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Zusammenfassung

Das modernste Verfahren zum Lösen von nicht-konvexen gemischt-ganz-
zahligen nichtlinearen Programmen ist spatial branch-and-bound. Proble-
me mit einer groÿen Anzahl an symmetrischen Lösungen können eine Her-
ausforderung für diesen Algorithmus darstellen, da äquivalente Teilbäume
erforscht werden ohne tatsächlichen Fortschritt zu machen. Solche Symme-
trien zu erkennen und zu handhaben ist ein wichtiger Aspekt einer per-
formanten Implementierung. Abgesehen von wenigen Ausnahmen konzen-
triert sich die meiste Literatur auf Permutations-Symmetrien in gemischt-
ganzzahligen linearen Programmen, häu�g mit der Einschränkung auf Pro-
bleme mit spezieller Struktur. Im allgemeinen Fall ist die einzige verfügba-
re Symmetrtie Handhabungs-Technik, das Problem mit Hilfe von simplen
Symmetrie Brechungs-Ungleichungen zu reformulieren.

Wir erweitern die exisiterende Arbeit zu Permutations-basierter Sym-
metrie, indem wir zeigen, wie stärkere Ungleichungen für bestimmte Un-
tergruppen der Formulierungsgrupe benutzt werden können, wenn sie ei-
ne bestimmte Struktur haben. Auÿerdem entwickeln wir drei dynamische
Methoden zur Symmetriebrechung, die jene Ungleichungen während des
branch-and-bound Prozesses statt vorher generieren. Diese Verfahren nut-
zen die LP Lösung und branching Informationen, um zu entscheiden, wie
Symmetrie gebrochen wird. Darüber hinaus präsentieren wir einen neu-
en Algorithmus zur Erkennung von Komplementär-Symmetrie in quadrati-
schen Problemen, was eine andere Art von Symmetrie ist, die bisher nicht
für nichtlineare Probleme untersucht wurde. Die entscheidende Idee des
Algorithmus ist, ein Hilfsproblem zu konstruieren und zu lösen, das einen
Koe�zientenvergleich vor und nach der Komplementierung modelliert.

Eine umfangreiche computerbasierte Studie von ö�entlich verfügbaren
benchmark-Instanzen untersucht die Wirksamkeit von allen besprochenen
Ansätzen und vergleicht sie mit Methoden aus der Literatur. Unsere Er-
gebnisse zeigen, dass eine Beschleunigung der Rechenzeit um ca. 25% er-
reicht werden kann, indem die verbesserten Ungleichungen für Untergrup-
pen benutzt werden. Sie weisen auch darauf hin, dass das Hinzufügen von
Symmetriebrechungs-Ungleichungen für allgemeine ganzzahlige Variablen
ein entscheidender Faktor für das Lösen von gemischt-ganzzahligen Pro-
grammen sein kann, während andere etablierte Methoden in diesem Fall
entweder nicht anwendbar oder schwer zu implementieren sind.



Abstract

The state-of-the-art method for solving nonconvex mixed-integer non-
linear programs is spatial branch-and-bound. Problems containing a large
amount of symmetric solutions can pose a challenge for this algorithm,
since equivalent sub-trees are explored without making actual progress.
Detecting and Handling such symmetries is an important aspect of a high-
performance implementation. With only a few exceptions, most literature
focuses on permutation-based symmetries in mixed-integer linear programs,
often restricting to problems with special structure. For the more general
case, the only available symmetry handling technique is to reformulate the
problem by means of simple symmetry breaking inequalities.

We extend the existing work for permutation-based symmetry by show-
ing how stronger inequalities can be used if a subgroup of the formulation
group has a certain structure. In addition to this, we develop three dy-
namic symmetry handling methods that generate those inequalities during
the branch-and-bound process instead of beforehand. These techniques uti-
lize the LP solution and branching information to decide how symmetry
is broken. Besides that, we present a new algorithm for detecting com-
plementary symmetry in quadratic problems, which is a di�erent type of
symmetry that has not been studied for nonlinear problems, yet. The key
idea of the algorithm is to construct and solve an auxiliary problem that
models a coe�cient comparison before, and after complementation.

An exhaustive computational study of publicly available benchmark in-
stances investigates the e�ectiveness of all discussed approaches and com-
pares them to methods from the literature. Our results show that a speed-
up of about 25% on a�ected instances can be achieved by using the im-
proved inequalities for subgroups. They also indicate that adding symmetry
breaking constraints for general integer variables can be a decisive factor for
solving mixed-integer nonlinear programs, where other well-proven meth-
ods are either not applicable or di�cult to implement in practice.
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Chapter 1

Introduction

A variety of mathematical optimization problems appearing in real-world
applications contain some kind of symmetry. Prominent examples include
packing, partitioning and graph coloring problems. It has been known for
a while that this can heavily slow down branch-and-bound based solving
processes, see e.g., Jeroslow [20]. The reason is that inherently equivalent
sub-trees are explored without providing new information to the solver.

In the context of integer linear programming, this topic has been stud-
ied extensively and e�ective symmetry handling and detection techniques
have been developed. Among the most successful ones are �Orbital Fixing�
and �Isomorphism Pruning� by Margot [29, 30], �Orbital Branching� by Os-
trowski et al. [35, 36] and the polyhedral methods for problems with special
structure by Hojny et al. [17]. We also refer to Margot [31] for an overview
and to Pfetsch et al. [38] for an extensive computational comparison of the
di�erent methods.

All of the techniques mentioned above are restricted to symmetries af-
fecting integer variables. In practice, they are often only applied to binary
variables. While this su�ces for linear problems, solving mixed-integer non-
linear programs (MINLPs) with spatial branch-and-bound also requires to
branch on continuous variables. The only available method that is applica-
ble to symmetries on continuous variables is to use simple linear symmetry
breaking inequalities. While it was historically the �rst idea for handling
symmetry, it did not prove to be competitive for mixed-integer linear pro-
grams (MIPs), see Pfetsch et al. [38].

Liberti [25] studied the approach of adding static symmetry breaking
inequalities for general MINLPs. They also generalized the symmetry de-
tection algorithms used for MIPs to MINLPs and performed some compu-
tational experiments on a selection of real-world problems. However, those
experiments did not distinguish between symmetries on continuous, inte-
ger, and binary variables. They also did not compare the method of adding
symmetry breaking constraints for binary variables with other techniques
from the literature. It remains an open question whether breaking symme-
try on continuous variables is actually bene�cial for solving MINLPs. In
the end, it might well be the case that restricting to integer and/or binary
variables and using well-established techniques to handle the respective
symmetries leads to better results in practice. Furthermore, no dynamic
symmetry breaking methods have been developed for MINLPs so far.
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This thesis considers general nonconvex MINLPs and aims to answer
some of the open questions mentioned above. To this end, we �rst extend
the existing concepts of symmetry breaking constraints to capture more
types of symmetries appearing in practice. A usual approach is to test
whether the formulation group of a problem is a symmetric group, in which
case inequalities that enforce a total order on the a�ected variables are
added. We show how such inequalities can also be used if only a subgroup
is isomorphic to the symmetric group. Consider for example the problem
given by

max
x∈R6,t∈R

t

t−
√

(x1 − x3)2 + (x2 − x4)2 ≤ 0

t−
√

(x1 − x5)2 + (x2 − x6)2 ≤ 0

t−
√

(x3 − x5)2 + (x4 − x6)2 ≤ 0

x1, . . . , x6 ∈ [0, 1]

which models the problem of placing the three points (xi, xi+1)T ∈ R2,
i = 1, 2, 3, within the unit square, while maximizing the minimum dis-
tance between any pair of points. The symmetry group of this problem is
generated by the permutations (1 2)(4 5), (2 3)(5 6), and (1 4)(2 5)(3 6),
which is not the symmetric group. In such situations, it is possible to apply
general-purpose symmetry breaking constraints to �x a maximum among
the a�ected variables. However, stronger inequalities can be derived by con-
sidering that the subgroup generated by only the �rst two permutations is
isomorphic to the symmetric group on three elements.

In addition to this, we develop dynamic variants which use information
obtained during the solving process to decide how symmetry should be bro-
ken. Our proposed algorithms are based on the LP solution and branching
decisions. Furthermore, we show how another type of symmetry, so called
complementary symmetry, can be detected in mixed-integer quadratically
constrained programs. This type was introduced by Christophel et al. [7]
for binary linear programs, but has not been studied for general MINLPs
so far. For an example, note that in any feasible solution of the problem
described above, we can obtain another solution of the same value by re-
placing the values of x1, x3, and x5 by 1−x1, 1−x3, and 1−x5, respectively.
This kind of symmetry is not captured by permutations.

Finally, we report on results of extensive computational experiments
with the MINLPLib [33] that we performed. They include an analysis of
the symmetries appearing in the testset as well as a comparison of the
di�erent techniques presented in this thesis and selected methods from the
literature.

The rest of the thesis is structured as follows. Chapter 2 provides nota-
tion and covers basic concepts of mixed-integer nonlinear programming. In
Chapter 3, we describe how di�erent kinds of symmetry can be formally de-
�ned. Chapter 4 explains the detection of permutation-based symmetries.
Our new algorithm for detecting complementary symmetry in quadratic
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problems is presented in Chapter 5. Proceeding to symmetry handling,
the theory of static techniques is discussed in Chapters 6, including new
extensions to symmetry breaking inequalities from the literature. In Chap-
ter 7, we then propose dynamic procedures for generating such inequalities.
Finally, we report on the results of our computational experiments in Chap-
ter 8 and give concluding remarks and an outlook in Chapter 9.
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Chapter 2

Preliminaries

Throughout the thesis, the set of natural numbers N includes 0 and n, m,
and k are always natural numbers. We denote with [n] := {1, . . . , n} the
set of natural numbers from 1 to n and with R∞ := R ∪ {−∞,∞} the
set of real numbers including in�nity. Furthermore, ⊕ denotes the XOR
operator.

2.1 Mixed-Integer Nonlinear Programming

We study optimization problems of the form

min
x∈Rn

cTx

gk(x) ≤ 0 k ∈ [m]
x ∈ [xL, xU ]
xj ∈ Z j ∈ I,

(2.1)

where c ∈ Rn denotes the objective function, gk : Rn → R are continu-
ous functions, xL, xU ∈ Rn∞ the lower and upper bounds of the variables,
respectively, and I ⊆ [n] the index set of integer variables.

Problem (2.1) is called a mixed-integer nonlinear program (MINLP).
For any MINLP P , let

FP :=
{
x ∈ [xL, xU ] | gk(x) ≤ 0 ∀k ∈ [m], xj ∈ Z ∀j ∈ I

}
be the feasible set and

GP :=
{
x ∈ FP | cTx ≤ cTy ∀y ∈ FP

}
be the optimal set of P . Furthermore, a relaxation of P is a problem
P ′ with the same objective function and FP ⊆ FP ′ . Consequently, the
optimal value of P ′ is a lower bound on the optimal value of P (in the case
of minimization).

Note that assuming a linear objective function is not a restriction of
generality. If there was a nonlinear objective function f : Rn → R, we
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could introduce an auxiliary variable t and reformulate the problem as

min
(x,t)∈Rn+1

t

f(x)− t ≤ 0
gk(x) ≤ 0 k ∈ [m]

x ∈ [xL, xU ]
xj ∈ Z j ∈ I.

The class of MINLPs includes some prominent special cases. P is called

a) convex, if all gk are convex, and nonconvex otherwise,

b) mixed-integer linear program (MIP) if all gk are linear functions, i.e.,
for all k ∈ [m] there are ak ∈ Rn, and bk ∈ R such that

gk(x) = aTk x+ bk ∀x ∈ Rn,

c) mixed-integer quadratically constrained program (MIQCP) if all gk are
quadratic functions, i.e., for all k ∈ [m] there are Qk ∈ Rn×n, ak ∈ Rn,
and bk ∈ R such that

gk(x) = xTQkx+ aTk x+ bk ∀x ∈ Rn,

d) binary linear program (BLP) if it is a MIP with [xL, xU ] = [0, 1]n and
I = [n], and

e) linear program (LP) if it is a MIP with I = ∅.

Our focus is on nonconvex MINLPs, since they are the most general and
di�cult to solve.

2.2 Spatial Branch-and-Bound

One of the widely-used frameworks for solving nonconvex MINLPs is spatial
branch-and-bound (sB&B), see e.g, Wolsey [47]. The idea of branch-and-
bound based algrorithms is to build a tree in which each node represents a
sub-problem of its parent. The feasible region of each node is equal to the
union of the feasible regions of its children. The root of the tree corresponds
to the original problem and the step of subdividing a node into (typically
two) sub-problems is called branching.

In order to bene�t from the sub-division, the algorithm tries to �nd
valid lower and upper bounds on the objective values of the sub-problems.
Lower bounds are obtained by solving a (typically convex) relaxation at
each node. The most widely-used variant uses LP-relaxations, which are
formed by dropping integrality conditions and � in the case of MINLPs �
over- and underestimating nonlinear constraints. So-called primal heuris-
tics try to �nd feasible solutions from which globally valid upper bounds
can be deduced. If a node is proven to be infeasible or � in case of a min-
imization problem � its lower bound is higher than the best known global
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upper bound, it can be pruned. The algorithm strongly depends on the
e�cient computation of such bounds, as without them, it degenerates to
an exhaustive search of the solution space.

For integer variables, branching can be performed in the following way.
After the LP-relaxation at the current node is solved, any integer vari-
able with fractional value in the LP solution is chosen according to some
branching rule. Then the variable is rounded once down and once up and
the bounds of the variable are adjusted accordingly. For example, if x ∈ Z
has the LP solution value x∗ = 3.7, then the sub-problems are formed by
setting xU = 3 in one child node, and xL = 4 in the other. Branching on a
binary variable results in a �xing to 0 and 1, respectively. If the problem is
a MIP, branchings on integer variables are su�ce and the procedure always
terminates with an optimal solution, see Wolsey [47].

In case of nonconvex MINLPs, however, the situation is di�erent. As-
sume that enough branchings on the integer variables have been performed
such that none of them has a fractional LP solution value at the current
node. Then the LP solution is still not guaranteed to be feasible due to
the nonconvex constraints. To resolve this infeasibility, branching has to be
continued on continuous variables which is called spatial branching. The
di�erence to the formerly described procedure is that bounds cannot be
rounded. If the LP solution value of a continuous variable x is x∗ = 3.7,
the sub-problems are formed by setting xU = 3.7 and xL = 3.7, respectively,
since we cannot use strict inequalities for practical purposes. Nonetheless,
it is possible that spatial branching results in tighter convex under- and
over-estimators on the new intervals and eventually leads to an LP solu-
tion that is feasible for the original problem. While sB&B is generally not
guaranteed to terminate, it solves bounded MINLPs to ε-optimality, see
Horst et al. [18]. Finitely terminating sB&B algorithms have also been
developed for certain problems with special structure, see Parker et al. [37]
and A. Al-Khayyal et al. [1].

To understand why symmetry can lead to di�culties in the sB&B pro-
cess, consider a problem of the form

min
x∈R4

α(x1 + x2) + β(x3 + x4)

g1(x1, x2) + g1(x2, x1) ≤ 0
g2(x3, x4) + g2(x4, x3) ≤ 0

x1, x2 ∈ {0, 1}
x3, x4 ∈ [0, 1],

(2.2)

where α, β ∈ R and g1, g2 : R2 → R. There is a symmetry between the
binary variables x1 and x2 in the following sense. For any feasible solution,
swapping the values of x1 and x2 leads to another feasible solution with
the same objective value. The same holds for the continuous variables
x3 and x4. Figure 2.1 shows a possible sB&B tree for (2.2). The LP
solution at each respective node is denoted by x∗. In the root node, we
have x∗1 = x∗2 = 0.5 and x1 is chosen as branching variable. So x1 is �xed
to 0 and 1, respectively. The LP solution of the sub-problems P1 and P2
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P

P1 P2

P3 P4

x1 = 1

P5 P6

x∗ =


0.5
0.5
0.4
0.8



x∗ =


0
1
0.4
0.8


x1 = 0

x∗ =


1
0
0.4
0.8


x3 ≤ 0.4 x3 ≥ 0.4 x3 ≤ 0.4 x3 ≥ 0.4

Figure 2.1: An example sB&B tree for (2.2). Depicted are

the LP solutions x∗ at each node and the branching deci-

sions next to each edge. The �rst branching is performed on

the binary variable x1. It is �xed to 0 and 1, respectively.
Afterwards, no integral variables with fractional LP solution

values remain. The process continues with spatial branch-

ings to resolve infeasibilities due to nonconvex constraints.

The two sub-trees rooted at P1 and P2 are equivalent up to

permutations of the symmetric variables x1 and x2.

now has x∗2 = 1− x∗1 (which could for example happen due to a constraint
x1 + x2 = 1). Consequently, no further branchings on the binary variables
are necessary. However, the LP solutions are still infeasible due to some
nonconvexity and spatial branching is performed on x3. Since x1 and x2 are
symmetric and the rest of the problem is independent of these variables, the
whole sub-trees rooted at P1 and P2 are symmetric. Any optimal solution
of P1 corresponds to an optimal solution of P2 which can be obtained by
permuting x1 and x2. Furthermore, there could be more symmetric sub-
problems within each sub-tree, since x3 and x4 are also symmetric. Without
symmetry handling, it is possible that all of these equivalent nodes are
explored and solved, while it would su�ce to consider only one of them.

Most symmetry breaking techniques only apply to symmetries on binary
variables. Some extensions to integer variables are known, but did not prove
to be successful in practice, see Pfetsch et al. [38]. Continuous variables
are usually ignored when handling symmetries in MIPs, since they are not
branched on and are therefore not considered harmful to the B&B process.
For MINLPs, however, they can be relevant due to spatial branchings.
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Chapter 3

Symmetry in MINLPs

In Chapter 2 we showed how the sB&B tree of a symmetric problem can
contain equivalent optimal solutions. Ideally, we would like to partition the
optimal set such that each class contains exactly those optima that can be
mapped onto each other by permuting the variable indices. This partition
could then be used to make sure that only one representative of each class is
considered during sB&B. In the following, we introduce the basic concepts
of group theory that we need to formalize this notion of symmetry. For
more detailed information about groups see, e.g., Rotman [42] .

3.1 Group Theory

Throughout the thesis, we consider �nite permutation groups, i.e., bijections
from the set [n] (for some n ∈ N) to itself equipped with composition as
group operation. The group of all such permutations for a given n is called
the symmetric group of [n] and is denoted by Sn. Every permutation group
G is a subgroup of Sn for which we write G ≤ Sn.

Intuitively, we assume that the groups appearing in this thesis permute
the set of variables of problem (2.1). In the language of group theory, we are
considering two di�erent actions of such a permutation group, though. In
the �rst case, it acts on the set of variable indices [n] by simply applying the
bijection, i.e., (π, i) 7→ π(i), π ∈ G. In the second case, it acts on Rn by per-
muting the entries of a vector x, i.e., (π, x) 7→ π(x) := (xπ−1(1), . . . , xπ−1(n)).

For a group G acting on a set X, the orbit of x ∈ X refers to the set
orb(x,G) := {π(x) | π ∈ G}. For example, if a permutation group G acts
on [n] as described above, the orbit orb(i, G) of some i ∈ [n] consists of all
variable indices that i can be moved to by any permutation in G. In the
case of the action on Rn, the orbit orb(x,G) of x ∈ Rn contains all vectors
which can be the result of permuting the entries of x by an element of G.

Remark 3.1. In the literature, it is often not distinguished between the
action on [n] and the action on Rn, since there is an intuitive connection
between them. It is usually clear which action is meant, depending on
whether the orbits contain variable indices or vectors. Therefore, we will
only specify the considered action when necessary. Furthermore, whenever
we speak of the orbits of a group action, we actually mean the non-trivial
orbits, i.e., orbits containing more than one element.
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Any permutation can be decomposed into disjoint cycles and we use
standard cyclic notation to represent permutations. For example, π ∈ S6

de�ned by π(1) = 2, π(2) = 5, π(3) = 3, π(4) = 6, π(5) = 2 and π(6) = 4
is denoted by π = (1 2 5)(4 6). Note that �xed points are left out.

For I ⊆ [n], the groups

stab(G, I) := {π ∈ G | π(I) = I}
GI := {π ∈ G | π(j) = j ∀j ∈ I}

denote the setwise and pointwise stabilizer of I in G, respectively. We write
G = 〈π1, . . . , πk〉 for the group G that is generated by the permutations
π1, . . . , πk. Furthermore, for any π ∈ G and an orbit ω of G, we denote by
π|ω the permutation de�ned by

π|ω(i) =

{
π(i) i ∈ ω,
i i /∈ ω.

In some sense, π|ω can be seen as the projection of π onto ω. Similarly,
G|ω := {π|ω : π ∈ G} which is also a permutation group. This follows from
the fact that the orbits form a disjoint partition of [n] and the cycles of
each permutation in G lie completely in one of the orbits.

Certain kinds of actions of symmetric groups are of particular interest
to us. Let G ≤ Sn be a permutation group such that G ∼= Sm for some
m ≤ n. If m = n, we call the action of G on [n] a coordinate action.
Otherwise, assume that there is a matrix A with m columns, such that A
contains each number in [n] exactly once and each π ∈ G permutes the
columns of A by acting on its entries. Then we call it a matrix action,
denoted by M(Sm, n). Such a matrix can only exist if n = km for some
k ≥ 2. In all other cases, there is no obvious interpretation of the action
of G. As we will see in Chapter 8, coordinate and matrix actions seem to
appear frequently in practice.

Example 3.2. The groups

• G1 = 〈(1 2) , (2 3) , (3 4)〉 ≤ S4,

• G2 = 〈(1 2) (5 6) (9 10) , (2 3) (6 7) (10 11) , (3 4) (7 8) (11 12)〉 ≤ S12

are both isomorphic to S4. G1 acts as a coordinate action and G2 as the
matrix actionM(S4, 12) permuting the columns of the matrix

A =

1 2 3 4
5 6 7 8
9 10 11 12

 .

A group G ≤ Sn can also be the direct product of di�erent permutation
groups, i.e., there are H1, . . . , Hk ≤ Sn such that G = H1 × · · · × Hk, in
which case H1, . . . , Hk are called the factors of G.
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3.2 Permutation-based Symmetries

Given a problem P of the form (2.1), we would, ideally, like to know the
group of all permutations of variable indices mapping optimal solutions to
optimal solutions by acting on Rn, as de�ned by Liberti [25].

De�nition 3.3. The solution group G∗P of P is de�ned by

G∗P := stab(GP ,Sn).

Knowing G∗P would allow us to compute the orbits of all optimal points
inducing a partition of GP . Then we could try to make sure that only one
representative of each orbit is considered during sB&B.

However, computing the solution group would require a-priori knowl-
edge about the optimal set GP which is generally not available. Instead,
the usual approach is to use a (possibly large) subgroup of G∗P that can be
computed e�ciently. One candidate is the following group, as de�ned by
Margot [31].

De�nition 3.4. The symmetry group ĜP of P is the group of all permu-
tations of [n] that, by acting on Rn, maps feasible points to feasible points
and preserves the objective value, i.e.,

ĜP :=
{
π ∈ Sn | cTx = cTπ(x) and π(x) ∈ FP ∀x ∈ FP

}
.

It follows directly from the de�nition that ĜP is a subgroup of G∗P . An
example shows that, in general, ĜP 6= G∗P .

Example 3.5. Let P be de�ned by

min
(x,y)∈R2

(x− y)2

x ≥ 1
y ≥ 0.

(3.1)

Then the optimal value is 0, so for every optimal solution, x = y holds and
we have G∗P = S2. However, permutation π = (1 2) maps the feasible point
(1, 0) to the infeasible point (0, 1) and thus π /∈ ĜP . Since P has only 2
variables, ĜP consists of just the identity permutation.

Unfortunately, the situation does not become easier when considering
the symmetry group since it is implicitly de�ned in terms of the feasible
region. We cite the proof of the following theorem by Margot [31] for
convenience of the reader.

Theorem 3.6. Computing ĜP for MIP problems P is NP-hard.

Proof. Consider an arbitrary MIP P over n variables. If FP = ∅, then
ĜP = Sn according to de�nition 3.4. Now we add two variables y1 and y2

and the constraint y1 + y2 = 1 to P and call the modi�ed problem P ′. If
the symmetry group of P ′ is Sn+2, then P is infeasible, since y1 and y2 do
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not appear in P . On the other hand, if P is infeasible, then P ′ is infeasible,
too. Therefore we get

FP ′ = Sn+2 ⇐⇒ FP = ∅.

However, it is widely known that deciding feasibility of MIPs is NP-hard.

Remark 3.7. Theorem 3.6 obviously holds for MINLPs since MIPs are a
subclass of MINLPs.

Paving the way towards a procedure for computing symmetry algorith-
mically, we relax the considered group once again by considering formula-
tion symmetry rather than problem symmetry.

De�nition 3.8. The group ḠP that ��xes the formulation� of P is de�ned
by

ḠP := {π ∈ Sn | c = π(c) ∧ π(j) ∈ I ∀j ∈ I
∧ xL = π(xL) ∧ xU = π(xU)

∧ ∃σ ∈ Sm : gσ(k)(π(x)) = gk(x) ∀k ∈ [m], ∀x ∈ FP}.

In contrast to the previous groups, ḠP depends on the speci�c formu-
lation of the problem. The step from problem to formulation symmetry
is necessary if we want to develop an automated procedure to compute a
subgroup of G∗P .

Again, ḠP ≤ ĜP follows directly from the de�nition and we will use an
example to show that ḠP 6= ĜP , in general.

Example 3.9. Let P be de�ned by

min
(x,y)∈R2

x+ y

x+ y ≥ 1
2x+ y ≤ 2
x, y ∈ {0, 1}.

The only feasible points of P are (1, 0) and (0, 1), so ĜP = S2. How-
ever, the term 2x + y is di�erent for the two feasible points and therefore
π = (1 2) /∈ ḠP .

If the problem is nonlinear, another relaxation step is necessary. In
practice, the functions gk are represented by mathematical expressions.
As Liberti [25] pointed out, algorithmically deciding whether two such ex-
pressions are equal can be reduced to the problem of deciding whether a
nonlinear equation has a solution, which is undecidable, see Zhu [48]. Con-
sider the example of the mathematically equivalent expressions sin(x) and
cos(x+ π/2) to get an intuition for this fact.

Now assume that we have an oracle equal(f, g) which checks whether
the representations of two functions f, g : Rn → R are equal such that we
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have

equal(f, g) = true =⇒

{
dom(f) = dom(g)

f(x) = g(x) ∀x ∈ dom(f).

The important thing to note here is that equal(f, g) = false does not
imply f 6= g. The oracle only guarantees correctness if its result is positive.
Writing f ≡ g whenever equal(f, g) = true, we now replace the equality
in De�nition 3.8 by that notion of congruence.

De�nition 3.10. The formulation group GP of P is de�ned by

GP := {π ∈ Sn | c = π(c), ∧ π(j) ∈ I ∀j ∈ I
∧ xL = π(xL) ∧ xU = π(xU)

∧ ∃σ ∈ Sm : gσ(k) ◦ π ≡ gk ∀k ∈ [m]}.

As the congruence induced by the oracle is weaker than the equality in
De�nition 3.8, GP is a subgroup of ḠP . The size of the formulation group
depends on the oracle that is used. In Section 4.2 we will see how such an
oracle can look like in practice.

Remark 3.11. In the literature for MIPs, ḠP is usually called the formu-
lation group, see e.g., Margot [31]. The reason is that for linear problems,
ḠP is equal to the symmetry group of the LP-relaxation, as Liberti [25]
showed. In that case, the last relaxation step is not necessary, since com-
paring the de�ning matrix and right-hand side vector of the MIP (i.e., the
formulation) su�ces to verify the conditions of ḠP . Whenever we consider
a MIP and its, formulation group we implicitly assume that the oracle just
check if the constraint matrix and right-hand side vector are equal.

