
Technische Universität Berlin

Institut für Mathematik und Naturwissenschaften

Fachgebiet Modellierung, Simulation und Optimierung in Natur- und

Ingenieurwissenschaften

Fakultät II
Straÿe des 17. Juni 136

10623 Berlin
http://www.math.tu-berlin.de

Master Thesis

On a Novel Approach for Global Optimization

of Non-Convex Problems

Wilhelm Bender

Matriculation Number: 325935
13.05.2019

Supervised by
Priv.-Doz. Dr. Konstantin Fackeldey

Assistant Supervisor
Dr. Marcus Weber



Hereby I declare that I wrote this thesis myself with the help of no more than the

mentioned literature and auxiliary means.

Berlin, 13.05.2019

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Signature Wilhelm Bender)



Contents

List of Figures 5

List of Tables 7

1 Introduction 1
1.1 In Regard of Complexity Theory . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 In Disregard of Critical Points . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Global Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Global Optimality Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Fundamental Question of the Thesis . . . . . . . . . . . . . . . . . . . . . 6

2 Transformation of NP-hard\complete Problems 9
2.1 Penalty Method for Constrained Problems . . . . . . . . . . . . . . . . . . 9
2.2 Penalty Functions as a Homotopy . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Traveling Salesman Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Arithmetization of The Satis�ability Problem . . . . . . . . . . . . . . . . 12

3 Projected Newton Method 15
3.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Correction of Error . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Local Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.1 Test Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.2 Protein-Ligand Docking . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5.1 Test Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5.2 N-Dimensional Test Functions . . . . . . . . . . . . . . . . . . . . . 38
3.5.3 Protein-Ligand Docking . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Dynamic Embedding Algorithm 43
4.1 Zangwill's Global Convergence Theory . . . . . . . . . . . . . . . . . . . . 43
4.2 Newton Continuation Method . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3 Single Non-Linear Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.1 Global Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4.1 N-Dimensional Test Functions . . . . . . . . . . . . . . . . . . . . . 59

3



5 Conclusion 65
5.1 The Fundamental Question . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 The Projected Newton Method . . . . . . . . . . . . . . . . . . . . . . . . 65

6 Outlook 67
6.1 Protein-Ligand Docking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.2 Dynamic Embedding Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 69

Bibliography 71



List of Figures

1.1 Example for suboptimal level and suboptimal points of non-convex prob-
lem in one dimension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1 Comparison of computation time and calculated energy for human glyci-
namide ribonucleotide synthetase (PDB: 2QK4, DUD-Database 2006) with
Autodock Smina (red) and the stochastic global newton method (blue) . . 40

3.2 ROC curve for docking experiment on human glycinamide ribonucleotide
synthetase (GART, PDB: 2QK4, DUD-Database 2006). Left: with stochas-
tic PNM, Right: with Autodock SMINA . . . . . . . . . . . . . . . . . . 41

4.1 Possible paths for curve c(σ) . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 The embedding algorithm fails at turning points τ . . . . . . . . . . . . . 47

4.3 Top-Left: The Fixed-Point Homotopy on function f(x). The initial root
x0 has shifted to the two former accumulation points contained in the
solution set.Top-Right: Predictor (red) and Corrector (blue) steps solve
for the curve c(α).Bottom-Left: The Fixed-Point Homotopy on function
f(x). The initial root x0 has shifted to the accumulation in the solution
set, such that zero-level-set of the homotopy function is monotonous in
λ-direction.Bottom-Right: Predictor and Corrector steps on the homo-
topy's zero-level-set. Since the curve solving the Davidenko di�erential
equation is monotonous in λ-direction, the traversing PC-steps reaches
λ = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 Left: Graph of non-convex coercive function f(x1, x2). Right: Predictor
(red) and Corrector (blue) steps solve for the curve c(α). Contour lines
mark the zeros level-set of the homotopy function at the current λ. Blue
contour lines mark the zero-level-sets of the PC-steps of the inner while
loop, while green contour lines mark the zero-level-sets of the PC-steps,
when the initial �xed-point x0 is shifted. In this version of the algorithm
the Excitation step in line 4 of the algorithm was made by gradual increase,
i.e. λ = λ+ ∆λ, instead of setting it to λ = 1. The approach to the zero-
level-set of the function f (red circle in lower left corner) is visible. . . . . 54

4.5 Left: Error measured with (f̂ − f∗). Negative errors are possible due
to precision of the optimizer. Right: Number of function evaluations
quadratically correlates to the number of dimensions. . . . . . . . . . . . . 60

5



4.6 Left: Error measured with (f̂ − f∗). Negative errors are possible due to
precision of the optimizer. Right: Number of function evaluations linearly
correlates to the number of dimensions. . . . . . . . . . . . . . . . . . . . 61

4.7 Top-Left: Error measured with (f̂ − f∗). Negative errors are possible
due to precision of the optimizer. Top-Right: Number of function eval-
uations correlates to the number of dimensions. The correlation is not
exponential.Bottom: the step size h chosen, such that the error is below
0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.8 Left: Graph of function f(x1, x2). Right: For certain initial values the
algorithm passes through many local minima caused by the sin-terms. . . 62

6.1 Performance of 22 scoring functions in (A) scoring power measured by
Pearson's R, (B) ranking power in terms of high-level success rate and
(C) docking power measured by the success rate, when the best-scored
pose is considered to match the native pose in CASF-2013 benchmark.
∆vinaRF20 is colored in red and AutoDock Vina is colored in green. All
results colored in blue are obtained from reference[18] . . . . . . . . . . . . 67

6.2 Performance of 22 scoring functions in screening power measured by (A)
enrichment factor and (B) success rate at top 1% level in CASF-2013
benchmark. ∆vinaRF20 is colored in red and AutoDock Vina is colored in
green. All results colored in blue are obtained from reference[18] . . . . . . 68

6.3 Left: Graph of function f(x1, x2). The function is a quadratic func-
tion in x1-direction and a polynome of 4-th order in x2-direction Right:
The PC-steps are converging to local minima of the contour set w.r.t to
the homotopy-parameter, but fail to leave the a bigger surrounding lo-
cal minimum resulting from the structure of the 4-th order polynome in
x2-direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



List of Tables

3.1 Dimensions of the functions are d = 2. The Projected Newton Method
compared in number of function evaluations to the global optimization
algorithms of the MATLAB software-package . . . . . . . . . . . . . . . . 37

3.2 Dimensions of the functions are d = 2. Projected Newton Method com-
pared in error to the global optimization algorithms of the MATLAB
software-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Dimensions of the functions are d = 10, 20, 40. Projected Newton Method
compared in error to the global optimization algorithms of the MATLAB
software-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 Projected Newton Method compared in error to the global optimization
algorithms of the MATLAB software-package . . . . . . . . . . . . . . . . 60

7



8



Abstract

In dieser Arbeit werden neue Ansätze für die globale Optimierung entwickelt. Es wird von
theoretischen Zusammenhängen mit der Kompläxitätstheorie auf praktische Ergebnisse
aus dem Protein-Ligand-Docking überführt. Angesichts der E�zienz des vorgeschlage-
nen Optimierers werden Kontinuitätsmethoden motiviert, die einen verbessertes Opti-
mierungsverfahren liefern.

]Bibliography

[author] Wilhelm Bender, Master's Thesis, Technische Univesität Berlin, Konstantin
Fackeldey, Marcus Weber, 2020

9





Abstract

In this work new approaches for global optimization are developed. We move from
theoretical connections in complexity theory to very practical results in protein-ligand-
docking. In regard to the e�ciency of the suggested optimizer, continuity methods are
motivated, that yield an improved optimization method.

]Bibliography

[author] Wilhelm Bender, Master's Thesis, Technische Univesität Berlin, Konstantin
Fackeldey, Marcus Weber, 2020

1





1 Introduction

Content wise the thesis consist of two parts that will be proceeded by two introduc-
tory chapters on some non-linear optimization basics and a consideration on two prob-
lems from complexity theory. In the �rst half, we will exhibit the projected newton
method, an algorithm that is new in the �eld of numerical optimization. Even though
its theory is very close to theorems, that the reader can �nd concerned with the conver-
gence analysis of the newton method itself, we provide an incomparable approach to how
one can �nd a global minimum using the method. The new approach is benchmarked
for numerical test problems in comparison of global optimization algorithms from the
MATLAB Global Optimization package. The performance of the algorithm applied to
the protein-ligand docking problem will be tested and evaluated in comparison to current
docking software packages. The algorithm has to be regarded as a heuristic method.
The second half is an advance on the problems, that emerged with the projected newton
method based optimizer in the �rst half. Even though the principle of �nding roots
of a multivariate function with a numerical method is still applied, we exhibit another
brand new root �nder called the dynamic embedding algorithm. With this iterative
method, we replace the projected newton method and suddenly are able to prove global
convergence for a subroutine of the optimizer. In the course of this thesis, we will see
that the global convergence property is very important to �nally hope for an e�ective
algorithm to solve for the global minimum of a multivariate, non-convex, coercive and
continuous optimization problem. The algorithm has to be regarded as a deterministic
method.
Finally we conclude on an answer to the thesis' question and describe further possibilities
of research in the outlook.
The thesis aims to cause for thought of looking at the novel methods from the perspective
of complexity theory.

1.1 In Regard of Complexity Theory

Global optimization of non-linear problems is a topic, which has a lot of open questions.
Generally there is no solver that allows for e�cient calculations of global optima but
either has to be approximated with heuristic methods or computed with deterministic
methods in impracticable amounts of time. All of these problems intrude the researcher
to think about the complexity of the problems, they are dealing with. To raise the topic
of complexity theory in theoretical computer science, means to talk about deterministic
polynomial time languages (class P) and non-deterministic polynomial time languages
(class NP) that get accepted by Turing machines. Cook [1] showed that if and only

1



1 Introduction

if there is an algorithm solving the satis�ability problem in polynomial time, then the
classes P and NP are equivalent. Among many problems listed in Karp [8] it is known,
that problems like the travelling salesman problem do have polynomial deterministic
time algorithms if and only if the classes P and NP are the same. Among all the
research, that has been done so far, we are right to assume the classes are not to be the
same, however we are missing a formal proof. In this thesis we apply a novel heuristic
projected newton solver, that works similarly to a stochastic gradient descent, as �rst
introduced by Robbins and Monro [9]. Similarly we will apply the idea of randomly
selecting starting values instead of executing the minimization algorithm only once. With
the new approach another problem emerges, that is very closely related to the decidability,
namely the decidability we are de�ning in complexity theory. One interesting example
in this relation is the satis�ability problem. It is contained in NP but still can be
formulated as a diophantine problem on integers, that is even harder to solve and proven
to be unsolvable or to stay with the terms of complexity theory, is undecidable. Davis
[10] reviews the �ndings of Matiyasevich [13] that deal with Hilbert's tenth problem,
concerned with the very matter of decidability of diophantine equations on integers.
The bottom line is that Matiyasevich's theorem proves the impossibility of a solution
to Hilbert's tenth problem. In deeper context diophantine equations are semi-decidable,
which means that a Turing Machine can decide if a solution is found but can not decide
if there is no solution. After assuming the projected newton method is not an optimal
approach to overcome the undecidability of the problem, we open a new approach to
solving a problem in e�ective time. The dynamic embedding algorithm provided in the
second half is in need of mathematical investigations concerning runtime and convergence
properties. Applied to various classes of problems, it remains unclear how the method
in�uences the decidability of a diophantine equation on rational numbers. We provide
the reader with constructions, methods and empirical data to motivate the research of
the open questions. We can embrace these open questions with excitement, once we
see the behaviour of the dynamic embedding algorithm in application of di�cult test
problems.

1.2 In Disregard of Critical Points

We construct an alternative approach to solving multivariate optimization problems. The
most known theory of non-linear optimization is concerned with the solution of a problem
where Ω ⊂ Rn, F : Ω→ Rn, F convex on Ω. This is due to the fact, that for multivariate
problems, we solve for the roots of the gradient of the objective function f . In many
cases it is a map f : Ω→ R. We can denote

∇f = F

A reader who is used to the common approach of choosing e�cient search directions,
will have to look at optimization from a di�erent perspective. Even though we are
optimizing the parameters for f , we are not concerned with the roots of the function

2



1.3 Global Optimization

F . In other words we do not look for the extrema of the function f . Instead we are
interested in roots of the function f itself and not in the ones of the gradient ∇f . In
the course of the thesis we construct methods to solve for the roots of f , in order to
reach the global optimum of a function by a so called Level-Set-Bisection algorithm. As
the reader will see, this is a very e�ective approach to overcome the exponential barrier.
The investigation on the computational complexity of the applied algorithms is not being
followed to every aspect within this thesis. We make a runtime analysis for local cases,
however provide the tools to apply the result to an advanced approach.
Most of this thesis is concerned with the mathematics behind �nding a y ∈ Ω such that

f(y) = 0 (1.2.1)

What makes this problem hard to solve is not its dimensionality only. The biggest and
most interesting problems emerge as soon as f becomes non-convex on Ω. Mathematical
modelling of interesting use cases, as for example in pharmaceutical research and also
operational research, to just name a few, very often are non-convex when formulated
as a non-linear program (NLP). Some formulations also allow for convex objective func-
tions, however often result in a number of inequality constraints that cause the issue of
choosing the right constraints to be active or not. To put the �rst relation to complexity
theory, we will also empirically examine a few runtime properties of the suggested meth-
ods. Beginning with the projected newton method, we will only examine local runtime
complexity mathematically but will also give a hint on how the solver will perform on
non-convex problems with rising number of variables in chosen examples of test problems
that can be found in [4].

1.3 Global Optimization

Lipschitz-Optimization is the basic concept of solving an optimization problem deter-
ministically. Since variations of this method as described in Gablonsky [5], are open for
paralellization, this �eld has been experiencing further research. It is known, that these
approaches reach exponential runtime complexity, when computing complex problems.
They are the only known way of solving problems without taking cutbacks in the preci-
sion of the calculation. In order to formally state the problem of interest, we de�ne the
global optimization problem.

De�nition 1.3.1. Let Ω ⊂ RN the domain and f : Ω→ R, then xopt ∈ Ω is called global

minimum of f if
f(xopt) ≤ f(x) ∀x ∈ Ω (1.3.1)

1.4 Global Optimality Criteria

In general we know a lot about local optimality criteria. However in this thesis we
are putting our focus on methods to full �ll global optimality criteria. Since numerical
approaches often su�er of imprecision, we state the weaker formulation

3



1 Introduction

De�nition 1.4.1. Let Ω ⊂ RN the domain and f : Ω→ R be lipschitz-continuous. Find
xopt ∈ Ω such that

fopt = f(xopt) ≤ f∗ + ε, (1.4.1)

where ε > 0 is constant.

These criteria are not much to begin with but we will use them to think about the
following idea. Lets take an one-dimensional example

-5 -4 -3 -2 -1 0 1 2 3 4 5
x

0

2

4

6

8

10

12

14

f(
x)

x2+sin(5*x)2

Ω̂

f̂

Figure 1.1: Example for suboptimal level and suboptimal points of non-convex problem
in one dimension.

If we just pick a random x ∈ Ω, we would be able to pick a subset of the domain, let us
denote it Ω̂ ⊂ Ω, who's points have bigger value in the function than the complementary
set. We have a set of suboptimal points.

De�nition 1.4.2. Let a, b ∈ Rn , Ω = {x ∈ Rn : ai ≤ xi ≤ bi}, and f : Ω → R. All
points x̂ ∈ Ω̂ ⊂ Ω are called suboptimal points if

f(x̂) ≤ f̂ ≤ f(y), ∀y ∈ Ω \ Ω̂ (1.4.2)

f̂ is called the suboptimal level.

