.

l—o0 t—o0

The associated eigenfunctions 9,13, ... can be interpreted as sub-processes of decreasing
longevity in the following sense: Given a function w and lag time 7 > 0 with u = Y72, B¢y,
5 € R, then

00 d
Phu= Y M~ MBy forall t>r,
=1 =1

since there exists an index d € N such that A ~ 0 for all ¢ > 7 and all [ > d. Hence,
the major part of the information about the long-term density propagation of the ABM
dynamics is encoded in the d dominant eigenpairs. The timescales associated with the
dominant eigenvalues )\f, l=2,...,d are called dominant timescales and given by

T =t(- 1og(Af))_1,

12



where T; is independent of ¢, since the transfer operator exhibits an infinitesimal generator,
and therefore,

d
Phum Y exp(—t/T})Bpy forall t> 7.
=1

For the SDE transfer operator T}, we denote the eigenvalues by S\f, and the eigenfunctions
by 7,21 with 1&1 = [i. The same relation concerning the dominant timescales T} holds.

The ABM transfer operator Pl acts on functions u € L2(X/N) on the rescaled population
space X/N, while T}, acts on functions u € L2([0,1]"). In general, the size of these function
spaces prohibit efficient computation of the dominant eigenvalues. Therefore, one considers
projected transfer operators instead.

Projected transfer operators. We make the following considerations for the transfer op-
erator ﬁfv of the ABM process; however, analogous statements hold for the transfer oper-
ator T} of the SDE process. The projected transfer operator with respect to a subspace
L ¢ L2(X/N) is the operator QP%Q, where Q: L2(X/N) — L denotes the orthogonal
projection of the original function space of 75}5\, to L with respect to the appropriate scalar

product (-,-)r. If L is finite-dimensional and spanned by the functions ¢;, i = 1,...,m,
then
Qu = Z @, u)r¢;, with mass matrix M;; = (¢i, ;) r-
i,j=1
The most prominent case is that of subspaces spanned by indicator functions ¢; = 1;,
where 1; is one on a set B; and zero outside and the B;, ¢ = 1, ..., m, form a complete, non-

overlapping partition of the respective state space. In this case, called the box discretization
of the transfer operator, the projected transfer operator QP4 Q has a matrix representation
denoted P' = (P;;)i j=1,...m, with entries

1
m(Bi)

where the subindex m means that initial values are distributed due to the respective invariant
measure T = p, or ™ = fi, respectively, and ¢ the respective ABM or SDE process. The
matrix P! representation of the projected transfer operator is stochastic. Its entries can be
approximated by starting ng trajectories of the respective process in each box. Let cf(O),
k =1,...,ng be initial values distributed due to 7|p, and c¥(t) the final point of a t-long
reahzatlon of the process started in ¢¥(0), then

plj = Px(c(t) € B; | e(0) € B;) = Ex (2;(e(t)1i(e(0)).

1 &
pij & - > 1;(c(t)). (10)
k=1

There are a variety of results on how closely the dominant eigenvalues of the projected
transfer operator QPNQ approximate the eigenvalues of the original transfer operator PN
For example, in [10], the error is characterized via the projection error induced by @, while in
[47] (Thm. 4.16), upper and lower bounds to the error, specific for every complete partition
of the respective state space into sets, are given. Moreover, in [44] the long-term error
Pt — (QPLQ)%|| with s > 1 is analyzed.
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Figure 2: Independent simulations of (a) the ABM process and (b) the SDE process for
the dynamics of Example showing agent numbers instead of opinion percentages. Two
types S; and Sy, N = 60 agents, 712 = v91 = 1 and 7}, = 4, = 0.005. The fixed point
of the ODE process is N - C, = (30,30). Clearly, the ODE process cannot approximate
the ABM process, since it is not able to exhibit a metastable behavior; the fixed point is
asymptotically stable.

Metastability. After these preparations we can point out the key idea of the transfer op-
erator approach to metastability [47]: Metastable subsets can be detected via the dominant
eigenvalues of the respective transfer operator close to its maximal eigenvalue A = 1. More-
over, they can be identified by exploiting the corresponding eigenfunctions v, [ = 1,...,d.
In doing so, the number of metastable subsets is equal to the number of eigenvalues close
to 1, including 1 and counting multiplicity. Weighted with the invariant measure m, the
dominant eigenfunctions 1y = ¢/; /7 exhibit different sign combinations for each set, see [47].
Alternatively, they allow to decompose state space into metastable sets by their zeros [30].
Then the asymptotic exit rates from these metastable sets are approximately given by the
inverse of the dominant timescales [30].