3.3 Complement-based Symmetries

While symmetries based on variable permutations are the most studied and
cover the vast majority of practically relevant cases, there are other kinds
of symmetries which are not captured by the formulation group. One of
those is complementary symmetry. As a motivating example, we consider
again the problem from Chapter 1.

Example 3.12. Let P be de�ned by

max
x,y∈R3,t∈R

t

t−
√

(x1 − x2)2 + (y1 − y2)2 ≤ 0

t−
√

(x1 − x3)2 + (y1 − y3)2 ≤ 0

t−
√

(x2 − x3)2 + (y2 − y3)2 ≤ 0

x1, x2, x3, y1, y2, y3 ∈ [0, 1]

(3.2)
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which models the problem of placing three points within the unit square
such that the minimum distance between any pair of points is maximized.
Variables xi and yi represent the x- and y-coordinate of the i-th point. The
constraints enforce that the objective value t is no larger than the Euclidean
distance between each pair of points.

There are some obvious permutation-based symmetries in this problem.
First of all, we can swap the coordinates of two points simultaneously, lead-
ing to a solution of the same value that corresponds to the same geometric
constellation. Furthermore, swapping the x-coordinate of each point with
its respective y-coordinate also leads to a new feasible solution with the
same objective value. Geometrically, this corresponds to mirroring the so-
lution along the line x − y = 0. Assuming the variables are ordered as
(x1, x2, x3, y1, y2, y3, t), the formulation group is given by

GP =
〈
π1, π2, π3

〉
with

π1 = (1 2)(4 5), π2 = (2 3)(5 6), π3 = (1 4)(2 5)(3 6).

Here, π1 and π2 each swap two points with each other, while π3 permutes
the respective coordinates of all points. Together they generate the whole
group. Note that we assume that the oracle detects (x1−x2)2 = (x2−x1)2.

Now we consider the set of optimal solutions GP . Figure 3.1 shows the
four di�erent geometric constellations that appear in the optimal set. In
each of these sets, the points can be permuted arbitrarily, leading to six
distinct solutions. In total, GP contains 24 points. Our goal is to consider
only one representative in each orbit under the action of GP on GP .

x

y

(0, 0) (0, 0) (0, 0)(0, 0) (0, 0) (0, 0)

Figure 3.1: The four geometric constellations of optimal

solutions in (3.2).

For the sake of simplicity, let us consider only the subgroup of GP that is
generated by π1 and π2 for now, so only permutations that swap the points
with each other. This would leave us with four solutions corresponding
exactly to the four geometric constellations in Figure 3.1, since each orbit
contains all solutions which belong to the same constellation. However,
geometrically speaking, even those four solutions are equivalent, in the
sense that they are equal up to re�ections. To be more precise, the solutions
can be transformed into each other by replacing either all xi with (1− xi),
all yi with (1 − yi), or both at the same time. Now since π3 corresponds
to mirroring along x − y = 0, it maps the second and fourth solution in
Figure 3.1 onto each other. This means that the corresponding orbits are
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merged. Nonetheless, three distinct equivalence classes of optimal solutions
remain, while ideally we would like to have only one.

Having seen that there can be symmetries which do not involve permut-
ing variables, the question arises how such symmetries can be described
without using geometric interpretations. In Example 3.12, variable xi was
replaced by its complement (1 − xi). Depending on the bounds of the
variable, we might have to replace it by some other value, though. The
following de�nition generalizes this notion of complementation.

De�nition 3.13. Let P be a MINLP, I ⊆ [n] and d ∈ Rn be given by

di =

{
xUi + xLi if xLi , x

U
i 6= ±∞

0 otherwise.

The complement point x̄(I) of x ∈ Rn w.r.t. I is de�ned by

x̄
(I)
i :=

{
di − xi i ∈ I,
xi i /∈ I.

We say that P contains a complementary symmetry along I if

∀x ∈ FP : x̄(I) ∈ FP and cT x̄(I) = cTx.

Geometrically, the complement point is obtained by mirroring for each
i ∈ I the original point on the axis xi = di/2, which is the midpoint of the
bounding interval of variable xi. The de�nition is therefore independent
of the position of the feasible region in Rn. For BLPs, this kind of sym-
metry was studied by Christophel et al. [7]. They brought the concepts of
permutation-based and complement-based symmetry together by means of
signed permutations. However, as we will see in Chapter 5, their approach
is not applicable to nonlinear problems.

Naturally, there are even further types of symmetries based on the ge-
ometric properties of the feasible region. For example, if we replace the
unit box in Example 3.12 by the unit circle, then each feasible solution
can be transferred into an equivalent one by arbitrary rotations around the
center. Such symmetries are still not captured by the above concept of
complementariness.
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Chapter 4

Classical Symmetry Detection

Computing the formulation group of a MINLP is usually reduced to com-
puting the automorphism group of vertex-colored graphs, see Margot [31].
In Section 4.1, we explain how the reduction works for MIPs. While Sal-
vagnin [43] seems to be the �rst one to describe the procedure, it has been
rediscovered by other authors, such as Berthold et al. [6]. Section 4.2 in-
troduces the concept of expression graphs which are needed to extend the
graph automorphism idea to MINLPs. In Section 4.3, we will explain this
generalization which is due to Liberti [25].

4.1 Reduction to Graph Automorphisms

A colored graph is a graph (V,E) together with two functions r : V → N
and s : E → N describing the vertex and edge colors, respectively. An
automorphism π of a colored graph is a bijection on the set of its vertices
V such that, for any two vertices v, w ∈ V , (π(v), π(w)) ∈ E if and only if
(v, w) ∈ E, while vertex and edge colors are preserved. We will construct
a colored bipartite graph such that each of its automorphisms corresponds
to a permutation in the formulation group of the problem.

Let P := min{cTx | Ax ≤ b, xi ∈ Z ∀i ∈ I} be a MIP. The two parts
that the vertex set of our bipartite graph consists of are V ′ = {v1, . . . , vn}
and V ′′ = {w1, . . . , wm}, i.e., V = V ′∪̇V ′′. The set V ′ contains a vertex
for each variable and the set V ′′ a vertex for each linear constraint of P .
Vertices in V ′ are colored according to objective coe�cient, bounds, and
type (i.e., integral or continuous) of the respective variable. This means
that two vertices have the same color if and only if all of those values are
the same. Similarly, vertices in V ′′ share a color if the right-hand side
of their corresponding constraints are equal. Each color is only used for
either constraint or variable vertices. Furthermore, two vertices vj ∈ V ′

and wi ∈ V ′′ are connected by an edge if Aij 6= 0 and the edge is then
colored according to coe�cient Aij.

It is not hard to see that each automorphism of this graph corresponds
to a permutation in GP . Since there is a one-to-one correspondence of
variables in P and vertices in V ′, projecting the automorphism onto V ′

directly gives the element in GP . Note that in the presence of redundant
constraints, it is possible for two graph automorphisms to yield the same
permutation. For example, automorphisms that �x each variable vertex
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and only permute the constraint vertices all correspond to the identity
permutation on [n]. On the other hand, each permutation in GP can be
extended to an automorphism of the graph. Consequently, we obtain the
whole formulation group. The following example illustrates the idea.

Example 4.1. Let P be de�ned by

min
x∈R4

x1 + x2 + x3 − x4

x1 + x2 + 2x3 + x4 ≤ 15
x1 + x2 ≥ 3

2x3 −x4 ≥ 3
x1, x2, x3, x4 ≥ 0.

(4.1)

It consists of four non-negative variables and three linear constraints. There
are no integral variables, i.e., I = ∅. Figure 4.1 shows the corresponding
graph with edge colors. It has one vertex for each constraint, numbered
according to their order in (4.1), and one for each variable. Since the sec-
ond and third constraint have the same right-hand side, they share a color.
We need two di�erent colors for the variable vertices, since x1, x2 and x3

have an objective coe�cient of 1 and a lower bound of 0. x4 has the same
bound but a di�erent objective coe�cient and therefore gets a di�erent
color. Furthermore, there appear four di�erent non-zero coe�cients in the
constraints, so we need four edge colors. The only non-trivial automor-
phism of the graph swaps x1 with x2 and �xes all remaining vertices, so
GP = 〈(1 2)〉 ≤ S4.

1

2

3

x1

x2

x3

x4

Figure 4.1: The colored graph corresponding to (4.1).

The vertices on the left-hand side correspond to constraints.

They are colored according to their right-hand side value,

while the colors of variable vertices represent their bounds

and the edge colors their corresponding coe�cients.

It should be noted that the computational complexity of the graph au-
tomorphism problem is still unknown, i.e., no polynomial algorithm for
the problem is known, but it has also not been shown to be NP-hard. For
practical purposes, there are several software tools for computing graph au-
tomorphisms that work e�ectively in practice, e.g., bliss [21], nauty [32],
and saucy [11]. However, they can only handle vertex colors. If the prob-
lem is a BLP, there are only two possible coe�cients, so we do not need
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any edge colors. For general MIPs, we have to transform the graph such
that only vertices are colored, but automorphisms can still be translated
to elements of the formulation group.

One way to achieve this, �rst presented by Salvagnin [43], is to replace
each edge (v, w) by an intermediate vertex u and two edges (v, u), (u,w),
and then giving u the color of the edge (v, w). Using this transformation,
no edge colors are needed anymore and the information of the constraint
coe�cients is encoded by the intermediate vertices. Note that this only
works since the original graph is bipartite. In addition to this, one can use
an idea by Puget [39] to reduce the number of intermediate vertices. If
a variable appears with the same coe�cient in di�erent constraints, only
one intermediate vertex is needed for this combination of variable and co-
e�cient. In other words, we do not need one intermediate vertex for each
non-zero entry of the matrix A, but only one per distinct value in each of
its columns.

Example 4.1 (continued). Figure 4.2 shows the transformed graph for Ex-
ample 4.1. For variable x4, only one intermediate vertex has to be inserted,
since it appears with a coe�cient of 1 in both the �rst and third constraint.

1

2

3

x1

x2

x3

x4

Figure 4.2: The transformed graph without edge colors for

(4.1). The intermediate vertices in the middle are colored

according to the respective coe�cients.

Remark 4.2. The procedure to reduce the number of vertices described
above is called grouping by variables. Alternatively, it is also possible to
perform grouping by constraints, see Pfetsch et al. [38], because the original
graph is bipartite. This means that one color for each unique coe�cient
within a constraint is used. Whether one of the two methods is better than
the other depends on the problem.

Another fundamentally di�erent method to remove edge colors can be
found in the manual of nauty (version 2.4) [32]. We will not discuss this
procedure here, since experiments by Pfetsch et al. [38] indicate that, on
average, it is outperformed by the method described above.
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4.2 Expression Graphs

In state-of-the-art sB&B based MINLP solvers, nonlinear functions are
often encoded by means of directed acyclic graphs. These graphs will prove
helpful for the detection of symmetries in MINLPs. To this end, we consider
the class of factorable functions.

De�nition 4.3. Given a set of univariate functions L, the set of factorable
functions is the smallest set that contains L and that is closed under addi-
tion, multiplication and composition.

We consider the set L that consists of the univariate functions exp, log,
sin, cos, (·)k, and | · | as well as constant functions and the identity. So the
class contains all functions that are given as a recursive sum and product
of those operations. For example,

f(x, y) =
∣∣3exp(x3)− y + log(sin2(y)

√
x)− 4.5

∣∣
is a factorable function.

An expression graph is a directed acyclic graph (DAG) T = (V,A) such
that for all v ∈ V ,

δ+(v) = 0 ⇐⇒ v is a variable or constant,

δ+(v) = 1 ⇐⇒ v is a univariate function in L,
δ+(v) > 1 ⇐⇒ v is a sum or a product,

where δ+(v) denotes the outdegree of v. We can recursively de�ne an expres-
sion graph Tf = (Vf , Af ) for any factorable function f as follows: If f ∈ L
and is not the identity or constant, then Vf = {xf , sf} and Af = {(sf , xf )},
where xf is the variable and sf the operator symbol of f . The identity and
constant function are represented by a single vertex that is the respective
variable or constant. If f is the sum or product of factorable functions
g1, . . . , gk, then

Vf = {sf} ∪
k⋃
i=1

Vgi and Af =
k⋃
i=1

(
Agi ∪ {(sf , ri)}

)
,

where ri is the root of Tgi , i.e., the unique vertex v with δ−(v) = 0, and
sf is '+' or '∗', respectively. Similarly, compositions are constructed by
connecting a vertex for the operator symbol with the expression graph
corresponding to the argument function. Figure 4.3 shows an example of
an expression DAG.

While mathematically, the above de�nition of expression graphs is pre-
cise, in an implementation it is not su�cient to construct the DAGs in
the described way. The issue is that two di�erent expressions can repre-
sent the same factorable function. For example, the expressions 3(x + y)
and 3x + 3y describe the same function but lead to di�erent expression
graphs. Thus, the representation of a MINLP depends on its formulation.
It is possible, however, to reduce the number of DAGs corresponding to
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+

∗

log (·)2 3

z

x y

Figure 4.3: An expression DAG for the factorable function

f(x, y, z) = log(xy) + z2 + 3. Each leaf represents either

a variable or a constant. All other vertices correspond to

operators.

an expression by de�ning a set of simpli�cation rules, see Cohen [8]. This
can be combined with scaling rules (g(x) ≤ 0 and 2g(x) ≤ 0 should be
the same constraints) and a �xed order on the arguments, e.g., constants
�rst, followed by variables and operators sorted lexicographically by their
names, see Liberti et al. [27]. While these rules reduce the number of pos-
sible DAGs signi�cantly, there are still functions that are equal but lead to
di�erent expression graphs, e.g., sin(x) and cos(x+ π/2).

It is also possible to merge vertices corresponding to the same vari-
able and even identify whole common sub-expressions. For example, the
function

f(x, y, z) = x+ xy + |xy|+ 2yz (4.2)

can be represented by the expression graph depicted in Figure 4.4.

x y z 2

+

∗ | · | ∗

Figure 4.4: An expression DAG for (4.2) using common

sub-expressions. The multiplication vertex on the left hand

side has two incoming edges, since the product appears twice

in the expression. Furthermore, there is only one shared

vertex for each variable.

Canonicalizing the representation as much as possible can simplify and
speed up many di�erent components of MINLP solvers. For symmetry
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detection, it is of particular importance, since we will compare expression
graphs in order to decide whether they represent the same function.

4.3 Extension to MINLPs

In the case of general MINLPs, the formulation group can be computed
in a similar fashion as in Section 4.1. The only ingredient we need is an
oracle equal as described in Section 3.2. To this end, the expression graphs
de�ned in the previous section can be used. In fact, we can simply compare
two expression graphs and use this as an oracle to decide whether two
functions are equal. The overall procedure was described by Liberti [25].
We connect the expression graphs of each constraint to one combined DAG,
using the fact that the constraints operate on the same set of variables.
Then we compute the automorphism group of this graph and project it
onto the variable vertices. This will give us the formulation group with
respect to the oracle that compares expression graphs.

Let P be of the form (2.1) and for each k ∈ [m], let Tk = (Vk, Ak) be an
expression graph representing gk. Then the oracle described above is given
by

equalDAG(gi, gj) = true ⇐⇒ Ti = Tj.

The DAG DP = (VP , AP ) is built by identifying vertices in
⋃m
k=1 Vk that

represent the same variable and then adding each edge in
⋃m
k=1Ak. As in

the case of MIPs, all variable nodes are colored according to their bounds,
objective coe�cient and integrality type. Additionally, we have vertices for
constants and operators. Two vertices corresponding to constants get the
same color if their values are equal. The color of operator vertices depends
on their name (operator type).

Liberti [25] showed that the automorphism group of DP , colored as de-
scribed above, can be projected onto the set of variables (by restricting the
permutations to variable vertices) to obtain GP with respect to equalDAG.
It was also shown by Liberti [25] that for expression graphs corresponding
to linear functions, the oracle equalDAG is equivalent to equality of the
coe�cients if the graphs are built in a normalized way (e.g., sorting all
children by their names). In other words, for MIPs the method based on
expression graphs is consistent with the method described in the previous
section.

In practice, linear constraints are usually not stored as DAGs. How-
ever, the two methods would create the same colored sub-graph for the
linear part of the problem and all constraints use the same set of variables.
Therefore, one can create the linear part �rst and then add the nonlinear
part corresponding to the expression graphs while using the already created
variable vertices. The only thing that has to be taken care of is that, in
contrast to the linear case, we build a directed graph for MINLPs. For-
tunately, there is a simple way to transform the DAG into an undirected
graph. We add one �root� vertex for each constraint and connect it to the
previous root operator vertex. Then we move constants to the right-hand
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side and color the new vertices accordingly, similar to the previous section.
The following example visualizes the whole construction.

Example 4.4. Let P be de�ned by

min
x∈R3

−x1 − x2 − x3

−x1 −x2 ≤ 2√
x2

1 + x2
2 + x2

3 ≤ 5.

(4.3)

It contains three unbounded variables, one linear, and one nonlinear con-
straint. Figure 4.5 depicts the corresponding undirected graph. The green
vertices represent the coe�cients in the �rst constraint. while the blue
intermediate vertices are the square terms. Since the only non-trivial auto-
morphism swaps x1 and x2, as well as the respective intermediate vertices,
we have GP = 〈(1 2)〉 ≤ S3.

1

2

x1

x2

x3

√
.

+
(·)2

Figure 4.5: The undirected vertex-colored graph for (4.3).

The vertices on the left-hand side correspond to the two

constraints and the ones on the right-hand side to the three

variables. Among the intermediate vertices in the middle,

the green ones are the coe�cients in the linear constraint,

while the others represent all operators appearing in the

nonlinear constraint.
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Chapter 5

Detecting Complementary

Symmetry in MIQCPs

Graph isomorphisms are useful for �nding permutation based symmetries.
As we have seen in Section 3.3, however, there exist other types of symme-
tries. Christophel et al. [7] showed how the problem formulation of BLPs
can be extended to detect combinations of permutation and complement
based symmetries, described by signed permutations where a negative in-
dex corresponds to the complement of the respective variable. The group
of these generalized permutations can be obtained by using the graph au-
tomorphism method for the extended problem. Unfortunately, their con-
struction relies on linearity of the constraints and cannot be transferred to
MINLPs.

Though it is not clear how complementary symmetries can be detected
for general nonlinear problems, in the following we will show how it can be
done for quadratic problems. To this end, we consider MIQCPs as de�ned
in Section 2.1. For ease of notation, we will use Qk, ak and bk instead of
Qk, ak, and bk for the constraint de�ning matrices, vectors, and constants,
i.e., the k-th constraint is given by

xTQkx+ ak
T
x+ bk ≤ 0.

5.1 Detection via Coe�cient Comparison

According to De�nition 3.13, a problem P has a complementary symmetry
with respect to some I ⊆ [n] if replacing x by x̄(I) preserves the feasible set
and the objective function. If we want to develop an algorithmic procedure
for the detection of such symmetry, we have to relax the conditions by con-
sidering the formulation of the problem, similar to the case of permutation
symmetry in Section 3.2.

The idea is the following. Using the notation of De�nition 3.13, we
consider a�ne transformations γI : Rn → Rn, γI(x) = Rx + s, where
R ∈ Rn×n and s ∈ Rn are de�ned by

Rij =


1 if i = j ∧ i /∈ I,
−1 if i = j ∧ i ∈ I,
0 otherwise,

and si =

{
di if i ∈ I,
0 otherwise.
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If the transformation preserves the objective and constraint functions, i.e.,
cTx = cTγI(x) and gk(x) = gk(γI(x)) for all k ∈ [m] and x ∈ Rn, then
it also preserves the feasible set and therefore, we have a complementary
symmetry along I.

As explained in Section 3.2, the hard part is checking the equality
gk(x) = gk(γI(x)). If all occurring functions are polynomials, however,
this is equivalent to comparing the coe�cients of each monomial, which is
illustrated in the following example.

Example 5.1. Let P be de�ned by

max
x,y∈R2,t∈R

t

t− (x1 − x2)2 − (y1 − y2)2 ≤ 0

x1, x2, y1, y2 ∈ [0, 2],

(5.1)

which models the problem of placing two points in the square [0, 2]× [0, 2]
such that their distance is maximized. Note that in contrast to Exam-
ple 3.12, we use the square of the norm in the �rst constraint in order to
obtain a quadratic problem. While this a�ects the objective value, it does
not change the feasible and optimal set.

The constraint can be reformulated as

t− x2
1 − x2

2 + 2x1x2 − y2
1 − y2

2 + 2y1y2 ≤ 0.

We use (x1, x2, y1, y2, t) as order for the variables and consider the index set
I1 = {1, 2} which corresponds to complementing x1 and x2, i.e., replacing
them with 2− x1 and 2− x2, respectively. Since

− (2− x1)2 − (2− x2)2 + 2(2− x1)(2− x2)

= − 4 + 4x1 − x2
1 − 4 + 4x2 − x2

2 + 8− 4x1 − 4x2 + 2x1x2

= − x2
1 − x2

2 + 2x1x2,

we can see that all coe�cients in the constraint are preserved by the com-
plementation. Consequently, the constraint functions are equal before and
after replacing x1 and x2, so P has a complementary symmetry along I1.
The same holds for I2 = {3, 4} and I3 = {1, 2, 3, 4}.

The corresponding a�ne transformation γI1 as de�ned above is given
by

R =


−1 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 and s = (2, 2, 0, 0, 0)T .

Replacing x1 with 2 − x1 and x2 with 2 − x2 is equivalent to applying γI1
to the feasible set.

For the special case of MIQCPs, there is a closed form for checking
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equality of the constraints. We only have to apply the a�ne transforma-
tion and check whether the constraint de�ning matrices and vectors are
preserved, as we did in Example 5.1. However, it is not tractable to do
this for each possible index set I ⊆ [n]. Since we want to detect as much
complementary symmetry as possible, a natural approach is to search for
the largest such set. The following theorem shows how this can be achieved
by constructing and solving an auxiliary problem which encapsulates the
ideas described above.

Theorem 5.2. Let P be an MIQCP, d ∈ Rn be de�ned as in De�nition 3.13
and let z∗ be a feasible solution of the quadratic problem

max
z∈Rn

n∑
i=1

zi

zi − zj = 0 i < j ∈ [n], k ∈ [m] : Qk
ij 6= 0 (5.2a)

zi = 0 i ∈ U (5.2b)

gki (z) = 0 i ∈ [n], k ∈ [m] (5.2c)

hk(z) = 0 k ∈ [m] (5.2d)

zi ∈ {0, 1} i ∈ [n] (5.2e)

where

U =
{
i ∈ [n] : ci 6= 0 ∨

(
xLi = −∞⊕ xUi =∞

)}
gki (z) = −2aki zi +

n∑
j=1

(
Qk
ij +Qk

ji

)
djzj(1− 2zi)

hk(z) =
n∑
i=1

aki dizi +
n∑

i,j=1

Qk
ijdidjzizj.

Then P contains a complementary symmetry along I∗ := {i ∈ [n] : z∗i = 1}.

Proof. We �rst note that for any I ⊆ [n] the entries of the complement
point x̄(I) can be written as

x̄
(I)
i = (1− zi)xi + zi(di − xi) with zi =

{
1 i ∈ I,
0 i /∈ I.

(5.3)

If we now replace x by x̄(I) and the problem does not change, i.e., all
coe�cients of quadratic, bilinear, and linear terms as well as the constant
are the same as in the original problem, it follows directly that (3.13) is
ful�lled for I. For ease of notation, let x̄ be the complement with respect
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to some arbitrary, but �xed set I ⊆ [n]. Then

x̄TQkx̄ =
n∑

i,j=1

Qk
ijx̄ix̄j

=
n∑

i,j=1

Qk
ij

((
(1− zi)xi + zi (di − xi)

)(
(1− zj)xj + zj (dj − xj)

))
=

n∑
i,j=1

Qk
ij

(
xixj

(
(1− 2zi) (1− 2zj)

)
+ didjzizj

+ xi (1− 2zi) djzj + xj (1− 2zj) dizi

)
,

ak
T
x̄ =

n∑
i=1

aki x̄i

=
n∑
i=1

aki
(

(1− zi)xi + zi (di − xi)
)

=
n∑
i=1

(
xi (1− 2zi) a

k
i + aki dizi

)
So for the k-th constraint, the coe�cient of the bilinear term xixj is given
by

Qk
ij (1− 2zi) (1− 2zj) , (5.4)

the coe�cient of the linear term xi by

aki (1− 2zi) +
n∑
j=1

(
Qk
ij +Qk

ji

)
djzj (1− 2zi) , (5.5)

and the constant term by

bk +
n∑
i=1

aki dizi +
n∑

i,j=1

Qk
ijdidjzizj. (5.6)

The bilinear coe�cients are the same as the original ones if and only
if (5.4) is equal to Qk

ij. If Qk
ij = 0, this is always true, and otherwise it

is equivalent to constraint (5.2a), since zi ∈ {0, 1}. Note that swapping i
and j leads to the same constraint and for quadratic terms, i.e., i = j, the
condition becomes (1− 2zi)

2 = 1, which always holds. For this reason, we
need constraints (5.2a) only for i < j.

As for the linear coe�cients, we need (5.5) equal to aki which is equiv-
alent to constraint (5.2c). Similarly, the condition that (5.6) is equal to bk

is equivalent to (5.2d).
Since we assume a linear objective function, the set I can only contain

indices of variables that do not appear in the objective function. Also,
variables which are unbounded in exactly one direction can never be com-
plemented. These two conditions are encoded by constraints (5.2b).
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Thus, for any feasible solution of (5.2), I∗ ful�lls (3.13) and so P con-
tains a complementary symmetry along I∗.

Solving the auxiliary problem (5.2) to optimality gives us the largest set
of variable indices that can be complemented simultaneously. The size of
(5.2) depends strongly on the density pattern of the matrices in the original
problem. If N is the total number of non-zeros in the quadratic matrices
Qk, then it has O(N + m · n) non-redundant constraints containing 2N
quadratic terms in total.

We return to Example 5.1 to demonstrate how Theorem 5.2 can be
used.

Example 5.1 (continued). We again rewrite the constraint in (5.1) as

t− x2
1 − x2

2 − y2
1 − y2

2 + 2x1x2 + 2y1y2 ≤ 0

and use (x1, x2, y1, y2, t) as order for the variables. Then the auxiliary
problem as de�ned in (5.2) is given by

max
z∈R5

5∑
i=1

zi

z1 − z2 = 0

z3 − z4 = 0

z5 = 0

−2z1 + 4z2
1 + 2z2

2 − 4z1z2 = 0 (g1 and g2)

−2z3 + 4z2
3 + 2z2

4 − 4z3z4 = 0 (g3 and g4)

−2z5 = 0 (g5)

−z2
1 − z2

2 + 2z1z2 − z2
3 − z2

4 + 2z3z4 = 0 (h)

zi ∈ {0, 1} i = 1, . . . , 5.

Since the z-variables are binary, the constraints g1, . . . , g4 and h are all re-
dundant. This is due to the absence of linear terms in the original problem.
Constraint g5 is also equivalent to z5 = 0 and therefore redundant. Thus,
the optimal solution is (1, 1, 1, 1, 0). Going back to the original problem
P , this means that it contains a complementary symmetry along the set
{1, 2, 3, 4}. In other words, replacing simultaneously the values of all x-
and y-variables in a feasible solution of P by their complements leads to
another feasible solution with the same objective value.