4



1.4 Global Optimality Criteria

As one can imagine, it is very easy to pick such a suboptimal level for any given
continuous function by simply picking a random point from the domain. Given the
function is coercive, i.e. ||x||→ ∞ : f(x) → ∞, we can pick a suboptimal level, where
x∗ is the global minimum of f , such that

f̂ ≤ f(x∗) (1.4.3)

In which case the set of suboptimal points is empty. Let us assume that we can always
make a statement about the emptiness of the suboptimal set. We de�ne the following
compact series, that takes advantage of existence of such a statement

f̂n =

{
f̂n−1 − |f̂n−1−f̂n−2|

2 , Ω̂n−1 6= ∅
f̂n−1 + |f̂n−1−f̂n−2|

2 , Ω̂n−1 = ∅
(1.4.4)

Notice that if Ω̂ = ∅, the according suboptimal level holds f̂ < f∗. Vice versa if Ω̂ 6= ∅,
the according suboptimal level holds f̂ > f∗.

Theorem 1.4.3. Let series f̂n be de�ned as in (1.4.4) on the corresponding coercive

function f : Ω→ R, Ω ∈ RN , with global minimum at x∗. The series f̂n holds

lim
n→∞

f̂n = f(x∗) (1.4.5)

Proof. We construct two series, that represent the upper and lower bound of the series
f̂n. These look like this

un =

{
f̂n, f̂n > f∗

un−1, f̂n < f∗
(1.4.6)

ln =

{
ln−1, f̂n > f∗

f̂n, f̂n < f∗
(1.4.7)

where the initial values are:

u0 = f(x), for some x ∈ Ω c ∈ R s.t.: l0 = c < inf f(x)

Because f is coercive, we can assume without loss of generality, that

f(x) > 0, ∀x ∈ Ω

With the de�nition of the global minimum it holds

f(x∗) ≤ f(x), for all x ∈ Ω

So we can take u0 = f(z) for some z ∈ Ω and since f(x) > 0 we can assume l0 = 0. We
now have a bound on the global minimum.

5



1 Introduction

0 = l0 < f∗ ≤ f(x) = u0

Also note that un is monotonically decreasing and ln is monotonically increasing.
Because the series f̂n is compact, we can apply the theorem of Bolzano-Weierstraÿ and
prove convergence of the series f̂n, i.e. limn→∞ f̂n = f̂∗. Since the series un and ln are
de�ned as in (1.4.6) and (1.4.7), we can assume that

lim
n→∞

un = lim
n→∞

ln = f̂∗

All together we get

0 < f∗ ≤ f(x) = u0

l0 < l1 ≤ . . . ≤ ln ≤ f∗ ≤ un ≤ . . . ≤ u0

N →∞ : f̂∗ ≤ f∗ ≤ f̂∗

Now we know that ln, un and f̂n have the same limit and that this limit is equal to the
global minimal function value f∗, the assertion

lim
n→∞

f̂n = f∗ = f(x∗)

holds

If a series of suboptimal levels as in de�nition 1.4.2 exists and is unique, i.e.
the series

f̂n =

{
f̂n−1 − |f̂n−1−f̂n−2|

2 , Ω̂n−1 6= ∅
f̂n−1 + |f̂n−1−f̂n−2|

2 , Ω̂n−1 = ∅

is well-de�ned, then the limit value of the series is the global minimum of f ,
i.e.

lim
n→∞

f̂n = f∗

1.5 Fundamental Question of the Thesis

If a series like f̂n could be easily established, it would not be hard to compute a global
minimum for all coercive functions. We will take a look at coercive continuous non-
convex functions. The biggest question, that no widely accepted theory has an answer
to, is if the set of suboptimal points Ω is empty or not. We will attempt to bind the
considered theories of this thesis to complexity theory. As we mentioned earlier, diophan-
tine equations on integers are undecidable. The reader might wonder how that stands in

6



1.5 Fundamental Question of the Thesis

relation to an algorithm, that can �nd the global minimum of a coercive function, which
then even might be non-convex. We strongly suspect, that the term of decidability in
complexity theory relates very much to the idea of �nding a global minimum of a coercive
non-convex function. We will show that that we can transform the satis�ability problem
to a diophantine equation on rational numbers. The problem then has also the form of
a non-linear program or more speci�cally is a multivariate polynomial of degree n of the
form

p(x1, . . . , xm) =
∑

i1+···+im≤n
ai1...imx

i1
1 x

i2
2 . . . x

im
m = 0 (1.5.1)

The problems structure is therefore similar. What is so surprising, is that if the
variables x1, . . . , xn are integers, the problem becomes diophantine and therefore un-
decidable. Based on the work of Nikolai Vorobe'ev on Fibonacci numbers, Matiyasevich
[13] publishes the celebrated proof, that the set P = {(a, b)|a > 0, b = F2a}, where Fn
is the n-th Fibonacci number, is diophantine and exhibits exponential growth. This
proves the hypothesis by Julia Robinson that every recursively enumerable set is ex-
ponential diophantine and combined with Matiyasevich's shows that diophantine sets
are recursively enumerable. Reviewing this line of work, including many other celebrated
mathematicians at the time, M.Davis publishes [10], stating that Hilbert's tenth problem
on integers is unsolvable. Hilbert's tenth problem on rational numbers however remains
unsolved to this date. When arithmetizing the satis�ability problem (see section 2), we
get to the special case, where x1, . . . , xn ∈ [0, 1]. Obviously equation 1.5.1 is diophantine
and therefore undecidable. So what is the point in transforming the satis�ability problem
into something, that is even harder to solve? We even know from Lagarias [11] simpli�ed
diophantine equations, namely Binary Quadratic Diophantine Equations (BQDE), are
in the class of EXP (the class of languages that get accepted by Turing Machines in
deterministic exponential time). Well, coming from the perspective of non-linear opti-
mization we have a chance. Also here we have no possibility of evaluating the equations
unsolvability but we are able to transform the problem further into something useful with
something called a homotopy. As this thesis is intended to introduce new approaches of
how to solve global optimization problems, we only provide the dynamic embedding al-

gorithm in section 4 as a tool to exhibit the class of problems, that converge to a global
minimum. We also will provide an additional show case in section 2 of how the integer
linear program formulation of the travelling salesman problem can be transformed into a
non-linear program. This enables us to start of with the dynamic embedding algortihm's

ability to determine if the problem has no solution i.e. is undecidable i.e. the suboptimal
set Ω̂ = ∅. So our fundamental question is

Is a there a transformation for diophantine equations into Non-Linear Problems
such that non-existence of a solution can be de�ned?

In order to provide deterministic answers to the question Ω̂ = ∅ or not, we need to
take a look at the proceeding sections of this thesis. It is going to be exciting.

7



1 Introduction

8



2 Transformation of NP-hard\complete
Problems

2.1 Penalty Method for Constrained Problems

This section shows how problems constrained by inequality, as well as equality conditions,
can be formulated as an unconstrained problem. The cutback of this approach will be
that the resulting unconstrained problem will be "more" non-convex, meaning the issue
of choosing the right set of active inequality constraints is transformed to the problem
of having many more local minima. We here only show what is all ready in use and how
to reduce a constrained problem to an unconstrained one. This is technique is found
in many good non-linear optimization books. For the purposes in this thesis we state a
general problem. Let us denote Ω ⊂ RN , N ∈ N the feasible domain and f : Ω→ R the
objective function. With D1, D2 ⊂ RN . Let hi : D1 → R the i-th equality constraint and
gj : D2 → R the j-th inequality constraint.

obj.: min
x∈Ω

f(x)

s.t.: hi = 0, i = 1, . . . ,M, M ∈ N
gj ≥ 0, j = 1, . . . ,K, K ∈ N

(2.1.1)

The according penalty function L : RN ⊇ D 7→ R with τ, σ ∈ R the penalty parameters
such that the unrestricted problem

min
x∈Ω
L(x) := f(x) + τ

M∑
i=1

hi(x)2 + σ

K∑
j=1

[gi(x)]2− (2.1.2)

has the same solution as the constrained problem. The penalty method usually oper-
ates by iteratively applying the optimizer to the problem in the unrestricted form. After
the optimizer terminates, the penalty parameters τ and\or σ are increased by a rate of
choice. There is no guarantee that the minimum which the penalty method computes,
is also the global minimum when we are dealing with general non-linear non-convex
problems.

2.2 Penalty Functions as a Homotopy

We present an advanced approach on how to slowly exciting inequality constraints into
a given optimization problem. Regarding only the inequality constraints, the according
penalty function looks like this

9



2 Transformation of NP-hard\complete Problems

L(x) := f(x) + σ
K∑
j=1

[gi(x)]2− (2.2.1)

An alternative approach to how to excite the inequality constraints is by de�ning a
homotopy function on the problem in the following. Let us de�ne HL : D × [0, 1]→ R

Hf,g(x, ε) := (1− ε)f(x) + ε

f(x) + σ̂
K∑
j=1

[g(x)i]
2
−

 (2.2.2)

If we choose σ̂ to be very high, i.e. σ̂ >> 1, we can highly penalize the objective function
yielding good results as an alternative to the penalty function revisited in the previous
section. Notice that HL(x, 0) = f(x) and HL(x, 1) is the objective function only with
a large scaled penalty term. Without further analysis, we state the algorithm for the
homotopy function on the penalty function as follows

Algorithm 1: Penalty Method

Data:
x∗0 ∈ RN , the initial value
integer m > 0 for the number of optimization runs
initial real number σ0 ≥ 0
penalty rate α > 0
the homotopy on the penalty function HL(x, 0) = f(x)
∆ε = 1/m, m ∈ N, m the number of steps
Result:
x∗ minimum of HL(x, 1)

1 for k = 0, . . . ,m do
2 solve x∗k = argmin

y∈Ω
HL(y, εk)

3 update homotopy parameter εk+1 = εk + ∆ε

4 return x∗ = xm

2.3 Traveling Salesman Problem

A popular way to solve the NP-hard travelling salesman problem is by integer linear
programming. Let n selected cities in the salesman's tour be the set of vertices V of a
graph. The set of edges E of the graph correspond to di�erent connections between each
city. The graph is complete, that is, there exists a connection between each city. To
every connection we associate a binary variable.

xij =

{
1, if edge (i, j) ∈ E is in tour
0, otherwise.

(2.3.1)

10



2.3 Traveling Salesman Problem

Because the graph is undirected we have xij = xji therefore it su�ces to only regard
i < j. If we de�ne the distance between each city to be dij . The entire distance travelled
by the salesman adds up with ∑

(i,j)∈E

dijxij (2.3.2)

In order to establish exactly one incoming edge and one outgoing edge to every city,
we write the constraint ∑

j∈V
xij = 2 ∀i ∈ V (2.3.3)

Feasible solutions of the minimal distance with the above constraint will allow for
subtours. This we want to avoid by formulating the following constraint∑

(i,j)∈S,i 6=j

xij ≤ |S|−1, ∀S ⊂ V,S 6= ∅ (2.3.4)

All in all the optimization problem looks like this.

obj.: min
x∈Ω

∑
(i,j)∈E

dijxij

s.t.:
∑
j∈V

xij = 2 ∀i ∈ V

∑
(i,j)∈S,i 6=j

xij ≤ |S|−1, ∀S ⊂ V,S 6= ∅

xij ∈{0, 1}

(2.3.5)

The constraint basically excludes solutions, that have a certain number of edges. In
practice a solution of the problem is found without the subtour constraint and the result-
ing subtour solution is then taken to be the subtour in the optimization problem with
the subtour constraint. The process consists of taking the solutions of the problem and
then consecutively adding the constraints for the subtours. This approach makes sense
for integer linear programming software packages today and constraints handled like that
are called lazy constraints. However if we would like to solve the problem with one run,
we would need to rewrite it without the subtours in the following way

obj.: min
x∈Ω

∑
(i,j)∈E

dijxij

s.t.:
∑
j∈V

xij = 2 ∀i ∈ V

∑
(i,j)∈S,i 6=j

xij = |V|−1

xij ∈{0, 1}

(2.3.6)

11



2 Transformation of NP-hard\complete Problems

This problem will only need to be solved once but is harder to calculate in terms of
integer linear programming (ILP). However we do not want to apply discrete optimization
theory to this problem. We attempt to reformulate the problem into an non-linear
programming problem (NLP). Applying the stated theory about penalty methods, which
we review in section 2.1, we are able to write an unrestricted non-linear problem, that
will only contain the equality constraints.

(2.3.7)L̃ =
∑

(i,j)∈V

(xijdij)
2 +

|V |∑
i=1

 |V |∑
j=1

xij

− 2

2

+

 ∑
(i,j)∈V

xij

− (|V |−1)

2

Here we squared the objective function in order to make it coercive. In this case
we only polish the problem for this purpose. We missed out the constraint to integer
numbers of the solution and now model it with the following penalty terms in addition.

(2.3.8)L = L̃+ σ

 ∑
(i,j)∈V

x2
ij · (xij − 1)2


2.4 Arithmetization of The Satis�ability Problem

As we mentioned in the introduction, the satis�ability problem (SAT) can be transformed
into a diophantine equation. This is done by a technique known as arithmetization.
That means that a boolean formula can be transformed into a diophantine multivariate
polynomial such as (1.5.1). In order to overcome a modelling issue with the resulting
arithmetic representation of a general boolean formula, we want to also mention, that any
boolean formula can be transformed into a 3-conjunctive normal form (3-CNF), which
has been proven by Stephen Cook 1971. See a good book on complexity theory for further
reference. So if SAT is always translatable to 3-CNF, we might as well only deal with
boolean formulas of the form

C1 ∧ C2 ∧ . . . ∧ CM (2.4.1)

where each Ci is an ∨ of three or less literals. To make this more speci�c

Cm = (xim ∨ xjm ∨ xkm) (2.4.2)

where im, jm and km are indizes of the �rst, second and third literal in the m-th clause.
Let us introduce the transformations for the arithmetization of such a boolean formula.

1. x→ x

2. x̄→ (1− x)

3. x ∧ y → x · y

4. x ∨ y ∨ z → 1− (x− 1)(y − 1)(z − 1)

12



2.4 Arithmetization of The Satis�ability Problem

Applying these transformations, we achieve a multidimensional polynomial formulation
for any boolean formula. More so we can translate the resulting diophantine equation
into a non-linear problem. To constrain the solution of the problem to be integers only,
we simply apply

N∑
i=n

x2
i · (xi − 1)2 (2.4.3)

as a penalty term in the unrestricted formulation. We refer to the introduced penalty
method in section 2.1.

Every boolen formula in 3-CNF

M∧
m=1

(xim ∨ xjm ∨ xkm) (2.4.4)

can be transformed into a mixed integer non-linear problem of the form

obj.: arg zero
x∈[0,1]

M∏
m=1

(1− (xim − 1)(xjm − 1)(xkm − 1))

s.t.: xim , xjm , xkm ∈ {0, 1}

(2.4.5)

With the objective function denoted as f(xim , xjm , xkm), where im, jm, km ∈
I ⊂ P({1, . . . , N}) and N the number of literals, the homotopy on the penalty
function is then

(2.4.6)

Hf,g(ε) = (1− ε)f(xim , xjm , xkm) +

+ε

(
f(xim , xjm , xkm) + σ̂

N∑
i

x2
i · (xi − 1)2

)

The satis�ability of the original 3-CNF formula is then equivalent to the solv-
ability of

Hf,g(1) = 1 (2.4.7)

In the above transformations we neglected the negated literals. This can be repaired
by de�ning augmented literals of the like xm ∈ {ym, ȳm}.