The dominant eigenfunctions also play a major role in the theoretical justification of
building so-called Markov state models (MSM) [47, [§]. An MSM is a very low-dimensional
reduced model of the full transfer operator 75}5\, with almost the same dominant eigenval-
ues. For d dominant eigenvalues, the Markov states of an MSM are formed by non-negative
ansatz functions ¢, kK = 1,...,d that satisfy 755\/% ~ ¢ as closely as possible and thus
can be interpreted as macro-states that are almost invariant under the dynamics. More
precisely, the ¢, are selected such that they form a partition of unity, i.e., >, ¢ = 1, and
the projected transfer operator Qﬁf\,Q (represented by a d x d matrix) satisfies the condition
that its eigenvalues are as close as possible to the dominant eigenvalues of 75}5\, There are
several algorithms for computing these almost-invariant ansatz functions ¢ based on the
dominant eigenfunctions of 75?[, e.g., set-oriented algorithms like milestoning [46], or algo-
rithms approximating a basis of the dominant eigenspace like PCCA+ [43], see Example
for more details.

All the previous considerations can be carried out for both, the ABM and SDE process
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(replacing 75}\, by T4), independently of N. Moreover, for large enough N the respective
results of this MSM analysis are very close for the ABM and SDE cases and converge for
N — oo, which we will see in the following two examples.

Example 3.1 (Metastable behavior for two agent types, part 1). Consider again two types
of agents with 719 = 721 = 1 and 7}, = 75, = 0.005.

For N = 60, Figure [2|shows typical long trajectories of the two processes. The ABM process
and the SDE process clearly exhibit metastable behavior with at least two metastable areas,
one around ¢ = 0, the other around ¢ = 1. With increasing N and with respect to the
same finite window in time, this bistability vanishes and the system remains close to the
deterministic solution of the limit ODE while short escapes from a narrow cylinder around
it become more and more rare.

In order to explain this behavior, we computed the projected transfer operators for the
SDE and the ABM process for different numbers of agents (N = 60, 100,200, 1000) using
a box discretization of the one-dimensional state space into m uniform boxes (m = 30
for N = 60 and m = 100 for larger N), and approximating the entries of the respective
stochastic discretization matrices via by starting ng = 5000 trajectories of length 7 = 5
of the respective process in each box. The invariant measures of the respective stochastic
discretization matrices are very good approximations of the analytical results for the SDE
case as of Figure [I] Next, the subsequent dominant eigenvalues and eigenfunctions of the
resulting stochastic matrices Py, were computed.

For N = 60 we find the following leading eigenvalues for the SDE process,

AT =(1,0.93,0.70,0.43,0.21, . ..),
and for the ABM process,
A" = (1,0.93,0.71,0.46,0.25, . ..).

The eigenfunctions for the second and third eigenvalues are given in Figure[3] We observe

that the second eigenfunctions 1, (ABM) and Vo (SDE) are qualitatively similar, and
that, in both cases, their respective zeros decompose the state space (roughly) into the two
metastable sets A = [0,1/2), and B = [1/2,1] with an associated metastable timescale of
Ty = —7/log(A}) ~ 100 which seems to fit to the typical transition behavior displayed in
Figure|2 9l The third eigenfunctions 3 and 1/13 also are qualitatively similar. Their zeros show
that a set ~ [0.2,0.8] around the fixed point ¢, = 0.5 of the limit ODE also is metastable
with an associated metastable timescale of T3 =~ 14 for N = 60.
The dominant eigenvalues for other values of N are shown in Table We observe that
for increasing N for both, the ABM and the SDE process, the second eigenvalues (almost)
stay the same, i.e., the metastable timescale associated with the respective metastable sets
(around ¢ = 0 and ¢ = 1) does not change much. However, the third eigenvalues increase
with N and with it the associated metastable timescale, indicating that the set around the
fixed point ¢, = 0.5 is increasingly metastable (i.e., the timescale of rare exits from this
set increases from T3 = 14 for N = 60 to T3 = 45 for N = 1000). Figure |4| shows that
the second and third eigenfunctions for ABM and SDE are now very similar. They still
indicate the same metastable sets as for NV = 60 but the metastable set around the fixed
point ¢ = 0.5 has become significantly smaller.
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Table 1: Second and third eigenvalues for different values of N. Error estimates indicate
that the error is about £0.01 in all cases.