5.2 Extending the Algorithm

Finding complementary symmetries with Theorem 5.2 has two downsides.
The �rst one has to do with dependencies between the variables. Even
though the solution of the auxiliary problem gives us the largest set of
variables that can be complemented, it does not tell us which variables
have to be complemented simultaneously. In fact, replacing an x-variable
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by its complement in Example 5.1, forces us to do the same with the other
x-variable, which corresponds to mirroring along the line y = 0.5. So the
x-variables cannot be complemented independently of each other. While
it is possible do all complementations at the same time (geometrically a
mirroring along x−y = 0), complementing the x-variables does not require
us to do the same with the y-variables.

Fortunately, there is a small addition that can �x this. To this end,
not that the coe�cients of two variables in problem (5.2) depend on each
other if and only if the variables appear in a bilinear term somewhere in
the problem.

Lemma 5.3. Let P be a quadratic problem and z be any feasible solution
to the auxiliary problem P ′ of P , as de�ned in Theorem 5.2. If zi = 1 for
some i ∈ [n], then for all j ∈ [n] \ {i}

Qk
ij = 0 ∀k ∈ [m] ⇐⇒ ∃z̃ ∈ FP ′ : z̃j = 0 ∧ z̃i = 1.

Proof. First, let j ∈ [n] \ {i} such that Qk
ij = 0 for all k ∈ [m]. It is clear

that 0 ∈ Rn is always a feasible solution of P ′. We also know that there is
at least one feasible solution with zi = 1. So starting with 0 and setting all
variables to 1 that depend on zi leads to another feasible solution z̃. Since
Qk
ij = 0 for all k ∈ [m], zi and zj do not appear together in any of the

constraints (5.2a) - (5.2e). Thus, z̃i = 1 and z̃j = 0. The other implication
follows directly from constraints (5.2a).

Lemma 5.3 tells us that we only have to partition the optimal solution
of the auxiliary problem according to the bilinear coe�cients in order to
gain the desired information about dependencies.

The second downside is that the auxiliary problem compares coe�cients
for each constraint separately. However, it is possible that complemen-
tary symmetry involves permuting constraints in addition to complement-
ing variables. To see this, we will consider a variant of the point-packing
problem, where two points have to be placed inside a triangle instead of a
square.

Example 5.4. Let P be de�ned by

max
x,y∈R2,t∈R

t

t− (x1 − x2)2 − (y1 − y2)2 ≤ 0

xi + 2yi ≤ 2 i = 1, 2

xi − 2yi ≤ 2 i = 1, 2

x1, x2 ∈ [0, 2]

y1, y2 ∈ [−1, 1]

The �rst constraint implicitly models the objective function corresponding
to maximizing (the suqare of) the distance between the points (x1, y1)T

and (x2, y2)T . Leaving the objective constraint and variable t aside and
interpreting (x1, y1)T and (x2, y2)T as points in R2, the feasible region can
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be embedded into the two dimensional plane, as shown in Figure 5.1. We
can see that P contains a complementary symmetry along the y-variables,
but not along the x-variables.

1

−1

200

y

x

Figure 5.1: 2D-visualization of the feasible region in Ex-

ample 5.4 The two dashed lines that bound the triangle

correspond to the linear constraints.

Since the second and third set of constraints are linear, the correspond-
ing constraints (5.2c) in the auxiliary problem are

−2xi = 0

−4yi = 0

4yi = 0

for i = 1, 2. Thus, in contrast to our geometric expectation, 0 ∈ R5 is the
only solution. The reason is that each of the linear constraints by itself
does not inherit complementary symmetry. It only emerges due to the
combination of the two constraints that build the border of the triangle.
When replacing y1 by −y1, the respective linear constraints become

x1 − 2y1 ≤ 2,

x1 + 2y1 ≤ 2,

so each is turned into the other one. For quadratic constraints this seems
unlikely to happen, but in the linear case, usually more than one constraint
is necessary for complementary symmetry, since the coe�cients of a single
one are always changing after complementation. Ideally, we would like to
detect such symmetries as well.

Considering that symmetries like the ones in Example 5.4 are most
likely hidden in the linear part of a problem, we can make use of the method
presented by Christophel et al. [7] and combine it with the auxiliary problem
from Theorem 5.2. They showed the following.
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Theorem 5.5. There is a one-to-one correspondence between the comple-
mentary symmetries of the BLP

min
x∈Rn

cTx

Ax− b ≤ 0
x ∈ {0, 1}n

(5.7)

and the permutation-based symmetries of the extended problem

min
(x,x̄)∈R2n

cTx+ cT x̄

Ax− Ax̄− 2b+ A1 ≤ 0
x+ x̄− 1 = 0

x, x̄ ∈ {0, 1}n.

(5.8)

Of course, we do not want to restrict ourselves to binary problems. It is
possible to slightly modify Theorem 5.5 in order to generalize it to MIPs,
though. For the sake of simplicity, we state the modi�ed version only for
bounded problems. The proof works analogously to the binary case.

Theorem 5.6. There is a one-to-one correspondence between the comple-
mentary symmetries of the (bounded) MIP

min
x∈Rn

cTx

Ax− b ≤ 0
x ∈ [xL, xU ]
xi ∈ Z i ∈ I,

(5.9)

and the permutation-based symmetries of the extended problem

min
(x,x̄)∈R2n

cTx+ cT x̄

Ax− Ax̄− 2b+ Ad ≤ 0
x+ x̄− d = 0

x, x̄ ∈ [xL, xU ]
xi, x̄i ∈ Z i ∈ I,

(5.10)

where I ⊆ [n], xL, xU ∈ Rn, and d = xL + xU ∈ Rn.

In order to use Theorem 5.6 for our purpose, we subdivide an MIQCP
P into its linear and its quadratic part such that it can be written as

min
x∈Rn

cTx

xTQkx+ ak
T
x+ bk ≤ 0 k ∈ [m− l]
Ax− b ≤ 0

x ∈ [xL, xU ]

(5.11)

with A ∈ Rl×n, b ∈ Rl and xL, xU 6= ±∞. The ingredients for extending
the detection procedure are the following.
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1. Build the modi�ed problem of Theorem 5.6 for the linear part of
(5.11) and compute the generators of its formulation group. Filter out
the generators that only complement and do not permute variables,
i.e., that contain only non-trivial cycles of the form (xi, x̄i) for i ∈ [n].
Let the set of those generators be denoted by H.

2. Build the auxiliary problem of Theorem 5.2 for the quadratic part of
(5.11). For each variable xj that is not a�ected by any permutation
in H, add the constraint xj = 0 to the auxiliary problem. This
ensures that the solution will not include any variables that cannot
be complemented in the linear part.

3. Solve the modi�ed auxiliary problem and partition the solution such
that two variables xi, xj are in the same class if and only if Qk

ij 6= 0
for any k ∈ [m− l].

To demonstrate this, we get back to the point-packing problem in the tri-
angle.

Example 5.3 (continued). As in Example 5.1, we use (x1, x2, y1, y2, t) as
order for the variables. Firstly, the linear part of the original problem is
given by

max
x,y∈R2,t∈R

t

xi + 2yi ≤ 2 i = 1, 2

xi − 2yi ≤ 2 i = 1, 2

x1, x2 ∈ [0, 2]

y1, y2 ∈ [−1, 1]

t ∈ [−M,M ].

For the sake of simplicity, we added bounds for the objective variable t,
where M is just a large enough number. As in Theorem 5.6, we extend
the problem with complementary variables. Using d = (2, 2, 0, 0, 0)T and
Ad = (2, 2, 2, 2)T , we get

max
x,y,x̄,ȳ∈R2,t,t̄∈R

t+ t̄

xi + 2yi − x̄i − 2ȳi ≤ 0 i = 1, 2

xi − 2yi − x̄i + 2ȳi ≤ 0 i = 1, 2

xi − x̄i = 0 i = 1, 2

yi − ȳi = 0 i = 1, 2

t− t̄ = 0

x1, x2, x̄1, x̄2 ∈ [0, 2]

y1, y2, ȳ1, ȳ2 ∈ [−1, 1]

t, t̄ ∈ [−M,M ].
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The formulation group of this extended problem is generated by the per-
mutations

π1 = (y1 ȳ1), π2 = (y2 ȳ2), π3 = (t t̄),

and π4 = (x1 x2)(y1 y2)(x̄1 x̄2)(ȳ1 ȳ2).

Filtering out the complementing permutations, we get H = {π1, π2, π3}.
Secondly, we need the quadratic part of the original problem. Without

the triangle-bounding linear constraints, the problem is exactly the same
as the point-packing problem in Example 5.1. We only need to add the
constraints x1 = 0 and x2 = 0, since x1 and x2 are not a�ected by any
permutation inH. The optimal solution of the (modi�ed) auxiliary problem
is then (0, 0, 1, 1, 0). Remember that this means that we can complement
y1 and y2, but no other variables.

As a last step, we want to check whether the y-variables can be com-
plemented independently. Looking at the quadratic constraint again, we
see that they do appear in a bilinear term which means they are not in-
dependent of each other. So we have found out that the original problem
contains a complementary symmetry along {3, 4} (the indices of the y-
variables) and whenever one is replaced by its complement, the same has
to be done with the other one. This is exactly what we expected from the
geometric interpretation.

As explained in the beginning of this section, solving (5.2) basically
performs a coe�cient comparison of the quadratic and linear terms before
and after replacing variables with their complements. Unfortunately, poly-
nomials of higher degree cannot be represented by a matrix and a vector
like in the quadratic case. In theory, comparing coe�cients can also detect
complementary symmetry for a speci�c index set I of a general polynomial
problem, but it is not clear whether it is possible to construct an analogous
auxiliary problem.

Another open question is whether the two types of symmetry can be
combined in some way. One approach could be to extend the problem
by variables x̄i for each i ∈ [n] in such a way that the formulation group
contains the permutation (xi x̄i) if and only if xi can be complemented. It
is possible, however, that the problems would become too large for practical
purposes.

Christophel et al. [7], on the other hand, use a slightly more general no-
tion of complement-based symmetry which combines classical permutations
of variables and their complementation by means of signed permutations.
Under that notion, permutations like (x1 x̄2) are also valid. In the linear
context, Theorem 5.6 can be used to actually �nd all such permutations of
the generalized form. For nonlinear problems, however, it is not clear how
to detect them.
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Chapter 6

Static Symmetry Breaking

Constraints

We now turn to symmetry handling methods. Returning to permutation-
based symmetry, once the formulation group of a MINLP has been com-
puted, the question is how this information can be used to reduce the size
of the sB&B-tree. As explained in Section 3.2, any subgroup of the solution
group induces an equivalence relation on the set of optimal points. Two
optima lie in the same equivalence class if they are mapped onto each other
by some permutation in the subgroup. Symmetry methods try to reduce
the number of optimal points while ensuring that at least one representa-
tive from each equivalence class stays feasible. In general, it is very hard
to achieve that exactly one solution per class remains.

Symmetry breaking techniques for sB&B based solvers can be divided
into two categories, namely static and dynamic ones. The idea of static
methods is to change the problem formulation such that a preferably small
subset of the optimal set remains feasible. Dynamic methods, on the other
hand, try to use symmetry information during the sB&B process to identify
equivalent subtress and prune all but one of them.

The most common static approach is to add linear constraints to the
problem formulation that break the symmetry. If only two variables x and
y can be permuted, one can just add the constraint x ≤ y (or x ≥ y). In
the case of more than two a�ected variables, we have to make sure that
there are no con�icts between the added constraints.

A di�erent approach by Fischetti et al. [14] called orbital shrinking,
which is based on projection onto the so-called �xed space. However, it only
works for problems that are convex after dropping integrality conditions and
is therefore not relevant for our more general setting.

We will give a de�nition of symmetry breaking constraints and cite some
folklore results from the literature in Section 6.1. Then, in Section 6.2, we
discuss ideas by other authors for avoiding con�icting constraints devel-
oped. New symmetry breaking inequalities for symmetric subgroups of the
formulation group are presented in Section 6.3, which is our contribution
to this topic.
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6.1 Inequalities from the Literature

We �rst give a formal de�nition of symmetry breaking constraints in a
similar fashion to Liberti [25].

De�nition 6.1. Given a MINLP P and a permutation group G ≤ Sn, a
set of inequalities S = {fi(x) ≤ 0}i∈[k] for fi : Rn → R, i ∈ [k] is called a
set of symmetry breaking constraints (SBCs) for P with respect to G if

∀y ∈ GP ∃π ∈ G : fi(π(y)) ≤ 0 ∀i ∈ [k].

To get an understanding of this de�nition, assume that G is a subgroup
of the solution group G∗P . In that case, we have π(y) ∈ GP for all π ∈ G
and therefore at least one optimal solution is still feasible after adding the
the constraints in S to the problem. For practical purposes, G is always (a
subgroup of) the formulation group.

Remark 6.2. Despite their name, SBCs are not guaranteed to break sym-
metry in any way. For example, redundant constraints are also SBCs for a
problem. A more intuitive name would be solution preserving constraints
with respect to G. We chose to stick to symmetry breaking constraints to
be consistent with Liberti [25]. After all, the important property is that
not all optimal solutions are cuto�. For the SBCs that we use, it will
be clear that they also break symmetry in the sense that they shrink the
formulation group.

For any set S of SBCs for P with respect to G, it follows immediately
from the de�nition that

1. S is a set of SBCs for P w.r.t. any H ≥ G,

2. T ⊆ S is a set of SBCs for P w.r.t. G,

3. S is a set of SBCs for P w.r.t. G|ω for any orbit ω of G if all fi involve
only variables in ω.

The idea is to use SBCs to modify the feasible region such that it con-
tains only one element from each orbit under the action of G on the feasible
region. For BLPs, one could theoretically add the inequalities

n∑
i=1

2i−1xi ≥
n∑
i=1

2i−1xπ(i) ∀π ∈ G,

to enforce a lexicographic ordering and produce a so-called minimal funda-
mental domain, which ful�lls the desired property, see J. Friedman [19] and
Sherali et al. [45]. However, aside from the fact that there is one inequal-
ity for each element of the group, they do not behave numerically stable
in practice due to the size of the coe�cients. Furthermore, they are not
applicable if continuous variables are involved.

As Pfetsch et al. [38] observed, distinct factors of a product group can
be considered independently for any symmetry handling purpose, since the
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factors act on disjoint sets of elements. If not stated otherwise, we will
always consider single factors.

Most literature about static symmetry breaking techniques focuses on
SBCs based on orbits under action of a group G on the set of variable
indices. For the remainder of this chapter, we denote the set of these orbits
by ΩG. The following two theorems are both taken from Liberti [25].

Theorem 6.3. Let P be a MINLP, G ≤ G∗P and ω ∈ ΩG. For an arbitrary
but �xed k ∈ ω, the set of inequalities{

xk ≥ xj | j ∈ ω \ {k}
}

(6.1)

is a set of SBCs for P w.r.t. G.

We call the inequalities in (6.1) weak SBCs. They �x one variable of
the orbit as maximum. By swapping the inequality signs, it could of course
also be �xed as a minimum. For a single orbit, we can therefore always
bring an element of our choice to the �rst position, regardless of which kind
of group it is. If we know more about the structure of the group, though,
we can use stronger inequalities.

Theorem 6.4. Let P be a MINLP, G ≤ G∗P and ω ∈ ΩG. If G|ω ∼= Sk and
ω = {j1, j2, . . . , jk} then the set of inequalities{

xji ≥ xji+1
| i ∈ {1, . . . , k − 1}

}
(6.2)

is a set of SBCs for P w.r.t. G.

So whenever a permutation group acts like the symmetric group on one
of its orbits, we can add the so-called strong SBCs (6.2). They enforce a
total order (which can be chosen arbitrarily) on that orbit. We will give a
few examples of di�erent cases that this can apply to.

Example 6.5. Let P be de�ned by

max
x∈R5

x1 + x2 − x3 + x4 − x5

x1 + x2 + x3 + x4 + x5 ≤ 1

x1, . . . , x5 ∈ [0, 1].

Then the formulation group is GP = 〈(1 2) , (2 4) , (3 5)〉. It has two factors
since the �rst two generators act on a di�erent set of variables than the third
one, i.e., it can be written as GP = 〈(1 2) , (2 4)〉 × 〈(3 5)〉. Those sets of
variable indices are, in this case, also the orbits, namely ω1 = {1, 2, 4} and
ω2 = {3, 5}. Restricting to ω1, we can see that G|ω1

∼= S3. According to
Theorem 6.4, we can choose an arbitrary order on ω1, say (4, 1, 2), and add
the strong SBCs x4 ≥ x1, x1 ≥ x2 to the problem. As for ω2, we also
get G|ω2

∼= S2, but for orbits with two elements, weak and strong SBCs
coincide and we can just add x3 ≥ x5.
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Example 6.6. Let P be de�ned by

max
x∈R3

x1 + x2 + x3

x1 + x2 + x3 ≤ 6

x1 + 2x2 ≥ 5

x2 + 2x3 ≥ 5

x3 + 2x1 ≥ 5

(x1 + x2)2 ≥ 1

(x2 + x3)2 ≥ 1

(x3 + x1)2 ≥ 1

x1, x2, x3 ∈ Z.

There is a symmetry between all three variables, but we cannot swap them
arbitrarily. The formulation group is the cyclic group GP = 〈(1 2 3)〉 and
set of optimal solutions is GP = {(1, 2, 3)T , (3, 1, 2)T , (2, 3, 1)T}. There is
only one orbit, but GP � S3, so we cannot use Theorem 6.4 to enforce an
arbitrary order. In fact, adding the constraints x1 ≥ x2 and x2 ≥ x3 would
cut o� every optimal solution. Nonetheless, Theorem 6.3 still allows us to
�x a maximum, e.g., by adding x1 ≥ x2 and x1 ≥ x3.

Example 6.7. Let P be de�ned by

max
x∈R6

6∑
i=1

xi

x1 + x2 + x3 ≤ 2

x4 + x5 + x6 ≤ 1

x1 + x4 ≥ 1

x2 + x5 ≥ 1

x3 + x6 ≥ 1

x1, . . . , x6 ∈ {0, 1}.

In this problem, we can arbitrarily swap x1, x2, and x3, but due to the last
three constraints, we always have to permute x4, x5, and x6 accordingly.
So the formulation group is GP = 〈(1 2) (4 5) , (2 3) (5 6)〉. Like in the
previous example, we have two di�erent orbits, namely ω1 = {1, 2, 3} and
ω2 = {4, 5, 6}. The di�erence is that this time there is only a single factor,
so the orbits belong to the same component of the group. Still, restricting
to either of the orbits, we get GP |ω1

∼= S3 and GP |ω2
∼= S3, respectively.

Therefore, we can add strong SBCs for ω1 again. However, Theorem 6.4
does not tell us whether we can add strong SBCs for ω2 on top of it. In
fact, the set of optimal solutions is

GP =
{

(0, 1, 1, 1, 0, 0)T , (1, 0, 1, 0, 1, 0)T , (1, 1, 0, 0, 0, 1)T
}
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and adding strong SBCs for both orbits simultaneously, i.e.,

x1 ≥ x2, x4 ≥ x5,

x2 ≥ x3, x5 ≥ x6,

cuts o� all of the optimal solutions.

As we have seen, orbits can depend on each other in which case we can
only add SBCs for one of them. Considering Example 6.7, one might think
that in such cases it is not necessary to handle more than one orbit, since
the order of the second one is implied by the �rst one. In general, that is
not true. For example, if the values of variables corresponding to the �rst
orbit are equal in all optimal solutions, then SBCs for that orbit do not
actually cut o� any optimal solutions, while SBCs for the second one could
do so. Consequently, the choice of the orbit can have a signi�cant impact
on the solving process in practice.

The group in Example 6.7 acts as a matrix action (see Section 3.1).
These kind of groups play an important role in practice, as they frequently
appear in real-world problems. If all involved variables are binary, Hojny
et al. [17] showed how such symmetries can be handled using orbitopes,
the convex hulls of binary matrices with lexicographically non-increasing
columns w.r.t. the group. While the technique was developed for BLPs,
it can directly be transferred to binary MINLPs, since it relies only on the
structure of the group and not on the linearity of the constraints. For groups
acting on continuous variables, however, the method is not applicable, since
the generated inequalities make use of the integrality of the variables.

Theorems 6.3 and 6.4 give rise to a simple framework for generating
SBCs which is described in Algorithm 1. Its ingredients are the following
subroutines. computeFactors subdivides a given group into its distinct fac-
tors. For each factor, isSymmetricGroup then checks whether a given group
is isomorphic to the symmetric group of some degree. In that case, the al-
gorithm determines whether the group has only a single orbit in Line 5, i.e.,
whether it is a coordinate action. In Example 6.5, the two factors are such
coordinate actions, while in Example 6.7 we have a matrix action. In the
latter case or if no symmetric group was found, chooseOrbit computes the
orbits of a group and selects one to break symmetry on (according to some
rule) in Line 8 or 12, respectively. As for the �rst two subroutines, e�cient
algorithms and implementations thereof exist, see e.g., PermLib [41]. In
Section 8.1, we will explain how orbits are chosen in our implementation.

The di�erent situations in the examples above also give rise to the ques-
tion under which circumstances orbits are independent of each other, i.e.,
whether there is something else that can be done Lines 12 � 13 of Algo-
rithm 1. In the next section, we will discuss criteria for independent orbits
from the literature.
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Algorithmus 1 : Simple framework for generating SBCs

Input : GP : formulation group of MINLP P
Output : S: set of SBCs for P w.r.t. GP

1 S ← ∅
2 R ← computeFactors(GP)

3 for G ∈ R do

4 if isSymmetricGroup(G) then
5 if numberOfOrbits(G) = 1 then
6 add inequalities (6.2) for G to S

7 else

8 ω ← chooseOrbit(G)
9 add inequalities (6.2) for ω to S

10 end

11 else

12 ω ← chooseOrbit(G)
13 add inequalities (6.1) for ω to S

14 end

15 end

16 return S

6.2 Orbital Independence

The following theorem gives the �rst set of conditions for independent orbits
and is due to Liberti [25]:

Theorem 6.8. Let P be a MINLP, G ≤ G∗P and ω, θ ∈ ΩG and let Sω, Sθ
be sets of SBCs for P w.r.t. G|ω and G|θ, respectively. If the two conditions

1. ∃H ≤ G|ω∪θ : H|ω ∼= C|ω| and H|θ ∼= C|θ|

2. gcd(|ω|, |θ|) = 1

hold, then Sω ∪ Sθ is a set of SBCs for P w.r.t. G.

Two orbits ful�lling the conditions of Theorem 6.8 are called coprime. In
practice, coprime orbits appear rarely within the same factor of the formu-
lation group (see Section 8.2). Therefore, the result is more of theoretical
interest.

In an attempt to give more practically relevant conditions, another ap-
proach based on stabilizers of orbits was proposed by Liberti et al. [26]. The
idea is to extend SBCs for an orbit ω by (re-)computing orbits with respect
to the pointwise stabilizer of ω and is based on the following observation.

Theorem 6.9. Let P be a MINLP, G ≤ G∗P , ω ∈ ΩG and θ ∈ ΩGω . Then
the union of constraints (6.1) for ω and θ are a set of SBCs for P w.r.t.
G. If additionally G|ω ∼= S|ω| or G|θ ∼= S|θ|, the respective constraints can
be replaced by (6.2).
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Liberti et al. [26] used this to build an iterative procedure, at each step
choosing the largest orbit under the pointwise stabilizer of the union of the
previously used orbits.

The idea was extended by Dias et al. [13] in the following way. Instead
of iteratively building a set of independent orbits, �nd a possibly large sub-
set ΩI of ΩG such that the elements are pairwise independent, i.e for each
pair ω, θ ∈ ΩI we have ω ∈ ΩGθ and θ ∈ ΩGω . The largest such subset
can be found by computing a maximal clique of a graph that encodes the
independence relation between the orbits. However, in an extension of the
that article, Dias et al. [12] also showed that a set of pairwise independent
orbits is not necessarily independent as a whole. In other words, the tested
conditions are not su�cient for adding SBCs for each orbit in ΩI simul-
taneously. Thus, further heuristic methods have to be applied to extract
a set of (fully) independent orbits from ΩI . The problem of �nding the
largest such set is computationally very hard, since a naive approach would
require a lot of stabilizer computations.

Both approaches su�er from another drawback: The fact that they rely
on pointwise stabilizers is a strong restriction. In most practical cases, this
will, only apply to distinct factors of the formulation group. Most real-
world problems have formulation groups with well-understood structure
(i.e., isomorphisms of symmetric groups), where computing orbits and sta-
bilizers does not provide any bene�t at all. Furthermore, other formulation
groups appearing in practice often have only a single orbit, in which case
the approach is not productive either. Instead, we will consider a di�erent
idea based on subgroups of the formulation group.

6.3 SBCs from Subgroups

As mentioned in Section 6.1, SBCs with respect to a group G are also valid
for any overgroup of G (i.e., a group H with G ≤ H). Consequently, we
could consider using only a subgroup of the formulation group to generate
SBCs, whenever that seems �tting. While it might be counter-intuitive at
�rst, we have already come across examples where this approach can be
bene�cial.

Example 6.10. Consider again the point-packing problem with 3 points
from Example 3.12. We saw that the formulation group is given by

GP =
〈
π1, π2, π3

〉
with

π1 = (1 2)(4 5), π2 = (2 3)(5 6), π3 = (1 4)(2 5)(3 6).

Algorithm 1 detects that GP consists of a single factor which is not isomor-
phic to a symmetric group. Thus, it adds the weak SBCs x1 ≥ x2, x1 ≥ x3

and x1 ≥ yi for i = 1, 2, 3, since all of these variables lie in the same orbit.
We have also seen that there are 24 optimal solutions corresponding to four
geometric constellations. For each of these constellations, the weak SBCs
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determine which point corresponds to (x1, y1), while two possibilities are
left for the other two points. So eight distinct optimal solutions remain.

If instead of the whole formulation group, we only consider the subgroup
H = 〈π1, π2〉, then the algorithm will detect that H ∼= S3. Since there are
two orbits ω1 = {1, 2, 3} and ω2 = {4, 5, 6} under H, it will proceed to
choose one of the orbits, say ω1, and add the strong SBCs x1 ≥ x2 and
x2 ≥ x3. These constraints determine the total order of the points in each
geometric constellation, leaving only four optimal solutions feasible.

So in certain cases where the formulation group contains a �hidden�
symmetric group, more symmetry can be broken by restricting to the re-
spective subgroup. Such groups appear for example in the pointpack*

instances of the MINLPLib [33]. A problem, however, is that there is no
clear way to decide which subgroup to use. Testing all possible subgroups is
not computationally tractable and even restricting to subgroups which are
generated by subsets of the set of generators would be exponential in the
number of generators. In Section 8.1 we propose a heuristic for choosing a
suited subgroup purposely built to detect symmetric groups.

The observation made above does not imply that restricting to a sym-
metric subgroup is always advantageous. The following problem illustrates
this.

Example 6.11. Let P be de�ned by

max
x∈R6

6∑
i=1

xi

x1 + x2 + x3 ≤ 6

x4 + x5 + x6 ≤ 6

(x1 − x2)2 + (x4 − x5)2 = 1

(x2 − x3)2 + (x5 − x6)2 = 1

(x3 − x1)2 + (x6 − x4)2 = 1

xi ≤ 3 i = 1, . . . , 6

xi ∈ Z i = 1, . . . , 6.

The formulation group is the same as in the previous example, i.e.,

GP =
〈
(1 2)(4 5), (2 3)(5 6), (1 4)(2 5)(3 6)

〉
.

In every optimal solution, the �rst three and last three variables sum up to
6, respectively. The quadratic constraints enforce that one of the two sets
contains the values 1, 2, and 3, while in the other one all values are 2. So
the set of optimal solutions contains six points with x1 = x2 = x3 = 2 and
six points with x4 = x5 = x6 = 2. Now adding the weak SBCs x1 ≥ xj for
j = 2, . . . , 6 cuts o� all but two optimal solutions, namely (3, 2, 1, 2, 2, 2)T

and (3, 1, 2, 2, 2, 2)T . On the other hand, adding strong SBCs x1 ≤ x2 ≤ x3

� based on the same subgroup as in the previous example � leaves us with
the six solutions where x1 = x2 = x3 = 2 in addition to (3, 2, 1, 2, 2, 2)T .
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So in this example, using the standard weak SBCs actually breaks more
symmetry than using strong SBCs to enforce a total order on a subset of
the variables.

