
Technische Universität Berlin

Fakultät II - Institut für Mathematik

Bachelorarbeit

im Studiengang Mathematik

Node Partitioning and Subtours Creation Problem

(NPSC)

Angefertigt von: Gioni Mexi
Matrikelnummer: 365153

Betreut von:
Prof. Dr. Thorsten Koch

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und eigenhändig sowie
ohne unerlaubte fremde Hilfe und ausschließlich unter Verwendung der aufgeführten
Quellen und Hilfsmittel angefertigt habe.

Berlin,

. .
Unterschrift: Gioni Mexi

Zusammenfassung

Die Überwachung von Bereichen wird zunehmend von unbemannten Luftfahrzeugen (UAVs)
durchgeführt, da diese Informationen über ein Ziel aus großer Entfernung und Höhe sam-
meln können. UAVs können insbesondere Ziele überwachen, die auf andere Weise nicht
zugänglich sind. Die Problemstellung dieser Arbeit basiert auf der Annahme, dass die In-
spektion eines jeden Bereichs regelmäßig innerhalb einer sogenannten kritischen Zeit erfolgen
muss. Die kritische Zeit eines Bereiches ist als obere Grenze für den Zeitraum zwischen zwei
aufeinanderfolgenden Besuchen dieses Bereichs zu verstehen. Jeder Bereich darf nur von
einem UAV besucht werden und die entstehenden Routen müssen Kreise sein. Ziel des Node
Partitioning and Subtours Creation Problems (NPSC) ist es die minimale Anzahl von UAVs
zu bestimmen, die nötig ist, um alle Bereiche innerhalb ihrer kritischen Zeit zu besuchen.

Im Rahmen dieser Arbeit definieren wir das NPSC Problem mathematisch und zeigen,
dass es NP-schwer ist. Die Größe des Problems wird mithilfe von Preprocessing-Techniken
reduziert und es wird eine Heuristik implementiert, die in kurzer Zeit zullässige Lösungen
generiert. Anschließend formulieren wir insgesamt vier (nichtlineare) gemischt-ganzzahlige
Programme (engl. Mixed Integer (Nonlinear) Program, MI(NL)P): Modell A, B, B+ und
MTZ. Modell A ist ein MINLP und wird in Modell B linearisiert. Modell B+ enthält als
Erweiterung von Modell B zusätzliche zulässige Ungleichungen. In allen drei Modellen A, B
und B+ werden unzulässige Lösungen, in denen mindestens ein UAV mehreren zyklischen
Routen zugeordnet ist, während des Lösungsprozesses durch Schnittebenen abgeschnitten.
Modell MTZ weist hingegen eine polynomielle Anzahl von zusätzlichen Variablen und Ungle-
ichungen auf, die diese unzulässigen Lösungen aus dem Lösungsraum entfernt. Die MI(NL)P
Modelle werden unter Verwendung von modernen Optimierungssolvern unter Einbeziehung
von Preprocessing-Techniken und der Heuristik gelöst. Im Anschluss werden die Modelle
anhand von experimentellen Rechenergebnisse verglichen. Der Vergleich der Modelle A, B,
B+ und MTZ zeigt, dass Modell B+ und MTZ in der Lage sind, größere Probleminstanzen
in Bezug auf die Anzahl der zu besuchenden Bereiche zu lösen als Modell A und B. Zusam-
menfassend gelang uns die Etablierung von zwei Modellen B+ und MTZ, die als Grundlage
unserer weiteren Arbeit dienen.

Abstract

Area guarding tasks are vastly executed by Unmanned Aerial Vehicles (UAVs), since they
can gather information about areas from long distance or high altitude. Moreover, they are
able to visit areas that are not accessible in other ways. We are concerned with patrolling a
set of areas under critical time constraints. The critical time of an area is an upper bound
on the time between two consecutive patrols of this area by an UAV. In addition, we assume
that each area is visited by exactly one UAV and that each UAV is assigned a cyclic route,
which means that it starts and ends its route at the same area and visits all other assigned
areas exactly once. Goal of the Node Partitioning and Subtours Creation Problem (NPSC),
is to find the minimum number of UAVs, in order to regularly visit all areas within their
critical time.

In this work, we mathematically define NPSC and prove its NP-hardness. Further, we
introduce preprocessing techniques to reduce the problem size and implement a heuristic,
which generates feasible solutions for our test instances in short amounts of time. Next, we
formulate four different Mixed Integer (Nonlinear) Programs (MI(NL)P): Model A, B, B+
and MTZ. Model A is a MINLP. The nonlinear constraints of Model A are linearized in
Model B. Model B+ is an extension of Model B by including further valid inequalities. In all
of the previous models infeasible solutions, where at least one UAV is assigned multiple cyclic
routes, are cut off during the optimization process. Model MTZ however is compact, i.e.,
compared to B+ we include an additional polynomial number of variables and constraints in
order to remove such infeasible solutions right from the start. Finally, all MI(NL)P models
are solved for randomly generated test instances with state-of-the-art optimization solvers,
and their performance is compared. The comparison of the models shows that Model B+
and Model MTZ are able to solve larger problem instances than models A and B.

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Problem Formulation and Definitions . 2
1.3. Related Work . 5
1.4. Outline . 6

2. Preprocessing 7
2.1. Graph Preprocessing . 7
2.2. Connectivity-based problem decomposition 9
2.3. A Conflict Graph for NPSC . 10

3. Insert and Reorder (IaR)-Heuristic 13
3.1. The IaR-Heuristic . 14

3.1.1. Excursion: An Integer Programming Model for TSP 15
3.1.2. Pseudocode of the IaR-Heuristic . 16

3.2. Approximation Error . 17

4. Programming Models for NPSC 19
4.1. Formulation of Models . 19

4.1.1. Model A . 20
4.1.2. Model B . 21
4.1.3. Model B+ . 22

4.2. Adding Subtour Elimination Constraints . 23
4.3. Model MTZ . 25

5. Computational Experiments 29
5.1. Generation of Test Instances . 29
5.2. Performance of the Insertion Heuristic . 29
5.3. Performance of the MI(NL)P Models . 31
5.4. Performance of the Subtour Elimination Constraints 39
5.5. Performance of the Valid Inequalities (C.13) - (C.16) 41

6. Conclusion 45
6.1. Future Work . 45

Bibliography 47

Appendices 49
A. TSP Subtour Elimination Constraints . 49
B. Further Computational Results for Models A, B, B+ 50

1. Introduction

1.1. Motivation

Unmanned aerial vehicles (UAVs) are vastly used to execute surveillance tasks, since they
can gather information about an area from long distance or high altitude. In particular,
they are able to visit areas that are not accessible in other ways. The node partitioning
and subtours creation problem (NPSC), which this thesis deals with, was established by
Burdakov [6] and originates from the optimal scheduling of such surveillance UAVs. Given
a set of areas V = {1, 2, ..., N} to guard, our goal is to find the minimum number of UAVs
and an individual flying route for each of them to successfully guard all areas, while meeting
three side constraints. First, each area i ∈ V has a critical time Ti ∈ R≥0, which is an upper
bound on the duration it can remain unattended, and a scanning time Si ∈ R≥0, which is the
amount of time an UAV needs to scan area i. This means that after scanning an area i for
Si time units, the UAV must return to i within Ti time units and rescan the area. Second,
the UAVs must fly in cyclic routes, which means that an UAV starts and ends its flying
route at the same area and visits all other assigned areas exactly once. We assume that an
UAV continues on the same flying route after finishing it without any delay. Third, exactly
one UAV is assigned to guard each area, i.e., each area is contained in exactly one route,
since the intersection of flying routes would result in complications related to the necessity
of introducing additional flight schedules to avoid possible collisions.

Figure 1.1 illustrates two examples of invalid assignments. Here, each square represents
an area and the cyclic route for each UAV is denoted by the arrows. The numbers in the
squares denote the critical times of the areas and the numbers on the arrows the durations
of the flights between them. In this example we assume that Si = 0, ∀i ∈ V . In Figure 1.1a
the flying route with blue arrows can be completed by an UAV within 6 time units. However,
two of the areas must be revisited within 5 time units, thus this assignment is invalid. In
Figure 1.1b, even though all areas can be revisited within their critical time, the assignment
is invalid, since the flying routes share a common node.
Lastly, in Figure 1.2 the flying routes do not intersect and each area can be revisited within
its critical time. Hence, the assignment is valid.

Node Partitioning and Subtours Creation Problem Gioni Mexi

(a) Areas cannot be revisited within
their critical time.

(b) Area contained in two flying
routes.

Figure 1.1.: Examples of invalid assignments.

Figure 1.2.: Valid assignment.

1.2. Problem Formulation and Definitions

A general reference for basic graph theory is the book by Bondy and Murty [4], where the
following definitions, which are important for the definition of NPSC, are adapted from.

Definition 1. Let G = (V,E) be an undirected graph, and S ⊆ V non-empty. Then, the
induced subgraph G[S] is the graph whose node set is S and whose edge set consists of all
edges that have both endpoints in S.

Definition 2. A cycle C that contains every node of an undirected graph G = (V,E) exactly
once is called a Hamiltonian cycle in G. We will refer to Hamiltonian cycles as tours.
A subtour C ′ in G is a tour in a subgraph G′ of G.
The total length τC′ of a subtour C ′ is defined as:

τC′ =
∑
{i,j}∈C′

ti,j ,

where ti,j ∈ R is the weight of edge {i, j} ∈ E. We denote a cycle C as a vector of the
visited nodes, i.e., C = [v0, ..., vl, vl+1, ...vl′], which means that after node vl node vl+1 is
visited, and after node vl′ we return to the start node v0.

2 Bachelor Thesis, TU Berlin, 2019

Gioni Mexi Node Partitioning and Subtours Creation Problem

Next, we are going to give a mathematical formulation of the NPSC problem. For an
instance I of NPSC we are given an undirected graph GI = (V,E), where the set of nodes
V = {1, 2, ..., N} represents the areas and the set of edges E ⊆ V × V represents paths
between them. Thereby, each node i ∈ V is assigned a weight Ti ∈ R≥0, which is the critical
time of the area it represents and a scanning time Si ∈ R≥0. Further, each edge {i, j} ∈ E
has an edge weight ti,j ∈ R≥0, which corresponds to the flying time between area i and area
j. A cyclic route of an UAV is a cycle C in GI that traverses E′ ⊆ E edges and visits V ′ ⊆ V
nodes. and is completed in total time τC equal to:

τC =
∑
{i,j}∈E′

ti,j +
∑
{i}∈V ′

Si .

W.l.o.g. we can assume that there are no scanning times, since these can be added to the
edge weights as follows: For each edge {i, j} ∈ E, i 6= j we can redefine the edge weights as
t′i,j = ti,j + (1/2) · Si + (1/2) · Sj . Then,∑

{i,j}∈E′

t′i,j =
∑
{i,j}∈E′

ti,j +
∑
{i}∈V ′

Si .

Example. Figure 1.3a shows an instance with scanning times (red labels) and Figure 1.3b
the same instance with redefined edge weights and no scanning times. It is easy to check
that the total flying time to complete each cyclic route is in both cases the same.

a

3

b

1

d

3

c

1

1

1

1

1 2

2

(a) Example with scanning
times.

a

0

b

0

d

0

c

0

3

2

3

4 4

4

(b) Equivalent example with
redefined edge weights.

Figure 1.3.: Redefining edge weights.

Hence, in the following we denote an NPSC instance as a 4-tuple I = (V,E, T, t). We will
refer to NPSC as metric-NPSC if GI is complete and for all nodes i, j, k ∈ V , the triangle
inequality ti,j ≤ ti,k + tk,j holds.

A solution of an instance I of NPSC is a tuple (N , C), where N = {N1, N2, ..., Nk} is
family of k ∈ N non-empty, pairwise disjoint subsets that cover V , i.e.,

Nl ∩Nm = ∅, ∀Nl, Nm ∈ N , l 6= m, (1.1)

and
V =

⋃
Nm∈N

Nm (1.2)

hold, and C = {C1, C2, ..., Ck} is a family of cycles, where each Cm ∈ C is a tour in GI [Nm].

Bachelor Thesis, TU Berlin, 2019 3

Node Partitioning and Subtours Creation Problem Gioni Mexi

Moreover, if
τCm ≤ min

i∈Nm

Ti, ∀m = 1, 2, ..., k (1.3)

we call (N , C) a feasible solution of instance I, and each subtour Cm ∈ C a feasible subtour
in GI . Conditions (1.1) and (1.2) ensure that each node is contained in exactly one subtour
and inequalities (1.3) ensure that each node is revisited within its critical time. Our goal
is to find a feasible solution (N , C) with a minumum number of subsets, i.e., a tuple (N , C)
fulfilling (1.1) - (1.3) and minimizing |N |.

Remark. For algorithmic and notational purposes we assume that there is a loop at each
node i ∈ V having length zero, i.e., {i, i} ∈ E and ti,i = 0 for all i ∈ V . Hence, there exists
the so-called trivial solution for each instance I of NPSC, where every subset consists of one
node, and each feasible subtour is a self-loop, i.e., (N , C) = ({{1}, ..., {N}}, {[1], ..., [N]}).

Figure 1.4a illustrates an example of a metric-NPSC instance with 15 nodes and node
weights denoted in each of them. In this example the edge weights are given by the euclidean
distances of the nodes. Figure 1.4b shows an optimal solution for this instance.

(a) NPSC instance (b) An optimal solution containing 4 subtours.

Figure 1.4.: NPSC example.

NPSC is a NP-hard problem. We can prove this by using a polynomial reduction from the
decision variant of TSP, as shown in Lemma 2. Details on TSP can be found in the work
of Applegate et al. [2]. For details on complexity theory and polynomial reductions we refer
to Garey and Johnson [12].

4 Bachelor Thesis, TU Berlin, 2019

Gioni Mexi Node Partitioning and Subtours Creation Problem

Lemma 1. NPSC is NP-hard.

Proof. Claim 1: NPSC is in NP.
Let I = (V,E, T, t) be an NPSC instance and (N , C) be a candidate solution. Clearly we
can check in polynomial time if conditions (1.1) - (1.3) are fulfilled. Hence, NPSC is in NP.