N X (ABM) X (SDE) A3 (ABM) A3 (SDE)

60 0.93 0.93 0.71 0.70
100 0.94 0.95 0.81 0.79
200 0.95 0.95 0.86 0.86
1000 0.95 0.95 0.90 0.89

Using PCCA+ [43] we can now build MSMs for the ABM process. For N = 1000 and three
dominant eigenvalues, we get a 3 x 3 projected transfer operator whose matrix representation

is stochastic
0.9506 0.0006 0.0488

Qﬁva: 0.0005 0.9525 0.0470
0.0271 0.0288 0.9441

and has eigenvalues A = (1,0.95,0.89) that are identical to the dominant eigenvalues up
to two leading digits. The resulting almost invariant ansatz functions ¢, k = 1,2,3 are
shown in Figure [, We observe that the non-negative ¢ form a partition of unity and thus
can be interpreted as almost quasi-stationary distributions that are almost invariant under
the dynamics. These quasi-stationary distributions ¢, are not close to indicator functions
of any set (which is the case in many other scenarios, see [47]). This shows that the state
space cannot be decomposed fully into the three dominant metastable sets. The two core
metastable sets around ¢ = 0 and ¢ = 1 and the one around the fixed point at ¢, = 0.5 are
too small (respectively weak). For better resolution of the underlying rare events we have
to apply additional techniques, see the following paragraph and Example A

Mean first exit times. In order to get additional information, we are interested in the
expected mean first exit time 7y (i) of the two processes for starting in some box B;, i € I
with I ={i=1,...,m: B;NA =0} and going into some set A. Note that A and B; do
not need to be metastable sets. The vector ny = (nn(7))ics of these mean first exit times
can be computed by solving
%(Id_P]T) ny =1, (11)

where P] denotes the submatrix of the m x m discretization matrix P7 of the projected
transfer operator Q75]TVQ (respectively Q75 Q) for indices i € I, and 15 the vector of length
|I| with all entries having value one. Again, equation results from the Galerkin dis-
cretization of the respective equation of the full transfer operator.

Given the mean first exit time 7y we can also compute the vector @ = (®n(7))ier of
associated rates via

D) = - log(nx (). (12)

We will calculate and compare the mean first exit times in the following example.
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Figure 3: Weighted eigenfunctions for (a) the second eigenvalue (A2 = 0.93 for the ABM
process (blue), A2 = 0.93 for the SDE process (red)) and (b) the third eigenvalue (A3 = 0.72

~

for the ABM process (blue), A3 = 0.70 for the SDE process (red)). N = 60, y12 = 21 = 1
and vjo = v5; = 0.005.
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Figure 4: Weighted eigenfunctions for (a) the second eigenvalue (A2 = 0.95 for the ABM
process (blue), Ao = 0.95 for the SDE process (red)) and (b) the third eigenvalue (A3 = 0.90
for the ABM process (blue), A3 = 0.89 for the SDE process (red)). N = 1000, y12 = v21 = 1
and v, = 75; = 0.005.
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Figure 5: Illustration of the three c-dependent quasi-stationary ansatz functions ¢y, k =
1,2, 3, used for building the MSM for the ABM process for N = 1000. See Example [3.1] for
further details.

Example 3.2 (Metastable behavior for two agent types, part 2). Consider again two types
of agents, this time with asymmetric coefficients y12 = 1, 791 = 1.1, 7], = 0.03, and
5 = 0.005.

In this case, the limit ODE has one stable fixed point ¢, ~ 0.72 in [0, 1], and for large N the
ABM as well the SDE dynamics will stay in a narrow cylinder around the ODE trajectory
on finite time intervals, while this trajectory will converge towards the fixed point.

We can again compute the projected transfer operators for different values of N for the
ABM and the SDE process using a box discretization of the one-dimensional state space
into m = 100 uniform boxes (m = 30 for N = 60 and m = 100 for larger N), and starting
no = 5000 trajectories of length 7 = 5 of the respective process in each box. Figure [6] shows
the resulting first and second eigenfunctions. We observe that the invariant measure is
concentrated on the region around the fixed point for both, the ABM and the SDE process.
Moreover, for both processes, the first eigenfunctions indicate that the sets left and right of
the fixed point are the main metastable sets.