Fortunately, we can still do better than this. In fact, one can extend
the set of strong SBCs for the subgroup with some weak SBCs that take
the whole group into account, as the following theorem shows. The idea
is that the maximum element of the subgroup can also be �xed to be the
maximum element of its orbit in the whole group.

Theorem 6.12. Let P be a MINLP, G ≤ G∗P and H ≤ G such that
H|ω ∼= Sk for an orbit ω = {xj1 , . . . , xjk} of H. Also, let θ be the unique
orbit of G such that ω ⊆ θ. Then

xji ≥ xji+1
i ∈ [k − 1] (6.3)

xj1 ≥ x` ` ∈ θ \ ω (6.4)

is a system of SBCs for P w.r.t. G.

Proof. Let y be an optimal solution of P . We have to show that there exists
a permutation π ∈ G, s.t. π(y) ful�lls (6.3) and (6.4). Of course, G acts
transitively on θ, so there is a π1 ∈ G such that inequalities (6.4) hold for
π1(y). Since H|ω ∼= Sk, there is also a π2 ∈ H, such that π2(π1(y)) ful�lls
inequalities (6.3). Now π2 might swap variables within θ \ ω, but we know
that it is setwise �xed by π2, i.e., π2(θ \ ω) = θ \ ω. Together with the fact
that π2(yj1) ≥ yj1 , we get that inequalities (6.4) also hold for π2(π1(y)).

Theorem 6.12 allows us to combine strong and weak SBCs under certain
conditions. We will demonstrate how this can be applied to the previous
example.

Example 6.11 (continued). After having detected the symmetric subgroup
and adding the strong SBCs x1 ≥ x2 ≥ x3, we have to �nd the orbit of GP

that contains the used variables. In this case, there is only one orbit that
contains all variables. Therefore, we take the maximum in the total order
induced by the strong SBCs, which is x1, and add the constraints x1 ≥ x4,
x1 ≥ x5, and x1 ≥ x6. So to summarize, we have added the constraints

x2 ≥ x3 and

x1 ≥ xj j ∈ {2, 4, 5, 6}.

These SBCs combined cut o� all optima apart from (3, 2, 1, 2, 2, 2)T .

Note that in all of the above example problems, the algorithms for
orbital independence from the previous section would have no e�ect, since
they all have only a single orbit anyway.
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Algorithmus 2 : Extended framework for generating SBCs

Input : GP : formulation group of MINLP P
Output : S: set of SBCs for P w.r.t. GP

1 S ← ∅
2 R ← computeFactors(GP)

3 for G ∈ R do

4 if isSymmetricGroup(G) then
5 if numberOfOrbits(G) = 1 then
6 add inequalities (6.2) for G to S
7 else

8 ω ← chooseOrbit(G)
9 add inequalities (6.2) for ω to S

10 end

11 else

12 H ← chooseSubgroups(G)
13 f ← false
14 for H ∈ H do

15 if isSymmetricGroup(H) then

16 ω ← chooseOrbit(H)

17 θ ← computeOverorbit(G,ω)
18 add inequalities (6.3) and (6.4) for (ω, θ) to S
19 f ← true
20 break

21 end

22 end

23 if f = false then
24 ω ← chooseOrbit(G)
25 add inequalities (6.1) for ω to S

26 end

27 end

28 end

29 return S

Theorem 6.12 can be used to extend Algorithm 1. Instead of only
testing whether an entire factor is isomorphic to the symmetric group, we
try to �nd a subgroup of the factor that ful�lls this property. The extended
framework is described in Algorithm 2. Lines 4 � 11 are the same as in
Algorithm 1. If the current factor is not a symmetric group, however, a
set of subgroups is chosen by a subroutine chooseSubgroups in Line 12.
Afterwards, the symmetric group test is performed for all of the subgroups
in Lines 14 � 22. If such a subgroup is found, the corresponding inequalities
(6.3) and (6.4) are added to the problem and the algorithm leaves the loop.
To this end, computeOverorbit �nds the unique orbit of the action of G
which encloses the chosen orbit ω of the action of subgroup H, as described
in Theorem 6.12. Only if neither the whole factor nor any of the subgroups



6.3. SBCs from Subgroups 47

are isomorphic to a symmetric groups, the general purpose weak SBCs are
added in Lines 23 � 26.

Remark 6.13. Theorem 6.12 does not require the whole subgroup to be
a coordinate or matrix action (as in Example 6.10) since we can use only
one of the orbits anyway. It su�ces that the subgroup is isomorphic to a
symmetric group when restricted to one of its orbits. The hadamard* and
netmod* instances of the MINLPLib are examples where such groups (that
do not act as matrix actions) appear.
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Chapter 7

Breaking Symmetry Dynamically

In contrast to the methods from the previous chapter, dynamic symmetry
breaking techniques do not reformulate the problem before the solving pro-
cess. Instead, they try to reduce the tree size during the sB&B process.
The most widely-known dynamic methods for BLPs are Orbital Fixing and
Isomorphism Pruning, both introduced by Margot [29, 30], as well as Or-
bital Branching by Ostrowski et al. [35, 36]. For binary problems with
special structure, the separation and propagation routines for orbitopes by
Hojny et al. [17] also fall into this category. An extensive computational
comparison by Pfetsch et al. [38] revealed that � in the context of linear
programming � dynamic methods prove to be more successful than static
methods, with Orbital Fixing and Isomorphism Pruning being the most
e�ective ones in general.

Despite the fact that none of these methods can directly be transferred
to continuous variables, it is still worth understanding why dynamic ap-
proaches can be superior, possibly paving the way towards a similar tech-
nique for MINLPs. Isomorphism Pruning and Orbital Fixing work di�er-
ently, but often result in the same prunings, see Pfetsch et al. [38]. We will
focus on the latter.

7.1 Orbital Fixing

There is another way of looking at SBCs when the underlying orbit consists
of binary variables. For example, the weak SBCs (6.1) for an orbit ω with
maximum index k can be translated to the implication

xk = 0 =⇒ xj = 0 ∀j ∈ ω.

The key idea of Orbital Fixing � and most other dynamic approaches �
is to delay the decision about which element of an orbit should be the
maximum until one of them is branched on. With static SBCs, we have to
pick an element beforehand. Since the �rst branching decisions are usually
the most impactful, it can be a good idea to adjust the order accordingly.
The main idea of Orbital Fixing is the following. As soon as an orbit is
branched on for the �rst time, consider the sub-tree in which the respective
variable is set to 0. In this branch, all other variables in that orbit are set
to 0 as well.
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In order to be able to apply this propagation to more than one orbit, we
have to use the setwise stabilizer of all variables that have been branched
to 1 at the respective node. The reason is the possibility of dependent
orbits as explained in Section 6.1. Formally, Orbital Fixing is based on the
following result, which was �rstly obtained by Margot [29] for a speci�c
branching rule and later proven to be independent of the branching rule
by Ostrowski [34]. It extends the idea explained above to variables that
are �xed for other reasons than branching. To this end, denote by B ⊆ [n]
the index set of all binary variables, by B0, B1 ⊆ B the indices of variables
branched to 0 and 1, respectively, at some node, and by F0, F1 ⊆ B the
indices of variables that have been �xed to 0 and 1, respectively, by some
other symmetry independent method.

Theorem 7.1. Let P be a MINLP, G ≤ G∗P and ω an orbit of stab(G,B1).

1. If ω ∩ (B0 ∪ F0) 6= ∅ then all variables in ω can be �xed to 0.

2. If ω ∩ F1 6= ∅ then all variables in ω can be �xed to 1.

Algorithm 3 describes the whole procedure which can be applied to any
node of the sB&B tree. Again, e�cient algorithms and implementations for
the subroutines computeSetwiseStabilizer and computeOrbits are avail-
able. Note that, since we compute the orbits with respect to stab(GP , B1),
any orbit containing a variable in B1 only contains variables in B1. There-
fore we do not have to consider this in Lines 5 and 7.

Algorithmus 3 : Orbital Fixing

Input : GP : formulation group of MINLP P ,
B0, B1: binary var. indices branched on 0/1 resp.,
F0, F1: binary var. indices �xed to 0/1 resp.

Output : L0, L1: binary var. indices that can be �xed to 0, 1 resp.

1 L0, L1 ← ∅
2 H ← computeSetwiseStabilizer(GP , B1)

3 Ω← computeOrbits(H)

4 foreach ω ∈ Ω with ω ∩B 6= ∅ do
5 if ω ∩ (B0 ∪ F0) 6= ∅ then
6 L0 ← L0 ∪ (ω \ (B0 ∪ F0))

7 else if ω ∩ F1 6= ∅ then
8 L1 ← L1 ∪ (ω \ F1)

9 end

10 end

11 return L0, L1

By using the stabilizer, two things are achieved implicitly. If there are
two or more dependent orbits and one has been branched on �rst, once
all variables in that orbit are set to 1, the other orbits �reappear� under
the stabilizer. On the other hand, the algorithm implicitly distinguishes
between di�erent types of groups. If we have a symmetric group, for ex-
ample, it will have generators which are also in the stabilizer and therefore
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the respective orbit can be used to apply Theorem 7.1 even further. Both
ideas are best understood by considering a matrix action.

Example 7.2. Let P be a MINLP with formulation group GP = 〈π1, π2〉,
where

π1 = (1 2)(4 5)(7 8) and π2 = (2 3)(5 6)(8 9).

This is a matrix action with orbits ω1 = {1, 2, 3}, ω2 = {4, 5, 6}, and
ω3 = {7, 8, 9}. Now say the �rst branching is performed on x1. Then in
the sub-tree where x0 = 0, we have B1 = ∅ and stab(GP , ∅) = GP , so we
can �x x2 = 0 and x3 = 0. In the other sub-tree, where x1 = 1, we have
B1 = {1} and stab(GP , {1}) = 〈π2〉. The orbits of this stabilizer are {2, 3},
{5, 6}, and {8, 9}. If the next branching decision is x2 = 0, the stabilizer
and thus the orbits stay the same, so we could still �x x3 = 0, as well. This
corresponds to enforcing a lexicographical order on orbit ω1. If we had a
cyclic group on that orbit instead, we would not have been able to do the
second �xing, since the only generator would not be in the stabilizer after
the x1 = 1 branching.

Furthermore, if we arrive at a node with branchings x1 = 1, x2 = 1, and
x3 = 1, we have B1 = {1, 2, 3} and thus again stab(GP , {1, 2, 3}) = GP .
So for any further branchings on one of the orbits ω2 or ω3, we could use
Orbital Fixing to �nd further �xings. This could also happen for other
more complicated groups than the symmetric group.

There are two aspects of Orbital Fixing that contribute to its outstand-
ing performance. Firstly, the fact that symmetry breaking decisions are
adjusted to branching decisions, not only in terms of orbit choices, but also
regarding the order that is enforced in an orbit. Secondly, the structure of
the formulation group is implicitly taken into account without the need for
explicit group type computations. One disadvantage is the possibly large
amount of stabilizer and orbit computations that is required. However, the
experiments by Pfetsch et al. [38], indicate that this does generally to have
a big impact in practice.

Even though Theorem 7.1 was originally shown for MIPs, it does not
rely on the linearity of constraints. In MINLPs, the handling of symme-
tries in non-binary variables is of greater interest, since branchings are also
performed on continuous variables. While the basic concept of Orbital
Fixing could in principle be transferred to non-binary variables, there is
a major obstacle involved: Branchings on non-binary variables do not re-
sult in �xings, but merely in bound changes. Consequently, it would not
su�ce to compute the setwise stabilizers of certain branchings, since they
do not ensure that the respective variables have the same value. In other
words, permutations mapping non-binary branching variables onto each
other could potentially destroy the lexicographic order that we want to en-
force. Instead, the use of pointwise stabilizers would be necessary, which is
a much stronger restriction resulting in a loss of some of the advantages of
Orbital Fixing.
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Nonetheless, it is possible to develop a dynamic procedure that is based
on the SBCs from Chapter 6 but makes decisions depending on the course
of the solving process.

7.2 Generating global SBCs Dynamically

The main question we have to answer for developing a dynamic procedure
is when and in which order symmetry should be broken. As we have seen,
in certain cases one out of several orbits has to be chosen for which SBCs
should be applied. If symmetry is handled during the solving process, the
order which is enforced on the variables within that orbit is also relevant.
We propose two di�erent approaches.

Decisions based on branchings. One way to decide how to break sym-
metry is to use branching information. Since the objective of breaking sym-
metry is to avoid equivalent sub-trees in the sB&B tree, it seems reasonable
that the branching decisions contain information about which symmetries
could be more important to break than others.

Based on this idea, Algorithm 4 describes a procedure for dynamically
generating SBCs which can be called at each node of the sB&B tree. In
doing so, we have to remember which orbit was chosen and in which order
the variables in the orbit were used to avoid adding con�icting inequalities.
Additionally, we pass a symmetric subgroup H of the formulation group
(if it exists), in order to be able to take advantage of Theorem 6.12. The
idea is to choose an orbit of H according to some rule and then dynamically
bring the variables in that orbit into an order. At each call of the algorithm
at most one new variable is added to the order.

Lines 1 � 7 are initialization steps. Depending on whether there is a
symmetric (sub-)group (encoded by H 6= ∅) or not, we consider the orbit of
the current branching variable with respect to H or GP . The �rst branch-
ing variable with a non-trivial orbit determines the orbit that is used for
breaking symmetry, which is stored in Line 9. Whenever a new variable in
the chosen orbit is branched on, Lines 11 � 21 are entered and the branching
variable is implicitly given its place in the order by adding weak SBCs for
all variables in the orbit that have not been used, i.e., that have not been
branched on thus far. To this end, the symmetry breaking direction is deter-
mined by some yet to be de�ned procedure determineBreakingDirection.
So depending on the direction, the newly found variable is either inserted
as the next largest or the next smallest element in the order of the or-
bit. If H = ∅, we can only add those weak SBCs with respect to the �rst
found variable. For that reason, all remaining variables are added to the
set of used variables in Line 16. Otherwise, SBCs for the �enclosing� orbit
(see Theorem 6.12) are added in Lines 17 � 19, when the �rst variable is
added to the order. Note that, although only weak SBCs are added in each
iteration, together they correspond to inequalities (6.3) and (6.4).
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Algorithmus 4 : Dynamic generation of global SBCs

Input : GP : formulation group of MINLP P ,
H: symmetric subgroup of G (or ∅),
ω: orbit that is used (or ∅),
U : list of variables in ω that have been used,
b: branching decision of this node

Output : S: set of SBCs that should be added to P

1 S ← ∅
2 x← b.var
3 if H = ∅ then
4 G← GP

5 else

6 G← H
7 end

8 if ω = ∅ and |orb(x,G)| > 1 then
9 ω ← orb(x,G)

10 end

11 if orb(x,G) = ω and x /∈ U then

12 d← determineBreakingDirection(b)
13 U.add(x)
14 add inequalities (6.1) for x and ω \ U with direction d to S
15 if H = ∅ then
16 U.add(ω)
17 else if |U | = 1 then
18 θ ← orb(x,GP )
19 add inequalities (6.1) for x and θ \ ω with direction d to S

20 end

21 end

22 return S

The only question remaining is how the symmetry breaking direction is
determined in Line 12. Since the involved variables are symmetric in the
problem formulation, one might think that the direction does not matter.
Once one of those variables is branched on, however, the situation is not
symmetric anymore. After a branching, we would like the sub-problems to
be equally hard to solve. One common indicator for this is the volume of
polyhedra associated with relaxations of the sub-problems, see for example
Lee et al. [24]. Based on this idea, we propose the following procedure.

Assuming for the sake of simplicity that all variables are continuous
and bounded, we take a look at the box induced by the bounds of two
symmetric variables x and y. A symmetry breaking inequality between x
and y cuts o� a triangle in the box, as shown in Figure 7.1. Depending
on the breaking direction, either the upper or the lower triangle remains
feasible. Now consider a branching {x | x ≤ α}∪ {x | x ≥ α}, where x is a
variable with lower bound `(x) and upper bound u(x) and α ∈ [`(x), u(x)]
is the branching point. It divides the triangle into two parts which is
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depicted by the dashed vertical line in Figure 7.1. In case we have a non-
symmetric relaxation when the branching is performed, α does not need to
be the midpoint of the interval of x. If it is greater than (` (x) + u (x)) /2,
the pieces of the lower triangle are volume-wise more balanced than the
ones of the upper triangle. The opposite is the case if α is smaller than
(` (x) + u (x)) /2. Thus, letting the symmetry breaking direction depend on
the �rst relevant branching decision could potentially have an impact on the
di�culty of the sub-problems. In the example of Figure 7.1 we would add
the inequality x ≥ y. Of course, the relaxation used in the sB&B process is
probably smaller than the box, but the above consideration could still be
used to heuristically decide how to break symmetry.

`(x) `(x)+u(x)
2 u(x)

`(y)

u(y)

α

Figure 7.1: The direction of SBCs determine the size of

the sub-problems. Here, α is greater than the midpoint of

the interval of x. Using the inequality x ≥ y cuts o� the

upper triangle and results in more balanced sub-problems,

depicted by the �lled areas.

In the case of binary variables, branching means �xing a variable, so
the above argument is not relevant. For general integer variables, however,
the same principle can be applied, since the number of integral points in
the sub-problems also depends on the volume of the triangle pieces.

Decisions based on LP solution. Another possibility is to let sym-
metry breaking decisions depend on the LP solutions. The idea is that
symmetric variables might have di�erent values in an LP relaxation, and
so the choice about the order of the variables can actually make a di�er-
ence. One approach could be to use the inequality which cuts o� the LP
solution, while the other possibility is to �follow� the suggested order. It
is not clear which approach is more promising. In general, cutting o� LP
solutions can lead to progress in the solution process. On the other hand,
we know that due to the symmetry there is at least one symmetric solution
ful�lling any SBC we could add, so in the end we might be better o� just
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Algorithmus 5 : Dynamic generation of global SBCs based on
LP solutions
Input : GP : formulation group of MINLP P ,

H: symmetric subgroup of G (or ∅),
ω: orbit that is used (or ∅),
U : list of variables in ω that have been used,
x∗: current LP solution,
cut : whether SBCs should try to cut o� the LP solution

Output : S: set of SBCs that should be added to P

1 S ← ∅
2 x← b.var
3 if H = ∅ then
4 G← GP

5 else

6 G← H
7 end

8 if ω = ∅ then
9 ω ← chooseOrbit(G)

10 end

11 X ← ω \ U
12 sort X non-increasingly by LP solution value
13 xprev ← X.first
14 U.add(xprev)

15 for xi ∈ X with xi 6= xprev do
16 if H = ∅ then
17 add xi ≤ xprev to S
18 U.add(xi)

19 else if x∗i < x∗prev then
20 if cut then
21 add xi ≥ xprev to S
22 else

23 add xi ≤ xprev to S
24 end

25 U.add(xi)
26 xprev ← xi
27 end

28 end

29 return S
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using the order of the LP solution and hoping that subsequent nodes will
be invalid because of the SBCs.

Algorithm 5 describes the procedure which works similarly to Algo-
rithm 4 at each node, but uses the LP relaxation to make decisions instead
of the branchings. In Line 9, the orbit on which to break symmetry is
chosen according to some rule. We could, for example, take a random orbit
on which not all variables have an equal LP solution value if we want to
make sure that the LP solution is indeed asymmetric on the orbit. Then,
in Line 11, a set X is built which contains all variables in the chosen orbit
which have not been used thus far. It is sorted non-increasingly by the
LP solution values in Line 12. The main loop (Lines 15 � 28) goes trough
the sorted list X and adds SBCs whenever distinct values are found. To
this end, the algorithm provides a �ag 'cut ' which encodes whether SBCs
should be used to cuto� the LP solution whenever possible or whether they
should preserve the order in the LP-relaxations.

Remark 7.3. In each iteration of Lines 15 � 28, only one variable for each
set of equal solution values is used for the SBCs. The place of the other
variables in the order is left open until later iterations. The disadvantage of
this is that there is no connection between the variables used in subsequent
iterations. One could just add all �undecided� variables to the end of the
order and then still �x their relative order later on in the same way. We
simply omitted this in the description of the algorithm to keep it more
simple.

7.3 Separation Routine for SBC Inequalities

One disadvantage of Algorithm 4 is that the decisions from one sub-tree
can determine the decisions made in another one. The reason is that global
symmetry breaking constraints are added to the problem formulation. To
see this, consider the following example.

Example 7.4. Assume that we have a MINLP P with 5 variables and
formulation group GP = 〈(2 3) (4 5)〉. Let the top part of the sB&B tree
be as depicted in Figure 7.2. The �rst branching is performed on x1. In
the left-hand sub-tree, the second branching variable is x2, while in the
right-hand sub-tree, it is x4. Since x1 does not appear in a non-trivial orbit
of GP , Algorithm 4 does not add any SBCs in the nodes corresponding
to P1 or P2. Assuming that P3 is processed next, it �nds that x2 is in
orbit ω1 = {2, 3} and adds x2 ≥ x3 (or x2 ≤ x3) as a global constraint to
the problem. Since the two orbits of GP are dependent on each other, no
further SBCs can be added. So despite x4 being in the non-trivial orbit
ω2 = {4, 5}, we cannot break the symmetry between x4 and x5 anymore.
However, considering the arguments from the previous chapter, it might
be more bene�cial to use orbit ω2 to break symmetry in the right-hand
sub-tree.

In order to mitigate the described problem, we could use local symme-
try breaking inequalities at each node instead of adding global constraints.
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P

P1 P2

P3 P4 P5 P6

x1 ≤ 5 x1 ≥ 5

x2 ≤ 3 x4 ≤ 0 x4 ≥ 0x2 ≥ 3

Figure 7.2: Example sB&B tree with branchings on con-

tinuous variables.

Algorithm 6 describes a corresponding separation routine. The orbit and
order of the variables in the orbit are chosen in the same way as in Algo-
rithm 4, based on the branching decisions. In Lines 9 � 25, two ordered
sets U and L are built to represent that order. U contains the largest
and L the smallest variables in the orbit. All variables in the chosen orbit
that have not been branched on are not contained in either of the sets.
Therefore, they lie somewhere between the last element of U and the last
element of L (which is the largest element in the order of L). Afterwards,
the order encoded by U and L is enforced by separation of symmetry break-
ing inequalities (including the ones corresponding to the enclosing orbit)
in Lines 26 � 35. The di�erence to Algorithm 4 is that the choices in one
node do not a�ect the choices made in any node that is on the same level
but in a di�erent sub-tree. Within one sub-tree, however, the decisions are
still consistent, since the set of branchings at each node is a subset of the
one at its parent.
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Algorithmus 6 : Dynamic separation of local SBCs

Input : GP : formulation group of MINLP P ,
H: symmetric subgroup of G (or ∅),
B: list of branching decisions of this node

Output : �

1 ω ← ∅
2 U ← ∅
3 L← ∅
4 if H = ∅ then
5 G← GP

6 else

7 G← H
8 end

9 for b ∈ B do

10 x← b.var
11 if ω = ∅ and |orb(x,G)| > 1 then
12 ω ← orb(x,G)
13 end

14 if ω = orb(x,G) then
15 d← determineBreakingDirection(b)
16 if d = �≥� then
17 U.add(x)
18 else

19 L.add(x)
20 end

21 if H = ∅ then
22 break

23 end

24 end

25 end

26 if ω 6= ∅ then
27 separate ineq. (6.2) for U with dir. �≥�
28 separate ineq. (6.2) for L with dir. �≤�
29 separate ineq. (6.1) for U.last and ω \ (L ∪ U) with dir. �≥�
30 separate ineq. (6.1) for L.last and ω \ (L ∪ U) with dir. �≤�
31 if U 6= ∅ then
32 θ ← orb(U.first,GP )
33 separate ineq. (6.1) for U.first and θ \ ω with dir. �≥�
34 end

35 end

36 return
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Chapter 8

Computational Experiments

We performed several computational experiments in order to analyze sym-
metries in the MINLPLib [33] and evaluate the performance of the di�erent
techniques that were discussed in this thesis. The goal is to answer the fol-
lowing questions:

• Which instances in the MINLPLib contain permutation symmetry and
how long does it take to compute them? What kind of symmetries do
appear?

• Which are the best static and dynamic SBC variants? Does it pay o�
to break symmetry on continuous variables at all?

• For binary instances, can any of the methods keep up with Orbital
Fixing?

• Can we �nd any (quadratic) instances in the MINLPLib with comple-
mentary symmetry?

• Does the performance improve if these are handled additionally?

To this end, we implemented the described algorithms in C as plug-ins
for the constraint integer programming solver SCIP [44], originally devel-
oped by Achterberg [3]. In Section 8.1, we provide more detailed informa-
tion about the implementation and software that was used. Afterwards,
Section 8.2 covers the analysis of symmetries in the MINLPLib and Sec-
tion 8.3 reports on the performance of the di�erent methods. In these
two sections we will only deal with permutation symmetries and not men-
tion this at each point again. Section 8.4 then deals with experiments for
complementary symmetry.

The computations were performed on a Linux cluster of 64bit Intel(R)
Xeon(R) CPU E5-2690 v4 2.60GHz with 35MB cache and 128GB main
memory. On each computer, only a single process was run at a time to avoid
a mutual slow due to parallel processing which makes results incomparable.
The code was compiled with gcc 7.4.0 using -03 optimization.

All reported running times are in seconds and the time limit for each
computation was 1 hour. Whenever an instance ran into the time limit, it
was evaluated as 3600 seconds. When reporting aggregated results, we use
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the shifted geometric mean. For values a1, . . . , ak and shift s it is given by(
k∏
i=1

(ai + s)

)1/k

− s.

The purpose of the shift is to reduce the otherwise strong impact of easy
instances on the mean values, see Achterberg [2]. We use a shift of s = 1
for time and s = 100 for nodes.

8.1 Implementation Details

The implementation is integrated into a development version of SCIP 6.0.1
which uses expression grahs as described in Section 4.2. It already con-
tains a plug-in for symmetry detection in MIPs, which has been developed
by Pfetsch et al. [38] and integrated into SCIP since version 5.0 [15]. We
extended this plug-in to also detect permutation symmetries in MINLPs,
as described in Section 4.3. The static symmetry breaking methods from
Chapter 6 are implemented in a separate presolver while the dynamic vari-
ants are realized in a constraint handler. For all computations, the com-
ponent constraint handler (cons_components) was turned o� to avoid in-
teractions with the symmetry handling code that could distort the results.
We used SCIP with SoPlex 4.0.1 [46] as LP solver, Ipopt 3.12.11 [10] as
NLP solver, as well as CppAD 20180000.0 [9] and bliss 0.73 [21].

In the following, we give more details about the individual modules of
the implementation.

Symmetry Detection. There are two possibilities for the timing of de-
tecting symmetry: before or after presolving. In theory, presolving could
both eliminate or introduce symmetries. For this reason, we performed
both experiment to compare the results. It should be noted that we cannot
detect symmetries of MINLPs directly on the formulation level, since we
need the expression graphs for nonlinear constraints. In SCIP, they are con-
structed during the �rst presolving step. When we say �before� presolving,
we actually mean as soon as the expression graphs are available.