Claim 2: TSP ≤P NPSC, i.e., the decision variant of TSP is polynomially reducible to NPSC.
We define TSP as in Garey and Johnson [12] (Problem [ND22]).
INSTANCE: Let G = (V,E) be a complete undirected graph with nodes V = {1, 2, ..., N},
edges E, and edge weights ti,j ∈ R>0 for each {i, j} ∈ E.
QUESTION: Is there a tour of V having length T̃ ∈ R>0 or less, i.e., does there exist a
permutation π(1), π(2), ..., π(N) of V such that(

N−1∑
i=1

tπ(i),π(i+1)

)
+ tπ(N),π(1) ≤ T̃ ? (1.4)

By setting the node weights Ti := T̃ forall i ∈ V , we directly derive an instance I =
(V,E, T, t) of NPSC. If (1.4) holds, then there exists a tour C with total weight at most T̃ ,
containing all nodes of V . Hence, (N , C) = ({V }, {C}) is an optimal solution of instance I.
On the other hand, if there exists an optimal solution (N , C) of NPSC such that |N | = 1,
then by (1.3) there exists a tour C in GI with length at most T̃ , satisfying (1.4). Therefore,
TSP ≤P NPSC.

Claim 3: NPSC is NP-hard.
We showed that NPSC ∈ NP and TSP ≤P NPSC. Therefore NPSC is NP-hard.

1.3. Related Work

Similar problems of visiting the nodes of a graph under constraints have been studied
extensively. However, to the best of our knowledge, no previous work has been done to solve
NPSC. Some of the most studied combinatorial optimization problems related to NPSC are
the TSP variant with deadlines (DTSP), see for example Bockenhauer et al. [3], the TSP
variant with time windows (TSPTW), see for example Dumas et al. [11], the Vehicle Routing
Problem (VRP), see for example Laporte [18] and the Vehicle Routing Problem with Time
Windows (VRPTW), see for example Desrochers et al. [9].

DTSP, is defined on a complete undirected weighted graph G = (V,E), with a starting
node s ∈ V and a deadline function d : V 7→ Z≥0. The objective is to find a minimum weight
Hamiltonian path satisfying all deadlines. In TSPTW we replace the deadline of each node
i ∈ V by a time window interval [ai, bi] and we modify the objective into finding a minimum
weight Hamiltonian path such that all nodes are visited within their time windows. In both
problems, DTSP and TSPTW, the problem is infeasible if there exists no Hamiltonian path
satisfying all deadlines or time window constraints, respectively. In NPSC we do not search
for a Hamiltonian path through all nodes, but for a set of subtours, such that each node is
contained in exactly one subtour. Another difference is that in NPSC the critical time is an
upper bound between two consecutive visits of a node, but in DTSP and TSPTW, the nodes
have to be visited only once within their deadline and time window, respectively.

Bachelor Thesis, TU Berlin, 2019 5

Node Partitioning and Subtours Creation Problem Gioni Mexi

The classical VRP can be described as the problem of finding an optimal collection of
routes for a fleet of vehicles from a depot to a number of customers. VRP can be defined on
a complete weighted undirected graph G = (V,E), where the node set V represent the depot
and the customers, and the edge set E represents direct connections between the nodes.
The edge weight of an edge {i, j} ∈ E is the traveling time ti,j ∈ R≥0 between i and j.
In VRP each vehicle begins and ends it’s route at the depot and each customer is visited
exactly once by exactly one vehicle. In many extensions of VRP constraints on the maximum
traveling time of each vehicle are included. A variant of VRP is the VRPTW, where each
customer i ∈ C has a time window, which is an interval [ai, bi], and a service time si ∈ R≥0.
This means that the service of each customer must start within the time window, and the
vehicle must stop at the customers location for exactly si time units. If a vehicle arrives at a
customer too early, it has to wait. The goal of VRP and VRPTW is to find a set of vehicle
routes with minimum total traveling time. The major differences between VRP(TW) and
NPSC are the following: In VRP(TW) the number of vehicles is fixed and all of them start
and end their tour at the depot. In NPSC however, the subtours do not share any common
nodes and there are no explicit start nodes given. Further, in NPSC the number of subtours
is not fixed, since our objective is to minimize their number.

Another difference is that in NPSC the critical time is an upper bound between two
consecutive visits of a node, but in the VRPTW the time window is an interval in which
each customer should be served only once.

Lastly, a research similar to our work is the Cyclic routing of unmanned aerial vehicles
(CR-UAV) done by Drucker et al. [10]. Similarly, the objective of CR-UAV is to minimize
the number of vehicles patrolling a set of areas unter critical time constraints. The only
difference between CR-UAV and NPSC is that in CR-UAV the areas can be visited by
more than one vehicle. In CR-UAV a lower- and upper-bound on the number of required
UAVs were proposed and a reduction of the problem to a Boolean combination of ”difference
constraints” (constraints of the form x − y ≥ c , x, y ∈ R, c constant) is suggested. The
problem is solved with Satisfiability Modulo Theories (SMT) solvers. Ho and Ouaknine [16]
were able to show that CR-UAV is PSPACE-complete even in the case of a single UAV.

1.4. Outline

In this section we give a brief outline of this work. Chapter 2 proposes preprocessing
steps, in order to reduce the size of the graph GI , which delete edges, which cannot be
part of any feasible solution. Furthermore, concepts of finding infeasible subtours with
more than two nodes are discussed, and a lower bound for NPSC is given. Chapter 3
presents the IaR-heuristic, inspired by the insertion heuristic for TSP, which generates a
feasible solution for NPSC problem instances. This heuristic solution is considered as an
upper bound for the number of subtours in an optimal solution. In Chapter 4 we derive
compact mathematical programming formulations for NPSC by describing four different
programming models. Further, we discuss ways to detect infeasible solutions during the
optimization process and how to cut them off by adding further constraints. In Chapter 5
we generate random metric-NPSC test instances, which are then solved with state-of-the-art
mathematical programming solvers. We discuss the quality of the heuristic and we compare
the performance of the programming models. Chapter 6 summarizes the results of this
thesis and suggests possible future work.

6 Bachelor Thesis, TU Berlin, 2019

2. Preprocessing

In the following, let I = (V,E, T, t) be an NPSC instance. The aim of our preprocessing
techniques is to reduce the size of GI by deleting edges, which cannot be contained in any
feasible tour. Furthermore, we show that a decomposition of the problem in subproblems
is possible if GI consists of more than one connected components. Lastly, we introduce
a conflict graph for NPSC, where two nodes share an edge if and only if they cannot be
contained in the same subtour in any feasible solution.

2.1. Graph Preprocessing

Let si,j ∈ R≥0 be the length of a shortest path between i, j ∈ V . If no path between i and
j exists, we define si,j = +∞. Commonly used algorithms for finding all shortest paths in
a graph in polynomial time are the ones of Dijkstra and Bellman-Ford, which can be found
for in the book of Cormen et al. [7].

Lemma 1. Let {i, j} ∈ E. If

ti,j + si,j > min {Ti, Tj} , (2.1)

then {i, j} cannot be contained in any feasible subtour in GI .

Proof. Let Cm be a feasible subtour in GI . Assume that Cm contains an edge {i, j} ∈ E
such that ti,j + si,j > min {Ti, Tj}. Since (1.3) holds, we have that

min
i∈Nm

Ti ≥ τCm

=
∑

{i′,j′}∈Cm

ti′,j′

= ti,j +
∑

{i′,j′}∈Cm\{i, j}

ti′,j′

≥ ti,j + si,j

> min {Ti, Tj}
≥ min

i∈Nm

Ti ,

which is a contradiction. Hence {i, j} /∈ Cm.

Remark. In the metric-NPSC case, since ti,j = si,j for all {i, j} ∈ E, (2.1) can be written
as 2 · ti,j > min {Ti, Tj}.

In the following, we call an edge e ∈ E satisfying (2.1) a bad edge. Therefore, since no
feasible subtour in GI can contain a bad edge, we can delete it from GI .

Node Partitioning and Subtours Creation Problem Gioni Mexi

Algorithm 1 Removal of Bad Edges

1: repeat ← True
2: while repeat do
3: repeat ← False
4: for all {i, j} in E do
5: compute si,j
6: if ti,j + si,j > min {Ti, Tj} then
7: delete edge {i, j} from E
8: repeat ← True

In Algorithm 1 the procedure of identifying bad edges is repeated, since after removing
a bad edge e, the length of a shortest path between two other nodes containing e may have
changed. We terminate when no more edges are deleted, as demonstrated in the following
example.
Example. Consider the NPSC instance in Figure 2.1a. The node weights are denoted in
the nodes and the edge weights next to the edge name. W.l.o.g assume that the edges are
picked in line 4 of Algorithm 1 in the order e1, e2, e3, e4, e5, e6. After the first iteration of
the while-loop edge e3 is removed (Figure 2.1b), which changes the total shortest path length
of the endpoints of e1 from 4 to 5. Hence, edge e1 becomes a bad edge and is removed in the
second iteration of the while-loop (Figure 2.1c). Since no other edges are deleted Algorithm
1 terminates with the graph shown in (Figure 2.1d)

10 4

10

2 4

e2|1

e3|2

e4|1

e1|6

e5|1

e6|2

(a) NPSC instance.

10 4

10

2 4

e2|1

e4|1

e1|6

e5|1

e6|2

(b) First while-loop deletes e3.

10 4

10

2 4

e2|1

e4|1

e5|1

e6|2

(c) Second while-loop
deletes e1.

10 4

10

2 4

e2|1

e4|1

e5|1

e6|2

(d) Algorithm terminates,
since no more edges are
deleted.

Figure 2.1.

8 Bachelor Thesis, TU Berlin, 2019

Gioni Mexi Node Partitioning and Subtours Creation Problem

Figure 2.2a illustrates an example of a metric-NPSC instance before the removal of bad
edges and Figure 2.2b the same instance after the removal. In this example, 12 out of 28
edges were deleted. Figure 2.3 shows an optimal solution for this instance.

(a) Graph before preprocessing. (b) Graph after preprocessing.

Figure 2.2.: Preprocessing example.

17

11

25

34
8

25

29

11

20 40 60 80 100

0

10

20

30

40

50

60

103

119

98

94

95

95
104

114

Figure 2.3.: Optimal solution.

2.2. Connectivity-based problem decomposition

Next, we describe how we can identify subproblems, whose combined optimal solutions results
in an optimal solution of I. Suppose that GI contains multiple connected components
GI1 , ..., GIn . Connected components in an undirected graph can be computed in linear time
using either breadth-first search (BFS) or depth-first search (DFS), see Cormen et al. [7].
Let I1, ..., In be the NPSC instances defined on the subgraphs GI1 , ..., GIn , respectively. The
following lemma shows that the combination of optimal solutions of I1, ..., In is an optimal
solution of I. An example is illustrated in Figure 2.4.

Bachelor Thesis, TU Berlin, 2019 9

Node Partitioning and Subtours Creation Problem Gioni Mexi

Lemma 2. Let (N1, C1), ..., (Nn, Cn) be optimal solutions for the instances I1, ..., In respec-
tively. Then, (N , C) := ({N1, ...,Nn}, {C1, ..., Cn}) is an optimal solution of instance I.

Proof. Since GI1 ∪ ... ∪ GIn = GI , and every feasible subtour of GI contains only nodes
from one connected component, (N , C) clearly is a feasible solution I. Further, it is optimal,
since otherwise at least one of the solutions (N1, C1), ..., (Nn, Cn) would be not optimal for
its corresponding subproblem, which contradicts our assumption.

(a) Graph consisting of two connected components. (b) Optimal solution can be found by solving the
two subproblems, defined on each connected
component independently.

Figure 2.4.: Example of connectivity-based problem decomposition.

2.3. A Conflict Graph for NPSC

Further preprocessing of GI can be done by finding subsets of V , subsets of V, whose nodes
cannot be contained in the same feasible subtour in any feasible solution. Recall that si,j
denotes the length of a shortest path between i, j ∈ V .

Definition 3 (Conflict Graph). The graph GIc = (V,Ec), where the set of edges EIc :=
{{i, j} ∈ V × V : 2 · si,j > min {Ti, Tj}} , is called the conflict graph of instance I.

Definition 4 (Bondy and Murty [4]). A clique U ⊆ V of GIc is a subset of the node set,
such that every two distinct nodes are adjacent, i.e.,

U is a clique of GIc ⇔ (∀i, j ∈ U, i 6= j =⇒ {i, j} ∈ EIc)

A clique U is called maximal, if it is not a subset of a larger clique.

Lemma 3. Let U ⊆ V be a clique of GIc and (N , C) be a feasible solution of NPSC. Then
the following inequalities hold,

|U ∩Nk| ≤ 1, ∀Nk ∈ N .

10 Bachelor Thesis, TU Berlin, 2019

Gioni Mexi Node Partitioning and Subtours Creation Problem

Proof. Assume there exist nodes i, j ∈ U, i 6= j, which are both contained in the same set
Nk ∈ N and therefore |U ∩Nk| > 1 . Since i, j ∈ U , this implies that {i, j} ∈ EIc , and thus
2 · si,j > min {Ti, Tj}. Further, since ti,j + si,j ≥ 2 · si,j > min {Ti, Tj}, by Lemma 1 nodes i
and j cannot be in the same subtour in any feasible solution, which is a contradiction.

Corollary 1 (Lower bound for NPSC). Let U be the set of all cliques of the conflict graph
GIc of an NPSC instance I. A lower bound for the number of subsets in every feasible
solution (N , C) is the cardinality of a maximum clique in the conflict graph, i.e.,

|N | ≥ max
U∈U
|U | .

Proof. Let Umax ∈ U be a maximum clique in GIc , i.e., |Umax| = max
U∈U
|U |. From Lemma 3

it follows, that the nodes in Umax must be contained in disjoint sets in N . Therefore,

|N | ≥ |Umax| .

An example of an NPSC instance after preprocessing, its corresponding conflict graph,
and an optimal solution are shown in Figures 2.5a, 2.5b and 2.6, respectively.

(a) Graph after preprocessing. (b) Conflict graph containing 6 maximal cliques.
The unique maximum clique (light-blue nodes)
has cardinality 3.

Figure 2.5.

Bachelor Thesis, TU Berlin, 2019 11

Node Partitioning and Subtours Creation Problem Gioni Mexi

28

3636

37

39

13

39

10 20 30 40 50 60

0

20

40

60

80

100

93

106

119

88

109

117

135

93

106

119

88

109

117

135

Figure 2.6.: Optimal solution consists of three subtours. Each subtour contains exactly one
of the nodes of the maximum clique.

12 Bachelor Thesis, TU Berlin, 2019

3. Insert and Reorder (IaR)-Heuristic

In the following, let I = (V,E, T, t) be an instance of NPSC. The maximum number of
subtours in a feasible solution (N , C) is equal to |V |, i.e., the trivial solution contains |V |
subtours. Our goal is to find a non-trivial feasible solution and hence a tighter upper bound.
Therefore, we will introduce a heuristic proposed by Burdakov [6]. Figure 3.1 shows the
solution found by the heuristic for a large, practically intractable problem.

Figure 3.1.: Feasible solution found by the IaR-heuristic for a 600-node metric-NPSC test
instance. This solution contains 31 subtours.