13



2 Transformation of NP-hard\complete Problems

14



3 Projected Newton Method

We introduce a global optimization method, that solves for global minima of continuously
di�erentiable functions. This approach has shown to be very e�ective in the application
of protein-ligand docking as we will exhibit in section 3.5.3.

3.1 Construction

De�nition 3.1.1. Let Ω ∈ R be an open set and F : Ω 7→ R, then b ∈ R is the lower
bound of F if

∀x ∈ Ω : F (x) ≥ b (3.1.1)

and a ∈ R is upper bound of F if

∃x ∈ R : F (x) ≤ a (3.1.2)

We begin the construction with the Taylor series of F in at ξ ∈ Ω.

F (x) = F (ξ) +∇F (ξ)(x− ξ) +
n∑

α=2

(x− ξ)α−1D
αF (ξ)

α!
(x− ξ) (3.1.3)

Since F is continuously di�erentiable we have

F (x) = F (ξ) +∇F (ξ)(x− ξ) (3.1.4)

We extend with ∇F (ξ), and solve for x

x = a− F (a)

‖∇F (a)‖2
∇F (a) (3.1.5)

From here we formulate an iteration where k ∈ N0, x = x(k+1) and a = x(k). Also we
de�ne function f : Ω 7→ R, natural number s ∈ N0 and bound bs ∈ R. From here we
de�ne F more speci�cally

F (x) = f(x)− bs (3.1.6)

15



3 Projected Newton Method

In this way the projected newton method is constructed

x(k+1) = x(k) +
bs − f(x(k))∥∥∇f(x(k))

∥∥2∇f(x(k)) (3.1.7)

We prove the local convergence and the convergence speed of the method when k 7→ ∞
in the next section 3.3. |xk+1 − xk| < ε, where ε > 0. To make this method become a
global optimizer, we introduce an explicit operation from s 7→ s + 1. That means for
every iteration k 7→ k + 1, bs ∈ R is a constant. The intention behind that is to shift
the function by a value of bs up or down and investigate if it the function has a point
x ∈ Ω, such that f(x) = bs is ful�lled. Starting from de�nition (3.1.1) an interval [a, b]
is initialized. So this is a test

∀x ∈ Ω, b ∈ R : f(x) ≥ b (3.1.8)

a ∈ R, ∃x ∈ Ω : f(x) ≤ a (3.1.9)

This interval is an estimation of the function's value in a global minimum of f We denote
b0 = a and b1 = b, initialize s = 2, iterate (3.1.7) and therefore solve for x ∈ Ω, solving
equation (3.1.6). We distinguish two cases. As we will prove in section 3.3, iteration
(3.1.7) converges after a �nite number of steps. In this case bs is computed by (3.1.10).
If (3.1.7)does not converge after a given number of steps K, we assume that (3.1.6) has
no solution to a given bs. In this case bs is computed by (3.1.11). All in all we are
just interested if iteration (3.1.7) converges after K steps or not. In other words, we are
interested in the existence and non existence of x ∈ Ω full �lling (3.1.6). We put this
together in an algorithm for later reference.

16



3.1 Construction

Algorithm 2: Level-Set Bisection

Data: continuously di�erentiable map f : Rn → R,
iterative non linear equation solver S,
a lower bound of f ,
b upper bound of f ,
K the maximum number of steps

Result: value/level of global minimum of f
1 bs = a
2 bs+1 = b
3 s = 2
4 while solver S solves for solution x ∈ Ω of f(x)− bs = 0 do
5 if iterative solver converges before K steps then
6

bs = bs−1 −
|bs−1 − bs−2|

2
(3.1.10)

s =s+ 1

7 if iterative solver does not converge after K steps then
8

bs = bs−1 +
|bs−1 − bs−2|

2
(3.1.11)

s =s+ 1

9 if |bs + 1− bs|< TOL then
STOP

In the �st section we went over theorem 1.4.3 that proves the Level-Set Bisection al-
gorithm (provided K → ∞) to be convergent to the global minimum of the objective
function. This only holds true if the decision of a non-converging iterative solver is a
de�nite one. Most of the e�ort will go in overcoming that decision problem but so far
we can build a good heuristic solver for with the projected newton method in section 3
and the Level-Set Bisection method. In order to exploit the advantages of the combined
algorithms, we �rst make some adjustments to some special cases.

17



3 Projected Newton Method

3.2 Special Cases

If we look at (3.1.7) more closely, we see that the case of ‖∇f(xk)‖2 = 0 has to be
appropriately coped with. In this case xk is a critical point. Also here we have a
distinction between two cases.

1. f(xk) = bs : F (x) has a root. Compute bs with (3.1.10)

2. f(xk) 6= bs : xk is a critical point. Shift xk by r ∈ Ω a random number such that
xk + r ∈ Ω

18



3.2 Special Cases

Algorithm 3: Global Minimizer

Data: f objective function,
x0 the start vector,
a lower bound of f ,
b upper bound of f ,
K the maximum number of steps,
ε the desired precision (absolute)

Result: x∗ the global minimum of f
1 xk+1 = x0;
2 bs = a;
3 bs+1 = b;
4 s = 2;
5 k = 0;
6 while |bs+2 − bs+1| > ε do
7 k = k + 1;
8 xk = xk+1;

9 xk+1 = xk − f(xk)−bs
‖∇f(xk)‖2∇f(xk);

10 if ‖∇f(x)‖2 = 0 then
11 x0 = xk+1;

12 bs = bs−1 + |bs−1−bs−2|
2 ;

13 s = s+ 1;

14 else if k = K then
15 xk+1 = x0;

16 bs = bs−1 − |bs−1−bs−2|
2 ;

17 s = s+ 1;

18 else if |xk+1 − xk| < ε then
19 x0 = xk+1;

20 bs = bs−1 + |bs−1−bs−2|
2 ;

21 s = s+ 1;

22 return x∗ = xk+1

3.2.1 Correction of Error

If the reader has not noticed yet, it is important to mention, that the convergence of
the method (3.1.6) can only be assured for functions, that full �ll the properties for
convergence from section 3.3 globally. Generally it is not given to �nd a bound K for
the number of steps in order to decide that the method converges or not. In most
cases this �nite number can be extremely large. In order to make the computation
more e�cient, we will describe a modi�cation of the above method in order to have

19



3 Projected Newton Method

precise computations made, that choose a large K but will not have to exploit too much
computational resource. The error that we have to reduce, emerges when the method
decides that f − bs has no root. This decision is made after K steps. However it may
occur that the method converges after K + 1 steps. Basically what we choose to do, is
to continue the computation at bs and bs+1 in parallel. So the primary computation at
bs+1 continues in the same way as described in algorithm 3 but at the same time the
secondary computation at bs is carried on further. If the secondary computation at bs
converges, the primary computation at bs+1 is interrupted and put to a new start at bs+1,
which is recomputed on the basis of bs. The correcting routine, the one that carries on
with the computation of the former decided convergence, is running as long as the �rst
routine has decided another convergence or if it reaches a large number of Iterations M .
We express the above in algorithm 4.

20



3.3 Local Convergence

Algorithm 4: Global Minimizer with correction

Data: f objective function, x0 the start vector, a lower bound of f , b upper
bound of f , K the maximum number of steps for the primary
computation, M the maximum number of steps for the secondary
computation, ε the desired accuracy (absolut)

Result: x∗ the global minimum of f
1 xprimk+1 = x0, b

prim
s = a, bprims+1 = b, s = 2, t = 2, k = 0, m = 0, final = false;

2 Inizialize stack;
3 while |bs+2 − bs+1| > ε AND m < M do
4 if final = false then

5 k = k + 1, xprimk = xprimk+1 , x
prim
k+1 = xprimk − f(xprimk )−bprims

‖∇f(xprimk )‖2
∇f(xprimk );

6 if
∥∥∥∇f(xprimk+1 )

∥∥∥2
= 0 then

7 x0 = xk+1, b
prim
s = bprims−1 +

|bprims−1 −b
prim
s−2 |

2 , s = s+ 1;
8 else if k = K then
9 save all data that has been computed so far on the stack ;
10 Initialize xseck+1, x

sec
k , bsecs , bsecs−1, b

sec
s−2 with previously computed data and

set m = k;

11 xprimk+1 = xprim0 , bprims = bprims−1 −
|bprims−1 −b

prim
s−2 |

2 , s = s+ 1;

12 else if
∣∣∣xprimk+1 − x

prim
k

∣∣∣ < ε then

13 xprim0 = xprimk+1 , b
prim
s = bprims−1 +

|bprims−1 −b
prim
s−2 |

2 , s = s+ 1;

14 if final = true then

15 m = m+ 1, xsecm = xsecm+1, x
sec
m+1 = xsecm −

f(xsecm )−bsect

‖∇f(xsecm )‖2∇f(xsecm );

16 if
∥∥∇f(xsecm+1)

∥∥2
= 0 then

17 perform Pop-operation on stack;
18 Initialize xsecm+1, x

sec
m , bsecs , bsect−1, b

sec
t−2 with values from stack;

19 final = false, xprim0 = xsecm+1, b
prim
t = bsect−1 +

|bsect−1−bsecs−2|
2 , t = t+ 1;

20 else if
∣∣xsecm+1 − xsecm

∣∣ < ε then

21 xprim0 = xsecm+1, b
prim
t = bsect−1 +

|bsect−1−bsect−2|
2 , t = t+ 1;

22 return x∗ = xprimk+1

3.3 Local Convergence

For the analysis we use a theorem but don't prove it.

Theorem 3.3.1. Let B : X 7→ X a bounded linear operator in the Banach-Space X with

‖B‖ < 1. Then operator I −B with the unit operator I is invertable, i.a. the equation

x−Bx = y (3.3.1)

21



3 Projected Newton Method

has a solution x ∈ X for every y ∈ X . The inverse operator (I −B)−1 is bounded by∥∥(I −B)−1
∥∥ ≤ 1

1− ‖B‖
(3.3.2)

We look at local convergence properties of the projected gradient method.

Theorem 3.3.2. Let G ⊂ Rm an open and convex set. Let f : G 7→ R be continuous

and di�erentiable. For every x(0) ∈ G we assume that f satis�es every norm ‖·‖ on Rm
with the following properties

(i) There exists a number γ > 0 with

‖f ′(x)− f ′(y)‖ ≤ γ ‖x− y‖ , ∀x, y ∈ G
(ii) For all x ∈ G exists 1

‖f ′(x)‖ and a number β > 0 such that
1

‖f ′(x)‖ ≤ β, ∀x ∈ G
(iii) With α := ‖f ′(x)f(x)‖

‖f ′(x)‖2 it holds

ρ := αβγ < 1
2

(iv) With r := 2α it holds B(x(0), r) :=
{
x :
∥∥x− x(0)

∥∥ ≤ r} ⊂ G
Then the following is true

1) The projected gradient method

x(n+1) = x(n) − f(x(n))∥∥f ′(x(n))
∥∥2 f

′(x(n))

with n ∈ N0 and start vector is well-de�ned.

2) the series (x(n)) converges to the root x∗ of f with∥∥x(n) − x∗
∥∥ ≤ 2ρ2n−1, n ∈ N0. In the sphere B(x(0), r) x∗is the only root of f

Proof. a) Preparational Step

We begin with the mean value theorem in multiple dimensions. We expand with f ′(z)(y−
x),∀x, y, z ∈ G and choose an appropriate ξ = y + θh, θ ∈ [0, 1], h = x− y

f(y)− f(x) = f ′(ξ)(y − x)

f(y)− f(x)− f ′(z)(y − x) = f ′(ξ)(y − x)− f ′(z)(y − x)

We �nd a bound under the assumption (iv)

∥∥f(y)− f(x)− f ′(z)(y − x)
∥∥ =

∥∥(f ′(ξ)− f ′(z))(y − x)
∥∥

≤ γ ‖y + θh− z‖ ‖y − x‖
= γ ‖y + θx− θy − z‖ ‖y − x‖

We choose θ = 1/2

≤ 1

2
γ ‖y − x‖ (‖y − z‖+ ‖x− z‖)

22



3.3 Local Convergence

with z = x follows∥∥f(y)− f(x)− f ′(x)(y − x)
∥∥ ≤ γ

2
‖y − x‖2 ∀x, y ∈ G (3.3.3)

and with z = x(0)∥∥∥f(y)− f(x)− f ′(x(0))(y − x)
∥∥∥ ≤ rγ ‖y − x‖ ∀x, y ∈ B(x(0), r) (3.3.4)

b) The Iteration Is Well-De�ned

We show that the solution series (x(0)) holds:∥∥∥x(n) − x(0)
∥∥∥ < r (3.3.5)∥∥∥x(n) − x(n−1)
∥∥∥ ≤ αρ2n−1 (3.3.6)

We prove two inequalities via induction:

Initial step:

n = 1:
∥∥∥x(1) − x(0)

∥∥∥ =

∥∥∥∥∥ f ′(x(0))∥∥f ′(x(0))
∥∥2 f(x(0))

∥∥∥∥∥
(iii)
= α

(iv)
=

r

2
< r

Induction step:

n = n+1:
∥∥∥x(n+1) − x(n)

∥∥∥ =

∥∥∥∥∥ f ′(x(n))∥∥f ′(x(n))
∥∥2 f(x(n))

∥∥∥∥∥
(ii)

≤ β
∥∥∥f(x(n))

∥∥∥
= β

∥∥∥f(x(n))− f(x(n−1))− f ′(x(n−1))(x(n) − x(n−1))
∥∥∥

(3.3.3)
≤ 1

2
βγ
∥∥∥x(n) − x(n−1)

∥∥∥2

IV
≤ 1

2
βγ
[
αρ2n−1−1

]2

(iii)
=

1

2
αρ2n−1 < αρ2n−1

Thereby we showed (3.3.6). We use this for (3.3.5). Under usage of the triangle
inequality

23



3 Projected Newton Method

∥∥∥x(n+1) − x(0)
∥∥∥ D.−U.
≤

∥∥∥x(n+1) − x(n)
∥∥∥+ · · ·+

∥∥∥x(1) − x(0)
∥∥∥

(3.3.6)
≤ α(1 + ρ+ ρ3 + ρ7 + · · ·+ ρ2n−1)

<
α

1− ρ
≤ 2α = r

Thereby (3.3.5) also holds.

c) Existence Of The Limit And Error Approximation

Sei k ∈ N ∥∥∥x(n) − x(n+k)
∥∥∥ ≤ ∥∥∥x(n) − x(n+1)

∥∥∥+ · · ·+
∥∥∥x(n+k−1) − x(n+k)

∥∥∥
(3.3.6)
≤ α(ρ2n−1 + ρ2n+1−1 + · · ·+ ρ2n+k−1−1)

= αρ2n−1(1 + ρ2n + · · ·+ (ρ2n)2k−1
)

k→∞
< 2αρ2n−1 n→∞

= 0

x(n) is a Cauchy-Sequence. Since Rm is complete

x∗ = lim
n→∞

x(n)

exists.
d) Proof of x∗ being a root of f

Starting from the de�nition of the method

x(n+1) = x(n) − f(x(n))∥∥f ′(x(n))
∥∥2 f

′(x(n))

⇔ f(x(n))f ′(x(n)) =
∥∥∥f ′(x(n))

∥∥∥2
(x(n+1) − x(n))

f(x(n)) = f ′(x(n))(x(n+1) − x(n))

(3.3.3)
≤

∥∥∥f ′(x(n))− f ′(x(0)) + f ′(x(0))
∥∥∥∥∥∥x(n+1) − x(n)

∥∥∥
≤
{
γ
∥∥∥x(n) − x(0)

∥∥∥+
∥∥∥f ′(x(0))

∥∥∥}∥∥∥x(n+1) − x(n)
∥∥∥︸ ︷︷ ︸

(3.3.6)
≤ αρ2n−1

n→∞
= 0

24



3.3 Local Convergence

Therfore lim
n→∞

f(x(n)) = 0. Because of continouity of f , f(x∗) = 0 holds.

e) Uniqueness of the root in B.