The graph automorphisms are computed using bliss 0.73 [21]. The
graph is constructed in the following order: First, all variable nodes are
created, then it is extended according to the linear constraints as described
in Section 4.1, and lastly, the structure of the expression graphs is included
to capture all nonlinear constraints. Following the experiments done by
Pfetsch et al. [38], we use either grouping by variables or by constraints for
the intermediate vertices, depending on which method produces the smaller
graph. Also, the number of generators is limited to 1500 to avoid exploding
computation times.
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Group Type Analysis. We used the C++ library PermLib [41] to com-
pute the factors of all formulation groups and determine the type of group
action they represent, whenever possible.

Heuristic for Symmetric Groups. Hojny [16] suggested a heuristic
which can detect coordinate and matrix actions if the generators of a group
are given in a particular �nice� form. It searches for sets of generators that
are compositions of disjoint 2-cycles and checks whether they ful�ll certain
properties. We use and extend this heuristic in two ways.

Firstly, we take the inclusion-wise largest subset of generators of a com-
ponent that ful�lls the above criteria. If several such sets exist, we stick to
the one with the largest number of 2-cycles. We then apply the heuristic,
possibly detecting subgroups that are coordinate or matrix actions. This
allows us to use the results from Section 6.3.

Secondly, whenever the previous approach failed, we go one step further
and detect whether the subset generates a subgroup which is isomorphic to
a symmetric group when projected to a single orbit, see Remark 6.13. So
if {π1, . . . , πk} is a subset of generators which are compositions of disjoint
2-cycles, we try to �nd an orbit ω of the subgroup H = 〈π1, . . . , πk〉 such
that H|ω ∼= S|ω|. The original heuristic also goes over all orbits and checks
the required properties and whether they �t together. Therefore, just a
slight modi�cation is needed to achieve this.

Orbitopes. Matrix actions on binary variables can be handled by or-
bitopes, see Kaibel et al. [22]. Since SCIP version 5.0 [15], it includes
a constraint handler which implements propagation and separation algo-
rithms for orbitopes by Kaibel et al. [23], Bendotti et al. [4], and Hojny
et al. [17]. The situations in which we use this plug-in are described below.

Symmetry Breaking Constraints. In all versions, the factors of the
formulation group are computed and the respective algorithm is executed
for each factor separately. For the static variants, the implementation pro-
vides the possibility to decide whether binary or continuous variables should
be prioritized, whenever the algorithm has to choose between several orbits.
In both cases, integer variables come after the binary ones in the priority
order. If the choice has to be made between orbits of di�erent length,
the largest one is used in order to maximize the number of SBCs gener-
ated. Furthermore, probing is applied to the largest and smallest variable,
whenever we add SBCs for an orbit containing binary variables.

For the implementation of Algorithm 6, we handle matrix actions in
a special way that depends on the a�ected variables. If it acts solely on
binary variables, it can be handled completely by the orbitope constraint
handler (see above). We expect the propagation and separation routines
for orbitopes to be stronger in that case, since our general purpose SBCs do
not exploit the special structure of such actions. If a matrix action moves
binary and non-binary variables simultaneously, we �rst order the rows of
the corresponding matrix. In Section 3.1, we saw that each row of the
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matrix contains exactly the variables of one of the orbits, so either binary
or non-binary variables exclusively. Now the sub-matrix of all binary rows
is handled as if it was an orbitope. Algorithm 6 is then used for the non-
binary rows, but only if all variables have been (locally) �xed to the same
value. Otherwise we would use dependent orbits at the same time which
is not feasible. Consequently, binary variables are always prioritized and
Algorithm 6 will mainly be active on factors with no binary symmetry.

Continuous variables that appear exclusively in linear terms (possibly
within nonlinear constraints) are ignored in all of the variants. The reason
is that SCIP never branches on such variables, so there is nothing to gain
by breaking symmetry on them.

Orbital Fixing. For Orbital Fixing, we use the propagation plug-in al-
ready included in SCIP, implemented by M. Pfetsch [15].

8.2 Results for Computing Symmetry

Since the e�ectiveness of any symmetry handling method is dependent on
the amount of symmetry that is detected, we �rstly analyzed the formu-
lation groups of all 1632 instances in the MINLPLib before and after pre-
solving, taking only permutation-based symmetry into account.

Table 8.1 shows the total number of symmetric instances, mean num-
ber of generators and mean running times. There are 352 instances initially
containing formulation symmetry. After presolving, the number reduces to
261. Thus, presolving alone already eliminates a signi�cant percentage
of formulation symmetries. This can also be seen in the reduced num-
ber of generators after presolving. In 35 occasions, however, there are
more generators after presolving. For 17 of those cases, it even introduced
symmetry to previously non-symmetric instances (e.g., kissing2). The
computation times for symmetry detection are in general very low with a
shifted geometric mean of less than 0.2 seconds. This is not unexpected
considering that MINLPs are usually not very large compared to MIPs,
for which not much time was needed during the experiments by Pfetsch
et al. [38], either. For instances without formulation symmetry, the same
observation can be made. The only instances that ran into the time limit
during group type analysis were cont6-qq, watercontamination0202, and
watercontamination0303. This is surprising, since the time needed during
this step for all other instances never exceeded 4 seconds. When comparing
the results with the groups found by Liberti [25], note that the formula-
tion group depends on the way the expression DAGs are constructed, so
di�erent implementations can lead to di�erent results.

The following instances are not included in Table 8.1. On hadamard_9,
the time limit has already been reached during construction and simpli�-
cation of expression graphs and was therefore left out of both runs. As for
the second row of the table, pedigree_sim2000 and truck hit the time
limit during presolving, while st_test1, st_test2, st_test3, st_test5,
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Table 8.1: Results for symmetry detection in MINLPLib (1632 instances), split into instances with,
and without symmetry. Shown are the shifted geometric means of the time in seconds to compute graph
automorphisms (graph time) and to compute the group types with permlib (group time), the geometric
mean of the number of generators (#gens), and the number of instances that ran into the time limit
during symmetry computation (#limits)

with symmetry without symmetry

timing # graph time group time #gens # graph time #limits

before presol 350 0.12 0.04 6.2 1,278 0.04 3
after presol 261 0.09 0.01 3.6 1,357 0.10 0

st_test6, ex9_2_8, nemhaus, hybriddynamic_fixed, st_miqp1, st_bpv1,
and st_bpv2 were all solved before symmetry computation was started.

For all a�ected instances we then tried to identify the types of the
group actions using PermLib. The individual factors together with the
order of the group as well as the number of a�ected variables are depicted
in Table A.1 (before presolving) and Table A.2 (after presolving). The
order of the groups ranges from 2 to 103416.2 and the percentage of a�ected
variables from less than 0.1% to 100%.

Before presolving, there are 92 instances for which at least one factor
could not be identi�ed by PermLib. Furthermore, 8 instances contain a
so-called wreath product, denoted by the symbol 'o'. An explanation of
wreath products as well as inequalities handling them in the case of binary
variables can be found in Hojny [16]. Those inequalities rely on the linearity
of the problem and cannot be extended to MINLPs. Since we are not aware
of any method to handle wreath products in the general setting, We did
not cover this type of group. All other factors are coordinate and matrix
actions, often of small size.

After presolving, the situation is as follows: 47 instances with unknown
factors remain, 3 groups contain a wreath product and there are two
instances, namely color_lab3_3x0 and torsion100, with a Klein four-
group, which we also did not cover. Again, all other factors are coordinate
and matrix actions.

We then tested the heuristic for detecting symmetric groups that was
described in the previous section. Interestingly enough, it was able to
�nd every single coordinate and matrix action. An explanation for this
performance is that bliss seems to represent such groups by exactly the
simple form that the heuristic expects. Based on this insight, all further
experiments used the heuristic instead of PermLib. This also allowed us to
detect the �hidden� symmetric groups (see Sec. 6.3) by using the extended
heuristic.

8.3 Results for Handling Symmetry

Having analyzed which symmetries are present in the MINLPLib, we now
report on the performance of the symmetry handling methods that were
discussed. For all of the following experiments, we computed the formula-
tion group after presolving. The reason is that doing so beforehand could
result in constraints which become redundant or even infeasible due to
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presolving. For static variants, SBCs are therefore added after the group
computation and directly before the sB&B process begins.

From a theoretical point of view, we expect that breaking symmetry
speeds up the solving process since the size of the feasible region is reduced.
However, in practice it is possible that the inequalities have no e�ect due
to decisions made in other parts of the solver, but still increase the size of
LP-relaxations, thereby slowing down the computation times.

The Testset. On 28 out of the 261 symmetric instances, SCIP crashed
or returned a wrong solution/bound for at least one of the settings due to
symmetry unrelated procedures. These are

arki0024 chp_shorttermplan2d ex8_3_12 ex8_3_14

ex8_6_2 gasnet_al1 gasnet_al2 gasnet_al3

gasnet_al4 gasnet_al5 gastrans135 iswath2

jbearing100 jbearing25 jbearing50 jbearing75

kport40 nd_netgen-2000-3-4-b-a-ns_7 nuclear104 oil

routingdelay_bigm routingdelay_proj steenbrf torsion75

transswitch2383wpp watercontamination0303 waterno2_01 waterno2_02

Our testset consists of the remaining 233 instances and is denoted by
M-sym-all. We also report on results for the following subsets:

• M-sym-bin: 121 instances in M-sym-all for which at least one binary
variable is a�ected by symmetry

• M-sym-int: 135 instances in M-sym-all for which at least one integer
or binary variable is a�ected by symmetry

• M-sym-onlycont: 98 instances in M-sym-all for which no integer or
binary variable is a�ected by symmetry

• M-sym-unknown: 49 instances in M-sym-all with at least one group
factor that is not a coordinate or matrix action.

Note that M-sym-unknown also contains the instances with wreath and
Klein groups. The reason is that they do not allow for strong SBC and
we do not have any other structure speci�c method to handle them.

As our basis of comparison we use SCIP with default settings where no
symmetry is handled. It is denoted by default. For all runs, we used a
gap limit of 10−4.

Experiment with Static Algorithms. The �rst performance experi-
ment compares three di�erent static SBC variants, namely

• S: Algorithm 2 with priority in binary variables

• S-cont: Algorithm 2 with priority in continuous variables

• S-orbmax: only adding weak SBCs (6.1) for each orbit with priority
in binary variables.
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Table 8.2: Comparison of di�erent static variants. Depicted are the shifted geometric means of the
number of B&B nodes (#nodes) and CPU time in seconds (time), the number of instances solved to
optimality (#opt), the shifted geometric mean of the remaining gap in % (gap), the number of instances
in which SBCs were added (#act), the number of full symmetric groups (#full), symmetric subgroups
(#sub), and symmetric groups on single orbits (#orb) found, the total number of SBCs added (#sbcs),
and the shifted geometric mean of the time used for detecting and handling symmetry (sym-time).

setting #nodes time #opt #act #full #sub #orb #sbcs sym-time

M-sym-all(233):
default 2,062 253.4 109 - - - - - -
S 1,691 231.6 114 218 349 19 19 8,372 0.15
S-cont 1,745 236.3 112 218 349 19 19 8,372 0.12
S-orbmax 2,114 251.7 111 218 - - - 8,559 0.12

M`sym-bin(121):
default 3,503 464.6 47 - - - - - -
S 2,974 410.2 51 120 102 6 8 3,859 0.19
S-cont 3,154 426.2 49 120 102 6 8 3,859 0.13
S-orbmax 3,622 450.0 49 120 - - - 3,882 0.12

M-sym-int(135):
default 3,359 318.1 58 - - - - - -
S 2,576 263.4 63 134 105 6 8 3,932 0.17
S-cont 2,716 272.5 61 134 105 6 8 3,932 0.12
S-orbmax 3,333 303.2 60 134 - - - 3,955 0.11

M-sym-onlycont(98):
default 1,032 185.1 51 - - - - - -
S 930 194.1 51 84 244 13 11 4,440 0.13
S-cont 930 194.1 51 84 244 13 11 4,440 0.13
S-orbmax 1,110 194.8 51 84 - - - 4,604 0.13

M-sym-unknown(49):
default 9,187 1588.2 8 - - - - - -
S 5,519 1431.7 9 49 - 19 19 2,729 0.20
S-cont 5,515 1432.2 9 49 - 19 19 2,729 0.20
S-orbmax 7,757 1502.8 9 49 - - - 2,953 0.17

Table 8.3: Comparison of static variants on instances solved to optimality by all settings.

M-sym-all(109) M-sym-bin(47) M-sym-int(58) M-sym-onlycont(51)

setting #nodes time #nodes time #nodes time #nodes time

default 368 11.5 1,180 17.6 947 11.8 87 11.1
S 306 10.6 831 14.0 645 9.3 104 12.3
S-cont 312 10.8 864 14.8 666 9.7 104 12.3
S-orbmin 351 11.3 1,077 16.2 799 10.5 105 12.4

Table 8.2 shows the results. The �rst thing to note is that S solves 5 more
instances of M-sym-all than the default setting. The computation time is
also reduced by about 9%. A Wilcoxon signed rank test, see Berthold [5],
con�rmed this reduction to be statistically signi�cant with a p-value of less
than 0.005. The time needed for all symmetry related computations is very
low compared to the total solving time. On 15 instances, the algorithm does
not add any constraints. One of them is ball_mk3_10 which is detected
to be infeasible during presolving. Due to the timing structure of SCIP,
the symmetry detection is still called, but the solving process terminates,
before the SBCs are added. The other 14 instances contain only symmetries
a�ecting continuous variables that appear solely in linear constraints.

Comparing S with S-cont, we can see that they show similar computa-
tion times and node numbers, but the �rst variant is able to solve 2 more
instances. This is an indication that breaking symmetry on binary vari-
ables could be more important than on continuous ones. Variant S-orbmax
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Table 8.4: Comparison of strong and weak SBCs on 9 unknown group instances solved to optimality
by both settings, run for 10 permutations. Depicted are the shifted geometric means of the number of
B&B nodes (#nodes) and CPU time in seconds (time) and the number of instances solved to optimality
on all permutations (#solved).

setting #nodes time #solved

S 1,294 20.3 9
S-orbmax 2,050 27.0 8

solves 3 instances less than S and does not achieve a signi�cant decrease in
mean computation time or number of nodes over default, while still solv-
ing 2 instances more. We conclude that detecting symmetric groups and
handling them by strong SBCs is an important factor for the performance
of symmetry breaking methods for MINLPs. Interestingly, the experiments
by Pfetsch et al. [38] found the opposite to be the case for MIPs.

The results for M-sym-bin and M-sym-int do not change the picture
much. One interesting thing to point out here is that out of the 5 instances
that can only be solved when using SBCs, 4 contain symmetric binary
variables while the last one, namely ball_mk2_30, has only non-binary
integer variables. For that instance, the default setting ran into the time
limit, while variant S was able to solve it in less than a second. Testing
this again on 10 permutations showed that the behaviour is consistent.

Now turning to M-sym-onlycont, we observe that the computation time
of all static symmetry breaking variants was larger than for default, while
the mean number of nodes decreased for S and S-cont. The latter is
not necessarily a sign of improvement, though, since it could be the case
that simply less nodes were processed for instances running into the time
limit. Table 8.3 presents a comparison of the mean number of nodes and
time for the �rst four testsets, restricted to instances that were solved
to optimality by all settings. Here we can see that the number of nodes
for M-sym-onlycont actually increases signi�cantly for all SBC variants
and the computation times are also larger by about 10%. These results,
however, are not statistically signi�cant. It seems that, in general, adding
static SBCs for continuous variables does more harm to the solving process
than good by reducing the tree size.

Table 8.3 also con�rms the observations made for integer and binary
symmetries. Variant S signi�cantly reduces the number of nodes and time,
being slightly faster than S-cont, while S-orbmax shows little improvement
over the default setting.

Finally, we examine M-sym-unknown. Here we are mostly interested in
comparing S and S-orbmax, since we want to evaluate the e�ectiveness of
the inequalities in Theorem 6.12. The heuristic found 19 symmetric sub-
groups and 19 subgroups that were isomorphic to a symmetric group when
projected onto a single orbit. Each instance contains at most one of these,
so for 11 instances in M-sym-unknown, the behaviour of S and S-orbmax is
the same. Table 8.2 shows that variant S uses less time and nodes overall.
However, the testset seems to be quite hard overall, with only 9 of the 49
instances being solved. To get a more meaningful comparison, we repeated
the experiment for all 9 solved instances with 5 di�erent permutations.
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The results are depicted in Table 8.4. Here, variant S needs about 25% less
time and about 37% less nodes on average. For one of the permutations,
S-orbmax also fails to solve one of the instances. So despite the relatively
small size of the sample, there is an indication that detecting symmetric
sub-groups and using the re�ned SBCs from Theorem 6.12 improves the
performance of such symmetry breaking techniques.

Experiment with Dynamic Algorithms. In a second performance ex-
periment, we compared the following dynamic variants:

• D: Algorithm 4

• D-lp: Algorithm 5 with cut = true

• D-lpf: Algorithm 5 with cut = false

• D-sepa: Algorithm 6

• D-sepa*: Algorithm 6, but breaking symmetry in the opposite direc-
tion D-sepa

The results are presented in Tables 8.5 and 8.6. All variants manage to
solve more instances than the default setting. It is 1 more for the algorithms
that make decision based on branchings (D, D-sepa, and D-sepa*) and 2
for the LP-based variants (D-lp, D-lpf). It should be noted that there are
instances which are only solved by the �rst type and not by the second, and
vice versa (see Appendix B). So it seems that, depending on the structure
of the problem, either approach can be more bene�cial.

We observe that there is no noticeable di�erence between D-sepa and
D-sepa*. While the latter variant detect more cuto�s, they do not result in
shorter computation times or less number of nodes. This indicates that the
approach behind the branching-based procedure described in Section 7.2
does not have an impact on the strength of the inequalities. Both methods
are not able to improve on the default setting for M-sym-bin. It seems that
for the three instances which are only solved by D, D-lp, and D-lpf, having
the SBCs as global constraints and therefore being able to use that infor-
mation in other places during the solving process is an important aspect.

Considering only the instances solved by all settings in Table 8.6, we
see that all dynamic variants reduce the time and number of nodes in com-
parison to default. Interestingly, the numbers for the di�erent dynamic
algorithms are all similar. Looking at the di�erent subsets of M-sym-all,
we again observe that breaking symmetry on binary and integer variables
clearly improves the performance while doing so on continuous variables
is not bene�cial. The computation times of all variants were about 34%
smaller for M-sym-bin and about 32% smaller for M-sym-int compared to
the default setting. According to the Wilcoxon signed rank test, these re-
sults are statistically signi�cant with a p−value of less than 0.0005. For the
testset M-sym-onlycont on the other hand, the time and number of nodes
are larger than for default, just as we observed in the static case. The
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Table 8.5: Comparison of di�erent dynamic variants. Depicted are the shifted geometric means of the
number of B&B nodes (#nodes) and CPU time in seconds (time), the number of instances solved to
optimality (#opt), the shifted geometric mean of the remaining gap in % (gap), the geometric means of
the number of domain reductions performed (#red) and the number of node cuto�s detected (#cuto�),
the total number of global SBCs added (#sbcs), and the shifted geometric mean of the time used for
the method including symmetry computation (sym-time).

setting #nodes time #opt #red #cuto� #sbcs sym-time

M-sym-all(233):
default 2,062 253.4 109 - - - -
D 1,868 248.3 110 - - 7,757 0.10
D-lp 1,898 247.1 111 - - 5,765 0.10
D-lpf 1,858 243.7 111 - - 6,310 0.10
D-sepa 1,512 248.5 110 0.4 0.1 - 0.10
D-sepa* 1,505 247.4 110 0.4 0.3 - 0.10

M-sym-bin(121):
default 3,503 464.6 47 - - - -
D 2,749 394.0 50 - - 55 0.09
D-lp 2,778 391.2 50 - - 84 0.09
D-lpf 2,792 390.7 50 - - 83 0.09
D-sepa 2,031 438.4 47 0.9 0.1 - 0.09
D-sepa* 2,037 439.4 47 0.9 0.1 - 0.09

M-sym-int(135):
default 3,359 318.1 58 - - - -
D 2,647 271.4 61 - - 113 0.08
D-lp 2,679 269.4 61 - - 101 0.08
D-lpf 2,689 269.5 61 - - 100 0.08
D-sepa 1,854 281.1 59 0.7 0.1 - 0.08
D-sepa* 1,892 282.8 59 0.7 0.4 - 0.08

M-sym-onlycont(98):
default 1,032 185.1 51 - - - -
D 1,143 219.6 49 - - 7,644 0.12
D-lp 1,168 219.4 50 - - 5,664 0.13
D-lpf 1,103 212.2 50 - - 6,210 0.13
D-sepa 1,137 209.8 51 - 0.1 - 0.12
D-sepa* 1,091 205.7 51 - 0.3 - 0.13

Table 8.6: Comparison of dynamic variants on instances solved to optimality by all settings.

M-sym-all(103) M-sym-bin(43) M-sym-int(54) M-sym-onlycont(49)

setting #nodes time #nodes time #nodes time #nodes time

default 317 10.5 903 15.4 749 10.3 90 10.7
D-sepa 232 9.4 435 10.1 385 7.0 119 12.8
D 234 9.3 439 10.2 394 7.1 117 12.5
D-lp 243 9.4 443 10.0 400 7.0 127 13.0
D-lpf 227 9.1 439 10.0 394 7.0 107 12.1
D-sepa* 228 9.3 438 10.2 401 7.1 106 12.3

di�erences are again not statistically signi�cant. We still conclude that,
despite their ability to adapt to the solving process, dynamic variants also
dot not bene�t from breaking symmetry on continuous variables.

Overall, we �nd that the variants which add global constraints (D, D-lp,
and D-lpf) seem to be superior. On the one hand, they solve less instances
and are slower for M-sym-onlycont, but on the other hand, this is the
testset where default showed the best performance and the global variants
solved more instances on the integer testset. Apart from the few (un-)solved
instances, the di�erences are not very big, as Table 8.6 showed. So again,
a more re�ned implementation could change this picture.

The times for the symmetry computations are relatively low compared
to the total time and are only noticeable for very large instances that are
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Table 8.7: Comparison of the best static and dynamic variants and orbital �xing. Depicted are the
shifted geometric means of the number of B&B nodes (#nodes) and CPU time in seconds (time), the
number of instances solved to optimality (#opt), the shifted geometric mean of the remaining gap
in % (gap), and the shifted geometric mean of the time used for detecting and handling symmetry
(method-time).

setting #nodes time #opt method-time

M-sym-all(233):
default 2,062 253.4 109 -
S 1,691 231.6 114 0.15
D-lpf 1,858 243.7 111 0.10
orb�x 1,903 231.5 113 0.23

M-sym-bin(121):
default 3,503 464.6 47 -
S 2,974 410.2 51 0.19
D-lpf 2,792 390.7 50 0.09
orb�x 2,822 387.9 51 0.31

Table 8.8: Comparison of di�erent variants on instances solved to optimality by all settings.

M-sym-all(108) M-sym-bin(47)

setting #nodes time #nodes time

default 373 11.4 1,180 17.6
S 311 10.5 831 14.0
D-lpf 293 10.3 626 11.9
orb�x 280 9.7 644 12.1

not solved anyway. Putting all results together, the LP-based variants D-lp
and D-lpf are the best on average.

Comparison of Best Variants. For the last experiment of this section,
we took the best performing variants from the two previous experiment
and compared them with each other. In addition to this, we wanted to
see how they perform on binary instances in comparison to Orbital Fixing
(orbfix), see Section 7.1. The results can be found in Tables 8.7 and 8.8.
On the whole testset, S is able to solve the most instances, with 1 more
than Orbital Fixing. However, this instance is ball_mk2_30, which does
not have binary variables, so orbfix is not active anyway. D-lpf solves 3
instances less than S.

Turning to the results on all solved instances in Table 8.8, we see that
orbfix clearly outperforms S, in particular when restricting to binary sym-
metries. D-lpf, on the other hand, can keep up with Orbital Fixing and
even shows a slightly lower mean time for M-sym-bin. The least we can
say is that it is competitive on this testset.

We conclude that none of the examined symmetry breaking methods
is able to use information about symmetries on continuous variables to
reduce computation times. In all other cases, it seems that a combination
of Orbital Fixing for binary variables and a variant of symmetry breaking
constraints for general integer variables is the best approach overall. For
the latter one, adding static symmetry breaking constraints is the best
option, albeit there are some hints that further re�nements in the LP-based
dynamic procedure could lead to an overall better algorithm.

Detailed results for each instance in all experiments of this section can
be found in Appendix B.
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8.4 Results for Complementary Symmetry

For the last part of the computational study, we tested the algorithm for
detecting complementary symmetry in MIQCPs described in Chapter 5.
The testset consisted of the 861 quadratic instances in the MINLPLib that
do not have more than 10,000 variables or constraints. For each of them,
we used PySCIPOpt [28, 40] to construct and solve the auxiliary problem,
and to compute the components of the solution, i.e., which variable com-
plementations are dependent of each other. The results are presented in
Table 8.9. The algorithm detected 18 instances with complementary sym-
metry. The proportion of variables that are a�ected ranges from 6.5% to
100% and the number of components from 2 to 53, although in all except
one case, there are not more than 8. We can also see that the computa-
tion times for solving the auxiliary problem are quite low. Note that the
mean CPU time in the last line of the table includes all instances without
complementary symmetry. The meaning of the remaining columns will be
explained below.

Table 8.9: List of instances with complementary symmetry found in the MINLPLib. Also depicted are
the total (#) and relative (%) number of variables a�ected by this symmetry, the number of independent
components that the variables are partitioned in (#comps), the number of generators of the formulation
group before (orig) and after (mod) modi�cation of the problem, and the CPU time for solving the
auxiliary problem (time). The last line shows the shifted geometric mean of the detection time, including
instances without complementary symmetry.

a�ected vars #perm-gens

name # % #comps orig mod time

eigena2 2500 100.0 53 49 43 0.40
ex14_1_6 3 33.3 2 0 0 0.00
himmel16 12 66.7 2 0 0 0.00
knp3-12 36 97.3 4 13 10 0.00
knp4-24 96 99.0 6 26 21 0.00
knp5-40 200 99.5 8 43 38 0.00
knp5-41 205 99.5 8 44 39 0.00
knp5-42 210 99.5 8 45 40 0.00
knp5-43 215 99.5 8 46 41 0.10
knp5-44 220 99.5 8 47 42 0.00
ringpack_10_1 10 14.3 2 0 0 0.00
ringpack_10_2 10 12.5 2 1 1 0.00
ringpack_20_1 20 9.3 3 0 0 0.30
ringpack_20_2 20 8.5 3 1 1 0.40
ringpack_20_3 40 15.8 4 18 14 0.40
ringpack_30_1 30 6.9 4 0 0 1.10
ringpack_30_2 30 6.5 4 1 1 1.30
st_robot 3 37.5 2 0 0 0.00

total average: 0.14

As a second step, we modi�ed each problem by taking one variable per
component and setting its upper bound to the midpoint of its interval. As
explained, in Chapter 5, a complementary symmetry on a variable x can be
viewed as a classical symmetry through the permutation (x x̄). Restrict-
ing the variable to the lower half of its interval corresponds to adding the
inequality x ≤ x̄. Thus, it is a valid symmetry breaking inequality as long
as we use not more than one variable per component. Since complemen-
tary symmetry and permutation symmetry can interact with each other, in
the sense that they a�ect the same variables, changing the bounds in the
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Table 8.10: Comparison of variant S on the original and modi�ed versions of instances containing
complementary symmetry. The experiment was performed for 10 permutations. Depicted are the
number of solved instances across all permutations and the arithmetic means of the number of nodes
(#nodes), the CPU time in seconds (time), and the remaining gap at the time limit (gap) for each
instance. The last line shows the shifted geometric means of the number of nodes and the CPU time
over all instances.

original modi�ed

name #opt #nodes time gap #opt #nodes time gap

eigena2 0 1 3,600.0 >104 1 1 3,503.0 >104

ex14_1_6 10 1 0.5 0.0 10 1 0.5 0.0
himmel16 10 2,272 7.1 0.0 10 702 3.1 0.0
knp3-12 0 86,374 3,600.0 137.2 0 98,018 3,600.0 130.3
knp4-24 0 4,774 3,600.0 405.6 0 7,611 3,600.0 327.8
knp5-40 0 495 3,600.0 706.9 0 464 3,600.0 624.6
knp5-41 0 515 3,600.0 729.8 0 304 3,600.0 683.3
knp5-42 0 257 3,600.0 782.7 0 334 3,600.0 683.7
knp5-43 0 392 3,600.0 787.0 0 529 3,600.0 668.2
knp5-44 0 313 3,600.0 805.5 0 393 3,600.0 697.0
ringpack_10_1 0 115,130 3,600.0 15.9 0 116,390 3,600.0 27.4
ringpack_10_2 0 114,498 3,600.0 7.3 0 116,414 3,600.0 8.5
ringpack_20_1 0 11,984 3,600.0 214.6 0 14,688 3,600.0 195.5
ringpack_20_2 0 9,930 3,600.0 450.0 0 15,242 3,600.0 422.9
ringpack_20_3 0 23,513 3,600.0 74.9 0 28,714 3,600.0 69.9
ringpack_30_1 0 8,225 3,600.0 >104 0 10,840 3,600.0 >104

ringpack_30_2 0 5,668 3,600.0 >104 0 8,575 3,600.0 405.2
st_robot 10 1 0.5 0.0 10 1 0.5 0.0

total 2,577 1,080.0 2,759 1,037.5

described way can change the formulation group of the problem. For this
reason, we computed the formulation group for the original and modi�ed
problem. Table 8.9 shows the number of generators in each case. We ob-
serve that 12 of the instances contain permutation symmetry. Despite the
fact that the number of generators decreases with the modi�cation for 9 of
them, it is always a relatively small reduction.