Node Partitioning and Subtours Creation Problem Gioni Mexi

Remark. The intersection of cycles as seen in Figure 3.1 is not an indication for a subop-
timal solution. This degeneration is merely due to large critical times of the involved nodes.

Consider for example the NPSC instance of Figure 3.2a, where all nodes have critical time
equal to 6. Since no tour visiting all nodes has length less than 6, both feasible solutions
shown in 3.2b and 3.2c are optimal.

6 6 6 6

6

6

6

6

1

2

2

11

1 11

112

2 2

2

(a)

6 6 6 6

6

6

6

6

1

11

1
11

1
1

(b)

6 6 6 6

6

6

6

6

1

2

1

2
1

2

1

2

(c)

Figure 3.2.: Example to show the possibility of degenerated optimal solutions.

3.1. The IaR-Heuristic

The IaR-heuristic is inspired by the cheapest insertion heuristic (CI) for TSP, which is
described by Gutin and Punnen [14]. In CI we start with a partial tour t consisting of a
starting node and its nearest neighbor. Then, we repeatedly choose triples (a, b, c), where
a, b are adjacent nodes in t and c /∈ t and we pick the triple that minimizes the increase in
tour length that would occur if c was inserted between a and b. Then, for this triple (a, b, c)
we insert c between a and b. This procedure continues until all nodes are inserted into t.

Our insertion heuristic aims at finding a set of feasible subtours C = {C1, C2, ..., Ck} in
GI visiting all nodes. The main idea is the following:

Initially all nodes are not contained in any subtour. We denote the set of these nodes with
Ṽ . We start with an empty subtour (empty list) Ck, initially with k = 1, and insert to Ck
a node m ∈ Ṽ , having the smallest critical time Tm of all nodes in Ṽ . Then, we repeatedly

14 Bachelor Thesis, TU Berlin, 2019

Gioni Mexi Node Partitioning and Subtours Creation Problem

choose adjacent nodes a, b ∈ Ck (at the first iteration a = b = m), and c ∈ Ṽ \
k⋃
i=1

Ck and

analogously to (CI) we pick a triple (a, b, c) that minimizes the increase in total tour length
that would occur if c was inserted between a and b. The c causing this minimal increase is
inserted between a and b if the new total tour length is less than Ta. After no more nodes
can be inserted in Ck, we repeat the same procedure to build the next subtour Ck+1, and
terminate when all nodes are contained in a subtour.

Optionally, after no more nodes can be inserted into a subtour Ck and if |Ck| > 3, we
can run any exact or approximation algorithm for solving the TSP problem on the induced
subgraphGI [Ck]. If a new order of the nodes results in a decrease of τCk

, we reorder the nodes
in Ck and check if we can insert more nodes into this subtour. In the IaR-heuristic we denote
the length of the tour found by TSP on the induced subgraph GI [Ck] with TSP(Ck).length.
Note, that solving TSP instances with exact algorithms results in a non-polynomial running
time for the heuristic.

3.1.1. Excursion: An Integer Programming Model for TSP

TSP can be solved with the well known Integer Programming (IP) formulation introduced
by Dantzig, Fulkerson and Johnson [8]. Let G = (V,E) be an undirected graph, with edge
weights tij ≥ 0, ∀{i, j} ∈ E. We define for each edge {i, j} ∈ E a decision variable xij ,
which is 1 if the edge is contained in the tour and 0 otherwise. Then TSP can be formulated
as:

minimize
∑

(i,j)∈E

tijxij

subject to ∑
j∈V :{i,j}∈E

xij = 2 ∀i ∈ V (2.2.1)

∑
i,j∈S, i 6=j:{i,j}∈E

xij ≤ |S| − 1 ∀S ⊂ V, S 6= ∅ (2.2.2)

xij ∈ {0, 1} ∀{i, j} ∈ E (2.2.3)

How this model is solved, and particularly how constraints (2.2.2) are added to the model
is explained in Appendix A. Many other algorithms for TSP can be also found in Gutin and
Punnen [14].

Bachelor Thesis, TU Berlin, 2019 15

Node Partitioning and Subtours Creation Problem Gioni Mexi

3.1.2. Pseudocode of the IaR-Heuristic

Algorithm 2 IaR Heuristic

1: function IaR-Heuristic(V,E, t):
2: Ṽ ← V . Nodes not visited, initially V
3: k ← 0 . Number of subtours, initially 0
4: for {i, j} /∈ E do
5: tij ← +∞ . set weight of non-existing edges to infinity

6: while Ṽ 6= ∅ do
7: k ← k + 1 . Increase number of subtours by 1
8: Ck, Ṽ ← SUBTOUR(k, Ṽ , E, t)

9: return C1, ..., Ck . return feasible subtours C1, ..., Ck

10:

11: function SUBTOUR(k, Ṽ , E, t):
12: m← argmin

j∈Ṽ
Tj . Find node with smallest critical time in Ṽ

13: Ck ← [m], Ṽ ← Ṽ \{m} . add node to Ck
14: τCk

← 0, expand← TRUE
15: while expand do
16: ∆τ ← +∞
17: for each c ∈ Ṽ do
18: for each a ∈ Ck do
19: b← node after a in Ck
20: δ ← −tab + tac + tcb
21: if δ < ∆τ then
22: ∆τ ← δ, c∗ ← c, a∗ ← a . c∗ candidate to insert in Ck

23: if τCk
+ ∆τ ≤ Tm then . insert c∗ in Ck if the subtour is feasible

24: insert c∗ in Ck after a∗
25: Ṽ ← Ṽ \{c∗}, τk ← τk + ∆τ
26: else . Check for better subtours
27: if TSP (Ck).length < τCk

then
28: Reorder nodes in Ck as in the TSP tour
29: τCk

← TSP(Ck).length
30: else . if no better feasible subtour is found, end while-loop
31: expand = FALSE

32: return Ck, Ṽ . returns subtour Ck and not visited nodes Ṽ

Lemma 2. Algorithm 2 terminates and returns a set C = {C1, C2, ..., Ck} of feasible
subtours in GI , which are the subtours of a feasible solution.

Proof. The algorithm terminates when every node i ∈ Ṽ is contained in a subtour (line
6). It always terminates, since in the procedure SUBTOUR every node will enter exactly
one subtour Ck at some point (line 13 and 24). Let N1, N2, ..., Nk be the sets of nodes of
the subtours C1, C2, ..., Ck, respectively. Then, condition (1.1) and (1.2) always hold for
N := {N1, N2, ..., Nk}. We still have to show that condition (1.3) holds. Nodes are inserted
into a subtour Ck, only when τCk

+ ∆τ ≤ Tm (line 23, 24), where m is the node with the

16 Bachelor Thesis, TU Berlin, 2019

Gioni Mexi Node Partitioning and Subtours Creation Problem

smallest critical time in Ck. Hence, the constraints on the critical times (1.3) are also satisfied
and therefore the IaR heuristic produces a feasible solution (N , C).

3.2. Approximation Error

Next, we show that the relative error of the IaR-heuristic is unbounded.

Lemma 3. Algorithm 2 has no constant approximation ratio.

Proof. Let G be a complete undirected graph with an even number of nodes V = {1, ..., n}.
We set the critical time of each node i ∈ V to Ti = n+ i− 1. Consider a Hamiltonian cycle
CH = [1, 2, ..., n] in G, and let the edge weight be 1, for each edge e ∈ CH . For all other
edges we set a weight of 2n (Figure 3.3a). Obviously, ({V }, {CH}) is the unique optimal
solution of NPSC. (Figure 3.3b) However, the heuristic produces a solution consisting of n/2
subsets, each containing a pair of nodes, which are adjacent in CH , that build a subtour
(Figure 3.3c, 3.3d). Hence, the relative error of the heuristic is unbounded.

n

n+1 n+2

n+3

2n-2

2n-1 ...

...

1

1

1

1

1

1

1

1

2n

(a) Complete graph

n

n+1 n+2

n+3

2n-2

2n-1 ...

...

1

1

1

1

1

1

1

1

(b) Optimal solution

n

n+1 n+2

n+3

2n-2

2n-1 ...

...

1 1

11

(c) First possible heuristic solution

n

n+1 n+2

n+3

2n-2

2n-1 ...

...

1

1

1

1

(d) Second possible heuristic solu-
tion

Figure 3.3.

Bachelor Thesis, TU Berlin, 2019 17

Node Partitioning and Subtours Creation Problem Gioni Mexi

18 Bachelor Thesis, TU Berlin, 2019

4. Programming Models for NPSC

In this chapter, we present programming models for solving NPSC instances. Our first model,
Model A, is a Mixed Integer Nonlinear Program (MINLP). The next model, Model B, is a
Mixed Integer Program (MIP), in which we linearize all nonlinear constraints of Model A.
In the next MIP, Model B+, we include additional constraints such as ”symmetry breaking”
constraints, constraints to eliminate infeasible combinations of nodes in subsets, and valid
inequalities derived from the maximal cliques in the conflict graph. Since for every subset
of nodes Nk ∈ N in a solution (N , C) of an instance I, Ck ∈ C has to be a tour in GI [Nk],
we present in Section 4.2 three types of subtour elimination constraints. In contrast to these
previous models, we present another compact model, called Model MTZ, where infeasible
subtours are eliminated in a similar way as in the TSP formulation proposed by Miller,
Tucker and Zemlin [20].
For basic definitions and concepts of Mixed Integer Programming we refer to Achterberg [1].
A general reference on Mixed Integer Nonlinear Programming is the work of Lee and Leyffer
[19]. Model building in mathematical programming is explained in the work of Williams [21].

4.1. Formulation of Models

Let I = (V,E, T, t) be an instance of NPSC. In the following, we consider the induced di-
rected equivalent graph DI = (V,A) of GI , where the set of arcs A contains for each edge
{i, j} ∈ E, the directed arcs (i, j) and (j, i) with symmetric arc weights ti,j = tj,i.
Recall that an optimal solution has at most |V | subtours, since the trivial solution has |V |
subtours.
A better upper bound can be obtained by the solution generated by the IaR-heuristic (Chap-
ter 3). Set K = {1, 2, ...,K}, where K is the number of subtours returned by the IaR-
heuristic. Then, for each k ∈ K we define the decision variable uk,

uk =

{
1, if Nk 6= ∅
0, otherwise.

We call a set Nk with uk = 1 in a solution active.
For each node i ∈ V and k ∈ K we define the decision variable vki ,

vki =

{
1, if i ∈ Nk

0, otherwise,

and for each arc (i, j) ∈ A and each k ∈ K we define the decision variable xki,j ,

xki,j =

{
1, if Ck contains the arc (i,j)

0, otherwise.

Node Partitioning and Subtours Creation Problem Gioni Mexi

The purpose of uk and vki is to construct sets of nodes Nk ∈ N in a feasible solution, and
the purpose of xki,j is to create tours Ck ∈ C in each subgraph DI [Nk]. Now we can model
NPSC as the following nonlinear programming model, based on Burdakov [6]:

4.1.1. Model A

Model A

min
∑
k∈K

uk

s.t. vki ≤ uk ∀ k ∈ K , ∀ i ∈ V (C.1)∑
k∈K

vki = 1 ∀ i ∈ V (C.2)

xki,j ≤ vki ∀ (i, j) ∈ A, ∀ k ∈ K (C.3)

xki,j ≤ vkj ∀ (i, j) ∈ A, ∀ k ∈ K (C.4)∑
(i,j)∈A

ti,jx
k
i,j = τk ∀ k ∈ K (C.5)

Ti ≥ vki τk ∀ i ∈ V, ∀ k ∈ K (C.6)∑
k∈K

∑
j∈V :(i,j)∈A

xki,j = 1 ∀ i ∈ V (C.7)

∑
k∈K

∑
j∈V :(j,i)∈A

xkj,i = 1 ∀ i ∈ V (C.8)

∑
i,j∈S1:(i,j)∈A

xki,j +
∑

i,j∈S2:(i,j)∈A

xki,j ≤ |S1|+ |S2| − 1 ∀ S1, S2 ⊂ V, S1, S2 6= ∅,
S1 ∩ S2 = ∅, ∀ k ∈ K (C.9)

uk ∈ {0, 1}, τk ∈ R≥0 ∀ k ∈ K (C.10)

vki ∈ {0, 1} ∀ i ∈ V, ∀ k ∈ K (C.11)

xki,j ∈ {0, 1} ∀ i, j ∈ V, ∀ k ∈ K (C.12)

The objective function minimizes the number of subsets of V in a feasible solution.
Constraints (C.1) ensure that a set is active, if a node is assigned to it and constraints (C.2)
guarantee that each node is contained in exactly one set Nk ∈ N . Constraints (C.3) and
(C.4) ensure that an arc (i, j) can only be contained in a tour Ck if and only if i, j ∈ Nk. In
(C.5) we introduce a new variable τk that denotes the total tour length of Ck. The non-linear
constraints (C.6) assure that the critical time of each node is respected. For example, let
i ∈ Nk or equivalently vki = 1. Then (C.6) implies that τk ≤ Ti , which assures that the
critical time constraint of i is satisfied. If vki = 0 no further implication is obtained from this
constraint. Equations (C.7) and (C.8) ensure that each node in a subtour has one ingoing
and one outgoing arc, as it must have in a cycle. Note that for every i ∈ V , the variable xki,i
is included in both sums in (C.7), (C.8), hence the arc (i, i) can also build a feasible subtour.
Lastly, constraints (C.9) commonly known as subtour elimination constraints ensure that in
each DI [Nk] no multiple subtours are allowed as shown in the following lemma.

20 Bachelor Thesis, TU Berlin, 2019

Gioni Mexi Node Partitioning and Subtours Creation Problem

Lemma 4. Constraints (C.9) cut off all solutions for an instance I, that contain multiple
subtours and are therefore infeasible. Further, (C.9) does not cut off any feasible solutions.