We are now interested in the expected mean first exit time ny (i) for starting in some
box B;, i € I with I = {i = 1,....,m : B;NA = 0} and going into set A = [0.9,1].
This also gives the mean first exit times 7y from [0,0.1] to [0.9,1]. Using ny we compute
the associated rates &y via which are given in Table [2| for different values of N. We
observe impressive similarity between the mean first exit times ny computed via the ABM
and the SDE dynamics. Moreover, we observe that the ny increase exponentially with NV
and become rather large for large N. We will see in Section [4] how these two observations
(the agreement between ABM and SDE and the exponential growth of timescales) can be
explained by large deviation theory. A
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Table 2: Rates &y of the mean first exit times from [0,0.1] to [0.9, 1] for different values
of N. See also Figure [§] below.

N ny (ABM) &y (ABM) iy (SDE) &y (SDE)

60 458 0.10 440 0.09
100 540 0.06 530 0.06
200 874 0.03 885 0.03
1000 22000 0.01 22100 0.01
0.4 4
6 -
0.3 1
4 -
0.2 1
2 N 0.1 -
04 0.0
0!0 0{2 Of4 0!6 0!8 1?0 OTO 0!2 0{4 016 0!8 1{0
c c
(a) Invariant measure (first eigenfunction) (b) Second eigenfunction (weighted)

Figure 6: (a) Invariant measures and (b) weighted second eigenfunctions for the ABM
process (blue), and the SDE process (red). N = 1000, y12 = 1, 721 = 1.1, 7} = 0.03, and
/

3.2 Advantages and Limits

The closeness between the discretization matrices Py = QT4Q and Pipy = Q75}5VQ of
the transfer operators of the SDE and ABM processes for large N is due to the pathwise
closeness @ of the SDE and ABM process which implies

Pipg = Pigy + O(1/N),

entrywise [16], 47] for all times ¢ in [0, 7] for not too large 7. If the ansatz space used for the
discretization is of dimension m, then this means that there is a constant {y < oo such that

m
| Pépg — Pipmll < CON7

as an asymptotic result, i.e., there is an Ny € N such that the statement holds for all
N > Np. This result requires only trajectories of length 7, with the additional computa-
tional advantage that they can be computed in parallel for all boxes. This implies that for
large enough N we may characterize the long-term behavior of the ABM process via the
discretized SDE transfer operator.
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However, the discretizations Pl and Pk have to be computed by means of trajectories
via (denoted by PéDE,nO) which introduces an additional sampling error of order 1/,/ng
in the number ng of trajectories. Moreover, the discretizations differ from the true transfer
operators by the discretization error errgise resulting from using a finite-dimensional ansatz
space (see [44] [10]), such that in total

~ m m
”PgDE,no - PX/H1 < CON + ClTO + eITdiscr; (13)

NG

where 757\1 denotes the true ABM transfer operator. Note that this estimate does not require
any assumption of a gap in the spectrum of 75}5\, (as often is assumed inappropriately), see
[45] and in particular the discussion in [44].

Therefore, even for large IV, metastable structures of the underlying ABM process can be
identified by studying P&,y only up to the resolution given by the underlying discretization
which may be limited according to computational resources. In particular, if the metastable
structures became finer and finer for increasing IV, one would have to increase resolution by
increasing the dimension m of the ansatz space with NV in order to yield sufficient accuracy
which, in turn, would mean that we might not be able to reduce the first error term in
Equation sufficiently.

Remark 3.3 (Potential failure of the SDE approximation). The above result and
its consequences depend on our assumption that all types of agents are there in sufficient
numbers. There are cases where the continuous approximation by the SDE process was
documented to fail to capture the noise-induced multistability of the discrete ABM process,
namely when the multistability directly stems from the discreteness of the system [13]
27]. An example from the biochemical context is given by gene expression dynamics with
stochastic switches between the gene’s activity and inactivity. For such dynamics, hybrid
modeling approaches are demanded which approximate only part of the process components
by an SDE [53]. In such cases, at least one species is present in (very) small numbers only;
thus, they are not covered by the considerations herein.