We then solved 10 permutations of the original and modi�ed problems
with SBC variant S. Table 8.10 compares the results. The testset is overall
quite hard, with 14 of the 18 instances not being solved in either case.
For one permutation of eigena2, however, the modi�ed problem could be
solved, while the original one could not. The table also shows the remaining
gaps for instances that ran into the time limit. Here we see that in all but
two cases, the gap consistently decreases for the modi�ed version, even
though not by much.

The results are neither consistent nor strong enough to prove the ef-
fectiveness of the applied method. Nonetheless, they serve as a hint that
handling complementary symmetry can be bene�cial in certain cases, par-
ticularly when considering the small amount of a�ected variables in the
present instances. Our experiment should be viewed as a small motivating
step towards more research on this topic. It is entirely unclear, for example,
how one should handle the case in which a problem contains both types of
symmetries on the same variables. We simply chose an obvious and easy
to implement approach.
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Chapter 9

Conclusion and Outlook

In this thesis, we studied nonconvex mixed-integer nonlinear programs.
Solving such problems with spatial branch-and-bound can be di�cult if
they contain a large amount of symmetric solutions. In order to avoid the
exploration of equivalent sub-trees, it is possible to use automatic proce-
dures to detect and break symmetries.

Recap and Results We �rst described the di�erent types of symme-
tries that can be found in MINLPs and explained how permutation-based
symmetry can be detected by computing the formulation group. Then
we developed a new procedure for detecting complementary symmetry in
MIQCPs (Chapter 5). Its key component is an auxiliary problem which
models a coe�cient comparison before, and after replacing variables with
their complements. Solving it gives the largest set of possible complemen-
tations.

In terms of symmetry handling, our focus was on classical symmetries
de�ned by means of permutations. Section 6.3 presented new improved
symmetry breaking inequalities. If the formulation group does not act in a
well-understood way, but one of its subgroups is isomorphic to a symmetric
group, we can use these inequalities to enforce a total order on a subset of
the a�ected variables. They can be used in any static method in addition
to previously existing symmetry breaking constraints.

In Chapter 7, we developed several dynamic variants of the SBC rou-
tines. Inspired by the most successful symmetry breaking methods for
MIPs, they try to improve their performance by adapting to the solving
process. Since symmetry cannot be broken simultaneously for di�erent or-
bits that are dependent on each other, the idea behind dynamic methods
is to postpone the respective decisions until more information is available.
The proposed algorithms use either the LP solution or branching informa-
tion at each node of the sB&B tree to decide how to break symmetry.

We performed a variety of computational experiments that gave several
insights. Firstly, SBCs are a competitive symmetry breaking method for
MINLPs, even though they do not perform as good as Orbital Fixing for
binary variables. Furthermore, breaking symmetry on integer variables is
an important factor for certain problems arising in practice. Since extend-
ing Orbital Fixing or other binary methods to the general integer case is
not an easy task, SBCs can serve as a good instrument to handle this. We
have found no indication that breaking continuous symmetries speeds up
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the sB&B process. It is not clear what the reason is, since such symmetries
can lead to signi�cantly larger trees for MINLPs in exactly the same way
as integer symmetries.

The subgroup approach proved to be an improvement to the existing
inequalities. In comparison to the general-purpose weak SBCs, it was able
to reduce the computation time on solved instances by about 25% on aver-
age for a suitable sub-testset of the MINLPLib. On the other hand, none
of the dynamic variants was able to keep up with their static counterpart
in terms of overall performance. Although the LP-based dynamic variants
were faster than Orbital Fixing on the all-optimal binary testset, they did
not solve as many instances in total. One possible explanation is that, due
to the generality of MINLPs, these algorithms are not able to make use of
the sB&B information in the same way that similar methods for MIPs are.

We also analyzed the formulation groups of all instances in our testset,
which was previously only done for subsets of the MINLPLib. In terms of
complementary symmetry, our experiments showed that the new detection
algorithm is e�ective in practice, as the auxiliary problems can be solved
very fast. We found 18 quadratic instances in the MINLPLib that contain
complementary symmetry. For those, changing the bounds to break the
symmetry slightly improved the performance.

Possible Future Work It remains an open question, how symmetries
on continuous variables can be exploited to improve the performance of
ssB&B solvers. While we have found no indication that using SBCs for
these variables is bene�cial, the testset we used is quite divers. It is possible
that breaking continuous symmetries is only important for MINLPs with
special structure. Identifying such cases could be the �rst step towards
a better understanding of the underwhelming performance of the testset
methods.

Even though the dynamic variants did not show convincing results,
they were mostly due to a small number of instances where the dynamic
approach seems to fail entirely. Apart from these, some variants performed
very well on the rest of the testset. This can be seen as a hint that more re-
�ned versions and implementations could make dynamic procedures viable
for MINLPs. To this end, analyzing the cases of failure would be key.

Another possible subject of further research lies in our work on comple-
mentary symmetry. In Section 5.1, we showed how symmetry of this type
can be described by means of a�ne transformations of a certain form. In
a similar way, permutation-based symmetries can be described by permu-
tation matrices, which are also a�ne transformations. This gives rise to a
more general notion of symmetry. It is possible that the auxiliary problem
from Theorem 5.2 can be modi�ed to detect symmetries with respect to
arbitrary a�ne transformations. The usefulness of such a generalization de-
pends on the quantity of other symmetry types that can actually be found
in practice.
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Appendix A

Symmetry in MINLPLib

Table A.1: List of symmetric instances in MINLPLib before presolving. Depicted are the proportion
of a�ected variables in %, the number of binary/integer/continuous variables that are a�ected (B/I/C),
the log10|G| of the size, and the type of each individual factor of the formulation group (factors).

a�ected vars formulation group

name % B/I/C log10|G| factors

arki0002 93.7 0/0/2304 5.7 (M(S6, 1152))2

arki0003 0.1 0/0/2 0.3 S2
arki0005 0.8 0/0/18 179.2 (S2)9

arki0006 0.8 0/0/18 179.2 (S2)9

arki0008 1.0 0/0/50 64.5 S50
arki0009 1.0 0/0/81 35.0 (S5)10, S11,M(S10, 20)
arki0010 1.4 0/0/56 24.6 (S5)5, S11,M(S10, 20)
arki0011 1.1 0/0/217 285.6 M(S3, 6), (S9)3,

M(S20, 40), S144
arki0012 1.0 0/0/199 274.8 M(S3, 6), (S9)3, S144,

M(S11, 22)
arki0013 1.1 0/0/217 285.6 M(S3, 6), (S9)3,

M(S20, 40), S144
arki0014 0.6 0/0/113 83.8 M(S3, 6), S40, (S9)3,

M(S20, 40)
arki0016 0.1 0/0/5 2.1 S5
arki0018 22.0 0/0/2159 763.4 S18, (S2)366, (S3)129,

(S4)59, (S5)27, (S10)4,
(S6)24, (S11)7, (S7)15,
(S12)2, (S8)9, (S13)4,
(S9)7, (S14)2, (S15)2, S16

autocorr_bern20-03 95.2 20/0/0 0.9 M(S2 o S2, 20)
autocorr_bern20-05 95.2 20/0/0 0.3 M(S2, 20)
autocorr_bern20-10 95.2 20/0/0 0.3 M(S2, 20)
autocorr_bern20-15 95.2 20/0/0 0.3 M(S2, 20)
autocorr_bern25-03 92.3 24/0/0 0.6 (M(S2, 12))2

autocorr_bern25-06 92.3 24/0/0 0.3 M(S2, 24)
autocorr_bern25-13 92.3 24/0/0 0.3 M(S2, 24)
autocorr_bern25-19 92.3 24/0/0 0.3 M(S2, 24)
autocorr_bern25-25 92.3 24/0/0 0.3 M(S2, 24)
autocorr_bern30-04 96.8 30/0/0 0.3 M(S2, 30)
autocorr_bern30-08 96.8 30/0/0 0.3 M(S2, 30)
autocorr_bern30-15 96.8 30/0/0 0.3 M(S2, 30)
autocorr_bern30-23 96.8 30/0/0 0.3 M(S2, 30)
autocorr_bern30-30 96.8 30/0/0 0.3 M(S2, 30)
autocorr_bern35-04 94.4 34/0/0 0.3 M(S2, 34)
autocorr_bern35-09 94.4 34/0/0 0.3 M(S2, 34)
autocorr_bern35-18 94.4 34/0/0 0.3 M(S2, 34)
autocorr_bern35-26 94.4 34/0/0 0.3 M(S2, 34)
autocorr_bern35-35�x 94.4 34/0/0 0.3 M(S2, 34)
autocorr_bern40-05 97.6 40/0/0 0.3 M(S2, 40)
autocorr_bern40-10 97.6 40/0/0 0.3 M(S2, 40)
autocorr_bern40-20 97.6 40/0/0 0.3 M(S2, 40)
autocorr_bern40-30 97.6 40/0/0 0.3 M(S2, 40)
autocorr_bern40-40 97.6 40/0/0 0.3 M(S2, 40)
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a�ected vars formulation group

name % B/I/C log10|G| factors

autocorr_bern45-05 95.7 44/0/0 0.3 M(S2, 44)
autocorr_bern45-11 95.7 44/0/0 0.3 M(S2, 44)
autocorr_bern45-23 95.7 44/0/0 0.3 M(S2, 44)
autocorr_bern45-34 95.7 44/0/0 0.3 M(S2, 44)
autocorr_bern45-45 95.7 44/0/0 0.3 M(S2, 44)
autocorr_bern50-06 98.0 50/0/0 0.3 M(S2, 50)
autocorr_bern50-13 98.0 50/0/0 0.3 M(S2, 50)
autocorr_bern50-25 98.0 50/0/0 0.3 M(S2, 50)
autocorr_bern55-06 96.4 54/0/0 0.3 M(S2, 54)
autocorr_bern55-14 96.4 54/0/0 0.3 M(S2, 54)
autocorr_bern55-28 96.4 54/0/0 0.3 M(S2, 54)
autocorr_bern60-08 98.4 60/0/0 0.3 M(S2, 60)
autocorr_bern60-15 98.4 60/0/0 0.3 M(S2, 60)
ball_mk2_10 100.0 0/10/0 6.6 S10
ball_mk2_30 100.0 0/30/0 32.4 S30
bchoco05 2.2 0/0/2 0.3 S2
bchoco06 1.7 0/0/2 0.3 S2
bchoco07 1.5 0/0/2 0.3 S2
bchoco08 1.2 0/0/2 0.3 S2
carton7 67.4 137/35/49 91.7 M(S2, 16), 2 unknown

carton9 100.0 216/72/72 136.8 M(S3, 135), 2 unknown

cecil_13 14.3 60/0/60 9.0 (M(S2, 4))30

celar6-sub0 13.7 88/0/0 0.3 M(S2, 88)
chp_partload 13.3 10/0/290 15.7 (S2)4,M(S2, 156), 2

unknown

chp_shorttermplan1a 4.8 0/0/48 39.0 1 unknown

chp_shorttermplan1b 31.4 96/0/432 91.1 (S2)48,M(S2, 384), 1
unknown

chp_shorttermplan2a 66.7 192/0/864 151.7 (S3)48,M(S2, 480),
M(S2, 384), 1 unknown

chp_shorttermplan2b 3.4 0/0/48 16.1 1 unknown

chp_shorttermplan2c 88.2 384/0/1776 364.9 M(S4, 960),M(S2, 480),
(S6)48,M(S2, 384), 1
unknown

chp_shorttermplan2d 81.5 480/0/2064 128.0 M(S4, 768), (S4)48,
(M(S2, 480))2,
M(S2, 576), 1 unknown

color_lab3_3x0 57.4 182/0/0 0.9 M(S2, 132), 1 unknown

color_lab3_4x0 82.8 328/0/0 0.9 M(S2, 264), 1 unknown

crossdock_15x7 85.3 180/0/0 0.3 M(S2, 180)
crossdock_15x8 99.6 240/0/0 0.3 M(S2, 240)
crudeoil_lee1_05 0.7 0/0/4 1.7 S4
crudeoil_lee1_06 0.6 0/0/4 1.7 S4
crudeoil_lee1_07 0.5 0/0/4 1.7 S4
crudeoil_lee1_08 0.5 0/0/4 1.7 S4
crudeoil_lee1_09 0.4 0/0/4 1.7 S4
crudeoil_lee1_10 0.4 0/0/4 1.7 S4
crudeoil_lee2_05 1.2 0/0/14 6.6 1 unknown

crudeoil_lee2_06 1.0 0/0/14 6.6 1 unknown

crudeoil_lee2_07 0.9 0/0/14 6.6 1 unknown

crudeoil_lee2_08 0.8 0/0/14 6.6 1 unknown

crudeoil_lee2_09 0.7 0/0/14 6.6 1 unknown

crudeoil_lee2_10 0.6 0/0/14 6.6 1 unknown

crudeoil_lee3_05 1.2 0/0/16 8.3 1 unknown

crudeoil_lee3_06 1.0 0/0/16 8.3 1 unknown

crudeoil_lee3_07 0.9 0/0/16 8.3 1 unknown

crudeoil_lee3_08 0.8 0/0/16 8.3 1 unknown

crudeoil_lee3_09 0.7 0/0/16 8.3 1 unknown

crudeoil_lee3_10 0.6 0/0/16 8.3 1 unknown

crudeoil_lee4_05 1.4 0/0/27 15.5 1 unknown

crudeoil_lee4_06 1.2 0/0/27 15.5 1 unknown

crudeoil_lee4_07 1.0 0/0/27 15.5 1 unknown

crudeoil_lee4_08 0.9 0/0/27 15.5 1 unknown

crudeoil_lee4_09 0.8 0/0/27 15.5 1 unknown

crudeoil_lee4_10 0.7 0/0/27 15.5 1 unknown

crudeoil_li02 31.0 90/0/312 0.9 (M(S2, 134))3

crudeoil_li05 21.1 30/0/168 0.3 M(S2, 198)
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a�ected vars formulation group

name % B/I/C log10|G| factors

crudeoil_li06 20.5 30/0/168 0.3 M(S2, 198)
crudeoil_li11 20.9 42/0/204 0.3 M(S2, 246)
crudeoil_li21 21.8 54/0/240 0.3 M(S2, 294)
cvxnonsep_normcon30 13.3 0/4/0 0.6 (S2)2

cvxnonsep_normcon30r 13.3 0/4/4 0.6 (M(S2, 4))2

cvxnonsep_normcon40 10.0 0/2/2 0.6 (S2)2

cvxnonsep_normcon40r 10.0 0/2/6 0.6 (M(S2, 4))2

cvxnonsep_psig20 14.3 0/0/3 0.8 S3
cvxnonsep_psig20r 14.3 0/0/6 0.8 M(S3, 6)
cvxnonsep_psig30 6.5 0/0/2 0.3 S2
cvxnonsep_psig30r 6.5 0/0/4 0.3 M(S2, 4)
cvxnonsep_psig40 19.5 0/4/4 1.2 (S2)4

cvxnonsep_psig40r 24.4 0/4/16 1.5 (M(S2, 4))5

deb7 2.5 10/0/10 6.6 M(S10, 20)
deb8 2.4 10/0/10 6.6 M(S10, 20)
deb9 2.5 10/0/10 6.6 M(S10, 20)
densitymod 97.9 23040/0/0 73.3 M(S7, 2688),

M(S53, 20352)
eigena2 100.0 0/0/2500 64.5 M(S50, 2500)
elec100 99.7 0/0/300 158.7 1 unknown

elec200 99.8 0/0/600 375.7 1 unknown

elec25 98.7 0/0/75 26.0 1 unknown

elec50 99.3 0/0/150 65.3 1 unknown

elf 100.0 24/0/30 0.8 M(S3, 54)
em�050_3_3 1.7 0/0/27 8.3 1 unknown

em�050_5_5 1.3 0/0/75 32.7 1 unknown

em�100_3_3 0.9 0/0/27 8.3 1 unknown

em�100_5_5 0.8 0/0/75 32.7 1 unknown

ex14_1_5 66.7 0/0/4 1.4 S4
ex2_1_3 57.1 0/0/8 0.3 M(S2, 8)
ex5_2_5 81.8 0/0/27 0.8 M(S3, 27)
ex6_1_1 88.9 0/0/8 0.3 M(S2, 8)
ex6_1_3 92.3 0/0/12 0.3 M(S2, 12)
ex6_2_10 85.7 0/0/6 0.3 M(S2, 6)
ex6_2_12 80.0 0/0/4 0.3 M(S2, 4)
ex6_2_13 85.7 0/0/6 0.3 M(S2, 6)
ex6_2_14 80.0 0/0/4 0.3 M(S2, 4)
ex6_2_9 80.0 0/0/4 0.3 M(S2, 4)
ex8_1_6 66.7 0/0/2 0.3 S2
ex8_3_1 95.7 0/0/110 2.1 1 unknown

ex8_3_11 95.7 0/0/110 2.1 1 unknown

ex8_3_12 95.8 0/0/115 2.1 1 unknown

ex8_3_13 95.7 0/0/110 2.1 1 unknown

ex8_3_14 95.5 0/0/105 2.1 1 unknown

ex8_3_2 95.5 0/0/105 2.1 1 unknown

ex8_3_3 95.5 0/0/105 2.1 1 unknown

ex8_3_4 95.5 0/0/105 2.1 1 unknown

ex8_3_5 95.5 0/0/105 2.1 1 unknown

ex8_3_7 94.5 0/0/120 2.1 1 unknown

ex8_3_8 95.2 0/0/120 2.1 1 unknown

ex8_3_9 96.2 0/0/75 2.1 1 unknown

ex8_4_6 40.0 0/0/6 0.8 M(S3, 6)
ex8_6_1 82.9 0/0/63 3.7 1 unknown

ex8_6_2 65.6 0/0/21 3.7 M(S7, 21)
ex9_1_8 14.3 0/0/2 0.3 S2
ex9_2_2 16.7 0/0/2 0.3 S2
ex9_2_6 94.1 0/0/16 1.2 S2 o S2,M(S2, 12)
gabriel04 17.7 0/0/64 7.8 (M(S2, 32))2

gams02 10.7 0/0/1363 3076.7 S403, (S480)2

gams03 95.0 380/1900/0 4.8 M(S5, 600),
(M(S2, 240))4,
(M(S3, 360))2

gancns 5.0 0/0/18 3.4 (S2)6, (S3)2

gasnet_al1 6.6 12/0/36 1.5 (M(S2, 22))2, S2 o S2
gasnet_al2 6.6 12/0/36 1.5 (M(S2, 22))2, S2 o S2
gasnet_al3 6.6 12/0/36 1.5 (M(S2, 22))2, S2 o S2
gasnet_al4 6.6 12/0/36 1.5 (M(S2, 22))2, S2 o S2
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a�ected vars formulation group

name % B/I/C log10|G| factors

gasnet_al5 6.6 12/0/36 1.5 (M(S2, 22))2, S2 o S2
gastrans 11.3 4/0/8 0.6 (M(S2, 6))2

gastrans135 5.9 0/0/70 76.4 (S2)6,M(S29, 58)
gastrans582_cold13 3.9 0/0/85 114.7 M(S3, 6), (S2)19, S3, S5,

(M(S2, 4))6, 1 unknown

gastrans582_cold13_95 3.9 0/0/85 114.7 M(S3, 6), (S2)19, S3, S5,
(M(S2, 4))6, 1 unknown

gastrans582_cold17 3.9 0/0/85 114.7 M(S3, 6), (S2)19, S3, S5,
(M(S2, 4))6, 1 unknown

gastrans582_cold17_95 3.9 0/0/85 114.7 M(S3, 6), (S2)19, S3, S5,
(M(S2, 4))6, 1 unknown

gastrans582_cool12 3.9 0/0/85 114.7 M(S3, 6), (S2)19, S3, S5,
(M(S2, 4))6, 1 unknown

gastrans582_cool12_95 3.9 0/0/85 114.7 M(S3, 6), (S2)19, S3, S5,
(M(S2, 4))6, 1 unknown

gastrans582_cool14 3.9 0/0/85 114.7 M(S3, 6), (S2)19, S3, S5,
(M(S2, 4))6, 1 unknown

gastrans582_cool14_95 3.9 0/0/85 114.7 M(S3, 6), (S2)19, S3, S5,
(M(S2, 4))6, 1 unknown

gastrans582_freezing27 3.9 0/0/85 114.7 M(S3, 6), (S2)19, S3, S5,
(M(S2, 4))6, 1 unknown

gastrans582_freezing27_95 3.9 0/0/85 114.7 M(S3, 6), (S2)19, S3, S5,
(M(S2, 4))6, 1 unknown

gastrans582_freezing30 3.9 0/0/85 114.7 M(S3, 6), (S2)19, S3, S5,
(M(S2, 4))6, 1 unknown

gastrans582_freezing30_95 3.9 0/0/85 114.7 M(S3, 6), (S2)19, S3, S5,
(M(S2, 4))6, 1 unknown

gastrans582_mild10 4.1 0/0/89 115.0 M(S3, 6), (S2)19, S3, S5,
(M(S2, 4))7, 1 unknown

gastrans582_mild10_95 4.1 0/0/89 115.0 M(S3, 6), (S2)19, S3, S5,
(M(S2, 4))7, 1 unknown

gastrans582_mild11 3.9 0/0/85 114.7 M(S3, 6), (S2)19, S3, S5,
(M(S2, 4))6, 1 unknown

gastrans582_mild11_95 3.9 0/0/85 114.7 M(S3, 6), (S2)19, S3, S5,
(M(S2, 4))6, 1 unknown

gastrans582_warm15 3.9 0/0/85 114.7 M(S3, 6), (S2)19, S3, S5,
(M(S2, 4))6, 1 unknown

gastrans582_warm15_95 3.9 0/0/85 114.7 M(S3, 6), (S2)19, S3, S5,
(M(S2, 4))6, 1 unknown

gastrans582_warm31 4.1 0/0/89 115.0 M(S3, 6), (S2)19, S3, S5,
(M(S2, 4))7, 1 unknown

gastrans582_warm31_95 4.1 0/0/89 115.0 M(S3, 6), (S2)19, S3, S5,
(M(S2, 4))7, 1 unknown

gear 80.0 0/4/0 0.6 (S2)2

gear2 96.6 24/0/4 0.6 (M(S2, 14))2

gear3 88.9 0/4/4 0.6 (M(S2, 4))2

gear4 66.7 0/4/0 0.6 (S2)2

graphpart_2g-0044-1601 98.0 48/0/0 0.8 M(S3, 48)
graphpart_2g-0055-0062 98.7 75/0/0 0.8 M(S3, 75)
graphpart_2g-0066-0066 99.1 108/0/0 0.8 M(S3, 108)
graphpart_2g-0077-0077 99.3 147/0/0 0.8 M(S3, 147)
graphpart_2g-0088-0088 99.5 192/0/0 0.8 M(S3, 192)
graphpart_2g-0099-9211 99.6 243/0/0 0.8 M(S3, 243)
graphpart_2g-1010-0824 99.7 300/0/0 0.8 M(S3, 300)
graphpart_2pm-0044-0044 98.0 48/0/0 0.8 M(S3, 48)
graphpart_2pm-0055-0055 98.7 75/0/0 0.8 M(S3, 75)
graphpart_2pm-0066-0066 99.1 108/0/0 0.8 M(S3, 108)
graphpart_2pm-0077-0777 99.3 147/0/0 0.8 M(S3, 147)
graphpart_2pm-0088-0888 99.5 192/0/0 0.8 M(S3, 192)
graphpart_2pm-0099-0999 99.6 243/0/0 0.8 M(S3, 243)
graphpart_3g-0234-0234 98.6 72/0/0 0.8 M(S3, 72)
graphpart_3g-0244-0244 99.0 96/0/0 0.8 M(S3, 96)
graphpart_3g-0333-0333 98.8 81/0/0 0.8 M(S3, 81)
graphpart_3g-0334-0334 99.1 108/0/0 0.8 M(S3, 108)
graphpart_3g-0344-0344 99.3 144/0/0 0.8 M(S3, 144)
graphpart_3g-0444-0444 99.5 192/0/0 0.8 M(S3, 192)
graphpart_3pm-0234-0234 98.6 72/0/0 0.8 M(S3, 72)
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a�ected vars formulation group

name % B/I/C log10|G| factors

graphpart_3pm-0244-0244 99.0 96/0/0 0.8 M(S3, 96)
graphpart_3pm-0333-0333 98.8 81/0/0 0.8 M(S3, 81)
graphpart_3pm-0334-0334 99.1 108/0/0 0.8 M(S3, 108)
graphpart_3pm-0344-0344 99.3 144/0/0 0.8 M(S3, 144)
graphpart_3pm-0444-0444 99.5 192/0/0 0.8 M(S3, 192)
graphpart_clique-20 98.4 60/0/0 1.1 1 unknown

graphpart_clique-30 98.9 90/0/0 0.8 M(S3, 90)
graphpart_clique-40 99.2 120/0/0 0.8 M(S3, 120)
graphpart_clique-50 99.3 150/0/0 0.8 M(S3, 150)
graphpart_clique-60 99.4 180/0/0 0.8 M(S3, 180)
graphpart_clique-70 99.5 210/0/0 0.8 M(S3, 210)
hadamard_4 94.1 16/0/0 2.8 1 unknown

hadamard_5 96.2 25/0/0 4.2 1 unknown

hadamard_6 97.3 36/0/0 5.7 1 unknown

hadamard_7 98.0 49/0/0 7.4 1 unknown

hadamard_8 98.5 64/0/0 9.2 1 unknown

heatexch_gen1 3.6 0/0/4 1.4 S4
heatexch_gen2 3.4 0/0/5 2.1 S5
heatexch_gen3 4.3 0/0/25 25.2 S25
heatexch_spec1 7.0 0/0/4 1.4 S4
heatexch_spec2 6.5 0/0/5 2.1 S5
heatexch_spec3 9.6 0/0/25 25.2 S25
heatexch_trigen 2.7 8/0/0 4.6 S8
hmittelman 35.3 6/0/0 0.9 (S2)3

hvb11 8.5 625/0/210 938.4 (S2)32, S64, S30, S116, 1
unknown

iswath2 2.1 0/0/134 99.0 S54, (S4)20

ivalues 49.3 0/100/0 0.3 M(S2, 100)
knp3-12 97.3 0/0/36 9.5 1 unknown

knp4-24 99.0 0/0/96 25.2 1 unknown

knp5-40 99.5 0/0/200 50.0 1 unknown

knp5-41 99.5 0/0/205 51.6 1 unknown

knp5-42 99.5 0/0/210 53.2 1 unknown

knp5-43 99.5 0/0/215 54.9 1 unknown

knp5-44 99.5 0/0/220 56.5 1 unknown

korcns 4.2 0/0/4 0.6 (S2)2

kport20 54.5 5/17/33 2.0 M(S3, 15), (M(S2, 10))4

kport40 73.4 29/55/112 10.1 (M(S2, 14))2,M(S9, 63),
(M(S3, 21))5

lop97ic 0.2 0/0/4 0.6 (S2)2

lop97icx 78.7 0/763/14 1871.9 (S2)7, S763
maxcsp-ehi-85-297-12 2.3 48/0/0 1.2 (M(S2, 12))4

maxcsp-ehi-85-297-36 2.0 41/0/0 1.4 M(S2, 14),M(S3, 15),
M(S2, 12)

maxcsp-ehi-85-297-71 1.2 24/0/0 0.6 (M(S2, 12))2

maxcsp-ehi-90-315-70 0.5 12/0/0 0.3 M(S2, 12)
maxcsp-langford-3-11 98.1 616/0/0 0.3 M(S2, 616)
maxmin 96.3 0/0/26 9.0 1 unknown

mbtd 100.0 200/0/10 1.3 M(S2, 100), 1 unknown

meanvar-orl400_05_e_8 25.0 0/0/400 868.8 S400
minsurf100 100.0 0/0/5304 0.3 M(S2, 5304)
minsurf25 99.9 0/0/1404 0.3 M(S2, 1404)
minsurf50 100.0 0/0/2704 0.3 M(S2, 2704)
minsurf75 100.0 0/0/4004 0.3 M(S2, 4004)
netmod_dol1 99.9 462/0/1536 15.4 1 unknown

netmod_dol2 17.9 0/0/357 521.9 S36, S74, S101, S57, S89
netmod_kar1 28.9 44/0/88 2.7 M(S2, 24),M(S5, 60),