With function g : B(x(0), r) 7→ Rm,

g(x) := x− f(x)∥∥f ′(x(0))
∥∥2 f

′(x(0))

Starting from

g(x)− g(y) =
f ′(x(0))f(y)∥∥f ′(x(0)))

∥∥2 −
f ′(x(0))f(x)∥∥f ′(x(0)))

∥∥2 − (y − x)

⇔ f ′(x(0))(g(x)− g(y)) = f(y)− f(x)− f ′(x(0))(y − x)

Estimation under the assumptions (ii) and (iii) of the theorem, the triangle inequality
and (3.3.5) we get

∥∥∥f ′(x(0))(g(x)− g(y))
∥∥∥ =

∥∥∥f(y)− f(x)− f ′(x(0))(y − x)
∥∥∥ (3.3.7)

⇔ 1∥∥f ′(x(0))
∥∥ ∥∥∥f ′(x(0))(g(x)− g(y))

∥∥∥ ≤ ‖(g(x)− g(y))‖ (3.3.8)

≤ 1∥∥f ′(x(0))
∥∥ ∥∥∥f(y)− f(x)− f ′(x(0))(y − x)

∥∥∥
(3.3.9)

≤ βrγ ‖y − x‖ (3.3.10)

≤ 2ρ ‖y − x‖ ,∀x, y ∈ B(x(0), r) (3.3.11)

Because of ρ < 1/2, g the method, is contractive and has at most one �xed point accord-
ing to Banach's theorem. g also has at most one �xed point in B(x(0), r).

The uniqueness of f concludes from the equivalence of the �xed point equation x = g(x)
to f(x) = 0.

Theorem 3.3.3. Let G ⊆ Rm be an open set, f : G 7→ R two times continuously

di�erentiable and x∗ the root of f with f ′(x∗) 6= 0. Then a δ > 0 exists such that the

projected gradient method with the start vector x(0) converges with
∥∥x(0) − x∗

∥∥ < δ to x∗.

Proof. Let there be a closed sphere B(x∗, R) := {x : ‖x− x∗‖ ≤ R} ⊆ G.
Because of the partial derivatives of the second order of f we can use the mean value

theorem f ′ and write γ > 0∥∥f ′(x)− f ′(y)
∥∥ ≤ γ ‖x− y‖ , ∀x, y ∈ B(x∗, R) (3.3.12)

25



3 Projected Newton Method

We start from the identity

∥∥f ′(x)
∥∥ =

{
1 +
‖f ′(x∗)‖ [‖f ′(x)‖ − ‖f ′(x∗)‖]

‖f ′(x∗)‖2

}∥∥f ′(x∗)∥∥
:= (1−B)

∥∥f ′(x∗)∥∥
In order put theorem 3.3.1 to use, ‖B‖ < 1 has to be full �lled. We use estimation

(3.3.12) and we get for ‖B‖

‖B‖ =

∥∥∥∥‖f ′(x∗)‖ [‖f ′(x)‖ − ‖f ′(x∗)‖]
‖f ′(x∗)‖2

∥∥∥∥
≤
∥∥∥∥‖f ′(x∗)‖ [‖f ′(x)− f ′(x∗)‖]

‖f ′(x∗)‖2

∥∥∥∥
≤ 1

‖f ′(x∗)‖
γ ‖x− x∗‖ ≤ 1

‖f ′(x∗)‖
γR

!
< 1

For one β > 0 it holds that

1

‖f ′(x)‖
≤ β, ∀x ∈ B(x∗, R)

If we choose R < 1
βγ it follows that ‖B‖ < 1. Because of continuity f and f(x∗) = 0

we can �nd a number δ < 1
2R with ∀x(0) :

∥∥x(0) − x∗
∥∥ < δsuch that∥∥f(x(0))− f(x∗)

∥∥ ≤ γ
∥∥x(0) − x∗

∥∥∥∥f(x(0))
∥∥ ≤ γ

∥∥∥∥ f ′(x(0))

‖f ′(x(0))‖2
f(x(0))

∥∥∥∥
≤ γβ

∥∥f(x(0))
∥∥ < γδ < γ 1

2R

⇔
∥∥f(x(0))

∥∥ < 1
2β2γ

If we de�ne α :=
‖f(x(0))‖
‖f ′(x(0))‖ and 2α < 1

2R∥∥∥f(x(0))
∥∥∥ < min

{
R

4β
,

1

2β2γ

}
, ∀x(0) with

∥∥∥x(0) − x∗
∥∥∥ < δ

ρ := αβγ ≤
∥∥∥f(x(0))

∥∥∥β2γ <
1

2
und 2α ≤ 2β

∥∥∥f(x(0))
∥∥∥ < 1

2
R

For an open convex sphere G := B(x∗, R) and every x(0) with
∥∥x(0) − x∗

∥∥ < δ the
assumptions of theorem 3.3.2 hold true. Therefore the theorem holds true.

26



3.3 Local Convergence

Remark 3.3.4. B : X 7→ X is a linear operator where X is Banach-Space, de�ned by
X := R

Theorem 3.3.5. Under assumption of theorem 3.3.2 there is a c > 0 such that the

projected gradient method for every starting point x(0) has a convergent sequence x(n)

with limit x∗ where n ∈ N0, it holds∥∥∥x(n+1) − x∗
∥∥∥ ≤ c∥∥∥x(n) − x∗

∥∥∥2

Proof. By using (3.3.3) we get from

f ′(x(n))∥∥f ′(x(n))
∥∥(x(n+1) − x∗) =

f ′(x(n))∥∥f ′(x(n))
∥∥
[
x(n) − f ′(x(n))∥∥f ′(x(n))

∥∥2 f(x(n)) +
f ′(x(n))∥∥f ′(x(n))

∥∥2 f(x∗)− x∗
]

the inequality∥∥∥x(n+1) − x∗
∥∥∥ ≤ 1∥∥f ′(x(n))

∥∥ ∥∥∥f(x∗)− f(x(n))− f ′(x(n))(x∗ − x(n))
∥∥∥

≤ γ

2
∥∥f ′(x(n))

∥∥︸ ︷︷ ︸
:=c>0

∥∥∥x(n) − x∗
∥∥∥2

≤ βγ

2

∥∥∥x(n) − x∗
∥∥∥2

where γ is the lipschitz constant and it holds c = γ

2‖f ′(x(n))‖ .

Theorem 3.3.6. Let Ω ⊆ Rn open and f : Ω 7→ R continuously di�erentiable. Further-

more let x∗ ∈ Rn root of f on Ω and the norm ‖·‖, which is induced by the euclidean

scalar product 〈·, ·〉 : Rn 7→ R, such that the following properties hold:

(i) There exists a real number L > 0 with ‖f(x)− f(y)‖ ≤ L ‖x− y‖, ∀x, y ∈ Ω
(ii) For all x ∈ Ω exist 1

‖f ′(x)‖ and a real number β > 0 such that 1
‖f ′(x)‖ ≤ β

(iii) With δ > 0 holds B(x∗, δ) := {x : ‖x− x∗‖ ≤ δ} ⊂ Ω
Then it holds:

For every start value x(0) ∈ B(x∗, δ) PNM terminates either at the root x∗ or it produces
a sequence, that converges super linearly to x∗.

Proof. Using f(x∗)= 0 and the mean value theorem we get for every x(n) ∈ B(x∗, δ),
where 1

‖f ′(x)‖ exists and n ∈ N0

x(n) − x∗ = x(n) − f(x(n))∥∥f ′(x(n))
∥∥2 f

′(x(n))− x∗

=
f(x(n))∥∥f ′(x(n))

∥∥2 (f(x(n))− f(x∗)− f ′(x(n))(x∗ − x(n)))

27



3 Projected Newton Method

therefore it follows similarly to inequality (3.3.5)

∥∥∥x(n+1) − x∗
∥∥∥ ≤ βδL∥∥∥x(n) − x∗

∥∥∥
For su�ciently large n it holds

∥∥∥x(n+1) − x∗
∥∥∥ ≤ ∥∥∥x(n+1) − x(n)

∥∥∥+
∥∥∥x(n+1) − x∗

∥∥∥
≤
∥∥∥x(n+1) − x(n)

∥∥∥+
1

2

∥∥∥x(n) − x∗
∥∥∥

therefore it follows:

1

2

∥∥∥x(n) − x∗
∥∥∥ ≤ ∥∥∥x(n+1) − x(n)

∥∥∥
(x(n))n∈N0 is a bounded sequence and there exists a closed sphere K, that includes all

elements in the sequence and the limit value as well. With f(x∗) = 0 and by assumption
there exists a L > 0 such that

∥∥f(x(n+1))
∥∥∥∥x(n+1) − x(n)
∥∥ =

∥∥f(x(n+1))− f(x∗)
∥∥∥∥x(n+1) − x(n)

∥∥
≤ L

∥∥x(n+1) − x∗
∥∥∥∥x(n+1) − x(n)
∥∥

≤ 2L︸︷︷︸
:=c>0

∥∥x(n+1) − x∗
∥∥∥∥x(n) − x∗
∥∥ −→ 0

The sequence (x(n))n∈N0 converges super-linearly for all starting values x(n) ∈ B(x∗, δ)

speci�cally also for n = 0. Furthermore it holds c := 2L .

As brie�y introduced in the beginning of this thesis, we want to proof the polynomial
runtime character of this algorithm.

Theorem 3.3.7. Let the assumptions of Theorem 3.3.2 be given, ‖·‖ the 2-norm and the

input values and variables as in algorithm 4. LetM ∈ N the dimension of the domain of f
and two constants a ∈ N and b > 0. If a local step of PNM is executed in a ·M b ∈ O(M b)
many arithmetic operations, then PNM is an approximation to the minimum of f in

polynomial time.

Proof. Until a level is updated, there are at most K local steps made. Every level bs is
investigated for convergence and a level bs−1 checked for divergence. In the worst case

28



3.3 Local Convergence

every level set Nbs contains a root of f , but is never found after K steps by the primary
computation routine. Since Algorithm 4 checks two levels at the same time, where one
is the divergent and the other the convergent, it only need up to 2 ·K steps.
As soon as the distance between the two levels is smaller ε > 0 the algorithm terminates.

‖bs+1 − bs‖ < ε (3.3.13)

in every global step l ∈ N level-set bisections take place, such that from

‖bsup − binf‖
2l

≤ ε (3.3.14)

we obtain the number of global steps lmax ∈ N by computing⌈
log2

[
‖bsup − binf‖

ε

]⌉
= lmax (3.3.15)

Until now algorithm 4 declared every level as divergent and therefore reaches bs+1 = bsup.
This makes a combined 2K · lmax many steps that are executed.
Since the algorithm saved all divergent levels and information of its according last iterates,
all xsec2K are tested until the number of iterations ni ∈ N, i ∈ I := {1, . . . ,m} is reached,
such that convergence can be established for the according level in the local step. Notice

that ni > 2K,∀i ∈ I. Therefore lsec :=

⌈
‖bsup−binf‖

ε

⌉
many levels are iterated until

convergence is reached in the local step of the level set bisection. The number of steps is
therefore bounded by

lsec∑
i=1

ni ≤ lsec ·max
i∈I
{ni} = lsec · nmax

By assumption the algorithm needs a polynomial number of arithmetic operations for
every local step i.e. a ·M b ∈ O(M b). Therefore in the worst case

(2K · lmax + lsec · nmax) · a︸ ︷︷ ︸
α=konst

·M b ∈ O(M b) α ∈ R>0 (3.3.16)

The constant α is not dependent of the number of dimensions. Therefore the hypothesis
holds

PNM ∈ O(M b)

It might have come to the readers attention, that we were only able to make out
local convergence properties of the projected newton method. The Level-Set Bisection
algorithm 2 is de�ned for an iterative solver (in our case we use the projected newton

29



3 Projected Newton Method

method) with a maximum number of stepsK. Ideally we would like to make an inde�nite
amount of steps in order to be sure if a level-set exists or not. We remind of the idea
presented in section 1.4, where we assume that the case of the empty set of suboptimal
points, i.e. Ω = ∅, is de�ned. Because we have no suitable de�nition for that case at
hand, we need to apply optimization techniques as introduced in section 2.1 and 2.2.

3.4 Applications

3.4.1 Test Functions

In order to show the algorithm's advantages and disadvantages to a given problem, a
selection of multidimensional test functions common to numerical optimization bench-
marking is evaluated. We give an overview on what these functions look like, state their
known global minima and the according point in the domain.

Bukin Function

f(x1, x2) = 100
√
|x2 − 0.01x2

1|+ 0.01|x1 + 10| (3.4.1)

We abreviate the function with B. It is de�ned on the set

Ω =
{
x ∈ R2 : −3 ≤ xi ≤ 2, 1 ≤ i ≤ 2

}
(3.4.2)

The Bukin function has many local minima, all of which lie in a ridge. The global
minimums' value is B∗ = 0 at x.

30



3.4 Applications

Griewank Function

f(x) =
d∑
i=1

x2
i

4000
−

d∏
i=1

cos

(
xi√
i

)
+ 1 (3.4.3)

The Griewank function has many widespread local minima, which are regularly dis-
tributed. The comlexity is shown in the zoomed-in plots. The function is evaluated on
the hypercube xi ∈ [−600, 600] for all i ∈ {1, . . . , d}. The global minimum's value is
G∗ = 0 at x∗ = (0, . . . , 0).

Levy

31



3 Projected Newton Method

f(x) = sin2(πω1)+
d−1∑
i=1

(ωi−1)
[
1 + 10 sin2(πωi + 1)

]
+(ωd−1)2

[
1 + sin2(2πωd)

]
(3.4.4)

where ωi = 1 +
xi − 1

4

The function is evaluated on the hypercube xi ∈ [−10, 10], for all i = 1, . . . , d. The
global minimums value is L∗ = 0, at x∗ = (1, . . . , 1).

Levy N. 13

f(x) = sin2(3πx1) + (x1 − 1)2
[
1 + sin2(3πx2)

]
+ (x2 − 1)2

[
1 + sin2(2πx2)

]
(3.4.5)

The function is evaluated on the square xi ∈ [−10, 10], for all i = 1, 2. The global
minimums value is L13∗ = 0, at x∗ = (1, 1).

Rastrigin

32



3.4 Applications

f(x) = 10d+
d∑
i=1

[
x2
i − 10 cos(2πxi)

]
(3.4.6)

The Rastrigin function has several local minima. It is highly multimodal, but loca-
tions of the minima are regularly distributed. It is shown in the plot above in its two-
dimensional form. It is evaluated on the hypercube xi ∈ [−5.12, 5.12], for all i = 1, . . . , d.
The global minimums value is R∗ = 0, at x∗ = (0, . . . , 0).

3.4.2 Protein-Ligand Docking

It is a fairly big topic to state as an instance for testing among other problems. However
we decide to put it into account, since it is a very interesting real-world application.
We introduce the topic by mentioning, that we only will deal with so called molecular
mechanics models.

Classical Models For Molecular Potentials

Most of the physics in this �eld is not so well understood, meaning that the modelling
su�ers of substantial e�ort to store accurate molecular models in a computer or cluster
of computers. To approach this problem of storage complexity, we will step away from
energy potentials of quantum mechanics to describe the exact physics of molecules and
go more into the direction of evaluating approximations of molecular potentials. As one
example of these approximations, we state the OPLS-potential, such that the reader
might gain an idea, about what kind of potential we are talking about.