4 Large Deviations

The approximation results of Section [2.3] concern the pathwise behavior of the stochastic
ABM process on finite time intervals (that do not scale with N). In Section |3| we went
beyond finite timescales but saw that some rare events associated with metastability happen
on timescales that grow exponentially with N. In this case, i.e., when 7" =< exp ((N), the
transfer operator approach reaches its limitations due to the increase of dimension m of the
ansatz space, see Section [3.2] We now investigate these unlikely tail events of the dynamics
and their approximation by the SDE process via the LDP.

As for the guiding Example we will see that (under specific conditions outlined below)
there is an approximate agreement of the tail probabilities when comparing the ABM process
to the corresponding SDE process. The literature contains results which show that this is
not always the case, see, e.g., [3]. We will shed some light on the reasons behind success and
failure, too. The analysis is done in terms of the rescaled ABM process C*®(t) := %X Nt
for e = 1/N, with the corresponding master equation given in . Again, e = 1/N denotes
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the smallness parameter for the sake of keeping the notation that is most prominent in large
deviation theory, for which we will now give a brief introduction.

4.1 Large deviation theory

Let C¢(-) = C°(t)|ejo,r) be an (arbitrary, random) path from an appropriate path space
C (e.g., C = H'([0,T],R")) starting in C*(0) = coy, and let P denote the probability dis-
tribution generated by the master equation , respectively by the Markov jump process
associated with it, or by the SDE limit equation (5). Furthermore, let ¢(-) = ¢(t)|epo,11,
¢(0) = ¢, denote a specific path from the selected path space C (for example, the solution
trajectory of the ODE limit system (). Then we call Z : C — [0,00] the large deviation
rate function associated with the law P if

lim lim inf € log P( sup
T

0—0 e—0 te[o7 6—0 e—0

]

t€[0,T]

-1 (C(t)\te[o,T]) ;

see [18]. This is often written in the following, more intuitive form

P(CE() () =exp (2T (el) (14)

where ~ denotes J-closeness of the paths C°(-) and ¢(-), and < asymptotic equality or
exponential equivalence, that is,

elogP(C=(-) ~ e(-)) = =L (e()) + o(1),

where the notation x. = x + o(1) means that (z. — x)/e — 0 for £ — 0. The statement
says that the probability to find a solution path C*(-) that is close to the specific path ¢(+)
is exponentially small in € with an asymptotic rate given by the rate function Z. In an
alternative way of presenting this, Z is the path space measure introduced by the dynamics
for small e: Following [7], we can write the probability p®(¢o, co, t1, €1) to go from ¢g at time
to to c1 at time t; using the path integral formalism:

p°(to, co, t1,€1) < /exp ( — éI(c()) )Dc(.)7

where Dc(-) denotes integration over all paths c(-) = e(t)liefsyy) With c(to) = co and
c(t1) = c1. That is, for small e, the exponential factor exp(—21Z (c(+))) works as a probability
density in the space of paths.

In many cases, expressions for the rate function can be found by constructing its point-
wise form I : R™ x [0,T] — [0, oo], such that the intuitive equation becomes

1
P(C‘E(t) ~ c) = exp (—I(c, t)) , (15)
5
meaning € log P(C*(t) =~ ¢) = —I(c,t) 4+ o(1) for all t. While I characterizes the asymptotic

behavior of the probability distribution P induced by the dynamics in the state space R, Z
characterizes the associated probability distribution in the path space C. In what follows,
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we will see how I can be computed for the ABM process and for the SDE . We
will present just the essential results; there are rigorous construction techniques for the rate
functions like the Feng—Kurtz [18] or the Gértner—Ellis [I5] methods, see [39]. Furthermore,
there are several other asymptotic techniques for studying exponentially small probabilities
for master and Fokker—Planck equations in the sense of Equation , e.g., WKB theory
or eikonal approximations, cf. [14} 3].

4.1.1 Large deviation rate function of the jump process

The solution of the master equation satisfies [3]

1
plent) = exp (~21(e.t) )
€
with a rate function for which one can derive a Hamilton—Jacobi equation of the form
Ol(c,t)+ H(c,VI)=0
with the Hamiltonian function
H(c,6) =Y ak(c)(exp(u; €) — 1) (16)
k
for £ € R™, see [39] for a review over the underlying theory. In terms of the Lagrangian
L(e,v) = sup [vT € — H(c,E)}.
£
the rate function can be characterized by

T
T(e(t)epiry) = (e, 0)+ [ £e(t).e(t)dt
for ¢(0) = ¢p. Unfortunately, in general £ does not have an explicit form.