M(S2, 48)
netmod_kar2 28.9 44/0/88 2.7 M(S2, 24),M(S5, 60),

M(S2, 48)
nuclear104 91.2 10816/0/10907 9.8 M(S13, 21723)
nuclear14 74.9 576/0/594 2.9 M(S6, 1170)
nuclear25 75.7 625/0/645 2.1 M(S5, 1270)
nuclear49 84.5 2401/0/2443 3.7 M(S7, 4844)
nuclearva 50.4 168/0/9 0.8 M(S3, 177)
nuclearvb 50.4 168/0/9 0.8 M(S3, 177)
nuclearvc 50.4 168/0/9 0.8 M(S3, 177)
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a�ected vars formulation group

name % B/I/C log10|G| factors

nuclearvd 50.4 168/0/9 0.8 M(S3, 177)
nuclearve 50.4 168/0/9 0.8 M(S3, 177)
nuclearvf 50.4 168/0/9 0.8 M(S3, 177)
nvs09 90.9 0/10/0 6.6 S10
oil 16.7 4/0/253 42.2 M(S4, 88),M(S3, 12), S28,

S3,M(S4, 16),
(M(S2, 4))8, (M(S2, 6))2,
(M(S2, 8))2, (M(S2, 10))3,
M(S5, 20)

oil2 3.0 0/0/28 2.1 S2, (M(S2, 4))2,M(S2, 8),
M(S2, 10)

orth_d4m6_pl 90.5 0/0/38 0.3 M(S2, 38)
pedigree_sp_top4_250 11.8 0/0/100 158.0 S100
pedigree_sp_top4_300 19.7 0/0/119 196.7 S119
pedigree_sp_top5_200 5.5 0/0/76 111.3 S76
pedigree_sp_top5_250 10.3 0/0/100 158.0 S100
pooling_bental5pq 94.6 0/0/87 0.8 M(S3, 87)
pooling_bental5stp 95.8 0/0/114 0.8 M(S3, 114)
pooling_bental5tp 94.6 0/0/87 0.8 M(S3, 87)
power�ow2383wpr 0.1 0/0/24 0.6 (M(S2, 12))2

procurement1large 2.0 20/0/120 27.6 (S2)40, (S3)20

procurement1mot 3.1 2/0/22 4.9 (S2)6, (S3)4

procurement2mot 3.0 2/0/22 4.9 (S2)6, (S3)4

product 11.1 0/0/172 180.3 S90, (S2)11, (S3)2, S4,
(S5)2, S6, S14, 1 unknown

product2 64.8 128/0/1714 488.4 (M(S4, 88))2, S90,
(M(S4, 72))2, (S3)2, (S4)5,
(M(S4, 80))2,
(M(S4, 48))11, (S20)5,
(S21)2, (S12)2, (S8)21, S13,
(M(S4, 56))2,
(M(S4, 64))3, S17, 1
unknown

radar-2000-10-a-6_lat_7 76.4 1529/0/6116 2638.3 M(S12, 60),M(S51, 255),
M(S11, 55),
M(S635, 3175),M(S8, 40),
M(S21, 105),M(S5, 25),
(M(S30, 150))3,
(M(S9, 45))2,
(M(S16, 80))2,
(M(S26, 130))2,
M(S220, 1100),
(M(S33, 165))2,
M(S18, 90),M(S23, 115),
M(S37, 185),M(S44, 220),
(M(S34, 170))2,
M(S43, 215),M(S19, 95),
(M(S28, 140))2

radar-3000-10-a-8_lat_7 50.1 1504/0/6016 3416.2 M(S861, 4305),
M(S71, 355),
M(S315, 1575),
M(S257, 1285)

ringpack_10_2 25.0 20/0/0 57.5 M(S2, 20)
ringpack_20_2 17.0 40/0/0 385.9 M(S2, 40)
ringpack_20_3 100.0 213/0/40 445.5 1 unknown

risk2bpb 21.3 0/0/99 48.2 (S2)3, (S3)12, (S6)3,
(S13)3

routingdelay_bigm 3.2 8/0/28 3.6 (S2)10, (M(S2, 8))2

routingdelay_proj 3.2 8/0/28 3.6 (S2)10, (M(S2, 8))2

rsyn0815h 1.3 0/0/5 1.7 S2, S3
rsyn0815m 2.4 0/0/5 1.4 S2, S3
rsyn0815m02h 1.1 0/0/10 6.7 (S2)2, (S3)2

rsyn0815m02m 2.1 0/0/10 6.7 (S2)2, (S3)2

rsyn0815m03h 1.1 0/0/15 17.4 (S2)3, (S3)3

rsyn0815m03m 2.1 0/0/15 17.1 (S2)3, (S3)3

rsyn0815m04h 1.1 0/0/20 33.2 (S2)4, (S3)4

rsyn0815m04m 2.1 0/0/20 32.3 (S2)4, (S3)4
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a�ected vars formulation group

name % B/I/C log10|G| factors

sepasequ_complex 5.4 0/0/27 10.7 S2, (S5)3, S2 o S5
sporttournament10 4.3 2/0/0 0.3 S2
st_e09 66.7 0/0/2 0.3 S2
st_e18 100.0 0/0/2 0.3 S2
st_rv9 39.2 0/0/20 3.0 (S2)10

steenbrf 46.1 0/0/216 0.9 (M(S2, 72))3

super1 2.8 12/0/24 5.8 M(S3, 12), (S2)9, (S3)2

super2 2.4 8/0/24 4.9 (S2)9, (S3)2,M(S2, 8)
super3 1.8 0/0/24 4.3 (S2)9, (S3)2

super3t 2.3 0/0/24 4.3 (S2)9, (S3)2

syn15h 4.1 0/0/5 1.1 S2, S3
syn15m 9.1 0/0/5 1.1 S2, S3
syn15m02h 3.3 0/0/10 6.7 (S2)2, (S3)2

syn15m02m 5.9 0/0/10 6.7 (S2)2, (S3)2

syn15m03h 3.3 0/0/15 16.8 (S2)3, (S3)3

syn15m03m 5.9 0/0/15 16.8 (S2)3, (S3)3

syn15m04h 3.3 0/0/20 31.4 (S2)4, (S3)4

syn15m04m 5.9 0/0/20 31.4 (S2)4, (S3)4

synheat 6.9 0/0/4 1.4 S4
t1000 95.2 0/0/954 1934.7 (S2)5, S274, S381,

M(S2, 10), S279
topopt-cantilever_60x40_50 8.9 0/0/3000 451.2 (S2)1500

topopt-mbb_60x40_50 8.9 0/0/3000 451.2 (S2)1500

topopt-zhou-rozvany_75 28.6 0/0/400 60.2 (S2)200

torsion100 100.0 0/0/5308 0.3 M(S2, 5308)
torsion25 100.0 0/0/1408 0.3 M(S2, 1408)
torsion50 100.0 0/0/2708 0.6 1 unknown

torsion75 100.0 0/0/4008 0.3 M(S2, 4008)
transswitch2383wpr 0.1 4/0/24 0.6 (M(S2, 14))2

turkey 1.5 0/0/8 1.2 (S2)4

unitcommit_200_0_5_mod_7 2.3 0/0/647 350.9 (S2)19, (S3)4, (S4)6, (S5)2,
S10, (S6)5,M(S154, 462),
S7, (S11)2, (S8)4

unitcommit_200_100_1_mod_8 0.6 0/0/144 72.6 (S2)4, (S3)5, (S4)4, S5,
(S6)2, S10, (S7)3, (S11)2,
S8, (S9)3

unitcommit_200_100_2_mod_7 1.8 0/0/628 360.2 (S2)4,M(S161, 483),
(S3)4, (S4)3, (S5)5, (S6)2,
(S10)4, S7, S8, S12, S9

unitcommit_200_100_2_mod_8 0.6 0/0/145 73.4 (S2)4, (S3)4, (S4)3, (S5)5,
(S6)2, (S10)4, S7, S8, S12,
S9

unitcommit_50_20_2_mod_8 0.6 0/0/34 14.9 S2, S3, S4, S5, (S6)2, S8
wager 7.7 0/0/12 4.1 (S4)3

watercontamination0202r 4.1 0/0/8 0.3 M(S2, 8)
watercontamination0303r 2.1 0/0/8 0.3 M(S2, 8)
watertreatnd_�ow 8.6 0/0/36 5.4 (S2)18

waterund14 2.4 0/0/3 0.8 S3
waterund22 2.1 0/0/3 0.8 S3
waterund25 1.7 0/0/2 0.3 S2
waterund27 1.9 0/0/8 4.6 S8
waterund28 28.4 0/0/216 0.6 1 unknown

waterund36 1.2 0/0/4 1.4 S4
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Table A.2: List of symmetric instances in MINLPLib after presolving. Depicted are the proportion of
a�ected variables in %, the number of binary/integer/continuous variables that are a�ected (B/I/C),
the log10|G| of the size, and the type of each individual factor of the formulation group (factors).

a�ected vars formulation group

name % B/I/C log10|G| factors

arki0002 90.1 0/0/1392 5.7 (M(S6, 696))2

arki0005 0.2 0/0/2 0.3 S2
arki0006 0.2 0/0/2 0.3 S2
arki0008 1.8 0/0/50 64.5 S50
arki0016 0.1 0/0/5 2.1 S5
arki0017 1.0 0/0/42 2.1 (M(S2, 6))7

arki0018 19.8 0/0/1946 1056.8 S19, (S2)226, S29, (S3)72, (S4)47,
(S5)25, (S10)2, (S6)14, S20, (S7)13,
(S11)6, S30, (S8)6, (S12)3, S31,
(S9)10, (S13)3, S50, S23, (S14)3, S24,
S51, (S15)3, S25, S70, (S16)2

arki0024 9.1 0/0/176 4.1 (S2)10,M(S2, 66),M(S3, 90)
autocorr_bern20-03 95.2 20/0/0 0.9 M(S2 o S2, 20)
autocorr_bern20-05 95.2 20/0/0 0.3 M(S2, 20)
autocorr_bern20-10 95.2 20/0/0 0.3 M(S2, 20)
autocorr_bern20-15 95.2 20/0/0 0.3 M(S2, 20)
autocorr_bern25-03 92.3 24/0/0 0.6 (M(S2, 12))2

autocorr_bern25-06 92.3 24/0/0 0.3 M(S2, 24)
autocorr_bern25-13 92.3 24/0/0 0.3 M(S2, 24)
autocorr_bern25-19 92.3 24/0/0 0.3 M(S2, 24)
autocorr_bern25-25 92.3 24/0/0 0.3 M(S2, 24)
autocorr_bern30-04 96.8 30/0/0 0.3 M(S2, 30)
autocorr_bern30-08 96.8 30/0/0 0.3 M(S2, 30)
autocorr_bern30-15 96.8 30/0/0 0.3 M(S2, 30)
autocorr_bern30-23 96.8 30/0/0 0.3 M(S2, 30)
autocorr_bern30-30 96.8 30/0/0 0.3 M(S2, 30)
autocorr_bern35-04 94.4 34/0/0 0.3 M(S2, 34)
autocorr_bern35-09 94.4 34/0/0 0.3 M(S2, 34)
autocorr_bern35-18 94.4 34/0/0 0.3 M(S2, 34)
autocorr_bern35-26 94.4 34/0/0 0.3 M(S2, 34)
autocorr_bern35-35�x 94.4 34/0/0 0.3 M(S2, 34)
autocorr_bern40-05 97.6 40/0/0 0.3 M(S2, 40)
autocorr_bern40-10 97.6 40/0/0 0.3 M(S2, 40)
autocorr_bern40-20 97.6 40/0/0 0.3 M(S2, 40)
autocorr_bern40-30 97.6 40/0/0 0.3 M(S2, 40)
autocorr_bern40-40 97.6 40/0/0 0.3 M(S2, 40)
autocorr_bern45-05 95.7 44/0/0 0.3 M(S2, 44)
autocorr_bern45-11 95.7 44/0/0 0.3 M(S2, 44)
autocorr_bern45-23 95.7 44/0/0 0.3 M(S2, 44)
autocorr_bern45-34 95.7 44/0/0 0.3 M(S2, 44)
autocorr_bern45-45 95.7 44/0/0 0.3 M(S2, 44)
autocorr_bern50-06 98.0 50/0/0 0.3 M(S2, 50)
autocorr_bern50-13 98.0 50/0/0 0.3 M(S2, 50)
autocorr_bern50-25 98.0 50/0/0 0.3 M(S2, 50)
autocorr_bern55-06 96.4 54/0/0 0.3 M(S2, 54)
autocorr_bern55-14 96.4 54/0/0 0.3 M(S2, 54)
autocorr_bern55-28 96.4 54/0/0 0.3 M(S2, 54)
autocorr_bern60-08 98.4 60/0/0 0.3 M(S2, 60)
autocorr_bern60-15 98.4 60/0/0 0.3 M(S2, 60)
ball_mk2_10 100.0 0/10/0 6.6 S10
ball_mk2_30 100.0 0/30/0 32.4 S30
ball_mk3_10 100.0 3/0/0 0.8 S3
carton7 18.0 24/0/12 0.9 (M(S2, 12))3

carton9 6.5 12/0/4 0.3 M(S2, 16)
celar6-sub0 100.0 640/0/0 0.6 1 unknown

chp_partload 7.2 10/0/40 0.3 M(S2, 50)
chp_shorttermplan1b 31.2 96/0/288 0.3 M(S2, 384)
chp_shorttermplan2a 74.0 100/0/580 0.6 M(S2, 384),M(S2, 296)
chp_shorttermplan2c 93.1 108/0/1164 2.0 M(S4, 592),M(S2, 384),M(S2, 296)
chp_shorttermplan2d 85.2 296/0/1640 2.3 M(S4, 768),M(S2, 576),

(M(S2, 296))2

color_lab3_3x0 71.4 170/0/0 0.9 M(S2, 132),M(S2 × S2, 38)
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a�ected vars formulation group

name % B/I/C log10|G| factors

color_lab3_4x0 99.7 316/0/0 0.9 M(S2, 264), 1 unknown

crossdock_15x7 85.3 180/0/0 0.3 M(S2, 180)
crossdock_15x8 99.6 240/0/0 0.3 M(S2, 240)
crudeoil_li02 31.5 36/0/132 1.2 S2,M(S2, 54), (M(S2, 56))2

crudeoil_li06 21.5 28/0/152 0.3 M(S2, 180)
crudeoil_li21 22.2 40/0/186 0.3 M(S2, 226)
crudeoil_pooling_dt4 0.0 0/0/2 0.3 S2
cvxnonsep_normcon30 13.3 0/4/0 0.6 (S2)2

cvxnonsep_normcon30r 13.3 0/4/4 0.6 (M(S2, 4))2

cvxnonsep_normcon40 10.0 0/2/2 0.6 (S2)2

cvxnonsep_normcon40r 10.0 0/2/6 0.6 (M(S2, 4))2

cvxnonsep_psig20 14.3 0/0/3 0.8 S3
cvxnonsep_psig20r 14.6 0/0/6 0.8 M(S3, 6)
cvxnonsep_psig30 6.5 0/0/2 0.3 S2
cvxnonsep_psig30r 6.6 0/0/4 0.3 M(S2, 4)
cvxnonsep_psig40 19.5 0/4/4 1.2 (S2)4

cvxnonsep_psig40r 24.4 0/4/16 1.5 (M(S2, 4))5

densitymod 97.9 23040/0/0 73.3 M(S7, 2688),M(S53, 20352)
eigena2 100.0 0/0/2500 64.5 M(S50, 2500)
elec100 99.7 0/0/300 158.7 1 unknown

elec200 99.8 0/0/600 375.7 1 unknown

elec25 98.7 0/0/75 26.0 1 unknown

elec50 99.3 0/0/150 65.3 1 unknown

elf 101.9 24/0/30 0.8 M(S3, 54)
em�100_5_5 0.5 0/0/23 20.0 S2, S21
ex14_1_5 66.7 0/0/4 1.4 S4
ex2_1_3 50.0 0/0/4 0.3 M(S2, 4)
ex5_2_5 81.8 0/0/27 0.8 M(S3, 27)
ex8_1_6 66.7 0/0/2 0.3 S2
ex8_3_1 95.5 0/0/105 2.1 1 unknown

ex8_3_11 95.5 0/0/105 2.1 1 unknown

ex8_3_12 95.7 0/0/110 2.1 1 unknown

ex8_3_13 95.5 0/0/105 2.1 1 unknown

ex8_3_14 95.2 0/0/100 2.1 1 unknown

ex8_3_2 94.7 0/0/90 2.1 1 unknown

ex8_3_3 94.7 0/0/90 2.1 1 unknown

ex8_3_4 94.7 0/0/90 2.1 1 unknown

ex8_3_5 94.7 0/0/90 2.1 1 unknown

ex8_3_7 93.8 0/0/105 2.1 1 unknown

ex8_3_8 95.5 0/0/105 2.1 1 unknown

ex8_3_9 95.9 0/0/70 2.1 1 unknown

ex8_4_6 40.0 0/0/6 0.8 M(S3, 6)
ex8_6_1 90.0 0/0/63 3.7 1 unknown

ex8_6_2 84.0 0/0/21 3.7 M(S7, 21)
ex9_1_8 33.3 0/0/2 0.3 S2
ex9_2_2 28.6 0/0/2 0.3 S2
ex9_2_6 92.3 0/0/12 1.2 S2 o S2,M(S2, 8)
gabriel04 18.6 0/0/64 0.6 (M(S2, 32))2

gams03 95.0 380/1881/0 4.8 M(S5, 595), (M(S2, 238))4,
(M(S3, 357))2

gasnet_al1 6.7 4/0/20 0.6 M(S2, 14),M(S2, 10)
gasnet_al2 6.6 4/0/20 0.6 M(S2, 14),M(S2, 10)
gasnet_al3 6.7 4/0/20 0.6 M(S2, 14),M(S2, 10)
gasnet_al4 6.7 4/0/20 0.6 M(S2, 14),M(S2, 10)
gasnet_al5 6.7 4/0/20 0.6 M(S2, 14),M(S2, 10)
gastrans135 0.9 0/0/4 0.6 (S2)2

gastrans582_cold13 3.2 0/0/20 2.1 (S2)4, (M(S2, 4))3

gastrans582_cold13_95 3.2 0/0/20 2.1 (S2)4, (M(S2, 4))3

gastrans582_cold17 3.2 0/0/20 2.1 (S2)4, (M(S2, 4))3

gastrans582_cold17_95 3.2 0/0/20 2.1 (S2)4, (M(S2, 4))3

gastrans582_cool12 3.5 0/0/22 2.4 (S2)5, (M(S2, 4))3

gastrans582_cool12_95 3.5 0/0/22 2.4 (S2)5, (M(S2, 4))3

gastrans582_cool14 3.5 0/0/22 2.4 (S2)5, (M(S2, 4))3

gastrans582_cool14_95 3.5 0/0/22 2.4 (S2)5, (M(S2, 4))3

gastrans582_freezing27 3.6 0/0/22 2.4 (S2)5, (M(S2, 4))3

gastrans582_freezing27_95 3.6 0/0/22 2.4 (S2)5, (M(S2, 4))3

gastrans582_freezing30 3.6 0/0/22 2.4 (S2)5, (M(S2, 4))3
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a�ected vars formulation group

name % B/I/C log10|G| factors

gastrans582_freezing30_95 3.6 0/0/22 2.4 (S2)5, (M(S2, 4))3

gastrans582_mild10 3.2 0/0/20 2.1 (S2)4, (M(S2, 4))3

gastrans582_mild10_95 3.2 0/0/20 2.1 (S2)4, (M(S2, 4))3

gastrans582_mild11 3.5 0/0/22 2.4 (S2)5, (M(S2, 4))3

gastrans582_mild11_95 3.5 0/0/22 2.4 (S2)5, (M(S2, 4))3

gastrans582_warm15 2.9 0/0/18 1.8 (S2)3, (M(S2, 4))3

gastrans582_warm15_95 2.9 0/0/18 1.8 (S2)3, (M(S2, 4))3

gastrans582_warm31 2.9 0/0/18 1.8 (S2)3, (M(S2, 4))3

gastrans582_warm31_95 2.9 0/0/18 1.8 (S2)3, (M(S2, 4))3

gear 80.0 0/4/0 0.6 (S2)2

gear2 96.6 24/0/4 0.6 (M(S2, 14))2

gear3 80.0 0/4/0 0.6 (S2)2

gear4 66.7 0/4/0 0.6 (S2)2

graphpart_2g-0044-1601 104.3 48/0/0 0.8 M(S3, 48)
graphpart_2g-0055-0062 98.7 75/0/0 0.8 M(S3, 75)
graphpart_2g-0066-0066 99.1 108/0/0 0.8 M(S3, 108)
graphpart_2g-0077-0077 99.3 147/0/0 0.8 M(S3, 147)
graphpart_2g-0088-0088 99.5 192/0/0 0.8 M(S3, 192)
graphpart_2g-0099-9211 99.6 243/0/0 0.8 M(S3, 243)
graphpart_2g-1010-0824 99.7 300/0/0 0.8 M(S3, 300)
graphpart_2pm-0044-0044 104.3 48/0/0 0.8 M(S3, 48)
graphpart_2pm-0055-0055 98.7 75/0/0 0.8 M(S3, 75)
graphpart_2pm-0066-0066 99.1 108/0/0 0.8 M(S3, 108)
graphpart_2pm-0077-0777 99.3 147/0/0 0.8 M(S3, 147)
graphpart_2pm-0088-0888 99.5 192/0/0 0.8 M(S3, 192)
graphpart_2pm-0099-0999 99.6 243/0/0 0.8 M(S3, 243)
graphpart_3g-0234-0234 98.6 72/0/0 0.8 M(S3, 72)
graphpart_3g-0244-0244 99.0 96/0/0 0.8 M(S3, 96)
graphpart_3g-0333-0333 98.8 81/0/0 0.8 M(S3, 81)
graphpart_3g-0334-0334 99.1 108/0/0 0.8 M(S3, 108)
graphpart_3g-0344-0344 99.3 144/0/0 0.8 M(S3, 144)
graphpart_3g-0444-0444 99.5 192/0/0 0.8 M(S3, 192)
graphpart_3pm-0234-0234 98.6 72/0/0 0.8 M(S3, 72)
graphpart_3pm-0244-0244 99.0 96/0/0 0.8 M(S3, 96)
graphpart_3pm-0333-0333 98.8 81/0/0 0.8 M(S3, 81)
graphpart_3pm-0334-0334 99.1 108/0/0 0.8 M(S3, 108)
graphpart_3pm-0344-0344 99.3 144/0/0 0.8 M(S3, 144)
graphpart_3pm-0444-0444 99.5 192/0/0 0.8 M(S3, 192)
graphpart_clique-20 98.4 60/0/0 1.1 1 unknown

graphpart_clique-30 98.9 90/0/0 1.1 1 unknown

graphpart_clique-40 99.2 120/0/0 1.1 1 unknown

graphpart_clique-50 99.3 150/0/0 1.1 1 unknown

graphpart_clique-60 99.4 180/0/0 1.1 1 unknown

graphpart_clique-70 99.5 210/0/0 1.1 1 unknown

hadamard_4 94.1 16/0/0 2.8 1 unknown

hadamard_5 96.2 25/0/0 4.2 1 unknown

hadamard_6 97.3 36/0/0 5.7 1 unknown

hadamard_7 98.0 49/0/0 7.4 1 unknown

hadamard_8 98.5 64/0/0 9.2 1 unknown

hmittelman 46.2 6/0/0 0.9 (S2)3

iswath2 2.1 0/0/134 99.0 S54, (S4)20

ivalues 98.5 0/200/0 0.6 (M(S2, 100))2

jbearing100 100.0 0/0/5000 0.3 M(S2, 5000)
jbearing25 95.9 0/0/1200 0.3 M(S2, 1200)
jbearing50 100.0 0/0/2500 0.3 M(S2, 2500)
jbearing75 98.6 0/0/3700 0.3 M(S2, 3700)
kissing2 96.2 0/0/744 144.1 M(S93, 744)
knp3-12 97.3 0/0/36 9.5 1 unknown

knp4-24 99.0 0/0/96 25.2 1 unknown

knp5-40 99.5 0/0/200 50.0 1 unknown

knp5-41 99.5 0/0/205 51.6 1 unknown

knp5-42 99.5 0/0/210 53.2 1 unknown

knp5-43 99.5 0/0/215 54.9 1 unknown

knp5-44 99.5 0/0/220 56.5 1 unknown

kport20 56.1 5/17/33 2.0 M(S3, 15), (M(S2, 10))4

kport40 69.1 15/46/89 10.1 M(S2, 14),M(S3, 15),
(M(S3, 21))4,M(S2, 10),M(S9, 27)
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a�ected vars formulation group

name % B/I/C log10|G| factors

lop97icx 3.4 0/0/6 0.9 (S2)3

maxcsp-ehi-85-297-12 2.3 48/0/0 1.2 (M(S2, 12))4

maxcsp-ehi-85-297-36 2.0 41/0/0 1.4 M(S2, 14),M(S3, 15),M(S2, 12)
maxcsp-ehi-85-297-71 1.2 24/0/0 0.6 (M(S2, 12))4

maxcsp-ehi-90-315-70 0.5 12/0/0 0.3 (M(S2, 12))2

maxcsp-langford-3-11 98.1 616/0/0 0.3 M(S2, 616)
maxmin 96.0 0/0/24 9.0 1 unknown

mbtd 101.0 200/0/10 1.3 M(S2, 100), 1 unknown

nd_netgen-2000-3-4-b-a-ns_7 0.1 2/0/5 1.1 S3,M(S2, 4)
netmod_dol1 99.9 462/0/1524 15.4 1 unknown

netmod_kar1 99.8 136/0/312 4.1 1 unknown

netmod_kar2 99.8 136/0/312 4.1 1 unknown

nuclear104 83.9 10816/0/91 9.8 M(S13, 10907)
nuclear14 60.2 576/0/18 2.9 M(S6, 594)
nuclear25 61.3 625/0/20 2.1 M(S5, 645)
nuclear49 73.3 2401/0/42 3.7 M(S7, 2443)
nuclearva 46.8 144/0/9 0.8 M(S3, 153)
nuclearvb 46.8 144/0/9 0.8 M(S3, 153)
nuclearvc 46.8 144/0/9 0.8 M(S3, 153)
nuclearvd 46.8 144/0/9 0.8 M(S3, 153)
nuclearve 46.8 144/0/9 0.8 M(S3, 153)
nuclearvf 46.8 144/0/9 0.8 M(S3, 153)
nvs09 90.9 0/10/0 6.6 S10
oil 16.1 0/0/102 13.2 (M(S3, 6))2, (S2)16, S4,