Proof. Let (N , C) be a solution for an instance I, that contains infeasible subtours, i.e., for
some Nk ∈ N , DI [Nk] contains multiple subtours Ck1 , ..., Ckl . Denote the visited nodes in
each subtour by Sk1 , ..., Skl , respectively. Obviously, Sk1 , ..., Skl are non-empty and pairwise
disjoint. Hence, for all r, s ∈ {1, ..., l}, r 6= s , (C.9) implies that the following should hold,

|Skr |+ |Sks | − 1 ≥
∑

i,j∈Skr :(i,j)∈A

xki,j +
∑

i,j∈Sks :(i,j)∈A

xki,j

≥
∑

(i,j)∈Ckr

xki,j +
∑

(i,j)∈Cks

xki,j

= |Ckr |+ |Cks |
= |Skr |+ |Sks | ,

which is a contradiction. Hence, (C.9) cuts off the infeasible solution (N , C).
It remains to prove that (C.9) cuts off no feasible solutions. Suppose this assumption is
false. Then, for a feasible solution (N , C) there exist k ∈ K and non-empty, disjoint subsets
S1, S2 ⊂ V such that: ∑

i,j∈S1:(i,j)∈A

xki,j +
∑

i,j∈S2:(i,j)∈A

xki,j ≥ |S1|+ |S2|

⇔
∑

i,j∈S1:(i,j)∈Ck

xki,j +
∑

i,j∈S2:(i,j)∈Ck

xki,j ≥ |S1|+ |S2|

From this inequality and (C.7), (C.8) it follows immediately that there exist at least two
subtours in DI [Nk], one containing only edges from {(i, j) ∈ A : i, j ∈ S1} and the other
one containing only edges from {(i, j) ∈ A : i, j ∈ S2}, which contradicts the feasibility of
(N , C).

The number of constraints (C.9) is of exponential size w.r.t. the number of nodes. Hence,
explicitly including them into the model may lead to computational intractability. In section
4.2 we discuss a separation procedure for constraints cutting off infeasible solutions with
multiple subtours.

4.1.2. Model B

Next, we derive a MIP formulation by replacing (C.6) with the following linear constraints:

τk ≤ Ti + (M − Ti)(1− vki), ∀ i ∈ V, ∀ k ∈ K

where M := max
i∈V

Ti. For example, let i ∈ Nk or equivalently vki = 1, then it follows that

τk ≤ Ti , which assures that the critical time constraint of i is satisfied. Otherwise, if vki = 0,
then τk ≤M , which must always hold, due to the choice of M . Model B is then defined by
the following MIP:

Bachelor Thesis, TU Berlin, 2019 21

Node Partitioning and Subtours Creation Problem Gioni Mexi

Model B

min
∑
k∈K

uk

s.t. (C.1) - (C.5)

(C.7) - (C.12)

τk ≤ Ti + (M − Ti)(1− vki) ∀ i ∈ V, ∀ k ∈ K (C.6′)

4.1.3. Model B+

Symmetry Breaking Inequalities:

The solution space of NPSC is highly symmetric. Assume that an optimal solution consists
of k′ < |K| sets. Then, for each optimal solution there are

(|K|
k′

)
possibilities of choosing the

indices for the active sets. By including the following ”symmetry breaking” valid inequalities,

uk+1 ≤ uk , ∀ k ∈ {1, . . . ,K − 1}

we ensure that a set Nk+1 can only be active, if the previous set Nk is also active.

Conflict Graph Inequalities:

In order to further reduce the size of the search space, we make use of the cliques in the
conflict graph GIc . Finding a maximum clique is itself an NP-hard problem, as shown
by Karp [17]. In order to compute all maximal cliques of GIc we use the non-polynomial
algorithm of Bron and Kerbosch [5] as implemented in Pythons library Networkx [15]. Let U
be the set of all maximal cliques in GIc . We showed in Lemma 3, that all nodes of a maximal
clique must be contained in different sets in a feasible solution. This can be rephrased to the
following set of valid inequalities:∑

i∈U
vki ≤ 1 , ∀U ∈ U , ∀ k ∈ K .

In addition, the cardinality of the largest maximal clique is a lower bound on the objective
value (Corollary 1). Hence, ∑

k∈K
uk ≥ max

U∈U
|U | .

22 Bachelor Thesis, TU Berlin, 2019

Gioni Mexi Node Partitioning and Subtours Creation Problem

Infeasible 3-Node Subset Inequalities:

Let si,j ∈ R≥0 be the length of a shortest path between i, j ∈ V . Next, we want to detect
infeasible subsets of V with three nodes that cannot be contained in any set in a feasible
solution. Let S ⊆ V with |S| = 3. Every cycle C containing the nodes of a subset S = {i, j, l}
has at least total length τC := si,j + sj,l + sl,i. If τC > min{Ti, Tj , Tl}, then no subset in a
feasible solution could contain all nodes of S. Hence, the following valid inequalities can be
added to our model:

vki + vkj + vkl ≤ 2 , ∀ i, j, l ∈ V , ∀ k ∈ K, if si,j + sj,l + sl,i > min{Ti, Tj , Tl} .

Model B+

min
∑
k∈K

uk

s.t. (C.1) - (C.5),

(C.6′),

(C.7) - (C.12),

uk+1 ≤ uk ∀ k ∈ {1, . . . ,K − 1}, ∀ i ∈ V (C.13)∑
k∈K

uk ≥ max
U∈U
|U | (C.14)∑

i∈U
vki ≤ 1 ∀ U ∈ U , ∀ k ∈ K (C.15)

vki + vkj + vkl ≤ 2 ∀ i, j, l ∈ V, ∀ k ∈ K : (C.16)

si,j + sj,l + sl,i > min{Ti, Tj , Tl}

4.2. Adding Subtour Elimination Constraints

Let I = (V,E, T, t) be an NPSC instance. Including constraints (C.9) to Models A, B
and B+ could make them computationally intractable, because they are of exponential size
w.r.t. |V |. Therefore, we use a sepration approach, i.e., after a solution has been found, we
check whether or not constraints (C.9) are satisfied. If the solution violates (C.9) it contains
multiple subtours, which are dynamically cut off. This procedure is continued until the
optimization process is stopped or an optimal feasible solution is found. In the following we
will present three sets of lazy constraints that can be added during optimization, whenever
an infeasible solution is found. Denote

Ck = {(i, j) ∈ A |xki,j = 1} .

If a cycle with arcs in Ck has less than |Nk| nodes, then DI [Nk] contains multiple subtours.
The intuitive way of eliminating such infeasible solutions is by adding the following constraint
to our model:

Bachelor Thesis, TU Berlin, 2019 23

Node Partitioning and Subtours Creation Problem Gioni Mexi

∑
(i,j)∈Ck

xki,j ≤ |Ck| − 1, ∀k ∈ K , (SEC.1)

which states that for at least one arc (i, j) ∈ Ck, it should hold that xki,j = 0. This constraints
cuts only the current infeasible solution from the solution space. In the following we present
two further sets of subtour elimination constraints.
Let Ck1 , ..., Ckr be the subtours in DI [Nk], and Nk1 , ..., Nkr the visited nodes in each subtour,
respectively. We denote C̃k = {Ck1 , ..., Ckr} and Ñk = {Nk1 , ..., Nkr}. Then, we can add the
following constraints to our model:∑
i,j∈Nkl

:(i,j)∈A

xki,j +
∑

i,j∈Nkm :(i,j)∈A

xki,j ≤ |Nkl |+ |Nkm | − 1 ∀Nkl , Nkm ∈ Ñk, (SEC.2)

l 6= m, ∀k ∈ K

Constraint (SEC.2), are a subset of (C.9) and ensures that for each pair Nkl , Nkm ∈ Ñk, l 6=
m, no two subtours containing all nodes of Nkl and Nkm , respectively, are feasible, since if
this happens the left hand side of (SEC.2) is equal to |Nkl |+ |Nkm |.
Next, denote Akl = {(i, j) : i, j ∈ Nk, (i, j) /∈ Ckl}. Another type of subtour elimination
constraints is the following:∑

(i,j)∈Ckl

xki,j + xka ≤ |Ckl |, ∀Ckl ∈ C̃k , ∀ a ∈ Akl , ∀k ∈ K . (SEC.3)

Constraints (SEC.3) assure that if a solution contains a subtour Ckl ∈ C̃k, i.e., if∑
(i,j)∈Ckl

xki,j = |Ckl |, then xka = 0 for all other arcs a ∈ Akl .

Next, we will present an example for the previous constraints. Assume that during the
optimization of an instance I with Model A, B or B+, a solution (N , C) contains a set
Nk = [a, b, c, d, e, f] ∈ N and the three subtours Ck1 = [a, b, c], Ck2 = [d, e] and Ck3 = [f]
(Figure 4.1a).

a

c

b d

e

f

(a)

a

c

b d

e

f

(b)

Figure 4.1.: (a) depicts the subtours in a subgraph DI [Nk] in a found solution during the
optimization process. (b) depicts the subgraph DI [Nk] of DI .

By using (SEC.1) the following constraint is added to the model:

xka,b + xkb,c + xkc,a + xkd,e + xke,d + xkf,f ≤ 5, ∀ k ∈ K .

24 Bachelor Thesis, TU Berlin, 2019

Gioni Mexi Node Partitioning and Subtours Creation Problem

By using (SEC.2):

xka,b + xkb,a + xkb,c + xkc,b + xkc,a + xka,c + xka,a + xkb,b + xkc,c + xkd,e + xke,d + xkd,d + xke,e ≤ 4, ∀ k ∈ K

xka,b + xkb,a + xkb,c + xkc,b + xkc,a + xka,c + xka,a + xkb,b + xkc,c + xkf,f ≤ 3, ∀ k ∈ K

xkd,e + xke,d + xkd,d + xke,e + xkf,f ≤ 2, ∀ k ∈ K .

And by using (SEC.3):

xka,b + xkb,c + xkc,a + xkã ≤ 3, ∀ ã ∈ Ak1 , ∀ k ∈ K

xkd,e + xke,f + xkã ≤ 2, ∀ ã ∈ Ak2 , ∀ k ∈ K

xkf,f + xkã ≤ 1, ∀ ã ∈ Ak3 , ∀ k ∈ K

The following algorithm summarizes the subtour elimination procedure:

Algorithm 3

function Callback
x← current MIP solution
for k ∈ K do

C ← {(i, j) ∈ A |xki,j = 1} . get all arcs of subtours in DI [Nk]
if C contains multiple subtours then

model ← addLazyConstraints (SEC.1, SEC.2 or SEC.3)

4.3. Model MTZ

In the following, we present a different model with a polynomial number of additional vari-
ables and constraints, which does not rely on subtour elimination constraints, i.e., we derive
a compact model. Our method is based on the MTZ formulation for TSP [20]. The idea
behind this formulation is to give an ordering to all nodes excluding the starting node. A
straightforward use of this idea for NPSC is not possible, since different feasible solutions
can contain different subsets of nodes. By ”labeling” in each active set Nk a node as starting
node of the subtour Ck, we are able to use a modified version of the MTZ constraints. For
each node i ∈ V and each k ∈ K, we define the following binary variable:

ski =

{
1, if i is the starting node in Nk

0, otherwise .

The following constraints assure that in every active set Nk exactly one node is labeled as
starting node: ∑

i∈V
ski = uk, ∀ k ∈ K .

To exclude subtours we introduce for every i ∈ V an additional variable wi ∈ R≥0 and the
following constraints:

0 ≤ wi ≤ |V | − 1 ∀ i ∈ V,
(MTZ)

wi − wj + |V | · (xki,j − skj) ≤ |V | − 1 ∀ i, j ∈ V, ∀ k ∈ K .

Bachelor Thesis, TU Berlin, 2019 25

Node Partitioning and Subtours Creation Problem Gioni Mexi

The (MTZ) constraints allow only one tour Ck in each DI [Nk]. Their correctness follows
from the MTZ formulation of TSP in [20]. For example, consider a set Nk = {a, b, c, d, e}.
In Figure 4.2a the subgraph DI [Nk] contains two subtours Ck1 = [a, b, c] and Ck2 = [d, e],
hence is an infeasible solution and in Figure 4.2b one feasible subtour Ck = [a, b, d, e, c].

a

ska = 1

c

b d

e

(a) Infeasible solution

a

ska = 1

c

b d

e

(b) feasible solution

Figure 4.2.

Let node a be the starting node in Nk. For the example in Figure 4.2a the MTZ con-
straints return for Ck1 the expressions wa + 1 ≤ wb, wb + 1 ≤ wc, wc −wa ≤ |V | − 1, which
can be satisfied, for example by wa = 0, wb = 1, wc = 2. On the other hand, for the subtour
Ck2 = [d, e] we get the expressions wd ≤ we + 1 and we ≤ wd + 1, which cannot be satisfied
for any wd, we ∈ [0, |V | − 1]. Hence, this solution is infeasible w.r.t. MTZ constraints.
In Figure 4.2b, the MTZ constraints return for the subtour Ck = [a, b, d, e, c] the expression
wa + 1 ≤ wb, wb + 1 ≤ wd, wd + 1 ≤ we, we + 1 ≤ wc, wc − wa ≤ |V | − 1, which can be
satisfied, for example by wa = 0, wb = 1, wd = 2, we = 3, wc = 4.

26 Bachelor Thesis, TU Berlin, 2019

Gioni Mexi Node Partitioning and Subtours Creation Problem

Hence, Model MTZ is the following:

Model MTZ

min
∑
k∈K

uk

s.t. (C.1) - (C.5),

(C.6′),

(C.7) - (C.8),

(C.10) - (C.16),∑
i∈V

ski = uk ∀ k ∈ K (C.17)

0 ≤ wi ≤ |V | − 1 ∀ i ∈ V (C.18)

wi − wj + |V | · (xki,j − skj) ≤ |V | − 1 ∀ i, j ∈ V, ∀ k ∈ K (C.19)

wi ∈ R≥0 ∀ i ∈ V (C.20)

ski ∈ {0, 1} ∀ i ∈ V, ∀ k ∈ K (C.21)

Bachelor Thesis, TU Berlin, 2019 27

Node Partitioning and Subtours Creation Problem Gioni Mexi

28 Bachelor Thesis, TU Berlin, 2019

5. Computational Experiments

In this chapter we present our computational results of testing the IaR-heuristic and our
programming models on randomly generated test instances. The following software were
used for our implementation and computations:

• Gurobi Optimizer 8.0 [13]

• Python libraries Numpy, Networkx.

The tests were run on a cluster of Intel Xeon 6E5-2690 2.6 GHz machines with 128 GB of
RAM; a time limit of 3600 seconds was set.

5.1. Generation of Test Instances

For our computation, we create a test set of metric-NPSC test instances, by using pseudo-
randomly generated numbers with python’s random.seed method. The test instances are
created as follows: The nodes V are pseudo-random points with coordinates x, y ∈ (0, 100).
The number of nodes n for each test instance is in {20, 25, 30, 35, 40}. The edge weights
are given by the euclidean distances of the nodes. Next, in order to create appropriate node
weights Ti for each node i ∈ V , the critical time vector T = [T1, T2, ..., Tn] ∈ Rn≥0 is randomly
generated with values Ti ∈ [mean dist · low,mean dist · high], where mean dist is the aver-
age distance between two random points in V , and low, high ≥ 0. The purpose of low and
high is to scale the interval of critical time values. For example , if low = 2, high = 3 and
mean dist = c ∈ R>0 then each element Ti ∈ T gets a random value Ti ∈ [2 ·c, 3 ·c]. The test
instances are named ins n seed (low, high), with n, seed, low, high as defined above.