Mean first exit times. The generator of the Markov jump process C*(t)|¢>0 underlying
the master equation is the infinitesimal generator of the backward Kolmogorov equation
and given by

G () = = S anle)[f (e +2v) - 1))
k

If 7, denotes the exit time of the Markov jump process from a bounded domain D C R"
with boundary 9D starting in a state cg € D, the mean first exit time or mean first passage
time 1°(co) = E(7,) satisfies

G = -1,

with boundary conditions n° = 0 on dD. When interested in large deviations of the mean
first exit time 7°(cp) from a bounded domain D after starting in ¢y € D, we set

o (Co) = exp (i@(@) ,
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for another rate function ® : R™ — [0, 00|, meaning

hm 1nf elogn®(co) = limsup elogn®(co) = P (o) -

e—0

Large deviation theory results in the following expression for this rate function [39]:
zak )(exp(] - VO(ep) ~ 1) =0,

which can again be expressed via the Hamiltonian defined in ([16)):
H(Co, V(I’(Co)) = 0.

That is, the curves H = 0 in the phase portrait of the Hamiltonian system associated with
the master equation determine the rate function ® : R™ — [0, 00] for the mean first exit
time. These results show that the Hamiltonian H is key to characterize both the large
deviation rate function and the (exponentially large) mean first exit time. We will see how
to utilize this insight for computing ® explicitly for a specific case in Section

4.1.2 Large deviation rate function of the SDE process

For the SDE process with the density pf (c,t) we consider a rate function Iy, such that

1
pile.t) = oxp (= 2hifen)).

£
Again, there is a Hamiltonian function Hy, [39, [3] such that
atIL(C, t) + HL(C, VIL) = 0.

Both rate functions I (for the master equation of the ABM process) and I1, (for the SDE
limit process) have the same minimum curve, given by the solution of the ODE limit system.
Moreover, for small &£, we have

H = Hi, + O(||€]%), (17)

i.e., the associated Hamiltonian of the SDE limit process is the second-order accurate ap-
proximation of the Hamiltonian of the jump process around the ODE limit curve.

This time, the associated Lagrangian can be directly computed if the matrix 3 defined in
is invertible [7, [19], and the large deviation rate function Zy, on path space of the SDE
system takes the form

T (elblico) = 3 [ (@00) ~ be(®)TS(e(0) (@) ~ blelt))

for paths e(t)|iejo) from H'([0,¢],R?) that start in the initial frequency state co, where we
set I1,(co,0) = 0.
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Mean first exit times. The mean first exit time
. 1
0" (eo) = exp | ZPr(co)

of the SDE process from a bounded domain D after starting in ¢y € D fulfills Gin° = —1,
where the generator is given by

- 0 £ — 0?
i =) bi(e)=— = Yii(e)=——— .
E1(0) = 2ob(e) g fle)+ 5 3 Bule) g fie
In this case, one obtains [7]
T 1 T
b(e)' - Vor(c) + §V<I>L(c) - YX(e)VPr(c) =0,
which can again be expressed in terms of the Hamiltonian function by
HL(C, V(PL(C)) =0.
4.2 Explicit rate functions for specific propensities

We now derive the explicit rate functions for the guiding Example Consider again two
types of agents and a total propensity function

aij(€) = ayj(e) + aj;(e) = vijeici +viei,  (6,5) = {(1,2),(2,1)},

and vectors v given by
-
vig=(-1,1) , va=-vi.

ABM process. The Hamiltonian associated with the master equation reads

H(c,§) = a12(0)(eXP(§2 —&1) — 1) + 021(0)(6XP(§1 — &) — 1>,

and the Lagrangian is defined as

£le,v) =sup o7 € +a1a() (1~ exp(e — &) + an(e) (1 - exp(s = &)

In this case, we have the conservation property c1 + co = 1 for all solutions of the master
equation. This implies for the Lagrangian that

00, otherwise,

E(c,v):{ El(cl,vl), v +ve=0, cv=1—0
where the reduced Lagrangian is given by (A& = & — &)

Li(c,v) = s&p {Afv + a2(c) (1 - exp(—Af)) + a91(c) (1 - exp(Ag))},
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Figure 7: Phase portraits of the reduced Hamiltonian H; (blue) with curves H; = 0 (red,
green) and of the reduced Hamiltonian Hy,; with curves Hy,; = 0 for (a) the ABM process
and (b) the SDE model, respectively. The arrows indicate the direction of the temporal
evolution.

with ¢ and v now one-dimensional and a;;(c) = a;;((c,1—c¢)). It can be computed explicitly,
resulting in

Li(c,v) =vlog { (v +4/v2 + 4dara(c)azi(c)) | +ar2(c) +az(c) — \/v2 + 4aja(c)ag(c).