E(rN ) =Ebonds + Eangles + Edihedrals + Enonbonded (3.4.7)

Ebonds =
∑
bonds

Kr(r − r0)2 (3.4.8)

Eangles =
∑
angles

kθ(θ − θ0)2 (3.4.9)

(3.4.10)

Edihedral =
∑

dihedrals

(
V1

2
[1 + cos(φ− φ1)] +

V2

2
[1 + cos(2φ− φ2)]

+
V3

2
[1 + cos(3φ− φ3)] +

V4

2
[1 + cos(4φ− φ4)]

)

Enonbonded =
∑
i>j

fij

(
Aij
r12
ij

− Cij
r6
ij

+
qiqje

2

4πε0rij

)
(3.4.11)

This potential is to be thought of as a model of springs connecting atom to atom
with the according force. If the reader researches literature on mechanics of springs, he

33



3 Projected Newton Method

or she will learn that the equations for the bonds' energy and the angles' energy are
surprisingly similar to the ones of the energy of springs towed between two points. The
only exception is coming from electrodynamics with the non-bonded energy describing
repulsion forces of the atom core and electrostatic forces being the attracting forces
called Van-der-Waals forces. So far there are many approaches to model these molecules
but recent developments go into the direction of modelling scoring functions. Scoring
functions can be any sets of terms that are modelled in the form of

E(x) =
M∑
i=1

ciTi(x) (3.4.12)

This would model a function, that has coe�cients ci used to weigh in arbitrary terms
Ti and will model a molecule. The approach here is to take a set of known molecular
structures, that are able to be found publicly like on the protein data bank [3] and use
their experimentally evaluated energies to non-linearly regress a model that �ts the ex-
perimental data. More recent approaches attempt to do the same with so called machine
learning techniques [14]. In this thesis we have successfully established a benchmark, that
shows a comparison between a well-known open source package named Autodock Vina,
which has been re�ned to a more stable version called Autodock Smina. The package is
also able to take user-de�ned scoring functions into account. As it was also possible to
improve docking results with a scoring function named Vinardo [15], we also decided to
use that function to run our benchmark. Because the code is open-source, we were able
to take advantage of hardware optimizations like the math kernel library of Intel for Intel
processors and software optimizations for readily modelled molecules with the openba-
bel package. We therefore had the opportunity to compare the well studied simulated
annealing approach as in Goodsell and Olson [16] to our approach while staying in the
absolute same, yet very complex model of protein-ligand docking. The programmatical
evaluations of the scoring function were also left the same as they would be used by the
simulated annealing optimizer build into Autodock Smina by default.

Quality measures

Especially because computer aided drug design is a very inexact science, one will need
appropriate quality measures to ensure the prediction of a new drug. Usually drug-design
software packages are tested on experimental data such as the DUD-database. The data
provided, includes a set of target proteins and their according ligands as well as decoys,
that are not supposed to bind to the protein. We refer to the de�nitions of these terms
as described in [15].

Scoring Power The scoring power is a measure of how close the function, that models
the molecular potential, is to the actual experimentally measured energy. For that pur-
pose we can take the correlation coe�cient, also referred to as the pearson coe�cient,

34



3.4 Applications

between calculated experimental and computational data.

ρX,Y =
cov (X,Y )

σXσY
(3.4.13)

where cov (X,Y ) is the covariance matrix between two random variables and σX and σY ,
the standard deviations of the random variables X and Y .

Docking Power The docking power is measured through determining the actual posi-
tion of the compound, that is placed in the binding pocket of the protein. This measure
has many ways to be de�ned. The key idea here is think of the measure by calculating
the root-mean-square-distance of the atoms' coordinate positions the computed coordi-
nates to the experimentally measured coordinates. Lets denote xe ∈ R3N the vector of
N -many atoms in three dimensions and xc ∈ R3N the vector of N -many atoms, which
were evaluated computationally. The RMSD is de�ned as

RMSD(xe, xc) =
1

N

N∑
i=1

||xe − xc||2 (3.4.14)

where ||·||2 is the euclidean distance

Ranking Power The ranking power test assesses the ability of a scoring function to
correctly rank the known ligands of the same target protein based on their predicted
binding a�nity given the poses from the experimentally found crystal structures. For
each benchmark, there are a total number of target proteins and a speci�ed number of
known ligands for each protein. Two levels of success, namely high-level and low-level,
are evaluated in datasets as CASF-2013. For the high-level, the three ligands for target
protein should be ranked by predicted score as the best > the median > the poorest,
while the low-level only needs to pick the best one out of three. The success rate is
calculated by the number of the correctly ranked targets among all targets.

Screening Power Given set of compounds and the target, the screening power is the
ability to select the true best binder, that can be con�rmed in the experiment. For that
purpose enhancement factors (EF) are computed.

EF1% =
NTB1%

NTBtotal × 1%

EF5% =
NTB5%

NTBtotal × 5%

EF10% =
NTB10%

NTBtotal × 10%

The numbers NBT1%,NBT5% and NBT10% are the numbers of true binders observed
among the top 1%, 5% and 10% percent candidates selected by the given scoring function
in a list of binding energies sorted from top to bottom by energy value. The number

35



3 Projected Newton Method

NBTtotal is the total number of true binders, that have been mixed to the decoy com-
pounds. As an example let 103 compounds be docked with an optimizer and scoring
function. Let 3 of those 103 compounds be experimentally determined true binders, then
NBTtotal = 3. After virtual docking computations took place and the number of true
binders found in the top 1% of the resulting energy list is NBT1% = 2, the resulting
enrichment factor would be EF1% = 2

3×1 = 66.67%.

Receiver Operating Characteristic (ROC) This measure is applied for binary classi-
�ers. Since we decide between binder and non-binders, we have applied the measure to
our evaluations. Among two values, which we compute, are the True Positive Rate

TPR =
TP

TP + FN
(3.4.15)

where TP is the number of true positives and FN is the number of false negative clas-
si�cations and the False Positive Rate

FNR =
FP

TN + FP
(3.4.16)

where TN is the number of true negatives and FP is the number of false positive clas-
si�cations. We plot both values against each other and get the ROC-curve.

Experimental Setup

One of the di�cult tasks in docking is the approximation of an objective function, that
when globally optimized, will yield atomic con�guration results, that match the experi-
mental results. A good optimization function can be established by taking experimental
data into account and regress the objective functions' hyper-parameters to that data.
Here we have used the parameters of the vinardo function, which has been evaluated
and proposed in [15]. Disregarding the objective function, which always can be faulty
and only �tting to a certain set of proteins and binding compounds, the overall goal of
such a simulated docking experiment is to �nd a substance that will act as an actual
binder. Therefore instances for testing have been put up on the DUD-database [12],
that contain a target protein, its according binders (ligands), that are known experimen-
tally to bind and decoys speci�cally constructed to make up a mixture with the ligands
such that optimizer and approximated physical potential function may be tested for its
performance. Computations were carried out on Intel Xeon E5-2698 v3 processors with
128GB RAM. One docking computation was held in a single thread for the modi�ed
package Autodock Smina and the Autodock Smina package. With a target taken from
the DUD-database, namely human glycinamide ribonucleotide synthetase (GART), we
were docking 919 compounds, some of which were decoys and others were actual exper-
imentally determined binders or ligands. We implement the projected newton method
in combination with the Level-Set Bisection algorithm (see algorithm 3). Additionally
we execute the algorithm multiple times with di�erent starting con�gurations for the

36



3.5 Benchmark

compounds. Essentially we are making a multi-start approach combined with the es-
tablished algorithms from chapter 3. This combination of techniques we refer to as the
GlobalNewtonMethod or short GNM.

3.5 Benchmark

3.5.1 Test Functions

We benchmark the test functions as exhibited in section 3.4.1 and see how the method
performs compared to the optimizers used in the Global Optimization toolbox of MAT-
LAB. Since no global minimum can be guaranteed, the results of the evaluations are the
mean value of four-hundred executions of according optimizations. The initial values for
all methods that need one, are chosen randomly from the domain, that we have speci�ed
for each function. We have aimed for user friendly application of the optimizers and tried
to make as little modi�cations on the optimizers' default settings as possible. Without
knowing what the global minimum is, the optimizers have the possibility to evaluate
their best guess for the global optimum given the initial value. Optimizer fminunc was
speci�ed to use the quasi-newton algorithm, since we want to test the optimizers with as
little information as the objective function itself. It needs to be mentioned that fminunc
does not necessarily implement a global optimizer. The initial population parameter 'Ini-
tialPopulationMatrix' for the genetic algorithm and the particle swarm algorithm were
ten populations.

B G L L13 R

Projected Newton M. 1610 1262 999 834 982
fminunc 89 32 38 70 33
pattern search 102 190 131 126 215
genetic algorithm 4475 5430 5778 5852 5621
particle swarm 2250 2053 1027 1195 1629
surrogateopt 200 200 200 200 200
Simmulated Anneal. 1737 2142 1809 1769 2071

Table 3.1: Dimensions of the functions are d = 2. The Projected Newton Method
compared in number of function evaluations to the global optimization algorithms
of the MATLAB software-package

37



3 Projected Newton Method

B G L L13 R

Projected Newton M. 0.6785 34.4523 2.6469 43.5140 11.7170
fminunc 0.0268 61.8956 4.2507 27.0950 17.4763
pattern search 0.2 1.5273 1.4998e-32 1.3498e-31 2.9932e-09
genetic algorithm 6.4429 0.8769 0.0094 0.1598 1.1522
particle swarm 0.5328 0.8842 3.2954e-09 0.0014 0.3198
surrogateopt 0.9668 0.8690 1.4002e-06 0.0229 0
Simmulated Anneal. 0.2892 0.9919 0.0043 0.0110 0.8567

Table 3.2: Dimensions of the functions are d = 2. Projected Newton Method compared
in error to the global optimization algorithms of the MATLAB software-package

Clearly the Projected Newton Method is not among the best performers. In certain
cases it is better than the genetic algorithm. In most cases the surrogate optimizer
outperforms all the others in this given set of two dimensional functions. Lets observe
the performance in higher dimensions.

3.5.2 N-Dimensional Test Functions

An extension to higher dimensions of the mentioned test functions from subsection 3.4.1
is of interest. We want to see if there is an exponential relationship to the dimension
of the test functions and the computation time. Since non of the methods, we compare
here are deterministic global optimizers, it can be assumed that no such correlation will
occure. However we want to emphasize, that this exponential correlation needs to be
excluded and has to be at least some polynomial behaviour if we want to look out for an
optimizer that can approximate global minima in polynomial time. We list the results
here.

38



3.5 Benchmark

Error FEvals

G10 L10 R10 G10 L10 R10

PNM 0.16079 18.7854 87.3211 3737 4679 4263
Fminunc 0.3774 19.1439 94.023 791 451 183
PS 0 1.4998e-32 0.0000 756 401 756
GA 0.0514 0.02634 7.1059 59700 71960 50380
PA 0.066432 0.68082 13.0339 17240 11090 19300
Surr 0 0.10821 0.0000 500 500 500
SA 1.7127 10.3797 64.9722 11209 8776 10343

G20 L20 R20 G20 L20 R20

PNM 0.0248 36.254 178.33 6874 7734 7703
Fminunc 4.7476e-12 35.988 179.390 1621 1386 336
PS 0 1.4998e-32 0.0000 2211 801 2211
GA 0.0598 0.2296 24.177 98500 87620 83600
PA 0.0167 6.7009 64.672 22180 18120 18720
Surr 0 0.16171 0.0000 1000 1000 1000
SA 4.0952 57.1941 153.435 25477 29230 22823

G40 L40 R40 G40 L40 R40

PNM 0.0172 80.043 365.6517 13895 18149 19300
Fminunc 2.0394e-11 83.998 366.4410 2542 3562 652
PS 0 1.4998e-32 1.4998e-32 7221 1601 7221
GA 0.1533 0.8854 0 137840 162720 130280
PA 0.0280 46.0084 80.3702 41140 30120 31130
Surr 0 0.2152 208.8409 2000 2000 2000
SA 9.7802 109.7134 400.9163 57427 58505 46808

Table 3.3: Dimensions of the functions are d = 10, 20, 40. Projected Newton Method
compared in error to the global optimization algorithms of the MATLAB software-
package

We observe that with rising dimension all the optimizers loose their accuracy and
speed. Except for the particle swarm algorithm, all errors rise with at least one order of
magnitude in at least one of the instances. What is interesting to observe, is that even
though PNM is not among the best optimizers, it outperforms the Simulated Annealing
algorithm. Among many other tests done on other generic problems, the comparison
of performance of PNM and Simulated Annealing has led to the conclusion, that PNM
might be a good alternative, where Simulated Annealing was the only choice in the
matter.

3.5.3 Protein-Ligand Docking

We now apply the algorithm 3 to a problem known as the Docking Problem. With the
use of algorithm 3, we were able to directly test the simulated annealing algorithm of

39



3 Projected Newton Method

Autodock Smina against our algorithm. Since the code is open-source, it was possible to
work with exactly the same computational overhead of evaluating the objective function.
Furthermore we had the opportunity to exploit the advantages of the boost library,
which among other packages contains the math kernel library, and therefore were able to
work with highly performant code. If a researcher using Autodock Smina or Autodock
Vina was to think of improvements of his\her computational methods, the introduced
GNM-algorithm should be on his\her list of choices.

Computation Time in seconds

-9

-8

-7

-6

-5

-4

B
in

d
in

g
 E

n
er

g
y 

in
 k

ca
l/

m
ol

Figure 3.1: Comparison of computation time and calculated energy for human glyci-
namide ribonucleotide synthetase (PDB: 2QK4, DUD-Database 2006) with Autodock
Smina (red) and the stochastic global newton method (blue)

40



3.5 Benchmark

Figure 3.2: ROC curve for docking experiment on human glycinamide ribonucleotide
synthetase (GART, PDB: 2QK4, DUD-Database 2006). Left: with stochastic PNM,
Right: with Autodock SMINA

The results shown in �gure 3.1 are suggesting, that the performance of the modi�ed
Autodock Smina software package (GNM) is superior. As we see in �gure 3.2 the GNM
algorithm, has a signi�cant improving impact on the ROC curve. Even though we do
not have a detailed mathematical analysis for the case of scoring functions as used in
the Autodock Smina package, we were able to achieve a result that might motivate
further research in GNM. An outlook of what these results imply in the environment of
computational drug design, will be given in the last part of the thesis.

41



3 Projected Newton Method

42



4 Dynamic Embedding Algorithm

4.1 Zangwill's Global Convergence Theory

The global convergence theory of Zangwill [7], will be a vehicle to proving global con-
vergence of iterative methods. Here is a systematic deduction into the main result of
Zangwill's global convergence theorem.

De�nition 4.1.1. Given two sets, X and Y , a set-valued mapping de�ned on X with
range in Y is a map Φ, which assigns to each x ∈ X a subset Φ(x) ⊂ P(Y )

To put this de�nition to use, we de�ne the following.

De�nition 4.1.2. Let X be a set and x ∈ X a given point. Then the iterative algorithm
A, with initial point x0 is a set-valued mapping A : X → P(X) which generates a
sequence {xn}∞n=1 according to

xn+1 ∈ A(xn), n = 0, 1, . . . (4.1.1)

We hereby have a general formulation of an algorithm, that may be for instance the
steepest descent algorithm. This method for example produces a well-de�ned sequence
given a particular starting point. Our algorithms later in this thesis, have the same
character.

De�nition 4.1.3. Given Γ ⊂ X and an iterative algorithm A on X, a continuous real-
valued function Z : X → R is called a descent function provided
1.

If x /∈ Γ and y ∈ A, Z(y) < Z(x) (4.1.2)

2.