5.2. Performance of the Insertion Heuristic

An upper bound on the number of subtours in a feasible solution is given by the IaR-heuristic
in Chapter 3. Its solution serves as a start feasible solution for all programming models. In
the IaR-heuristic, the TSP instances are solved by the IP presented in section 3.1.1. Tables
5.1, 5.2 and 5.3 show that the heuristic finds good feasible solutions for our test instances
with 20, 25, 30, 35, 40 in a very short amount of time. The GAP is computed as

|LB − IaR|
|IaR|

,

where the LB is the best lower bound on the optimal solution found by any programming
model before terminating the solving process and IaR is the value of the heuristic solution.
Many larger test instances, mostly with 35 and 40 nodes, were not solved to optimality
by any model, hence the heuristic GAP may actually be even smaller. Together with the
increasing size of the instances, this explains the increasing average GAP shown in Figure 5.1.

Node Partitioning and Subtours Creation Problem Gioni Mexi

Table 5.1.: Heuristic solution for instances with n ∈ {20, 25}.

n = 20 n = 25

instances IaR sol.
best

bound
GAP
(%)

time
(s) IaR sol.

best
bound

GAP
(%)

time
(s)

ins n 0 (2.0,3.0) 5 5 0.0% 0.1 6 5 16.7% 0.1
ins n 1 (2.1,3.3) 4 4 0.0% 0.1 4 4 0.0% 0.1
ins n 2 (2.2,3.6) 5 4 20.0% 0.1 6 5 16.7% 0.1
ins n 3 (2.3,3.9) 5 4 20.0% 0.1 5 5 0.0% 0.1
ins n 4 (2.4,4.2) 5 4 20.0% 0.1 6 5 16.7% 0.1
ins n 5 (2.5,4.5) 4 3 25.0% 0.1 4 4 0.0% 0.1
ins n 6 (2.6,4.8) 4 4 0.0% 0.1 4 4 0.0% 0.1
ins n 7 (2.7,5.1) 4 4 0.0% 0.1 5 4 20.0% 0.1
ins n 8 (2.8,5.4) 3 3 0.0% 0.1 3 3 0.0% 0.1
ins n 9 (2.9,5.7) 4 3 25.0% 0.1 4 3 25.0% 0.1

Table 5.2.: Heuristic solution for instances with n ∈ {30, 35}.

n = 30 n = 35

instances IaR sol.
best

bound
GAP
(%)

time
(s) IaR sol.

best
bound

GAP
(%)

time
(s)

ins n 0 (2.0,3.0) 7 6 14.3% 0.1 8 6 25.0% 0.1
ins n 1 (2.1,3.3) 5 5 0.0% 0.1 5 5 0.0 % 0.1
ins n 2 (2.2,3.6) 5 5 0.0% 0.1 6 5 16.7% 0.1
ins n 3 (2.3,3.9) 6 5 16.7% 0.1 7 5 28.6% 0.1
ins n 4 (2.4,4.2) 7 5 28.6% 0.1 7 5 28.6% 0.1
ins n 5 (2.5,4.5) 4 4 0.0% 0.1 4 4 0.0 % 0.1
ins n 6 (2.6,4.8) 4 4 0.0% 0.1 4 4 0.0 % 0.1
ins n 7 (2.7,5.1) 5 4 20.0% 0.1 5 4 20.0% 0.1
ins n 8 (2.8,5.4) 3 3 0.0% 0.1 4 3 25.0% 0.1
ins n 9 (2.9,5.7) 4 3 25.0% 0.1 4 3 25.0% 0.1

30 Bachelor Thesis, TU Berlin, 2019

Gioni Mexi Node Partitioning and Subtours Creation Problem

Table 5.3.: Heuristic solution for instances with n = 40.

n = 40

instances IaR sol.
best

bound
GAP
(%)

time
(s)

ins n 0 (2.0,3.0) 9 6 33.3% 0.1
ins n 1 (2.1,3.3) 6 5 16.7% 0.1
ins n 2 (2.2,3.6) 6 5 16.7% 0.1
ins n 3 (2.3,3.9) 7 5 28.6% 0.1
ins n 4 (2.4,4.2) 7 5 28.6% 0.1
ins n 5 (2.5,4.5) 5 4 20.0% 0.1
ins n 6 (2.6,4.8) 5 4 20.0% 0.1
ins n 7 (2.7,5.1) 5 4 20.0% 0.1
ins n 8 (2.8,5.4) 4 3 25.0% 0.1
ins n 9 (2.9,5.7) 5 3 40.0% 0.1

20 25 30 35 40
number of nodes

0

5

10

15

20

25

30

35

40

45

av
er
ag
e
GA

P(
%
) f
ro
m
 th

e
be
st
 c
om

pu
te
d
lo
we

r b
ou
nd

11.0%
9.5% 10.5%

16.9%

25.4%

Figure 5.1.: Average GAP of the IaR-heuristic solution from the best lower
bound computed within an hour of computation by any model.

5.3. Performance of the MI(NL)P Models

Our computational results are summarized in the tables below, which consists of the following
columns:

• The first column states the names of the test instance.

• Vars/Cons denote the number of variables/constraints of the test instance.

Bachelor Thesis, TU Berlin, 2019 31

Node Partitioning and Subtours Creation Problem Gioni Mexi

• SEC denotes the number of subtour elimination constraints added during optimization.

• NodeCnt is the number of branch-and-cut nodes explored during optimization.

• UB is the objective value for the current solution, i.e., the best solution found before
terminating the optimization process.

• LB is the best found lower bound on the optimal solution.

• GAP is the relative optimality gap, computed as

|LB − UB|
|UB|

.

• Time(s) is the runtime of the current optimization (in seconds).

First, we compare the performance of our models on test instances with 20 nodes. In
the following tables Model A, B, B+ use the subtour elimination constraints SEC.3. A
comparison of SEC.1, SEC.2 and SEC.3 is presented in section 5.4. As shown in Table
5.4, Model A failed to solve any instance within our time limit of 3600 seconds. Model B
proved for all instances a better optimality gap (Table 5.5). Nevertheless, only two out of
ten instances were solved to optimality. Thus, no further computational results with these
two models are shown. Results for Model A and B using SEC.1 and SEC.2 can be found in
Appendix B.

Table 5.4.: Solutions using Model A with SEC.3
for test instances with 20 nodes

Vars/Cons SEC NodeCnt UB LB GAP Time(s)

ins 20 0 (2.0,3.0) 1325/2705 2460 125054 5 2 60.0% 3600.0
ins 20 1 (2.1,3.3) 1036/2128 8036 183380 4 2 50.0% 3600.0
ins 20 2 (2.2,3.6) 1615/3285 9535 84246 5 2 60.0% 3600.0
ins 20 3 (2.3,3.9) 1585/3225 9076 126849 5 1 80.0% 3600.0
ins 20 4 (2.4,4.2) 1805/3665 7400 92250 5 2 60.0% 3600.0
ins 20 5 (2.5,4.5) 1436/2928 2038 94348 4 1 75.0% 3600.0
ins 20 6 (2.6,4.8) 1508/3072 8809 388410 4 1 75.0% 3600.0
ins 20 7 (2.7,5.1) 1532/3120 7476 78188 4 1 75.0% 3600.0
ins 20 8 (2.8,5.4) 1167/2391 8157 121283 3 1 66.7% 3600.0
ins 20 9 (2.9,5.7) 1580/3216 4784 48525 4 2 50.0% 3600.0

32 Bachelor Thesis, TU Berlin, 2019

Gioni Mexi Node Partitioning and Subtours Creation Problem

Table 5.5.: Solutions using Model B with SEC.3
for test instances with 20 nodes

Vars/Cons SEC NodeCnt UB LB GAP Time(s)

ins 20 0 (2.0,3.0) 1325/2705 67605 339879 5 3 40.0% 3600.0
ins 20 1 (2.1,3.3) 1036/2128 27652 1228992 4 3 25.0% 3600.0
ins 20 2 (2.2,3.6) 1615/3285 65405 305166 4 3 25.0% 3600.0
ins 20 3 (2.3,3.9) 1585/3225 74455 155225 4 3 25.0% 3600.0
ins 20 4 (2.4,4.2) 1805/3665 75425 267383 5 3 40.0% 3600.0
ins 20 5 (2.5,4.5) 1436/2928 85876 102221 3 3 0.0% 1654.9
ins 20 6 (2.6,4.8) 1508/3072 85124 211033 4 3 25.0% 3600.0
ins 20 7 (2.7,5.1) 1532/3120 60976 406159 4 3 25.0% 3600.0
ins 20 8 (2.8,5.4) 1167/2391 49287 302501 3 2 33.3% 3600.0
ins 20 9 (2.9,5.7) 1580/3216 38204 15777 3 3 0.0% 173.5

On the other hand, Model B+ and Model MTZ solved all 10 instances to optimality, as
shown in Table 5.6 and 5.7, respectively. Model B+ solved each instance after at most 48.5
seconds and 15254 explored nodes. For Model MTZ the maximum solving time is 1793.6
seconds and the largest number of explored nodes is 5002260. We observe that for some
instances (ins 20 6 (2.6,4.8) and ins 20 7 (2.7,5.1)) Model MTZ needs a lot more time than
for all other instances. Model B+ solves those instances in 7.8 and 33.9 seconds, respectively.

Table 5.6.: Solutions using Model B+ with SEC.3
for test instances with 20 nodes

Vars/Cons SEC NodeCnt UB LB GAP Time(s)

ins 20 0 (2.0,3.0) 1325/3450 11365 4465 5 5 0.0% 8.3
ins 20 1 (2.1,3.3) 1036/2684 0 0 4 4 0.0% 0.2
ins 20 2 (2.2,3.6) 1615/4415 19610 894 4 4 0.0% 23.3
ins 20 3 (2.3,3.9) 1585/4215 13895 1213 4 4 0.0% 3.6
ins 20 4 (2.4,4.2) 1805/4685 15305 1357 4 4 0.0% 4.6
ins 20 5 (2.5,4.5) 1436/3840 16452 213 3 3 0.0% 2.9
ins 20 6 (2.6,4.8) 1508/3764 21188 1644 4 4 0.0% 7.8
ins 20 7 (2.7,5.1) 1532/3740 18960 15254 4 4 0.0% 33.9
ins 20 8 (2.8,5.4) 1167/2784 0 0 3 3 0.0% 0.1
ins 20 9 (2.9,5.7) 1580/3712 60164 10958 3 3 0.0% 48.5

Bachelor Thesis, TU Berlin, 2019 33

Node Partitioning and Subtours Creation Problem Gioni Mexi

Table 5.7.: Solutions using Model MTZ
for test instances with 20 nodes

Vars/Cons NodeCnt UB LB GAP Time(s)

ins 20 0 (2.0,3.0) 1445/4675 182270 5 5 0.0% 99.0
ins 20 1 (2.1,3.3) 1136/3640 0 4 4 0.0% 0.1
ins 20 2 (2.2,3.6) 1735/5930 18347 4 4 0.0% 15.7
ins 20 3 (2.3,3.9) 1705/5700 118 4 4 0.0% 13.5
ins 20 4 (2.4,4.2) 1925/6390 1877 4 4 0.0% 6.2
ins 20 5 (2.5,4.5) 1536/5196 13712 3 3 0.0% 10.9
ins 20 6 (2.6,4.8) 1608/5192 974956 4 4 0.0% 1793.6
ins 20 7 (2.7,5.1) 1632/5192 5002260 4 4 0.0% 1542.7
ins 20 8 (2.8,5.4) 1247/3891 0 3 3 0.0% 0.1
ins 20 9 (2.9,5.7) 1680/5212 8599 3 3 0.0% 5.2

Next we solve with Model B+ and Model MTZ test instances with n = 25. Our compu-
tational results are presented in Tables 5.8 and 5.9, respectively. Model B+ solved all ten
instances within our time limit. On the other hand, Model MTZ failed to prove optimality
for three of them. These instances were solved with Model B+ after 81.7, 97.1 and 1213.1
seconds, respectively.

Table 5.8.: Solutions using Model B+ with SEC.3
for test instances with 25 nodes

Vars/Cons SEC NodeCnt UB LB GAP Time(s)

ins 25 0 (2.0,3.0) 2502/7035 26442 702 5 5 0.0% 42.2
ins 25 1 (2.1,3.3) 1620/4527 0 0 4 4 0.0% 0.2
ins 25 2 (2.2,3.6) 2982/8661 37092 21375 5 5 0.0% 81.7
ins 25 3 (2.3,3.9) 2475/7095 31220 85200 5 5 0.0% 97.1
ins 25 4 (2.4,4.2) 3282/8631 91344 35026 5 5 0.0% 1213.1
ins 25 5 (2.5,4.5) 2300/6583 11244 148 4 4 0.0% 36.6
ins 25 6 (2.6,4.8) 2292/6279 18640 1669 4 4 0.0% 12.2
ins 25 7 (2.7,5.1) 2915/7660 64795 4688 4 4 0.0% 141.4
ins 25 8 (2.8,5.4) 1827/4659 0 0 3 3 0.0% 0.4
ins 25 9 (2.9,5.7) 2476/6063 72784 2513 3 3 0.0% 44.4

34 Bachelor Thesis, TU Berlin, 2019

Gioni Mexi Node Partitioning and Subtours Creation Problem

Table 5.9.: Solutions using Model MTZ
for test instances with 25 nodes

Vars/Cons NodeCnt UB LB GAP Time(s)

ins 25 0 (2.0,3.0) 2677/9387 100 5 5 0.0% 38.9
ins 25 1 (2.1,3.3) 1745/6047 0 4 4 0.0% 0.2
ins 25 2 (2.2,3.6) 3157/11493 9463396 5 4 20.0% 3600.0
ins 25 3 (2.3,3.9) 2625/9445 6514111 5 4 20.0% 3600.0
ins 25 4 (2.4,4.2) 3457/11763 9769377 5 4 20.0% 3600.0
ins 25 5 (2.5,4.5) 2425/8783 13829 4 4 0.0% 20.3
ins 25 6 (2.6,4.8) 2417/8471 79663 4 4 0.0% 41.1
ins 25 7 (2.7,5.1) 3065/10450 296257 4 4 0.0% 202.2
ins 25 8 (2.8,5.4) 1927/6411 0 3 3 0.0% 0.4
ins 25 9 (2.9,5.7) 2601/8439 2048818 3 3 0.0% 566.2

Next, we solve larger instances with n = 30. As summarized in Table 5.10 by using Model
B+ nine out of ten instances are solved to optimality. For the last one (ins 30 9 (2.9,5.7)) an
optimality gap of 25% was proven. We notice that for five instances the solution generated
by the heuristic is optimal. These instances are solved with Model B+ after at most 129.1
seconds. The solving time of the rest optimally solved instances is in general much higher
and varies between 245.6 and 2009.8 seconds. Model MTZ solved eight out of ten instances
to optimality (Table 5.11). Interestingly for instance ins 30 2 (2.1,3.3) no optimality was
proven, even though the heuristic solution is optimal.