1
2a21(c)

We find, as to be expected, that £; = 0 along the ODE limit trajectory, the solution of the
reduced ODE

v=2¢=(y21 —m2)c(l —¢) + 795, (1 —¢) —iqc. (18)

The rate function for all 1-dimensional paths c(t)|¢cpo, 7] 18

7 (eOhem) = 1(e0,0) + [ £a(e(t), ).
The reduced Hamiltonian reads
Hi (e, A8) = aa(e)(exp(~AE) — 1) + an(e) (exp(AE) — 1).
Its curves Hy(c, A§) = 0 are given by

alg(c)
agl(C)'

The phase portrait of H; and these two curves are shown in Figure [Tal

A¢ =0, A&(c) = log (19)

SDE process. When we turn to the SDE large deviation rate function for this specific

case, we find that
1 -1
Y = (a12 + an) <_1 1 >

25



is not positive (it has an eigenvalue 0). Again, this is a consequence of the conservation
property ¢ + co = 1, and we have to work with a reduced Lagrangian given by

1 1
L1,1(c,v) = rriagx (UA§ + (a12(c) — a2 (c))AE — §A£2) = §(a12(0) — ag (c) +v)2.
Moreover, we again observe that L1,; = 0 along the trajectory of the reduced ODE limit
equation . The associated reduced Hamiltonian reads

Hy1(c, AS) = (a21(c) — aiz(c)) A + %(042(0) + ai (c)) AE?,

so that Hy,, = Hy + O(A£3) in accordance with . The curves for Hy,1(c, AE) = 0 are
given by © .
a12(C) — a21(C
A =0, A&(c) =2 012(0) T @ () (20)
The phase portrait of Hy,; and these two curves are shown in Figure
When comparing Figures [Ta] and [Th] we observe that the phase portraits and the curves
for H = 0 of the ABM process and the SDE limit process are almost identical. This means

that the respective large deviation rates for the mean first exit time are almost identical.

Example 4.1 (Calculation of the rate function). Consider again two types of agents with
rate constants y12 = 1, 721 = 1.1 and 7}, = 0.03, v, = 0.005 as in Example In this
simple (one-dimensional) case the large deviation rate function can be computed explicitly.
If we are interested in the rate of the mean first exit time for passing from ¢y = 0.1 (meaning
10% of the agents are of type S1) to ¢; = 0.9 (meaning 90% of the agents are of type Si),
we have to do the following: From cg = 0.1 to the fixed point at c, = 0.72 we can follow the
green curve A¢ = 0 (which corresponds to the trajectory of the ODE limit system), while
from ¢, to ¢; we will have to act against the limit dynamics and follow the red curve in
Figure [Tal Since the system is one-dimensional the rate function reads

Cx c1
D(co — c1) = / Aéde + / Aéde ~ 0+ 0.0102 = 0.0102,
co Cx

which results from V® = A, see [7]. The value is the same for the (rescaled) ABM process
and the SDE process, using and , respectively. This result has to be compared to
the empirical rate €log(n®(co — c¢1)) that can be calculated from many realizations of the
ABM and the SDE process, respectively, as well as for the rates obtained by the transfer
operator approach in Section Figure [8] shows how the empirical rate converges to the
large deviation rate ®(cy — ¢1) for € — 0, that is, N — oo. In addition, it shows that the
empirical rate of the ABM and the SDE process are almost identical even far from the limit.
Comparing these results to the ones of Example (indicated by red markers) shows that
we also find quantitative agreement with the rates of the mean first exit times computed
via discretization of the associated transfer operator, see also Table A

Remark 4.2. Along the green curves in Figure [T, where A¢ = 0, the temporal derivative