If x ∈ Γ and y ∈ A, Z(y) ≤ Z(x) (4.1.3)

De�nition 4.1.4. A set-valued mapping Φ : X → Y is said to be closed at x0 ∈ X
provided
(i)

xk → x0 as k →∞, xk ∈ X (4.1.4)

(ii)

yk → y0 as k →∞, yk, y0 ∈ Y (4.1.5)

43



4 Dynamic Embedding Algorithm

implies y0 ∈ Φ(x0). The map Φ is called closed on S ⊂ X, provided it is closed at each
x ∈ S.

One other important concept for supporting a global convergence statement is

De�nition 4.1.5. Let {A,Γ, Z} be an iterative descent algorithm on a set X. This
algorithm is said to be globally convergent provided, for any starting point x0 ∈ X, the
sequence generated by A has x0 as an accumulation point.

I order to have a term for continuity of set-valued mappings, we de�ne continuity in
terms of sequences.

De�nition 4.1.6. Given two metric spaces X and Y , a function f : X → Y is said to
be continuous on X provided, given x0 ∈ X and a sequence {xn}∞n=1 such that xn → x0

as n→∞, then the sequence {yn}∞n=0 = {f(xn)}∞n=0 converges to y0 = f(x0).

With the de�nition of a composite map

De�nition 4.1.7. Let A : X → Y and B : Y → Z be two point set mappings. The
composite map C = B ◦ A which takes points x ∈ X to sets C(x) ⊂ Z is de�ned by

C(x) :=
⋃

y∈A(x)

B(x) (4.1.6)

the Lemma on composite maps will become useful.

Lemma 4.1.8. Let A : X → Y and B : Y → Z be two point set mappings. Suppose

(i) A is closed at x0

(ii) B is closed on A(x0)
(iii) If xk → x0 and yk ∈ A(xk) then there exists a y such that,

for some subsequence
{
ykj
}
, ykj → y as j →∞

Then the composite map C = B ◦ A is closed at x0

Proof. The proof can be found in [7]

Zangwill's main result is the following

Theorem 4.1.9. Let A be an algorithm on X, and suppose that, given x0 ∈ X, the

sequence {xk}∞k=1 is generated and satis�es

xk+1 ∈ A(xk) (4.1.7)

Let a solution set Γ ⊂ X be given, and suppose that

(i) the sequence {xk}∞k=0 ⊂ S for S ⊂ X a compact set

(ii) there is a continuous function Z on X such that

(a) if x /∈ Γ, then Z(y) < Z(x) for all y ∈ A(x)

44



4.2 Newton Continuation Method

(b) if x ∈ Γ, then Z(y) ≤ Z(x) for all y ∈ A(x)
(iii) the mapping A is closed at all points X \ Γ

Proof. The proof can be found in [7]

Then the limit of any convergent subsequence of {xk}∞k=0 is a solution.

In order to apply this theorem, it must only be established, that the de�nitions of
Zangwill's global convergence theory apply to the algorithm constructed in section 4.3.
But �rst some basics for the introduction to some known ideas for it.

4.2 Newton Continuation Method

For the sake of introducing the topic to the reader, we will recite theorems taken from
the book [6]. The preliminaries we need in order to conclude convergence results to a
global minimum, are the newton continuation methods. These methods are applied to
systems of non-linear equations. We need to take a look at the known theory as we will
proceed with it in section 4.3 regarding only a special case. This theory works with so
called homotopies on functions. What they are? Here is a de�nition

De�nition 4.2.1. A homotopy between two functions F and G from a topological space
X to another topological space Y is a continuous map H : X × [0, 1] → Y such that
H(x, 0) = F (x) and H(x, 1) = G(x).

With our original problem F (x) = 0, where D ∈ RN and F : D → RN and another
function G(x0) = 0 with x0 ∈ RN and G : D → RN , we will specify the homotopy
function H : D × [0, 1] → R sometimes also referred to as an embedding. At this point
we mention three very common homotopy functions namely

� Fixed-Point Homotopy:

H(x, λ) := (1− λ)F (x) + λ(x− x0) (4.2.1)

� Convex Homotopy:
H(x, λ) := (1− λ)F (x) + λE(x) (4.2.2)

� Newton Homotopy:
H(x, λ) := F (x)− (1− λ)F (x0) (4.2.3)

In this context the variable λ is often referred to as the "homotopy-parameter". Con-
tinuation methods aim for the solution of systems of non-linear equations. It is the aim
of this approach to �nd the so called homotopy path represented by the set

H−1(0) := {(x, t) ∈ Rn × R|H(x, t) = 0} (4.2.4)

The existence of this path is established by the implicit function theorem, namely if
(x0, 1) is a regular zero point of H, i.e. the Jacobian H ′(x0, 1) has full rank N , then

45



4 Dynamic Embedding Algorithm

a curve c(σ) ∈ H−1(0) with initial value c(0) = (x0, 1) and tangent ċ(0) 6= 0 will exist
at least locally i.e. on some open interval around zero. Additionally if zero is a regular
value of H or all zero points of H are regular points, then this curve is di�eomorphic to
a circle or the real line.

(x̂, 0) (x0, 1)

(x̃0, 1)

λ = 1λ = 0

Figure 4.1: Possible paths for curve c(σ)

We are going to put thought into the question of how to compute such a path nu-
merically and how to become sure, that the path is reaching the zero contour set of
H(x, 0) = F (x), as it is illustrated in �gure 4.2. The homotopy paths for curve c(s)can
lead from a point (x̃0, 1) forward and back again to another point at λ = 1 or may lead
to in�nity. In order to understand why these paths are regarded as parametrized curves,
we must understand what it means to solve for the path without the parametrization
through the arc-length s. For that purpose, we review the known Embedding Algorithm
stated as follows

Algorithm 5: Embedding Algorithm

Data:
x0 ∈ RN such that H(x0, 1) = 0
integer m > 0
Result:
x the solution

1 Set x := x0, λ := (m− 1) /m, ∆λ := 1/m
2 for i = 1, . . . ,m do
3 solve H(y, λ) = 0 iteratively for y using x as starting value.
4 x := y, λ := λ−∆λ

The embedding algorithm builds on the idea, that through increments of the homotopy-
parameter λ the solution of H(y, λ) = 0 will always be found. This idea clearly fails,

46



4.2 Newton Continuation Method

when a λ is reached, that passes a turning point of the curve.

(x̂, 0)

τ

τ

(x0, 1)

λ = 1λ = 0

Figure 4.2: The embedding algorithm fails at turning points τ

Evidently we need to solve this problem di�erently. We decide to parametrize the
curve by arc-length parameter s. From now on we regard the problem as an ODE by
di�erentiation of

H(c(s)) = 0 (4.2.5)

with respect to s such that

H ′(c)ċ = 0, ||ċ||= 1, c(0) = (x0, 1) (4.2.6)

Di�erentiatingH(c(s)) results in the Davidenko di�erential equation. The name comes
from Davidenko's original paper from 1953, who has been traced to be one of the �rst
people, who formulated the equation in this context. So

dH

dσ
=
∂H

∂x

∂x

∂s
+
∂H

∂λ

∂λ

∂s
= 0 (4.2.7)

where s is the arc-length of the homotopy path. For this ODE we state the initial value
problem

Problem 4.2.2. The initial value problem for Davidenko's ODE is as follows
(i) (

∂H
∂x

∂H
∂λ

)(∂x
∂s
∂λ
∂s

)
= 0 (4.2.8)

(ii) (
x(0)
λ(0)

)
=

(
x0

0

)
(4.2.9)

47



4 Dynamic Embedding Algorithm

(iii)

||dx
ds
||2+

(
dλ

ds

)2

= 1 (4.2.10)

One popular approach to solve the initial value problem 4.2.2, is by using a predictor-
corrector method. The predictor exerts a superposition of the current iterate by the
tangent vector of the curve c(s) on the current iterate. The corrector usually drives the
superposed iterate to a point, that is closer to the exact solution. Before we apply the
idea the of the Predictor-Corrector method, we make some general statements, on which
we pick up in section 4.3. These are important in order to achieve a higher level of
mathematical precision in the advancing theory. For a system of non-linear equations
H(x, λ) = 0, we make the

Assumption 4.2.3. H : RN+1 → RN is a smooth map i.e. H ∈ C∞(RN+1).
There is a point u0 ∈ RN+1 such that:

(i) H(u0) = 0
(ii) the Jacobian matrix H ′(u0) has maximum rank i.e. rank(H ′(u0)) = N

With assumption 4.2.3, we can choose an index i, such that the sub-matrix of the
Jacobian H ′(u0), obtained by deleting column i, is non-singular. It follows from the
implicit function theorem, that a local parametrization of the solution set H−1(0) with
respect to the ith coordinate exists. We re-parametrize and obtain

Corollary 4.2.4. Under the assumption 4.2.3, there exists a smooth curve α ∈ J →
c(α) ∈ RN+1 for some open interval J containing zero such that for all α ∈ J :

(i) c(0) = u0

(ii) H(c(α)) = 0
(iii) rank(H ′(c(α))) = N
(iv) c′(α) 6= 0

Di�erentiating equation (ii) in Corollary 4.2.4 we see that the tangent vector c′(α)
satis�es equation

H ′(c(α))c′(α) = 0 (4.2.11)

Obviously the tangent c′(α) spans the one-dimensional kernel ker (H ′(c(α))). Equiv-
alently, and this is important to notice, the choice ċ(α) is orthogonal to all rows of
H ′(c(α)). Later in section 4.3, this will be the key thought of how to construct such a
tangent vector for a smooth map assigning values from RN+1 to R. In this section, we
would like to explain the current known theory a little more, in order to be able to relate
to it, such that the advancements in the continuation theory in section 4.3 don't seem
too strange. So the aim of the current theory is to also add a consistent direction for the
traversing of the curve. This yields the idea to augment the Jacobian of H and introduce
the (N + 1)× (N + 1) augmented Jacobian matrix de�ned to be(

H ′(c(s))
ċ(s)T

)
(4.2.12)

48



4.2 Newton Continuation Method

Since the tangent ċ(s) is orthogonal to the N linearly independent rows of the Jacobian
H ′(c(s)), it follows that the augmented Jacobian is non-singular for all s ∈ J . The
advantage of de�ning this augmented Jacobian, is that now we are able compute the
determinant of it and de�ne, that the sign has to be constant on J . This approach
adopts the conventions of di�erential geometry. If we apply the de�nition 4.2.6 of the
tangent vector induced by A, we can state the following

Lemma 4.2.5. Let c(s) be the positively oriented solution curve parametrized with respect

to arc-length s which satis�es c(0) = u0 and H(c(s)) = 0 for s in some open interval

J containing zero. Then for all s ∈ J , the tangent ċ(s) satis�es the following three

conditions:

(i)

H ′(c(s))ċ(s) = 0

(ii)

||ċ(s)||= 1

(iii)

det

(
H ′(c(s))
ċ(s)T

)
> 0

In classical methods property (iii) of Lemma 4.2.5 is used to specify the tangent of the
curve. That motivates the following de�nition of the tangent vector t

De�nition 4.2.6. Let A be a N × (N + 1)-matrix, with rank(A) = N . The unique
vector t(A) ∈ RN+1 satisfying the three conditions

(i) At = 0
(ii) ||t||= 1

(iii) det

(
A
tT

)
> 0

is called the tangent vector induced by A

It can be shown by the Implicit Function Theorem, that the tangent vector ċ(s) induced
by A, is also a smooth map.

Lemma 4.2.7. The set M of all N × (N + 1)- matrices A having maximal rank N is

an open subset of RN×(N+1), and the map A ∈M→ t(A) is smooth

Proof. See [6]

As Lemma 4.2.7 suggests, equation's (4.3.7) right hand side is a smooth map. By the
Lemmas and de�nitions established so far, we are only able to formulate this problem
speci�cally for the system of N -many non-linear equations. We would like to extend that
to the general case

49



4 Dynamic Embedding Algorithm

De�nition 4.2.8. Let f : Rp → Rq be a smooth map. A point x ∈ Rp is called a regular
point of f if the Jacobian f ′(x) has maximal rank min {p, q}. A value y ∈ Rq is called a
regular value of f if x is a regular point of f for all x ∈ f−1(y). Points and values are
called singular if they are not regular.

For further use in the next section, the following Lemma will help us to establish
existence of the curve c(s) not only in the classic continuation theory but also for the
case of a single non-linear equation.

Lemma 4.2.9. Let f : Rp → Rq be a smooth map. Then the set

{x ∈ Rp|x is a regular point of f}

is open

Proof. Consider the case p ≤ q. Then x is regular if and only if

det(f ′(x)f ′(x)T ) 6= 0

and the set of such x is open since the map x → f ′(x) is continuous. The case p < q is
treated analogously by considering the determinant of f ′(x)T f ′(x)

Now we are able to state the IVP in terms of the tangent vector.

Problem 4.2.10. The initial value problem for the Davidenko ordinary di�erential equa-
tion in terms of the tangent vector induced by Jacobian H ′(u), with u ∈ C1, is stated as
follows

u̇ = t
(
H ′(u)

)
(4.2.13)

u(0) = u0 (4.2.14)

u is de�ned to be points such that H ′(u) has maximal rank.

The smoothness of the IVP for the single non-linear equation case is therefore given
implicitly. We hereby conclude the theory for the classic continuation method and will
proceed with new ideas in the next section.

4.3 Single Non-Linear Equation

We remind the reader, that we want to deal with one non-linear equation only and
not with a system of equations. It would be possible to treat this equation as an under-
determined system, but this would also include a lot of terms and de�nitions, we actually
don't need. With our original problem F (x) = 0, where D ⊂ RN and F : D → R and
another function E(x0) = 0 with x0 ∈ RN and E : D → R, we de�ne the homotopy
function H : D × [0, 1] → R sometimes also referred to as an embedding. At this point,
we work with the Fixed-Point Homotopy:

50



4.3 Single Non-Linear Equation

H(x, t) := (1− t)F (x) + t(x− x0) (4.3.1)

As we have introduced the theory for existence and local uniqueness for approximating
the homotopy path namely

H−1(0) := {x, t ∈ Rn × R|H(x, t) = 0} (4.3.2)

The di�erential equation in this case, looks the same for the under-determined case

dH

ds
=
∂H

∂x

∂x

∂s
+
∂H

∂t

∂t

∂s
= 0 (4.3.3)

However if we want to state the initial value problem for that case, we must reconsider
our de�nition of what a tangent vector is. De�nition 4.2.8 refers to a matrix inducing
the desired tangent vector, we are only left with a vector. This vector should su�ce the
following

De�nition 4.3.1. Let v be a (N + 1)-vector. The vector t(v) ∈ RN+1 satisfying the
three conditions
1.

< v, t > = 0 (4.3.4)

2.

||t|| = 1 (4.3.5)

3.

{t(v)}N+1 > 0 (4.3.6)

is called the tangent vector induced by v

In the previous section 4.2, we generalized the ODE in problem 4.2.10 to maps f :
Rp → Rq. So according to De�nition 4.2.8 we have maximal rank of the Jacobian of
H, speci�cally rankmin {p = N, q = 1} = 1 for all regular points of H. Unlike in the
previous section 4.2, we don't have a Lemma like 4.2.7 that guarantees for the smoothness
of t(H ′). We therefore assume the following problem to be de�ned.

Problem 4.3.2. The initial value problem for the Davidenko ordinary di�erential equa-
tion in terms of the tangent vector induced by Jacobian H ′(u), with u ∈ C1, is stated as
follows

u̇ = t
(
H ′(u)

)
(4.3.7)

u(0) = u0 (4.3.8)

u is de�ned to be points such that H ′(u) has maximal rank 1.