Table 5.10.: Solutions using Model B+ with SEC.3
for test instances with 30 nodes

Vars/Cons SEC NodeCnt UB LB GAP Time(s)

ins 30 0 (2.0,3.0) 4137/12655 64113 4457 6 6 0.0% 2009.8
ins 30 1 (2.1,3.3) 2925/9010 0 38 5 5 0.0% 11.3
ins 30 2 (2.2,3.6) 3675/11145 17050 16875 5 5 0.0% 129.1
ins 30 3 (2.3,3.9) 4266/12720 77934 14674 5 5 0.0% 877.3
ins 30 4 (2.4,4.2) 5411/14825 123081 5644 5 5 0.0% 1377.9
ins 30 5 (2.5,4.5) 3268/9914 0 37 4 4 0.0% 34.7
ins 30 6 (2.6,4.8) 3276/9738 37796 1445 4 4 0.0% 40.1
ins 30 7 (2.7,5.1) 4155/11875 101045 31943 4 4 0.0% 245.6
ins 30 8 (2.8,5.4) 2619/7056 0 0 3 3 0.0% 0.6
ins 30 9 (2.9,5.7) 3540/9226 124860 457946 4 3 25.0% 3600.0

Bachelor Thesis, TU Berlin, 2019 35

Node Partitioning and Subtours Creation Problem Gioni Mexi

Table 5.11.: Solutions using Model MTZ
for test instances with 30 nodes

Vars/Cons NodeCnt UB LB GAP Time(s)

ins 30 0 (2.0,3.0) 4377/16582 4066698 6 6 0.0% 2289.9
ins 30 1 (2.1,3.3) 3105/11785 11 5 5 0.0% 20.8
ins 30 2 (2.2,3.6) 3855/14670 5078386 5 4 20.0% 3600.0
ins 30 3 (2.3,3.9) 4476/16806 15495 5 5 0.0% 187.6
ins 30 4 (2.4,4.2) 5651/20026 1225406 5 5 0.0% 1762.3
ins 30 5 (2.5,4.5) 3418/13062 119 4 4 0.0% 70.2
ins 30 6 (2.6,4.8) 3426/12894 494171 4 4 0.0% 278.6
ins 30 7 (2.7,5.1) 4335/15880 106925 4 4 0.0% 195.1
ins 30 8 (2.8,5.4) 2739/9585 0 3 3 0.0% 0.7
ins 30 9 (2.9,5.7) 3690/12646 1665240 4 3 25.0% 3600.0

Since our models solve most test instances with n = 30, we continue with instances with
n = 35. Model B+ solved six out of ten instances to optimality (Table 5.12), while Model
MTZ only three (Table 5.13). All optimally solved instances are solved faster with Model
B+ and in general much less nodes are explored with Model B+. However, for the instance
ins 35 4 (2.4,4.2) Model MTZ proved a better optimality gap. Further, we notice that the
three solved instances with Model MTZ, are the ones for which the heuristic produced an
optimal solution. Both models solved these instance after at most 44.3 seconds, which
indicates that a good quality heuristic solution speeds up the optimization process.

Table 5.12.: Solutions using Model B+ with SEC.3
for test instances with 35 nodes

Vars/Cons SEC NodeCnt UB LB GAP Time(s)

ins 35 0 (2.0,3.0) 6424/21073 128648 14694 7 5 28.6% 3600.0
ins 35 1 (2.1,3.3) 3965/13030 0 56 5 5 0.0% 23.4
ins 35 2 (2.2,3.6) 5790/18141 132936 92523 5 5 0.0% 1495.8
ins 35 3 (2.3,3.9) 6769/21329 132328 93408 5 5 0.0% 1512.2
ins 35 4 (2.4,4.2) 7329/20552 137921 6897 7 4 42.9% 3600.0
ins 35 5 (2.5,4.5) 4444/14745 0 34 4 4 0.0% 12.8
ins 35 6 (2.6,4.8) 4516/14573 18740 115 4 4 0.0% 20.5
ins 35 7 (2.7,5.1) 5725/17715 113955 219818 5 4 20.0% 3600.0
ins 35 8 (2.8,5.4) 4716/13193 170572 5083 3 3 0.0% 132.6
ins 35 9 (2.9,5.7) 4940/15485 131216 110084 4 3 25.0% 3600.0

36 Bachelor Thesis, TU Berlin, 2019

Gioni Mexi Node Partitioning and Subtours Creation Problem

Table 5.13.: Solutions using Model MTZ
for test instances with 35 nodes

Vars/Cons NodeCnt UB LB GAP Time(s)

ins 35 0 (2.0,3.0) 6739/27217 86968 7 5 28.6% 3600.0
ins 35 1 (2.1,3.3) 4175/16820 48 5 5 0.0% 44.3
ins 35 2 (2.2,3.6) 6035/23721 1554516 6 5 16.7% 3600.0
ins 35 3 (2.3,3.9) 7049/27853 1051661 6 5 16.7% 3600.6
ins 35 4 (2.4,4.2) 7609/27636 3893108 6 5 16.7% 3600.0
ins 35 5 (2.5,4.5) 4619/19049 27 4 4 0.0% 23.5
ins 35 6 (2.6,4.8) 4691/18949 1385 4 4 0.0% 35.1
ins 35 7 (2.7,5.1) 5935/23265 5036241 5 4 20.0% 3600.0
ins 35 8 (2.8,5.4) 4891/17769 2117674 4 3 25.0% 3600.0
ins 35 9 (2.9,5.7) 5115/20285 4013750 4 3 25.0% 3600.0

Lastly for n = 40, no instance was solved to optimality within our time limit (Table 5.14,
5.15) For two out of ten instances a better optimality gap was found with Model MTZ and
for one instance with Model B+. For the rest the solutions with both models have the same
optimality gap.

Table 5.14.: Solutions using Model B+ with SEC.3
for test instances with 40 nodes

Vars/Cons SEC NodeCnt UB LB GAP Time(s)

ins 40 0 (2.0,3.0) 9459/31755 183186 12181 9 5 44.4% 3600.0
ins 40 1 (2.1,3.3) 6282/21636 106626 333820 6 5 16.7% 3600.0
ins 40 2 (2.2,3.6) 7470/24714 119478 7966 6 5 16.7% 3600.0
ins 40 3 (2.3,3.9) 8855/29086 124922 3068 7 4 42.9% 3600.0
ins 40 4 (2.4,4.2) 9359/27301 231721 35088 7 5 28.6% 3600.0
ins 40 5 (2.5,4.5) 7155/24310 146385 185989 5 4 20.0% 3600.0
ins 40 6 (2.6,4.8) 7295/24025 175795 160354 5 4 20.0% 3600.0
ins 40 7 (2.7,5.1) 7475/24005 117625 103392 5 4 20.0% 3600.0
ins 40 8 (2.8,5.4) 6076/18108 194712 102676 4 3 25.0% 3600.0
ins 40 9 (2.9,5.7) 7735/22370 150985 2793 5 3 40.0% 3600.0

Bachelor Thesis, TU Berlin, 2019 37

Node Partitioning and Subtours Creation Problem Gioni Mexi

Table 5.15.: Solutions using Model MTZ
for test instances with 40 nodes

Vars/Cons NodeCnt UB LB GAP Time(s)

ins 40 0 (2.0,3.0) 9859/40854 56486 9 5 44.4% 3600.0
ins 40 1 (2.1,3.3) 6562/27678 2830969 6 5 16.7% 3600.0
ins 40 2 (2.2,3.6) 7750/31944 217192 6 4 33.3% 3600.0
ins 40 3 (2.3,3.9) 9175/37661 631299 6 5 16.7% 3600.0
ins 40 4 (2.4,4.2) 9679/36380 702004 6 5 16.7% 3600.0
ins 40 5 (2.5,4.5) 7395/31265 2269265 5 4 20.0% 3600.0
ins 40 6 (2.6,4.8) 7535/31120 1429439 5 4 20.0% 3600.0
ins 40 7 (2.7,5.1) 7715/31280 1455413 5 4 20.0% 3600.0
ins 40 8 (2.8,5.4) 6276/24024 1396860 4 3 25.0% 3600.0
ins 40 9 (2.9,5.7) 7975/29905 779146 5 3 40.0% 3600.0

After testing all models we can conclude that Model B+ is more reliable than Model A, B
and MTZ on solving instances with 20, 25, 30, 35 nodes. Model A and B cannot solve most
instances with 20 nodes. Model MTZ ourperforms Model A and B, but in general it is much
slower than Model B+ and fails to solve three instances with 25 nodes, one instance with 30
nodes and three instances with 35 nodes, which are solved by Model B+.

38 Bachelor Thesis, TU Berlin, 2019

Gioni Mexi Node Partitioning and Subtours Creation Problem

5.4. Performance of the Subtour Elimination Constraints

In this section we compare the performance of Model B+ with the subtour elimination
constraints SEC.1, SEC.2 and SEC.3 for test instances with n ∈ 25, 40. For n = 25 only
Model B+ with SEC.3 solved all instances to optimality (Table 5.8). By using SEC.1 only five
out of ten are solved to optimality (Table 5.16) and by using SEC.2 nine out ten (Table 5.17).
We observe that by using SEC.1 and SEC.2 the number of subtour elimination constraints
added during optimization is on average much lower, especially by using SEC.2. Furthermore,
with Model B+ much less nodes are explored.

Table 5.16.: Solutions using Model B+ with SEC.1
for test instances with 25 nodes

Vars/Cons SEC NodeCnt UB LB GAP Time(s)

ins 25 0 (2.0,3.0) 2502/7035 8496 17447 5 5 0.0% 38.7
ins 25 1 (2.1,3.3) 1620/4527 0 0 4 4 0.0% 0.2
ins 25 2 (2.2,3.6) 2982/8661 20154 3438284 5 4 20.0% 3600.0
ins 25 3 (2.3,3.9) 2475/7095 19935 7943684 5 4 20.0% 3600.0
ins 25 4 (2.4,4.2) 3282/8631 32280 3682375 5 4 20.0% 3600.0
ins 25 5 (2.5,4.5) 2300/6583 240 1790 4 4 0.0% 20.9
ins 25 6 (2.6,4.8) 2292/6279 1964 23579 4 4 0.0% 17.5
ins 25 7 (2.7,5.1) 2915/7660 91430 500910 5 3 40.0% 3600.0
ins 25 8 (2.8,5.4) 1827/4659 0 0 3 3 0.0% 0.4
ins 25 9 (2.9,5.7) 2476/6063 83164 1166163 4 3 25.0% 3600.0

Table 5.17.: Solutions using Model B+ with SEC.2
for test instances with 25 nodes

Vars/Cons SEC NodeCnt UB LB GAP Time(s)

ins 25 0 (2.0,3.0) 2502/7035 2718 4839 5 5 0.0% 10.4
ins 25 1 (2.1,3.3) 1620/4527 0 0 4 4 0.0% 0.2
ins 25 2 (2.2,3.6) 2982/8661 6456 1445526 5 5 0.0% 1726.4
ins 25 3 (2.3,3.9) 2475/7095 3250 11488927 5 4 20.0% 3600.0
ins 25 4 (2.4,4.2) 3282/8631 11472 1869403 5 5 0.0% 959.6
ins 25 5 (2.5,4.5) 2300/6583 340 220 4 4 0.0% 15.5
ins 25 6 (2.6,4.8) 2292/6279 668 11804 4 4 0.0% 11.5
ins 25 7 (2.7,5.1) 2915/7660 18965 103759 4 4 0.0% 582.2
ins 25 8 (2.8,5.4) 1827/4659 0 0 3 3 0.0% 0.7
ins 25 9 (2.9,5.7) 2476/6063 7108 98779 3 3 0.0% 54.0

For larger instances with n = 40 no instance was solved to optimality. We observe that
with SEC.3 (Table 5.14) a much larger number of subtour elimination constraints is added,

Bachelor Thesis, TU Berlin, 2019 39

Node Partitioning and Subtours Creation Problem Gioni Mexi

compared to SEC.1 (Table 5.18) and SEC.2 (Table 5.19). With SEC.1 and SEC.2 a larger
number of nodes is explored. Furthermore, SEC.2 proves a better gap for two instances
compared to SEC.3 and a better for one instance compared to SEC.1. A conclusion for the
best performing subtour elimination constraints cannot be made. Using Model B+ with
SEC.3 seems to perform better for smaller test instances, since more are solved compared
to SEC.1 and SEC.2. For larger instances however, the large amount of subtour elimination
constraints SEC.3 seems to harm the performance of the Model B+. Further computation
results for Model B+ with SEC.1 and SEC.2 can be found in Appendix B.

Table 5.18.: Solutions using Model B+ with SEC.1
for test instances with 40 nodes

Vars/Cons SEC NodeCnt UB LB GAP Time(s)

ins 40 0 (2.0,3.0) 9459/31755 41364 116658 9 6 33.3% 3600.0
ins 40 1 (2.1,3.3) 6282/21636 23478 1400228 6 5 16.7% 3600.0
ins 40 2 (2.2,3.6) 7470/24714 35040 165170 6 4 33.3% 3600.0
ins 40 3 (2.3,3.9) 8855/29086 56273 267806 7 5 28.6% 3600.0
ins 40 4 (2.4,4.2) 9359/27301 100212 395854 7 5 28.6% 3600.0
ins 40 5 (2.5,4.5) 7155/24310 68560 1033488 5 4 20.0% 3600.0
ins 40 6 (2.6,4.8) 7295/24025 64820 1243703 5 4 20.0% 3600.0
ins 40 7 (2.7,5.1) 7475/24005 53815 1093971 5 4 20.0% 3600.0
ins 40 8 (2.8,5.4) 6076/18108 107420 602595 4 3 25.0% 3600.0
ins 40 9 (2.9,5.7) 7735/22370 96235 389962 5 3 40.0% 3600.0

Table 5.19.: Solutions using Model B+ with SEC.2
for test instances with 40 nodes

Vars/Cons SEC NodeCnt UB LB GAP Time(s)

ins 40 0 (2.0,3.0) 9459/31755 41886 208845 9 6 33.3% 3600.0
ins 40 1 (2.1,3.3) 6282/21636 5658 1298621 6 5 16.7% 3600.0
ins 40 2 (2.2,3.6) 7470/24714 11544 103392 6 5 16.7% 3600.0
ins 40 3 (2.3,3.9) 8855/29086 21462 122161 7 5 28.6% 3600.0
ins 40 4 (2.4,4.2) 9359/27301 32914 397799 7 5 28.6% 3600.0
ins 40 5 (2.5,4.5) 7155/24310 10935 1821021 5 4 20.0% 3600.0
ins 40 6 (2.6,4.8) 7295/24025 12975 1252476 5 4 20.0% 3600.0
ins 40 7 (2.7,5.1) 7475/24005 13500 1393356 5 4 20.0% 3600.0
ins 40 8 (2.8,5.4) 6076/18108 6624 3091542 4 3 25.0% 3600.0
ins 40 9 (2.9,5.7) 7735/22370 29960 499825 5 3 40.0% 3600.0

40 Bachelor Thesis, TU Berlin, 2019

Gioni Mexi Node Partitioning and Subtours Creation Problem

5.5. Performance of the Valid Inequalities (C.13) - (C.16)

Since Model B+ outperforms Model A and B, we examine which of the valid inequalities
(C.13) - (C.16) contribute at most to this improvement. Therefore, we solve the test instances
with n = 20 with Model B and the addition of (C.13) - (C.16) separately. In Table 5.20 we
add the symmetry breaking inequalities (C.13) to Model B. In Table 5.21 we add the lower
bound valid inequality (C.14). In Table 5.22 we add the inequalities (C.15) derived from
the conflict graph and in Table 5.23 we add the 3-node infeasible subset inequalities (C.16).
Surprisingly, in comparison with Model B (Table 5.5) the addition of (C.13) negatively affects
the optimization process as shown in Table 5.20. No instance is solved to optimality and the
optimality gap of one of the unsolved instances gets worse.