%c = g—gé is positive on the left hand side of ¢, = 0.72 and negative on the right hand side,

while the temporal derivative %Af = —%—Ig is constant 0. Thus, with the ODE solution we

always end up in the fixed point ¢, no matter from which side we are approaching. Along
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Figure 8: Mean time n°(co — ¢1) to pass from ¢g = 0.1 to ¢; = 0.9 (more specifically the
Monte Carlo estimate of the corresponding rate log(n®(co — c¢1)) by 103 simulations of
the respective process) for (a) the ABM process (master equation) and (b) the SDE limit
process considered in Section in comparison to the value ®(cy — ¢1) = 0.0102 of the
rate function. Dashed lines: confidence interval for confidence level 0.999. The results are
in agreement with the results of Example where identical parameters yi2 = 1, 21 = 1.1
and v}5 = 0.03, v4; = 0.005 were considered. The rates of Table [2 are indicated by the red
markers.

the red curve, for A& # 0, say positive, the derivatives %Af and %c are positive and we
follow the red line upwards to ¢;. The direction of the temporal evolution is indicated by
arrows in Figure

4.3 Deviations of the SDE rates from the ABM rates

In the example analyzed in Section the Hamiltonian’s phase portraits of the ABM
process and of the SDE process are almost indistinguishable, see Figure so that the
resulting mean first exit times are almost identical. In general, however, the Hamiltonians
of the two processes only agree to second order in A§ = &1 —&», such that, for large AE, there
can be deviations (that lead to exponential deviations in the exit times). In such a case,
the SDE fails to quantitatively capture the dynamics of the ABM process. Therefore, the
characterization of metastable behavior via the SDE process will in general not be enough
to understand the metastability of the ABM process quantitatively.

5 Conclusion

In this work, we have studied an agent-based model given as a continuous-time Markov jump
process and its pathwise approximation by ordinary and stochastic differential equations
for medium to large population sizes. The two main insights are: Firstly, the transfer
operator approach allows to uncover metastable structures and long timescales associated
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with rare events for either the ABM or the SDE processes by means of (many) finite-
length trajectories of the corresponding process. Secondly, for large enough numbers N of
agents, the metastable structures detected by the transfer operator approach of the ABM
and SDE process are very close, such that the characteristics of the long-term behavior
of the ABM process can be determined by simulating (many) short trajectories of the
SDE process instead (for which the pathwise closeness of the SDE and ABM processes is
well-established).  This is of major importance for increasing N, since simulations of the
ABM process may become infeasible due to exploding computational effort, which is not
the case for the respective SDE process. However, this approach has important theoretical
limitations if metastable structures become finer with increasing N, see Section [3.2] In this
case, when considering exponentially rare events, large deviation theory allows to derive
equations which characterize the asymptotic rate functions of both, the ABM and the SDE
process, which were demonstrated to be close under certain conditions. While the results of
Section [4] require exponentially long timescales (i.e., the results concern only the asymptotic
behavior of the processes) and the approximation results summarized in Section [2/ hold only
for short timescales (i.e., independent of N), the transfer operator approach of Section
allows to consider time scales "in between". This approach uses the finite time approximation
results to derive statements for large times which can — but do not necessarily need to —
scale exponentially with N, see Section [3.2] In this sense, the transfer operator approach is
the bridge between the two concepts (A) and (B) stated in the introduction, see page

These theoretical insights are complemented by computational considerations. If aiming
at understanding rare events of realistically complex ABM processes on long timescales and
for large N, large deviation theory might not be helpful for several potential reasons: (a)
the associated Hamilton—Jacobi equations cannot be solved efficiently, (b) it is not clear
whether we may replace the ABM by the SDE process in large deviation analysis, or (c)
it may be difficult to find metastable structures in advance of computing the associated
exit or transition rates. In these cases, metastability analysis based on transfer operators
provides a useful and practical tool for identifying metastable structures, quasi-stationary
distributions and for approximately computing mean first exit times or transition rates.

Our analysis is restricted to the setting of complete (possibly weighted) communication
networks with homogeneous transition rates. The considered model approaches do not
distinguish between individual agents, but count the number of agents of each available
type (or their concentrations, respectively), assuming that every agent may at any time
interact with all other agents. In times of internet communication and around-the-clock
information availability, this assumption is not unrealistic for some interaction systems of
interest. However, for many applications there clearly arise limitations to the interaction
opportunities of agents, as for example for disease spreading dynamics where the transfer of
the disease by infection requires physical contact of agents. Here, more detailed models are
required, which take the agents’ environment into account or define (time-homogeneous or
time-dependent) incomplete interaction networks. Further investigations will show how the
transfer operator approach can be applied to such incomplete or inhomogeneous interaction
systems and more complex agent-based models.
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