51



4 Dynamic Embedding Algorithm

What we have as a preliminary assumption for the smoothness of the right hand side is
the Lemma's 4.2.9 implication, that the set of regular points of our single equation H is
open. That being said, we proceed to the calculation of the tangent vector. The tangent
vector de�ned in 4.3.1 is used in a PC-Approach (Predictor-Corrector). The reader
might ask why we made the e�ort to restate the de�nition of the tangent vector from the
general matrix induced tangent vector (de�nition 4.2.6) to the vector induced tangent
vector (de�nition 4.3.1). In section 4.2 we introduced the idea of a directed tangent
vector over the de�nition with its augmented Jacobian matrix. We however achieve the
same thing by condition 4.3.6 in de�nition 4.3.1. The tangent vector has many degrees
of freedom. We speci�cally choose the orthogonal projection of the gradient of H onto
the eN+1-direction, the penalty-parameter dimension. I.e.

t = Π[eN+1](∇H) = eN+1 −
∂λH
||∇H||2

∇H (4.3.9)

Before we de�ne the algorithm to �nd roots of the original problem F , we mention
once again, that the homotopy applied, is the Fixed-Point Homotopy. Additionally
we do not only vary the homotopy function H in the parameters x and λ but also in
the initial choice of x0. All in all this results in a dynamic homotopy function H :
D × D × [0, 1] → R. Since homotopies on functions are also known as embeddings, we
choose the algorithm's name to be Dynamic Embedding Algorithm. In order to prove
global convergence in the context of the new algorithm, we will use Zangwill's global
convergence theory. We have revised Zangwill's global convergence theory in section
4.1. Γ is supposed to be the solution set of our problem. In our case this is Γ :=
{(x, λ) ∈ D × [0, 1] |∂λH(x, λ) = 0 and H(x, λ) = 0}.

52



4.3 Single Non-Linear Equation

Figure 4.3: Top-Left: The Fixed-Point Homotopy on function f(x). The initial root
x0 has shifted to the two former accumulation points contained in the solution set.Top-
Right: Predictor (red) and Corrector (blue) steps solve for the curve c(α).Bottom-
Left: The Fixed-Point Homotopy on function f(x). The initial root x0 has shifted to
the accumulation in the solution set, such that zero-level-set of the homotopy function
is monotonous in λ-direction.Bottom-Right: Predictor and Corrector steps on the ho-
motopy's zero-level-set. Since the curve solving the Davidenko di�erential equation is
monotonous in λ-direction, the traversing PC-steps reaches λ = 0.

So if Γ is constructed in that way, we de�ne our descend function to be Z(x, λ) := λ,
∀x ∈ D. What we aim for with this de�nition is to construct something like a gradient
descent on the zero-level-set of the homotopy function. We visualize the idea in �gure
4.4 in one dimension �rst, regarding the Fixed-Point Homotopy on f(x) = (x+ 4.5)(x+
1)(x−1)(x−4)+100 sin(2x)2. One can think of the method, as a gradient descent on the
zero-level-set of the homotopy function. Once a "local minimum" is found, the dynamic
initial root of the homotopy function is shifted in the x-dimension to match the "local
minimum's" x-position. In such a way iterates are able to jump over local minima.

A visualization in two dimensions for the function

f(x1, x2) = (x1 + 4.5)(x1 + 1)(x1 − 1)(x1 − 4) + 30 sin(2x1)2

+ (x2 + 4.5)(x2 + 1)(x2 − 1)(x2 − 4) + 30 sin(2x2)2

this looks as follows.

53



4 Dynamic Embedding Algorithm

Figure 4.4: Left: Graph of non-convex coercive function f(x1, x2). Right: Predictor
(red) and Corrector (blue) steps solve for the curve c(α). Contour lines mark the zeros
level-set of the homotopy function at the current λ. Blue contour lines mark the zero-
level-sets of the PC-steps of the inner while loop, while green contour lines mark the
zero-level-sets of the PC-steps, when the initial �xed-point x0 is shifted. In this version
of the algorithm the Excitation step in line 4 of the algorithm was made by gradual
increase, i.e. λ = λ+ ∆λ, instead of setting it to λ = 1. The approach to the zero-level-
set of the function f (red circle in lower left corner) is visible.

The algorithm is an inaccurate root �nder, however does not su�er from the cutbacks
of not knowing when to stop, as it is the case with the projected newton method in
section 3. Certain instances of problems allow us to call the algorithm a root �nder
for certain classes of functions. So far no analytical result concerning what this class of
functions might be, was established. The only thing we can do from here is to prove
global convergence of the inner while loop of algorithm 6.

54



4.3 Single Non-Linear Equation

Algorithm 6: Dynamic Embedding Algorithm

Data:
· initial known �xed-point x0 and initial point x(0) ∈ D, s.t. H(x(0), x0, 1) = 0
· predictor step length 0 < h ≤ 1 and tolerance ε > 0
Result:
x∗ ∈ Γ ⊂ D such that H(x∗, x0, 0) = 0 or there is no solution, i.e. Γ = ∅

1 Set x := x(0), λ := 1
2 while λ > 0 do

3 if λ̂− λ < ε then
4 Excitation: λ = 1
5 Compute new x0 for the excited λ. Use �xed x.
6

x0 = arg zero
y∈D

H(x, y, λ) (4.3.10)

7 else
8 (Set-valued map A):
9 Set: ĥ = h
10 Compute tangent vector w.r.t. x and λ. Use �xed x0.
11

t = eN+1 −
Hλ
||∇H||2

∇H (4.3.11)

while λ̂ > λ do
12 Predictor step: (Set-valued map S2)(

x̃

λ̃

)
=

(
x
λ

)
− ĥ · t (4.3.12)

13 Corrector step: (Set-valued map S1)(
x
λ

)
=

(
x̃

λ̃

)
− H(x̃, x0, λ̃)

||∇H(x̃, x0, λ̃)||2
∇H(x̃, x0, λ̃) (4.3.13)

Set: ĥ = ĥ
2

14 Set: λ̂ = λ

15 if (x, λ) /∈ D then
16 return x∗ = ∅
17 if H(x, x0, 0) = 0 then
18 return x∗ = x, x∗ ∈ N0(H(x, x0, 0))

55



4 Dynamic Embedding Algorithm

We open the following analysis with Zangwill's global convergence theory.

4.3.1 Global Convergence

We need to empathize, that most of the proving we do concerning global convergence
in the context of zangwill's theory, has been done in his original paper [7]. Especially
the proof the �nal global convergence theorem 4.1.9 is mainly held in its original general
form. So in order to build up a global convergence proof, we need to put the projected
newton method in conformity with the terms from Zangwill's convergence theory, since it
is implicitly used in algorithm 6. At �rst we propose, that the projected newton method
is a closed set-valued map, which satis�es the de�nition 4.1.4. We thereby state the

Lemma 4.3.3. Let f have the properties stated in theorem 3.3.6. Furthermore let D ⊂
RN , D compact, N ∈ N and B(x, ρ) ⊂ D × [0, 1] be compact sphere with radius ρ > 0.
Then the iterative algorithm S1 : B(x, ρ)→ D, de�ned as

S1(x) :=
{
y ∈ D|y = x+ d and f(x) +∇f(x)Td = 0 at which d 6= 0

}
(4.3.14)

is closed at any point x ∈ B(x, ρ)

Proof. We know by theorem 3.3.6 that there is a sequences {xk}∞k=1 such that xk → x∗ as
k →∞ where d 6= 0. By de�nition of the projected newton method the iterates {yk}∞k=1

are de�ned to be yk ∈ S1(xk) for all k and that yk → y∗ as k → ∞. We now need to
show that y∗ ∈ S1(x∗).
Since we know that dk within the projected newton method holds

dk = − f(xk)

||∇f(xk)||2
∇f(xk) (4.3.15)

k →∞ : d∗ = − f(x∗)

||∇f(x∗)||2
∇f(x∗) (4.3.16)

We can see that y∗ = x∗ + d∗ solves the projected newton problem

f(x∗) +∇f(x∗)Td = f(x∗)−∇f(x∗)T
f(x∗)

||∇f(x∗)||2
∇f(x∗) (4.3.17)

= f(x∗)− f(x∗) (4.3.18)

= 0 (4.3.19)

which implies y∗ ∈ S1(x∗)

Even though we might look at the predictor step as something we could have put right
into one set-valued mapping, we want to keep it organized and separate them. As we
will see right after this, it comes in handy to prove

56



4.3 Single Non-Linear Equation

Lemma 4.3.4. Let f have the same properties stated in theorem 3.3.6. Furthermore

S1 : B(x, ρ) → D ⊂ RN as de�ned in Lemma 4.3.3 and S2 : D → Z be two point set

mappings. Then S2 de�ned

S2(x) :=
{
y ∈ D|y = x+ d and ∇f(x)Td = 0 at which d 6= 0

}
(4.3.20)

is closed on S1(x0)

Proof. So similar as before we assume that {xk}∞k=1 exist such that xk → x∗ as k →
∞ where d 6= 0. Since the prediction step is a single computation of an orthogonal
projection, we can simplify the sequence {xk}∞k=1 to {x1} = {x0 + d}. We thereby see

x1 = x0 + d

= x∗

All we need to show is then y∗ ∈ S1(x∗) = {x0 + d}. If d is chosen to be an orthogonal
projection of the unit vector eN (the λ-direction of the homotopy function) on the vector
∇f(x∗), it is orthogonal to ∇f(x∗)T by de�nition

∇f(x∗)d∗ =< ∇f(x∗),Π[eN ](∇f(x∗)) > (4.3.21)

=< ∇f(x∗), eN −
∂Nf(x∗)

||∇f(x∗)||2
∇f(x∗) >= 0 (4.3.22)

Thereby y∗ ∈ S2(x∗) hold true.

The continuation method is composed of two algorithms that depend on each others
results. We therefore speak of a composite map in the sense of de�nition 4.1.7. In order
to prove the composite map to be closed we need to state following result of Zangwill's
theory

Remark 4.3.5. One might have noticed that if Y is compact, property (iii) in Lemma
4.1.8 hold true immediately. So if A is closed at x0 and B is closed on A(x0), the
composite map C = B ◦ A is closed at x0.

We put together Lemmas 4.3.4 and 4.3.4 and therefore are able to use Lemma 4.1.8.
This yields that A = S1 ◦S2 is closed on D× [0, 1] \Γ. Since we have excluded directions
d = 0 in both S1 and S2, this implied that the solution set is excluded. As this is not
very obvious, we want to make the reader notice

f(x) 6= 0⇔ d1 = − f(x)

||∇f(x)||2
∇f(x) 6= 0 ∀x ∈ D \ Γ

∂Nf(x) 6= 0⇔ d2 = − ∂Nf(x)

||∇f(x)||2
∇f(x) 6= 0 ∀x ∈ D \ Γ

57



4 Dynamic Embedding Algorithm

Where d1 would be the search direction of S1 and d2 the search direction of S2. This
concludes the third assumption for global convergence of theorem. 4.1.9.We are left
to show that the descent function Z(x, λ) = λ on D × [0, 1] �ts the properties we are
looking for in theorem 4.1.9. Since it seems clear that the while-loop in algorithm 6 only
allows for descending λ, we assume the second assumption of theorem 4.1.9 to be true.
The application of theorem 4.1.9 is now imminent. We need to note that the dynamic
embedding algorithm consist of the set-valued map A = S1 ◦ S2 and the computation of
an initial value, see equation (4.3.10). We can assume that such an initial value will be
chosen in a way that the assumption x0 ∈ S ⊂ X always holds. What is left to prove
is the global convergence of the iterative algorithm A. We now formulate the proof in
the formalism as it was introduced in section 4.1 such that it �ts the language of the
dynamic embedding algorithm.

Theorem 4.3.6. Let D ⊂ RN be a compact set, A be an iterative algorithm on

D × [0, 1] and the continuously di�erentiable map H : D × [0, 1]→ R. Suppose
that, given (x0, λk) ∈ D × [0, 1], the sequence {xk, λk}∞k=1 is generated and

satis�es

(xk+1, λk+1) ∈ A(xk, λk) (4.3.23)

Let the solution set

Γ :=

{
(x, λ) ∈ D × [0, 1]

∣∣∣∣∂H (x, λ)

∂λ
= 0 and H (x, λ) = 0

}
(4.3.24)

be given and suppose that

(i) the sequence {xk, λk}∞k=0 ⊂ S for S ⊂ D × [0, 1] is compact

(ii) there is a continuous function Z(x, λ) := λ on D × [0, 1] such that

(a) if (x, λ) /∈ Γ, then Z(y, µ) < Z(x, λ) for all (y, µ) ∈ A(x, λ).
(b) if (x, λ) ∈ Γ, then Z(y, µ) ≤ Z(x, λ) for all (y, µ) ∈ A(x, λ).

(iii) the mapping A is closed at all points of D × [0, 1] \ Γ
Then the limit of any convergent subsequence of {xk, λk}∞k=0 is in Γ.

Proof. The proof in a more general form can be found in [7]. Here we only made slight
modi�cations.
Suppose that (x∗, λ∗) is a limit point of the sequence

{
xkj , λkj

}∞
j=0

such that (xkj , λkj )→
(x∗, λ∗) as j → ∞. Since the descent function Z is continuous, we have Z(xkj , λkj ) →
Z(x∗, λ∗) when j → ∞. We will show that indeed Z(xk, λk) → Z(x∗, λ∗) as k → ∞.
Because λk is monotonically decreasing on the sequence {xk, λk}∞j=0 as follows from the
property that (xk+1, λk+1) ∈ A(xk, λk) and from the properties in (ii). We therefore
must have Z(xk, λk)−Z(x∗, λ∗) ≥ 0 for all k. So given ε > 0, there is a j0 such that, for
j ≥ j0, we have

Z(xkj , λk+1)− Z(x∗, λ∗) < ε, ∀j ≥ j0 (4.3.25)

58



4.4 Applications

Which includes all k ≥ j0 such that

Z(xk, λk)−Z(x∗, λ∗) = Z(xk, λk)−Z(xkj0 , λkj0 )+Z(xkj0 , λkj0 )−Z(x∗, λ∗) < ε (4.3.26)

as k →∞ it follows Z(xk, λk)→ Z(x∗, λ∗). It is left to show that (x∗, λ∗) is a solution.
We prove this by contradiction. Suppose that (x∗, λ∗) is not a solution. We consider
the sequence

{
xkj+1, λkj+1

}∞
k=0

which has the property that, for each j, (xkj+1, λkj+1) ∈
A(x∗, λ∗). This new sequence lies in the compact set S and hence contains a convergent
subsequence (x(kj+1)l , λ(kj+1)l) → x̂ as l → ∞. Since A is closed on D × [0, 1] \ Γ and,
by assumption (x∗, λ∗) ∈ Γ, we see that

(x̂, λ̂) ∈ A(x∗, λ∗) (4.3.27)

On the other hand if the original sequence is regarded it follows Z(xk, λk) → Z(x∗, λ∗)
implies that we must have Z(x̂, λ̂) = Z(x∗, λ∗) and this contradicts property (ii) (a) of
the assumption.

We can now say that every initial root for the �xed-point homotopy will yield a con-
vergent prediction and correction iteration in the inner while loop of the algorithm.
Obviously this does not prove the global convergence to a global minimum. For this
further experiments with the optimizer on various functions have to be made. Some of
them we will exhibit in the next section. In order to proceed to further mathematical
analysis of the algorithm, some more experience with the algorithms behaviour will need
to be gathered. We will discuss further in the outlook of this thesis and come to the use
cases we have established so far.