Table 5.20.: Solutions using Model B with SEC.3 and valid inequalities (C.13)
for test instances with 20 nodes

Vars/Cons SEC NodeCnt UB LB GAP Time(s)

ins 20 0 (2.0,3.0) 1325/2709 68115 278679 5 3 40.0% 3600.0
ins 20 1 (2.1,3.3) 1036/2131 26748 1112376 4 3 25.0% 3600.0
ins 20 3 (2.3,3.9) 1585/3229 91095 245224 4 3 25.0% 3600.0
ins 20 4 (2.4,4.2) 1805/3669 76795 183690 5 3 40.0% 3600.0
ins 20 5 (2.5,4.5) 1436/2931 78992 278364 4 3 25.0% 3600.0
ins 20 6 (2.6,4.8) 1508/3075 74240 510190 4 3 25.0% 3600.0
ins 20 7 (2.7,5.1) 1532/3123 63228 467315 4 3 25.0% 3600.0
ins 20 8 (2.8,5.4) 1167/2393 44649 1843004 3 2 33.3% 3600.0
ins 20 9 (2.9,5.7) 1580/3219 102736 340812 4 3 25.0% 3600.0

By including the lower bound (C.14) in Model B, four instances are solved to optimality
and the gap of ins 20 0 (2.0,3.0) improves as shown in Table 5.21. With Model B however,
only two instances are solved to optimality.

Bachelor Thesis, TU Berlin, 2019 41

Node Partitioning and Subtours Creation Problem Gioni Mexi

Table 5.21.: Solutions using Model B with SEC.3 and valid inequalities (C.14)
for test instances with 20 nodes.

Vars/Cons SEC NodeCnt UB LB GAP Time(s)

ins 20 0 (2.0,3.0) 1325/2706 62480 333366 5 4 20.0% 3600.0
ins 20 1 (2.1,3.3) 1036/2129 0 0 4 4 0.0% 0.2
ins 20 2 (2.2,3.6) 1615/3286 1610 763047 4 3 25.0% 3600.0
ins 20 3 (2.3,3.9) 1585/3226 9000 602146 4 3 25.0% 3600.0
ins 20 4 (2.4,4.2) 1805/3666 83080 124601 5 3 40.0% 3600.0
ins 20 5 (2.5,4.5) 1436/2929 73212 22324 3 3 0.0% 351.4
ins 20 6 (2.6,4.8) 1508/3073 20616 634817 4 3 25.0% 3600.0
ins 20 7 (2.7,5.1) 1532/3121 30472 466102 4 3 25.0% 3600.0
ins 20 8 (2.8,5.4) 1167/2392 0 0 3 3 0.0% 0.1
ins 20 9 (2.9,5.7) 1580/3217 64272 17774 3 3 0.0% 300.9

Next, compared to Table 5.5, the solutions in both Tables 5.22 and 5.23 show a significant
improvement. For both variants seven out of ten instances are solved to optimality. On the
other hand, with Model B only two out of ten instances are optimally solved. This means
that the addition of the 3-node infeasible subsets inequalities and those derived from the
cliques in the conflict graph contribute at most to the improved performance of Model B+
and MTZ in comparison to Model A and B.

Table 5.22.: Solutions using Model B with SEC.3 and valid inequalities (C.15)
for test instances with 20 nodes.

Vars/Cons SEC NodeCnt UB LB GAP Time(s)

ins 20 0 (2.0,3.0) 1325/3026 27330 2139668 5 4 20.0% 3600.0
ins 20 1 (2.1,3.3) 1036/2401 0 0 4 4 0.0% 0.1
ins 20 2 (2.2,3.6) 1615/3506 38820 20354 4 4 0.0% 250.1
ins 20 3 (2.3,3.9) 1585/3451 25960 49684 4 4 0.0% 256.1
ins 20 4 (2.4,4.2) 1805/3786 47515 44241 4 4 0.0% 274.3
ins 20 5 (2.5,4.5) 1436/3033 30044 2689 3 3 0.0% 21.8
ins 20 6 (2.6,4.8) 1508/3145 41408 1340339 4 3 25.0% 3600.0
ins 20 7 (2.7,5.1) 1532/3189 44172 1106349 4 3 25.0% 3600.0
ins 20 8 (2.8,5.4) 1167/2428 0 0 3 3 0.0% 0.1
ins 20 9 (2.9,5.7) 1580/3269 48104 2669 3 3 0.0% 83.8

42 Bachelor Thesis, TU Berlin, 2019

Gioni Mexi Node Partitioning and Subtours Creation Problem

Table 5.23.: Solutions using Model B with SEC.3 and valid inequalities (C.16)
for test instances with 20 nodes

Vars/Cons SEC NodeCnt UB LB GAP Time(s)

ins 20 0 (2.0,3.0) 1325/3125 51585 225032 5 3 40.0% 3600.0
ins 20 1 (2.1,3.3) 1036/2408 18152 1599191 4 3 25.0% 3600.0
ins 20 2 (2.2,3.6) 1615/4190 42550 47688 4 4 0.0% 622.2
ins 20 3 (2.3,3.9) 1585/3985 42100 98276 4 4 0.0% 1248.5
ins 20 4 (2.4,4.2) 1805/4560 29400 34273 4 4 0.0% 287.6
ins 20 5 (2.5,4.5) 1436/3732 27828 15958 3 3 0.0% 55.2
ins 20 6 (2.6,4.8) 1508/3688 43696 521995 4 4 0.0% 2082.2
ins 20 7 (2.7,5.1) 1532/3668 46660 688585 4 3 25.0% 3600.0
ins 20 8 (2.8,5.4) 1167/2745 0 45 3 3 0.0% 1.0
ins 20 9 (2.9,5.7) 1580/3656 67448 9666 3 3 0.0% 147.2

Lastly, by excluding (C.13) from Model B+ or, equivalently, by solving Model B with the
addition of (C.14), (C.15) and (C.16), we observe that all instances are solved to optimality
(Table 5.24). However, by including also (C.13), i.e, by using Model B+, all instances are
solved faster to optimality as shown in Table 5.6.

Table 5.24.: Solutions using Model B with SEC.3 and valid inequalities (C.14), (C.15)
and (C.16) for test instances with 20 nodes.

Vars/Cons SEC NodeCnt UB LB GAP Time(s)

ins 20 0 (2.0,3.0) 1325/3446 11610 36636 5 5 0.0% 74.7
ins 20 1 (2.1,3.3) 1036/2681 0 0 4 4 0.0% 0.1
ins 20 2 (2.2,3.6) 1615/4411 21575 2274 4 4 0.0% 82.0
ins 20 3 (2.3,3.9) 1585/4211 21360 1956 4 4 0.0% 56.3
ins 20 4 (2.4,4.2) 1805/4681 17150 6373 4 4 0.0% 9.5
ins 20 5 (2.5,4.5) 1436/3837 20988 191 3 3 0.0% 19.1
ins 20 6 (2.6,4.8) 1508/3761 20292 10802 4 4 0.0% 27.8
ins 20 7 (2.7,5.1) 1532/3737 19436 628193 4 4 0.0% 726.5
ins 20 8 (2.8,5.4) 1167/2782 0 0 3 3 0.0% 0.2
ins 20 9 (2.9,5.7) 1580/3709 45112 9672 3 3 0.0% 51.5

Bachelor Thesis, TU Berlin, 2019 43

Node Partitioning and Subtours Creation Problem Gioni Mexi

44 Bachelor Thesis, TU Berlin, 2019

6. Conclusion

In this thesis various aspects of the node partitioning and subtours creation problem were
discussed. In this section we give a short summary of the thesis and suggest possible future
work.

After formally defining NPSC on a graph GI , we introduced preprocessing techniques to
reduce the size of GI by deleting edges, which cannot be included in any feasible solution.
Moreover, by using the conflict graph of GI we are able to find sets of nodes, which cannot
lie in the same set in a feasible solution. We also proved that the size of a maximum clique
in the conflict graph is a lower bound for NPSC. In Chapter 3, we discuss a heuristic, similar
to the cheapest insertion heuristic for TSP, which produces a feasible solution for NPSC.
This solution is an upper bound to the optimal objective value, and is used as a starting
solution for our four programming models presented in Chapter 4. The differences between
our models are the following: The first one, model A, contains non-linear constraints, which
are linearised in model B. The third model, model B+, additionally includes valid inequalities
derived from the maximal cliques in the conflict graph, the symmetry of NPSC solutions,
and further subsets of nodes that cannot lie in the same set in any feasible solution. All
previous models share the same subtour elimination constraints, which are added during
the optimization in a lazy fashion (section 4.2). Additionally, we derived a compact model,
based on the MTZ formulation of TSP, which includes beforehand all subtour elimination
constraints. In Chapter 5 we tested the heuristic and all programming models on randomly
generated test instances, and presented our computational results. The best performing
models on our test instances are Model B+ and Model MTZ.

6.1. Future Work

Similarly to other combinatorial optimization problems like TSP and VRP, many different
variations of NPSC can be created and are left for the future. For example, by removing
condition (1.1), more subsets of a feasible solution can contain the same nodes, which is
meaningful, since in many cases, for example in surveillance applications, multiple vehicles
are allowed to patrol same areas at different moments, see Drucker et al. [10]. It is also
important to examine the performance of our models on test instances based on real problems
and not random numbers. Hence, testing such instances is of interest. Furthermore, the
problem input may change with time, for example by slightly adjusting the critical times or
by adding new nodes to a problem. It is interesting to know if we can use known optimal
solutions, in order to find feasible solutions for slightly modified problems faster. Further,
it is worthwhile trying to improve our heuristic or create a better one, since a good quality
starting solution can speed up the optimization process. Lastly, since the 3-node infeasible
subsets valid inequalities and the ones derived from the conflict graph made Models B+ and
MTZ perform much better than Model A and B, finding more infeasible combinations of
nodes could beneficial for their performance.

Node Partitioning and Subtours Creation Problem Gioni Mexi

46 Bachelor Thesis, TU Berlin, 2019

Bibliography

[1] T. Achterberg. Constraint Integer Programming. PhD thesis, Technische Universität
Berlin, 2007.

[2] D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook. The Traveling Salesman
Problem: A Computational Study. Princeton University Press, 2006.

[3] H.-J. Bockenhauer, J. Hromkovic, J. Kneis, and J. Kupke. The parameterized approx-
imability of TSP with deadlines. Theory of Computing Systems, 41(3):431–444, 2007.

[4] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. London: The
Macmillan Press Ltd, 1976.

[5] C. Bron and J. Kerbosch. Algorithm 457: Finding all cliques of an undirected graph.
Communications of the ACM, 16(9):575–577, 1973.

[6] O. Burdakov. Node Partitioning and Subtours Creation (NPSC): Problem formulation
and its MIP model. Private Communication , 2018.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
MIT Press, 3 edition, 2009.

[8] G. Dantzig, R. Fulkerson, and S. Johnson. Solution of a large-scale Traveling Salesman
Problem. Journal of the Operations Research Society of America, 2(4):393–410, 1954.

[9] M. Desrochers, J. Desrosiers, and M. Solomon. A new optimization algorithm for the
vehicle routing problem with time windows. Operations Research, 40(2):342–354, 1992.

[10] N. Drucker, M. Penn, and O. Strichman. Cyclic routing of unmanned aerial vehicles.
In International Conference on AI and OR Techniques in Constriant Programming for
Combinatorial Optimization Problems, pages 125–141. Springer, 2016.

[11] Y. Dumas, J. Desrosiers, E. Gelinas, and M. M. Solomon. An optimal algorithm for the
Traveling Salesman Problem with Time Windows. Operations research, 43(2):367–371,
1995.

[12] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

[13] Gurobi Optimization LLC. Gurobi optimizer reference manual, 2018. http://www.

gurobi.com.

[14] G. Gutin and A. P. Punnen. The Traveling Salesman Problem and Its Variations,
volume 12. Springer Science & Business Media, 2006.

http://www.gurobi.com
http://www.gurobi.com

Node Partitioning and Subtours Creation Problem Gioni Mexi

[15] A. Hagberg, P. Swart, and D. S Chult. Exploring network structure, dynamics, and
function using NetworkX. Technical report, Los Alamos National Lab.(LANL), Los
Alamos, NM (United States), 2008.

[16] H. M. Ho and J. Ouaknine. The Cyclic-Routing UAV problem is PSPACE-Complete.
In A. Pitts, editor, Foundations of Software Science and Computation Structures, pages
328–342. Springer, 2015.

[17] R. M. Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations, pages 85–103. Springer, 1972.

[18] G. Laporte. The vehicle routing problem: An overview of exact and approximate algo-
rithms. European journal of operational research, 59(3):345–358, 1992.

[19] J. Lee and S. Leyffer. Mixed Integer Nonlinear Programming, volume 154. Springer
Science & Business Media, 2011.

[20] C. E. Miller, A. W. Tucker, and R. A. Zemlin. Integer Programming Formulation of
Traveling Salesman Problems. Journal of the ACM (JACM), 7(4):326–329, 1960.

[21] H. P. Williams. Model Building in Mathematical Programming. John Wiley & Sons, 5
edition, 2013.

48 Bachelor Thesis, TU Berlin, 2019

Appendices

A. TSP Subtour Elimination Constraints

The subtour elimination constraints (2.2.2) are included during optimization in a lazy fash-
ion, as explained in the Gurobi optimizer manual [13] and in Algorithm 4.

Algorithm 4 Pseudocode

1: function SubtourElimination
2: x← current solution
3: C ← {(i, j) ∈ E |xij = 1} . get all edges
4: if C contains multiple subtours (?) then . x is not feasible
5: choose smallest cycle Cs in C
6: S ← nodes of Cs
7: model ← addLazyConstraints (??) . cut off infeasible solutions

(?) In order to detect subtours, we compute the shortest cycle Cs with edges in C. If
Cs has |V | edges, then a tour with of minimal length satisfying all constraints is found.
Otherwise, if the cycle has less than |V | edges, we eliminate these subtours by adding the
following constraint to the model:

(??)
∑

i,j∈S,i6=j:{i,j}∈E

xij ≤ |S| − 1 .

Then, the optimization process continues until the shortest cycle has length |V | and hence
no subtours exist.

Node Partitioning and Subtours Creation Problem Gioni Mexi

B. Further Computational Results for Models A, B, B+

Table B.1.: Solutions using Model A with SEC.1
for test instances with 20 nodes

Vars/Cons SEC NodeCnt UB LB GAP Time(s)

ins 20 0 (2.0,3.0) 1325/2705 1150 195383 5 2 60.0% 3600.0
ins 20 1 (2.1,3.3) 1036/2128 100 173909 4 2 50.0% 3600.0
ins 20 2 (2.2,3.6) 1615/3285 9700 40123 5 2 60.0% 3600.0
ins 20 3 (2.3,3.9) 1585/3225 255 124204 5 2 60.0% 3600.0
ins 20 4 (2.4,4.2) 1805/3665 1190 176970 5 2 60.0% 3600.0
ins 20 5 (2.5,4.5) 1436/2928 73 75950 4 2 50.0% 3600.0
ins 20 6 (2.6,4.8) 1508/3072 29 84231 4 2 50.0% 3600.0
ins 20 7 (2.7,5.1) 1532/3120 40 82483 4 2 50.0% 3600.0
ins 20 8 (2.8,5.4) 1167/2391 123 84539 3 1 66.7% 3600.0
ins 20 9 (2.9,5.7) 1580/3216 340 115642 4 1 75.0% 3600.0

Table B.2.: Solutions using Model A with SEC.2
for test instances with 20 nodes

Vars/Cons SEC NodeCnt UB LB GAP Time(s)

ins 20 0 (2.0,3.0) 1325/2705 330 149135 5 2 60.0% 3600.0
ins 20 1 (2.1,3.3) 1036/2128 48 185643 4 2 50.0% 3600.0
ins 20 2 (2.2,3.6) 1615/3285 4335 35404 5 2 60.0% 3600.0
ins 20 3 (2.3,3.9) 1585/3225 565 133636 5 2 60.0% 3600.0
ins 20 4 (2.4,4.2) 1805/3665 280 194751 5 2 60.0% 3600.0
ins 20 5 (2.5,4.5) 1436/2928 324 71146 4 1 75.0% 3600.0
ins 20 6 (2.6,4.8) 1508/3072 49 76742 4 2 50.0% 3600.0
ins 20 7 (2.7,5.1) 1532/3120 3124 34014 4 2 50.0% 3600.0
ins 20 8 (2.8,5.4) 1167/2381 213 84782 3 1 66.7% 3600.0
ins 20 9 (2.9,5.7) 1580/3216 110 133668 4 1 75.0% 3600.0

50 Bachelor Thesis, TU Berlin, 2019

Gioni Mexi Node Partitioning and Subtours Creation Problem

Table B.3.: Solutions using Model B with SEC.1
for test instances with 20 nodes

Vars/Cons SEC NodeCnt UB LB GAP Time(s)

ins 20 0 (2.0,3.0) 1325/2705 51945 586731 5 3 40.0% 3600.0
ins 20 1 (2.1,3.3) 1036/2128 71172 773017 4 3 25.0% 3600.0
ins 20 2 (2.2,3.6) 1615/3285 74335 470021 5 3 40.0% 3600.0
ins 20 3 (2.3,3.9) 1585/3225 68515 459197 5 3 40.0% 3600.0
ins 20 4 (2.4,4.2) 1805/3665 58945 594597 5 3 40.0% 3600.0
ins 20 5 (2.5,4.5) 1436/2928 68324 349745 4 2 50.0% 3600.0
ins 20 6 (2.6,4.8) 1508/3072 79896 388410 4 2 50.0% 3600.0
ins 20 7 (2.7,5.1) 1532/3120 106676 755772 4 3 25.0% 3600.0
ins 20 8 (2.8,5.4) 1167/2391 94911 540977 3 2 33.3% 3600.0
ins 20 9 (2.9,5.7) 1580/3216 72364 349597 3 2 33.3% 3600.0

Table B.4.: Solutions using Model B with SEC.2
for test instances with 20 nodes

Vars/Cons SEC NodeCnt UB LB GAP Time(s)

ins 20 0 (2.0,3.0) 1325/2705 17475 1810162 5 3 40.0% 3600.0
ins 20 1 (2.1,3.3) 1036/2128 4296 7872607 4 3 25.0% 3600.0
ins 20 2 (2.2,3.6) 1615/3285 22100 1095764 4 3 25.0% 3600.0
ins 20 3 (2.3,3.9) 1585/3225 16330 1361639 3 3 25.0% 3600.0
ins 20 4 (2.4,4.2) 1805/3665 29965 686958 5 3 40.0% 3600.0
ins 20 5 (2.5,4.5) 1436/2928 15184 2246678 4 3 25.0% 3600.0
ins 20 6 (2.6,4.8) 1508/3072 20576 924214 4 3 25.0% 3600.0
ins 20 7 (2.7,5.1) 1532/3120 16868 3251604 4 3 25.0% 3600.0
ins 20 8 (2.8,5.4) 1167/2391 6900 4163612 3 2 33.3% 3600.0
ins 20 9 (2.9,5.7) 1580/3216 28212 345629 3 2 33.3% 3600.0

Bachelor Thesis, TU Berlin, 2019 51

Node Partitioning and Subtours Creation Problem Gioni Mexi

Table B.5.: Solutions using Model B+ with SEC.1
for test instances with 20 nodes

Vars/Cons SEC NodeCnt UB LB GAP Time(s)

ins 20 0 (2.0,3.0) 1325/3450 3665 153027 5 5 0.0% 43.7
ins 20 1 (2.1,3.3) 1036/2684 0 0 4 4 0.0% 0.3
ins 20 2 (2.2,3.6) 1615/4415 12665 227064 4 4 0.0% 76.7
ins 20 3 (2.3,3.9) 1585/4215 2080 4317 4 4 0.0% 4.4
ins 20 4 (2.4,4.2) 1805/4685 6475 18307 4 4 0.0% 24.4
ins 20 5 (2.5,4.5) 1436/3840 20572 16898 3 3 0.0% 29.2
ins 20 6 (2.6,4.8) 1508/3764 41748 408335 4 4 0.0% 939.5
ins 20 7 (2.7,5.1) 1532/3740 27656 4148918 4 3 25.0% 3600.0
ins 20 8 (2.8,5.4) 1167/2784 0 0 3 3 0.0% 0.1
ins 20 9 (2.9,5.7) 1580/3712 148152 823063 4 3 25.0% 3600.0

Table B.6.: Solutions using Model B+ with SEC.2
for test instances with 20 nodes

Vars/Cons SEC NodeCnt UB LB GAP Time(s)

ins 20 0 (2.0,3.0) 1325/3450 880 62407 5 5 0.0% 35.7
ins 20 1 (2.1,3.3) 1036/2684 0 0 4 4 0.0% 0.1
ins 20 2 (2.2,3.6) 1615/4415 2630 5606 4 4 0.0% 20.2
ins 20 3 (2.3,3.9) 1585/4215 2480 14199 4 4 0.0% 16.4
ins 20 4 (2.4,4.2) 1805/4685 1345 4208 4 4 0.0% 4.1
ins 20 5 (2.5,4.5) 1436/3840 764 1506 3 3 0.0% 2.6
ins 20 6 (2.6,4.8) 1508/3764 792 46464 4 4 0.0% 20.9
ins 20 7 (2.7,5.1) 1532/3740 2380 86823 4 4 0.0% 37.6
ins 20 8 (2.8,5.4) 1167/2784 0 0 3 3 0.0% 0.1
ins 20 9 (2.9,5.7) 1580/3712 2532 2340 3 3 0.0% 5.5

52 Bachelor Thesis, TU Berlin, 2019

Gioni Mexi Node Partitioning and Subtours Creation Problem

Table B.7.: Solutions using Model B+ with SEC.1
for test instances with 30 nodes

Vars/Cons SEC NodeCnt UB LB GAP Time(s)

ins 30 0 (2.0,3.0) 4137/12655 52703 403106 7 5 28.6% 3600.0
ins 30 1 (2.1,3.3) 2925/9010 0 38 5 5 0.0% 11.4
ins 30 2 (2.2,3.6) 3675/11145 2735 4863017 5 4 20.0% 3600.0
ins 30 3 (2.3,3.9) 4266/12720 38472 567425 5 5 0.0% 1707.2
ins 30 4 (2.4,4.2) 5411/14825 96173 670530 6 5 16.7% 3600.0
ins 30 5 (2.5,4.5) 3268/9914 0 34 4 4 0.0% 36.1
ins 30 6 (2.6,4.8) 3276/9738 5016 2929793 4 4 0.0% 930.3
ins 30 7 (2.7,5.1) 4155/11875 60400 986452 5 4 20.0% 3600.0
ins 30 8 (2.8,5.4) 2619/7056 0 0 3 3 0.0% 0.6
ins 30 9 (2.9,5.7) 3540/9226 94436 909998 4 3 25.0% 3600.0

Table B.8.: Solutions using Model B+ with SEC.2
for test instances with 30 nodes

Vars/Cons SEC NodeCnt UB LB GAP Time(s)

ins 30 0 (2.0,3.0) 4137/12655 7273 107066 6 6 0.0% 827.2
ins 30 1 (2.1,3.3) 2925/9010 0 38 5 5 0.0% 11.5
ins 30 2 (2.2,3.6) 3675/11145 705 2272156 5 5 0.0% 3116.0
ins 30 3 (2.3,3.9) 4266/12720 14880 315874 5 5 0.0% 871.0
ins 30 4 (2.4,4.2) 5411/14825 22925 25164 5 5 0.0% 445.0
ins 30 5 (2.5,4.5) 3268/9914 0 34 4 4 0.0% 36.3
ins 30 6 (2.6,4.8) 3276/9738 852 4856 4 4 0.0% 13.1
ins 30 7 (2.7,5.1) 4155/11875 13470 1979432 5 4 20.0% 3600.0
ins 30 8 (2.8,5.4) 2619/7056 0 0 3 3 0.0% 0.7
ins 30 9 (2.9,5.7) 3540/9226 11680 1213837 4 3 25.0% 3600.0

Bachelor Thesis, TU Berlin, 2019 53

Node Partitioning and Subtours Creation Problem Gioni Mexi

Table B.9.: Solutions using Model B+ with SEC.1
for test instances with 35 nodes

Vars/Cons SEC NodeCnt UB LB GAP Time(s)

ins 35 0 (2.0,3.0) 6424/21073 33712 176204 8 6 25.0% 3600.0
ins 35 1 (2.1,3.3) 3965/13030 0 56 5 5 0.0% 23.3
ins 35 2 (2.2,3.6) 5790/18141 48804 945628 6 5 16.7% 3600.0
ins 35 3 (2.3,3.9) 6769/21329 42244 716985 7 5 28.6% 3600.0
ins 35 4 (2.4,4.2) 7329/20552 60571 197191 7 5 28.6% 3600.0
ins 35 5 (2.5,4.5) 4444/14745 0 34 4 4 0.0% 12.6
ins 35 6 (2.6,4.8) 4516/14573 12156 12210747 4 3 25.0% 3600.0
ins 35 7 (2.7,5.1) 5725/17715 26563 3942851 5 4 20.0% 3600.0
ins 35 8 (2.8,5.4) 4716/13193 114404 659651 4 3 25.0% 3600.0
ins 35 9 (2.9,5.7) 4940/15485 84452 676718 4 3 25.0% 3600.0

Table B.10.: Solutions using Model B+ with SEC.2
for test instances with 35 nodes

Vars/Cons SEC NodeCnt UB LB GAP Time(s)

ins 35 0 (2.0,3.0) 6424/21073 32768 387565 7 6 14.3% 3600.0
ins 35 1 (2.1,3.3) 3965/13030 0 56 5 5 0.0% 23.4
ins 35 2 (2.2,3.6) 5790/18141 10074 21184 5 5 0.0% 373.6
ins 35 3 (2.3,3.9) 6769/21329 28826 1040733 6 5 16.7% 3600.0
ins 35 4 (2.4,4.2) 7329/20552 22085 487049 7 5 28.6% 3600.0
ins 35 5 (2.5,4.5) 4444/14745 0 34 4 4 0.0% 12.6
ins 35 6 (2.6,4.8) 4516/14573 348 256 4 4 0.0% 11.1
ins 35 7 (2.7,5.1) 5725/17715 8786 2191867 5 4 20.0% 3600.0
ins 35 8 (2.8,5.4) 4716/13193 12764 133712 3 3 0.0% 182.5
ins 35 9 (2.9,5.7) 4940/15485 9852 2744694 4 3 25.0% 3600.0

54 Bachelor Thesis, TU Berlin, 2019

	Introduction
	Motivation
	Problem Formulation and Definitions
	Related Work
	Outline

	Preprocessing
	Graph Preprocessing
	Connectivity-based problem decomposition
	A Conflict Graph for NPSC

	Insert and Reorder (IaR)-Heuristic
	The IaR-Heuristic
	Excursion: An Integer Programming Model for TSP
	Pseudocode of the IaR-Heuristic

	Approximation Error

	Programming Models for NPSC
	Formulation of Models
	Model A
	Model B
	Model B+

	Adding Subtour Elimination Constraints
	Model MTZ

	Computational Experiments
	Generation of Test Instances
	Performance of the Insertion Heuristic
	Performance of the MI(NL)P Models
	Performance of the Subtour Elimination Constraints
	Performance of the Valid Inequalities (C.13) - (C.16)

	Conclusion
	Future Work

	Bibliography
	Appendices
	TSP Subtour Elimination Constraints
	Further Computational Results for Models A, B, B+