4.4 Applications

4.4.1 N-Dimensional Test Functions

We exhibit test functions, that can easily extend to high number of variables. The main
goal here is to achieve a proof of concept for the established algorithm. As the evaluations
of the test functions in section 3.5.1 have been done for certain instances of the dimension
N , only the Griewank and the Rastrigin function will be of interest here. Table 4.1
contains the the errors and function evaluations when applying dynamic embedding as a
root �nder combined with the Level-Set Bisection algorithm. In the following we denote
f̂ to be the computed global minimum value and f∗ the exact minimum value. After
several experiments, it turns out that the accuracy of computed minima depends strongly
on the step size parameter h, the parameter that determines the predictor step size or
in other words the length of the tangent vector t(H ′). If we choose h to be small, the
resulting errors become smaller. However, the number of function evaluations rises with
linear correlation too. We might demand the necessity for the step size parameter to
be small enough, such that the local convergence properties of the implicitly iterated
projected newton method are exploited.

59



4 Dynamic Embedding Algorithm

Error FEvals

Dimensions GN RN GN RN

2 0.0025 -0.3120 128284 95921
4 0.0033 -0.7009 220640 376754
6 0.0088 -0.6495 349938 459531
8 0.0346 -0.6293 435900 509630
10 0.0333 -0.6577 599681 604709
20 -0.0101 0.1105 1970788 1127664
40 -0.0202 7.5001 5424714 2363372
60 -0.0225 -0.6399 9261675 6739238
80 -0.0263 0.0124 14549670 6565356
100 -8.5229 -0.7044 13037734 14262802

Table 4.1: Projected Newton Method compared in error to the global optimization
algorithms of the MATLAB software-package

On the other hand, table 4.1 shows, that in dimension N = 100 the error suddenly
rises by two orders of magnitude. We suspect that the accuracy of the computed global
minimum must also depend on the step size. Both �gures 4.5 and 4.6 show unwanted
error sizes in the varying dimensions. Especially in �gure 4.5, we see that there must be
a relationship between error and step size parameter h.

0 10 20 30 40 50 60 70 80 90 100

Number of Dimensions

-10

-8

-6

-4

-2

0

2

E
rr

or

GRIEWANK GRIEWANK

0 10 20 30 40 50 60 70 80 90 100

Number of Dimensions

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
um

be
r 

of
 F

un
ct

io
n 

E
va

lu
at

io
ns

107

Figure 4.5: Left: Error measured with (f̂ − f∗). Negative errors are possible due
to precision of the optimizer. Right: Number of function evaluations quadratically
correlates to the number of dimensions.

60



4.4 Applications

0 10 20 30 40 50 60 70 80 90 100

Number of Dimensions

-8

-6

-4

-2

0

2

4

6

8

10

12

E
rr

or

RASTRIGIN RASTRIGIN

0 10 20 30 40 50 60 70 80 90 100

Number of Dimensions

0

5

10

15

N
um

be
r 

of
 F

un
ct

io
n 

E
va

lu
at

io
ns

106

Figure 4.6: Left: Error measured with (f̂ − f∗). Negative errors are possible due to
precision of the optimizer. Right: Number of function evaluations linearly correlates to
the number of dimensions.

An advanced experiment shows that the dimensionality of both problems does not
correlate exponentially with the step size.

0 10 20 30 40 50 60 70 80 90 100

Number of Dimensions

-0.1

-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

E
rr
or

GRIEWANK GRIEWANK

0 10 20 30 40 50 60 70 80 90 100

Number of Dimensions

0

0.5

1

1.5

2

2.5

N
um

be
r 

of
 F

un
ct

io
n 

E
va

lu
at

io
ns

107

61



4 Dynamic Embedding Algorithm

0 10 20 30 40 50 60 70 80 90 100

Number of Dimensions

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

S
te

p 
S

iz
e 

h

GRIEWANK

Figure 4.7: Top-Left: Error measured with (f̂ − f∗). Negative errors are possible due
to precision of the optimizer. Top-Right: Number of function evaluations correlates to
the number of dimensions. The correlation is not exponential.Bottom: the step size h
chosen, such that the error is below 0.1.

0 10 20 30 40 50 60 70 80 90 100

Number of Dimensions

-0.1

-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

E
rr
or

RASTRIGIN RASTRIGIN

0 10 20 30 40 50 60 70 80 90 100

Number of Dimensions

0

2

4

6

8

10

12

N
um

be
r 

of
 F

un
ct

io
n 

E
va

lu
at

io
ns

107

0 10 20 30 40 50 60 70 80 90 100

Number of Dimensions

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

S
te

p 
S

iz
e 

h

RASTRIGIN

Figure 4.8: Left: Graph of function f(x1, x2). Right: For certain initial values the
algorithm passes through many local minima caused by the sin-terms.

If we compute the step size required to reduce the error to < 0.1, as the visualisations
suggest, the step size parameter h converges to a number bigger zero at an asymptotic

62



4.4 Applications

rate. The computational complexity of the dynamic embedding algorithm in application
on these test functions can therefore be expected to be non-exponential and less then
exponential in runtime with increasing dimension. As of now, it goes without saying, that
the investigations concerning runtime of this algorithm in the general case are not to be
considered closed. These evaluations had the sole purpose of motivating further research
towards the convergence properties for quadratic programs with non-linear constraints,
since these are of a similar form.

63



4 Dynamic Embedding Algorithm

64



5 Conclusion

5.1 The Fundamental Question

The problem of the decidability or the problem of an explicit decision of how to evaluate
if the problem has an empty set of sub-optimal points, was motivated and is able to be
solved for certain instances of non-linear problems. We have looked into transformations
of np-hard and np-complete problems and found that these problems can be transformed
into Homotopies on merit-functions of multivariate polynomials, penalized by continu-
ous integer constraints. These transformations resulted in polynomials of at least 4-th
order. In section 4.4.1 we evaluated however only quadratic functions with a sin-and cos-
perturbations. We have managed to formulate algorithm 6 and can rightfully argument,
that the algorithm always converges. As for now we can suspect the algorithm to solve
for zero-level-sets and their non-existence, only for quadratic functions with a sin-and
cos-perturbations. If we want to answer the question of thesis we need to prove

If Algorithm 6, Dynamic Embedding, uniquely decides on the emptyness of the
set of sub-optimal points (def. 1.4.2) for multivariate polynomials on RN , the
satis�ability problem after arithmetization becomes decidable.

5.2 The Projected Newton Method

We have constructed the projected newton method and applied it to numerical test
functions. We derived from the conclusions of the results, that it might be a good idea to
apply the Level-Set Bisection algorithm combined with the projected newton method to
a very interesting real world application, namely Protein-Ligand Docking. On the way to
solving this problem, such that it might get into competition with a very known technique,
called Simulated Annealing, we got to the point of using stochastically generated initial
values for the global optimizer. That optimizer we called GNM -algorithm. Unluckily,
the �ndings of chapter 3 lead to the following

There is no global convergence to a global minimum of non-convex coercive
functions with the projected newton method and Level-Set Bisection.

However, we seem to perform much better, than the widely used Simulated Annealing
algorithm for applications as Docking. As Simulated Annealing is also applied in many

65



5 Conclusion

other applications, we strongly suspect, that other real-world problems can be success-
fully solved.

66



6 Outlook

6.1 Protein-Ligand Docking

The performance results of section 3.5.3 open many questions of how the application of
the GNM algorithm might perform on larger datasets. So far we only have evaluated
one single protein. A new update of the celebrated CASF dataset has come out as the
most recent successor of the CASF-2007 and CASF-2013 datasets. The new CASF-2016
dataset has not yet been tested for all major docking packages, however there exist many
for the two former ones. If we take a look at �gure 6.1 and 6.2, taken from Wang and
Zhang [17], all introduced measures from the subsection on docking quality measures 3.4.2
have been benchmarked for the CASF-2013 dataset. All prominent scoring functions have
been evaluated as well as the Autodock Vina scoring function.

Figure 6.1: Performance of 22 scoring functions in (A) scoring power measured by
Pearson's R, (B) ranking power in terms of high-level success rate and (C) docking
power measured by the success rate, when the best-scored pose is considered to match
the native pose in CASF-2013 benchmark. ∆vinaRF20 is colored in red and AutoDock
Vina is colored in green. All results colored in blue are obtained from reference[18]

Wang and Zhang introduce a method to speci�cally use the Autodock Vina software

67



6 Outlook

package and apply a machine learning approach by the name of random forest. This pow-
erful boosting technique is applied to work out a scoring function, which seems to improve
the underlying Autodock Vina function by far. The authors also visualize a benchmark
on the CASF-2007 dataset where the applied boosted function is out performing the
underlying function and a lot of the competitors. Since our modi�ed software package
is a more stable version on Autodock Vina, which allows for specifying di�erent scor-
ing functions, we wonder how the boosting approach might improve the benchmark in
combination of our optimizer.

Figure 6.2: Performance of 22 scoring functions in screening power measured by (A)
enrichment factor and (B) success rate at top 1% level in CASF-2013 benchmark.
∆vinaRF20 is colored in red and AutoDock Vina is colored in green. All results col-
ored in blue are obtained from reference[18]

We suggest to evaluate the suggested optimizer from section 3 in combination with the
random forest approach of Wang and Zhang.

68



6.2 Dynamic Embedding Algorithm

6.2 Dynamic Embedding Algorithm

So far we have only proven global convergence of the inner while loop of algorithm 5.
It may seem intuitive to go ahead and approach the global convergence proof not only
to any accumulation point, but also to a point that is an element of the level-set of the
original function. The examples we evaluated in section 4.4.1 were of a form that work
well in the current formulation of the algorithm using the �xed-point homotopy. For

every dynamic initial root x
(0)
0 of the dynamic homotopy function, i.e. H(x, x

(0)
0 , 0) = 0,

we have proven global convergence to an accumulation point in the solution set (4.3.24).
Note however, that this solution set does not necessarily include the the solution set

Γ̂ := {x ∈ D|H (x, 0) = 0} = N0(f)

The behaviour of the solver in algorithm 6 is yet a little puzzling. On the one hand it
is able to overcome local minima but on the other hand fails to hover over to the actual
zero-level-set of the original problem. As �gure 6.3 shows for the problem function

f(x1, x2) = (x1 + 4.5)(x1 − 4) + 30 sin(2x1)2

+ (x2 + 4.5)(x2 + 1)(x2 − 1)(x2 − 4) + 30 sin(2x2)2

Figure 6.3: Left: Graph of function f(x1, x2). The function is a quadratic function
in x1-direction and a polynome of 4-th order in x2-direction Right: The PC-steps are
converging to local minima of the contour set w.r.t to the homotopy-parameter, but fail
to leave the a bigger surrounding local minimum resulting from the structure of the 4-th
order polynome in x2-direction

Further experimenting with homotopies and most likely dynamic homotopies is nec-
essary to gain a better picture of the behaviour of the algorithm in various problems.
Regarding the solution set that comes with the dynamic homotopy function, lets de�ne
it as

Γk :=

(x, x(k)
0 , λ

)
∈ D ×D × [0, 1]

∣∣∣∣∂H
(
x, x

(k)
0 , λ

)
∂λ

= 0 and H
(
x, x

(k)
0 , λ

)
= 0



69



6 Outlook

We would expect to �nd an algorithm that de�nes the series of solution sets, such that

Γk
k→∞

= Γ∗ ⊂ N0(f)

But this is for later.

70



Bibliography

[1] Cook, S. A. , The complexity of theorem proving procedures, Conference Record of
Third ACM Symposium on Theory of Computing, 1971, pp. 151-158

[2] Shani, S. (1974), Computationally Related Problems, SIAM J. Comput. 3, 262-279

[3] https://www.rcsb.org/

[4] http://www.sfu.ca/~ssurjano/optimization.html

[5] Jones, D.R., Perttunen, C.D. Stuckman, B.E., Lipschitzian optimization without
the Lipschitz constant, J Optim Theory Appl (1993) 79: 157. https://doi.org/
10.1007/BF00941892

[6] E.L. Allgower, K. Georg, Numerical Continuation Methods , 2003, ISBN:
9780898715446

[7] Zangwill, W. I. , Nonlinear Programming, Prentice Hall, Englewood Cli�s, N. J.,
1969.

[8] R. M. Karp, Reducibility among combinatorial problems, Complexity of Computer
Computations, R. E. Miller and J. W, Thatcher, eds., Plenum Press, New York,
1972, pp. 85-104

[9] H. Robbins, S. Monro, A Stochastic Approximation Method,The Annals of Mathe-
matical Statistics, Vol. 22, No. 3. (Sep., 1951), pp. 400-407

[10] Davis, M. "Hilbert's Tenth Problem is Unsolvable." Amer. Math. Monthly 80, 233-
269, 1973

[11] Lagarias J. C. , Worst-case complexity bounds for algorithms in the theory of
integral quadratic forms, Journal of Algorithms, ISSN: 0196-6774, Vol: 1, Issue: 2,
Page: 142-186, 1980, https://doi.org/10.1016/0196-6774(80)90021-8

[12] http://dud.docking.org/

[13] Matiyasevich, Yu. V. Hilbert's Tenth Problem. Cambridge, MA: MIT Press, 1993

[14] Yu-Chen Lo, Stefano E. Rensi, Wen Torng, Russ B. Altman Machine learning in
chemoinformatics and drug discovery Drug Discovery Today, Volume 23, Issue 8,
2018, pp. 1538-1546

71

https://www.rcsb.org/
http://www.sfu.ca/~ssurjano/optimization.html
https://doi.org/10.1007/BF00941892
https://doi.org/10.1007/BF00941892
https://doi.org/10.1016/0196-6774(80)90021-8
http://dud.docking.org/


Bibliography

[15] Quiroga R, Villarreal MA (2016) Vinardo: A Scoring Function Based on
Autodock Vina Improves Scoring, Docking, and Virtual Screening. PLoS ONE 11(5):
e0155183. https://doi.org/10.1371/journal.pone.0155183

[16] Goodsell, D. S. and Olson, A. J. , Automated docking of substrates to proteins by
simulated annealing. Proteins, 1990, 8: 195-202. https://doi.org/10.1002/prot.
340080302

[17] Wang,C. and Zhang, Yi. , Improving Scoring-Docking-Screening Powers of Protein-
Ligand Scoring Functions using Random Forest, J Comput Chem. 2017 Jan 30;
38(3): 169�177. https://doi.org/10.1002/jcc.24667

[18] Li Y, Han L, Liu ZH, Wang RX. J Chem Inf Model. 2014;54:1717., https://doi.
org/10.1021/ci500081m

72

https://doi.org/10.1371/journal.pone.0155183
https://doi.org/10.1002/prot.340080302
https://doi.org/10.1002/prot.340080302
https://doi.org/10.1002/jcc.24667
https://doi.org/10.1021/ci500081m
https://doi.org/10.1021/ci500081m

	List of Figures
	List of Tables
	Introduction
	In Regard of Complexity Theory
	In Disregard of Critical Points
	Global Optimization
	Global Optimality Criteria
	Fundamental Question of the Thesis

	Transformation of NP-hard\complete Problems
	Penalty Method for Constrained Problems
	Penalty Functions as a Homotopy
	Traveling Salesman Problem
	Arithmetization of The Satisfiability Problem

	Projected Newton Method
	Construction
	Special Cases
	Correction of Error

	Local Convergence
	Applications
	Test Functions
	Protein-Ligand Docking

	Benchmark
	Test Functions
	N-Dimensional Test Functions
	Protein-Ligand Docking


	Dynamic Embedding Algorithm
	Zangwill's Global Convergence Theory
	Newton Continuation Method
	Single Non-Linear Equation
	Global Convergence

	Applications
	N-Dimensional Test Functions


	Conclusion
	The Fundamental Question
	The Projected Newton Method

	Outlook
	Protein-Ligand Docking
	Dynamic Embedding Algorithm

	Bibliography