(M(S2, 4))2,M(S5, 10),M(S4, 8),
M(S4, 28)

oil2 3.6 0/0/14 1.2 S2, (M(S2, 4))3

orth_d4m6_pl 90.5 0/0/38 0.3 M(S2, 38)
pooling_bental5pq 94.6 0/0/87 0.8 M(S3, 87)
pooling_bental5stp 95.8 0/0/114 0.8 M(S3, 114)
pooling_bental5tp 94.6 0/0/87 0.8 M(S3, 87)
power�ow2383wpp 0.1 0/0/16 0.6 (M(S2, 8))2

power�ow2383wpr 0.1 0/0/16 0.6 (M(S2, 8))2

procurement1large 3.1 0/0/94 18.7 (S2)26, (S3)14

procurement1mot 4.1 0/0/10 1.5 (S2)5

procurement2mot 3.8 0/0/10 1.5 (S2)5

product 1.9 0/0/9 2.7 (S2)2, S5
product2 87.2 128/0/528 262.6 (M(S4, 24))3, (M(S4, 48))2, S20,

(S8)3, S12, (M(S4, 60))2, (S24)7,
(M(S4, 12))2, (S16)3, (M(S4, 36))2

radar-2000-10-a-6_lat_7 76.41529/0/3058 2638.3 M(S43, 129), (M(S33, 99))2,
M(S44, 132),M(S635, 1905),
(M(S34, 102))2,M(S11, 33),
M(S12, 36),M(S18, 54),
M(S51, 153),M(S19, 57),
M(S220, 660), (M(S16, 48))2,
M(S21, 63),M(S37, 111),
(M(S28, 84))2,M(S23, 69),
M(S8, 24), (M(S30, 90))3,
(M(S9, 27))2, (M(S26, 78))2,
M(S5, 15)

radar-3000-10-a-8_lat_7 50.11504/0/3008 3416.2 M(S71, 213),M(S315, 945),
M(S861, 2583),M(S257, 771)

ringpack_10_2 25.3 20/0/0 0.3 M(S2, 20)
ringpack_20_2 17.1 40/0/0 0.3 M(S2, 40)
ringpack_20_3 100.4 213/0/40 8.7 1 unknown

ringpack_30_2 13.0 60/0/0 0.3 M(S2, 60)
routingdelay_bigm 2.0 4/0/4 1.2 (S2)4

routingdelay_proj 4.6 4/0/20 3.6 (S2)12

rsyn0815m 5.3 0/0/5 1.1 S2, S3
rsyn0815m02m 3.9 0/0/10 2.2 (S2)2, (S3)2

rsyn0815m03m 3.8 0/0/15 3.2 (S2)3, (S3)3

rsyn0815m04m 3.7 0/0/20 4.3 (S2)4, (S3)4

sepasequ_complex 3.3 0/0/12 3.9 S2, S2 o S5
sporttournament10 4.3 2/0/0 0.3 S2
st_e09 66.7 0/0/2 0.3 S2
st_e18 100.0 0/0/2 0.3 S2
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a�ected vars formulation group

name % B/I/C log10|G| factors

st_qpc-m3c 90.9 0/0/10 1.5 (S2)5

st_rv9 39.2 0/0/20 3.0 (S2)10

steenbrf 46.1 0/0/216 0.9 (M(S2, 72))3

syn15m 11.9 0/0/5 1.1 S2, S3
t1000 95.2 0/0/954 1934.7 (S2)5, S274, S381,M(S2, 10), S279
tln2 100.0 0/6/0 0.3 M(S2, 6)
topopt-zhou-rozvany_75 28.6 0/0/400 60.2 (S2)200

torsion100 100.0 0/0/5002 0.9 S2,M(S2 × S2, 5000)
torsion25 100.0 0/0/1252 0.9 S2, 1 unknown

torsion50 100.0 0/0/2502 1.2 S2, 1 unknown

torsion75 100.0 0/0/3752 0.9 S2, 1 unknown

transswitch2383wpp 0.1 4/0/16 0.6 (M(S2, 10))2

turkey 2.0 0/0/8 1.2 (S2)4

util 5.9 2/0/0 0.3 S2
waste 3.1 0/0/38 8.3 (S2)7, (S3)8

watercontamination0202 1.5 0/0/4 0.3 M(S2, 4)
watercontamination0303 1.0 0/0/4 0.3 M(S2, 4)
waterno2_01 45.9 0/0/28 0.6 (M(S2, 14))2

waterno2_02 25.7 0/0/28 0.6 (M(S2, 14))2

waterund28 28.6 0/0/212 0.6 1 unknown
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Appendix B

Detailed Computational Results

Table B.1: Detailed results for variant default on M-sym-all. Depicted are the number of nodes
(#nodes), the total CPU time in seconds (total-time), the remaining gap at the time limit as re-
ported by SCIP (gap), the number of added SBCs (#sbcs), and the time for symmetry computating
and handling in seconds (sym-time). If the gap is not displayed despite the problem hitting the
time limit, then SCIP reported either "Large" or "in�nite" as gap.

name #nodes total-time gap #sbcs sym-time

arki0002 24 limit - - -
arki0005 439 limit - - -
arki0006 97 limit - - -
arki0008 1 32.87 - - -
arki0016 8,950 limit - - -
arki0017 10,327 limit 995.85 - -
arki0018 2 limit - - -
autocorr_bern20-03 1 0.02 - - -
autocorr_bern20-05 35,724 60.21 - - -
autocorr_bern20-10 189,870 1,224.42 - - -
autocorr_bern20-15 204,468 2,638.87 - - -
autocorr_bern25-03 1 0.02 - - -
autocorr_bern25-06 1,251,262 limit 21.67 - -
autocorr_bern25-13 96,256 limit 103.70 - -
autocorr_bern25-19 36,317 limit 267.08 - -
autocorr_bern25-25 20,061 limit 417.52 - -
autocorr_bern30-04 1,914,925 2,897.03 - - -
autocorr_bern30-08 234,553 limit 189.53 - -
autocorr_bern30-15 28,016 limit 305.74 - -
autocorr_bern30-23 5,427 limit 527.73 - -
autocorr_bern30-30 3,166 limit 782.57 - -
autocorr_bern35-04 859,563 limit 58.07 - -
autocorr_bern35-09 78,039 limit 371.35 - -
autocorr_bern35-18 4,383 limit 495.41 - -
autocorr_bern35-26 2,091 limit 805.50 - -
autocorr_bern35-35�x 1,791 limit 981.77 - -
autocorr_bern40-05 356,042 limit 195.02 - -
autocorr_bern40-10 38,276 limit 530.93 - -
autocorr_bern40-20 1,985 limit 725.06 - -
autocorr_bern40-30 1,075 limit 924.50 - -
autocorr_bern40-40 1,295 limit 1,077.95 - -
autocorr_bern45-05 249,290 limit 234.12 - -
autocorr_bern45-11 17,443 limit 686.73 - -
autocorr_bern45-23 1,388 limit 881.57 - -
autocorr_bern45-34 827 limit 1,103.40 - -
autocorr_bern45-45 795 limit 1,212.30 - -
autocorr_bern50-06 126,523 limit 430.15 - -
autocorr_bern50-13 6,979 limit 745.06 - -
autocorr_bern50-25 889 limit 1,031.93 - -
autocorr_bern55-06 112,692 limit 441.52 - -
autocorr_bern55-14 2,963 limit 932.52 - -
autocorr_bern55-28 664 limit 1,158.56 - -
autocorr_bern60-08 28,194 limit 714.08 - -
autocorr_bern60-15 2,350 limit 1,010.90 - -
ball_mk2_10 1 0.00 - - -
ball_mk2_30 3,884,971 3,319.32 - - -
ball_mk3_10 0 0.01 - - -
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name #nodes total-time gap #sbcs sym-time

carton7 345,039 903.75 - - -
carton9 739,244 limit 61.40 - -
celar6-sub0 1,531 limit - - -
chp_partload 683 limit - - -
chp_shorttermplan1b 28,571 limit 5.72 - -
chp_shorttermplan2a 541 149.30 - - -
chp_shorttermplan2c 18,529 limit - - -
color_lab3_3x0 57,584 limit 694.88 - -
color_lab3_4x0 44,923 limit 1,284.98 - -
crossdock_15x7 61,895 limit 595.15 - -
crossdock_15x8 52,112 limit 1,701.34 - -
crudeoil_li02 1,690,305 limit 1.13 - -
crudeoil_li06 20,619 392.00 - - -
crudeoil_li21 182,940 limit 2.04 - -
crudeoil_pooling_dt4 20,874 limit 8.16 - -
cvxnonsep_normcon30 1 0.11 - - -
cvxnonsep_normcon30r 1 0.10 - - -
cvxnonsep_normcon40 1 0.14 - - -
cvxnonsep_normcon40r 10 0.43 - - -
cvxnonsep_psig20 8,165,216 limit 231.12 - -
cvxnonsep_psig20r 1 0.15 - - -
cvxnonsep_psig30 7,384,054 limit 155.14 - -
cvxnonsep_psig30r 68 1.00 - - -
cvxnonsep_psig40 6,800,441 limit 113.51 - -
cvxnonsep_psig40r 51 0.96 - - -
densitymod 2,443 limit - - -
eigena2 1 limit - - -
elec100 1,387 limit - - -
elec200 1 limit - - -
elec25 55,730 limit - - -
elec50 15,684 limit - - -
elf 254 1.96 - - -
em�100_5_5 3,151 limit - - -
ex14_1_5 1 0.01 - - -
ex2_1_3 1 0.17 - - -
ex5_2_5 1 1.00 - - -
ex8_1_6 17 0.15 - - -
ex8_3_1 718,916 limit 23.00 - -
ex8_3_11 565,310 limit 30.77 - -
ex8_3_13 383,219 limit 16.86 - -
ex8_3_2 658,346 limit 42.73 - -
ex8_3_3 681,244 limit 39.22 - -
ex8_3_4 606,268 limit 62.01 - -
ex8_3_5 652,718 limit 1,496.29 - -
ex8_3_7 59 limit - - -
ex8_3_8 127,806 limit 207.11 - -
ex8_3_9 795,578 limit 31.06 - -
ex8_4_6 3 limit - - -
ex8_6_1 1 limit - - -
ex9_1_8 1 0.00 - - -
ex9_2_2 1 0.14 - - -
ex9_2_6 1 0.11 - - -
gabriel04 8,108 329.06 - - -
gams03 1 limit - - -
gastrans582_cold13 22 33.83 - - -
gastrans582_cold13_95 35 25.47 - - -
gastrans582_cold17 47 37.88 - - -
gastrans582_cold17_95 115 42.50 - - -
gastrans582_cool12 38 30.21 - - -
gastrans582_cool12_95 30 41.69 - - -
gastrans582_cool14 34 35.30 - - -
gastrans582_cool14_95 26 29.95 - - -
gastrans582_freezing27 0 22.42 - - -
gastrans582_freezing27_95 1 36.80 - - -
gastrans582_freezing30 22 44.60 - - -
gastrans582_freezing30_95 5 32.23 - - -
gastrans582_mild10 17 29.91 - - -
gastrans582_mild10_95 47 29.43 - - -
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name #nodes total-time gap #sbcs sym-time

gastrans582_mild11 63 37.16 - - -
gastrans582_mild11_95 31 37.12 - - -
gastrans582_warm15 1 17.80 - - -
gastrans582_warm15_95 20 28.08 - - -
gastrans582_warm31 35 38.94 - - -
gastrans582_warm31_95 65 30.87 - - -
gear 26,844 18.68 - - -
gear2 37,733 21.81 - - -
gear3 27,844 19.48 - - -
gear4 1,268 0.45 - - -
graphpart_2g-0044-1601 1 0.33 - - -
graphpart_2g-0055-0062 15 1.46 - - -
graphpart_2g-0066-0066 23 2.93 - - -
graphpart_2g-0077-0077 305 7.04 - - -
graphpart_2g-0088-0088 71 9.52 - - -
graphpart_2g-0099-9211 332 17.46 - - -
graphpart_2g-1010-0824 45 13.69 - - -
graphpart_2pm-0044-0044 10 1.25 - - -
graphpart_2pm-0055-0055 39 1.97 - - -
graphpart_2pm-0066-0066 186 3.72 - - -
graphpart_2pm-0077-0777 195 5.35 - - -
graphpart_2pm-0088-0888 113 7.82 - - -
graphpart_2pm-0099-0999 6,712 85.56 - - -
graphpart_3g-0234-0234 29 2.36 - - -
graphpart_3g-0244-0244 36 5.13 - - -
graphpart_3g-0333-0333 20 3.60 - - -
graphpart_3g-0334-0334 287 6.44 - - -
graphpart_3g-0344-0344 261 9.57 - - -
graphpart_3g-0444-0444 7,694 120.45 - - -
graphpart_3pm-0234-0234 204 2.62 - - -
graphpart_3pm-0244-0244 752 5.93 - - -
graphpart_3pm-0333-0333 1,044 6.97 - - -
graphpart_3pm-0334-0334 3,675 22.85 - - -
graphpart_3pm-0344-0344 21,755 142.66 - - -
graphpart_3pm-0444-0444 514,592 limit 6.15 - -
graphpart_clique-20 2,106 18.03 - - -
graphpart_clique-30 51,613 655.53 - - -
graphpart_clique-40 173,325 limit 31.74 - -
graphpart_clique-50 31,179 limit 229.29 - -
graphpart_clique-60 21,557 limit 705.30 - -
graphpart_clique-70 12,286 limit 597.77 - -
hadamard_4 173 0.56 - - -
hadamard_5 121,260 176.12 - - -
hadamard_6 105,001 limit 965.33 - -
hadamard_7 2,571 limit 136,825.00 - -
hadamard_8 13 limit - - -
hmittelman 1 0.03 - - -
ivalues 72,272 limit 409.38 - -
kissing2 1 909.72 - - -
knp3-12 123,860 limit 197.28 - -
knp4-24 5,991 limit 485.79 - -
knp5-40 1,885 limit 770.96 - -
knp5-41 2,185 limit 811.31 - -
knp5-42 2,139 limit 807.71 - -
knp5-43 2,367 limit 765.37 - -
knp5-44 841 limit 763.42 - -
kport20 153,400 717.51 - - -
lop97icx 2,083 24.25 - - -
maxcsp-ehi-85-297-12 264 limit - - -
maxcsp-ehi-85-297-36 294 limit - - -
maxcsp-ehi-85-297-71 256 limit - - -
maxcsp-ehi-90-315-70 201 limit - - -
maxcsp-langford-3-11 26,758 limit - - -
maxmin 107,240 limit 73.33 - -
mbtd 1,971 limit 165.63 - -
netmod_dol1 4,151 limit 64.95 - -
netmod_kar1 3,757 117.01 - - -
netmod_kar2 3,757 117.14 - - -
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name #nodes total-time gap #sbcs sym-time

nuclear14 30 limit - - -
nuclear25 15 limit - - -
nuclear49 21 limit - - -
nuclearva 22 limit - - -
nuclearvb 111 limit - - -
nuclearvc 212 limit - - -
nuclearvd 287 limit - - -
nuclearve 59 limit - - -
nuclearvf 66 limit - - -
nvs09 614 1.47 - - -
oil2 118 27.58 - - -
orth_d4m6_pl 430,653 limit 168.62 - -
pooling_bental5pq 1 0.17 - - -
pooling_bental5stp 40 2.10 - - -
pooling_bental5tp 1 0.13 - - -
power�ow2383wpp 1 limit - - -
power�ow2383wpr 1 limit - - -
procurement1large 96,632 limit 375.14 - -
procurement1mot 838,722 limit 491.08 - -
procurement2mot 167 4.45 - - -
product 990 87.65 - - -
product2 1 14.16 - - -
radar-2000-10-a-6_lat_7 15,896 limit 138.30 - -
radar-3000-10-a-8_lat_7 12,097 limit 10,110.83 - -
ringpack_10_2 128,530 limit 3.95 - -
ringpack_20_2 8,185 limit 233.33 - -
ringpack_20_3 26,531 limit 82.91 - -
ringpack_30_2 61 limit 1,400.00 - -
rsyn0815m 151 1.06 - - -
rsyn0815m02m 1,397 13.55 - - -
rsyn0815m03m 1,949 22.54 - - -
rsyn0815m04m 6,390 77.33 - - -
sepasequ_complex 62,343 limit 62.94 - -
sporttournament10 1 0.70 - - -
st_e09 1 0.03 - - -
st_e18 1 0.00 - - -
st_qpc-m3c 1 0.02 - - -
st_rv9 1,791 3.22 - - -
syn15m 1 0.33 - - -
t1000 0 0.18 - - -
tln2 1 0.01 - - -
topopt-zhou-rozvany_75 464 limit - - -
torsion100 20 limit 380.39 - -
torsion25 1 limit 319.02 - -
torsion50 16 limit 373.99 - -
turkey 1 19.78 - - -
util 15 0.23 - - -
waste 101 limit 118.63 - -
watercontamination0202 19 107.23 - - -
waterund28 10,038 limit 7.76 - -

Table B.2: Detailed results for variant S on M-sym-all. Depicted are the number of nodes
(#nodes), the total CPU time in seconds (total-time), the remaining gap at the time limit as re-
ported by SCIP (gap), the number of added SBCs (#sbcs), and the time for symmetry computating
and handling in seconds (sym-time). If the gap is not displayed despite the problem hitting the
time limit, then SCIP reported either "Large" or "in�nite" as gap.

name #nodes total-time gap #sbcs sym-time

arki0002 1 limit - 10 0.02
arki0005 439 limit - - 0.05
arki0006 97 limit - - 0.05
arki0008 1 56.94 - 49 0.02
arki0016 8,100 limit - 4 0.02
arki0017 9,880 limit 989.38 7 0.02
arki0018 1 limit - 1,500 11.26
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name #nodes total-time gap #sbcs sym-time

autocorr_bern20-03 1 0.03 - 3 0.00
autocorr_bern20-05 51,135 78.52 - 1 0.00
autocorr_bern20-10 178,610 1,165.82 - 1 0.00
autocorr_bern20-15 199,585 2,654.88 - 1 0.01
autocorr_bern25-03 1 0.03 - 2 0.00
autocorr_bern25-06 1,299,056 limit 27.50 1 0.00
autocorr_bern25-13 81,901 limit 123.16 1 0.01
autocorr_bern25-19 34,835 limit 248.45 1 0.02
autocorr_bern25-25 14,128 limit 395.34 1 0.01
autocorr_bern30-04 1,576,889 2,369.11 - 1 0.01
autocorr_bern30-08 187,993 limit 202.81 1 0.01
autocorr_bern30-15 31,798 limit 337.93 1 0.02
autocorr_bern30-23 5,075 limit 577.67 1 0.03
autocorr_bern30-30 3,331 limit 715.09 1 0.03
autocorr_bern35-04 723,324 limit 73.44 1 0.00
autocorr_bern35-09 89,577 limit 362.86 1 0.00
autocorr_bern35-18 5,020 limit 523.06 1 0.03
autocorr_bern35-26 2,316 limit 753.41 1 0.05
autocorr_bern35-35�x 2,152 limit 1,023.68 1 0.05
autocorr_bern40-05 382,288 limit 184.05 1 0.00
autocorr_bern40-10 36,234 limit 539.29 1 0.01
autocorr_bern40-20 2,281 limit 730.04 1 0.02
autocorr_bern40-30 1,030 limit 961.25 1 0.08
autocorr_bern40-40 1,029 limit 1,096.93 1 0.11
autocorr_bern45-05 264,890 limit 232.04 1 0.00
autocorr_bern45-11 16,016 limit 688.66 1 0.02
autocorr_bern45-23 1,407 limit 870.30 1 0.05
autocorr_bern45-34 1,067 limit 1,052.60 1 0.11
autocorr_bern45-45 726 limit 1,238.79 1 0.13
autocorr_bern50-06 129,307 limit 417.01 1 0.00
autocorr_bern50-13 6,709 limit 862.03 1 0.02
autocorr_bern50-25 844 limit 1,028.12 1 0.10
autocorr_bern55-06 105,194 limit 446.02 1 0.01
autocorr_bern55-14 2,970 limit 929.77 1 0.03
autocorr_bern55-28 737 limit 1,122.54 1 0.13
autocorr_bern60-08 31,553 limit 708.34 1 0.01
autocorr_bern60-15 2,738 limit 1,115.49 1 0.04
ball_mk2_10 1 0.00 - 9 0.00
ball_mk2_30 1 0.02 - 29 0.00
ball_mk3_10 0 0.01 - - 0.00
carton7 231,293 583.91 - 3 0.00
carton9 827,919 limit 60.55 1 0.01
celar6-sub0 1,393 limit - 3 0.21
chp_partload 594 limit - 1 0.03
chp_shorttermplan1b 50,326 limit 6.80 1 0.02
chp_shorttermplan2a 441 129.43 - 2 0.03
chp_shorttermplan2c 23,771 limit - 5 0.35
color_lab3_3x0 52,768 limit 555.55 4 0.01
color_lab3_4x0 39,319 limit 1,257.62 4 0.01
crossdock_15x7 66,311 limit 463.06 1 0.01
crossdock_15x8 53,833 limit 1,759.14 1 0.01
crudeoil_li02 1,546,195 limit 1.13 3 0.00
crudeoil_li06 108,420 1,522.29 - 1 0.00
crudeoil_li21 166,926 limit 1.93 1 0.00
crudeoil_pooling_dt4 39,600 limit - - 0.00
cvxnonsep_normcon30 1 0.10 - 2 0.00
cvxnonsep_normcon30r 1 0.12 - 2 0.00
cvxnonsep_normcon40 1 0.05 - 2 0.00
cvxnonsep_normcon40r 29 0.67 - 2 0.00
cvxnonsep_psig20 8,320,026 limit 228.77 2 0.00
cvxnonsep_psig20r 1 0.16 - 2 0.00
cvxnonsep_psig30 7,296,791 limit 155.01 1 0.00
cvxnonsep_psig30r 87 0.96 - 1 0.00
cvxnonsep_psig40 6,278,508 limit 113.45 4 0.00
cvxnonsep_psig40r 22 0.86 - 5 0.00
densitymod 4,241 limit - 58 4.38
eigena2 1 limit - 49 1.15
elec100 1 limit - 299 1.79
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name #nodes total-time gap #sbcs sym-time

elec200 1 limit - 599 26.18
elec25 4,407 limit - 74 0.02
elec50 1 limit - 149 0.20
elf 47 1.58 - 2 0.00
em�100_5_5 41 limit 32,331.87 21 0.04
ex14_1_5 1 0.02 - 3 0.00
ex2_1_3 1 0.20 - 1 0.00
ex5_2_5 1 1.17 - 2 0.00
ex8_1_6 17 0.16 - 1 0.00
ex8_3_1 372,917 limit 23.00 4 0.00
ex8_3_11 436,514 limit 25.07 4 0.00
ex8_3_13 305,588 limit 15.67 4 0.00
ex8_3_2 488,518 limit 40.66 4 0.00
ex8_3_3 554,861 limit 39.22 4 0.00
ex8_3_4 482,282 limit 62.01 4 0.00
ex8_3_5 504,187 limit 1,496.29 4 0.00
ex8_3_7 26 limit - 4 0.00
ex8_3_8 123,120 limit 207.11 4 0.00
ex8_3_9 698,909 limit 31.06 4 0.00
ex8_4_6 5 limit - 2 0.00
ex8_6_1 1,391 limit - 6 0.00
ex9_1_8 1 0.00 - 1 0.00
ex9_2_2 1 0.14 - 1 0.00
ex9_2_6 1 0.11 - 4 0.00
gabriel04 4,837 251.45 - 2 0.00
gams03 1 limit - 12 1.57
gastrans582_cold13 1 14.98 - 2 0.00
gastrans582_cold13_95 16 25.53 - 2 0.00
gastrans582_cold17 41 30.73 - 1 0.01
gastrans582_cold17_95 32 27.78 - 1 0.01
gastrans582_cool12 1 16.64 - 2 0.00
gastrans582_cool12_95 31 47.71 - 2 0.01
gastrans582_cool14 77 55.02 - 2 0.00
gastrans582_cool14_95 22 39.45 - 2 0.01
gastrans582_freezing27 1 28.62 - 1 0.00
gastrans582_freezing27_95 1 33.68 - 1 0.01
gastrans582_freezing30 21 43.96 - 1 0.00
gastrans582_freezing30_95 25 29.32 - 1 0.00
gastrans582_mild10 29 37.09 - 2 0.01
gastrans582_mild10_95 18 27.11 - 2 0.00
gastrans582_mild11 5,014 286.29 - 2 0.00
gastrans582_mild11_95 13 37.66 - 2 0.00
gastrans582_warm15 7 23.89 - 2 0.01
gastrans582_warm15_95 27 25.08 - 2 0.00
gastrans582_warm31 12 36.71 - 2 0.00
gastrans582_warm31_95 22 22.93 - 2 0.00
gear 7,756 5.65 - 2 0.00
gear2 32,993 22.30 - 2 0.00
gear3 7,832 5.91 - 2 0.00
gear4 822 0.40 - 2 0.00
graphpart_2g-0044-1601 1 0.31 - 2 0.01
graphpart_2g-0055-0062 167 2.20 - 2 0.00
graphpart_2g-0066-0066 9 2.44 - 2 0.00
graphpart_2g-0077-0077 19 3.26 - 2 0.00
graphpart_2g-0088-0088 27 6.50 - 2 0.00
graphpart_2g-0099-9211 201 14.75 - 2 0.00
graphpart_2g-1010-0824 66 17.53 - 2 0.00
graphpart_2pm-0044-0044 6 0.68 - 2 0.00
graphpart_2pm-0055-0055 11 1.48 - 2 0.01
graphpart_2pm-0066-0066 118 2.92 - 2 0.00
graphpart_2pm-0077-0777 102 4.75 - 2 0.00
graphpart_2pm-0088-0888 266 8.40 - 2 0.00
graphpart_2pm-0099-0999 3,731 54.28 - 2 0.00
graphpart_3g-0234-0234 71 2.44 - 2 0.00
graphpart_3g-0244-0244 28 3.44 - 2 0.00
graphpart_3g-0333-0333 23 3.35 - 2 0.00
graphpart_3g-0334-0334 217 6.12 - 2 0.00
graphpart_3g-0344-0344 28 8.00 - 2 0.01
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name #nodes total-time gap #sbcs sym-time

graphpart_3g-0444-0444 3,256 63.58 - 2 0.01
graphpart_3pm-0234-0234 41 2.48 - 2 0.00
graphpart_3pm-0244-0244 606 5.72 - 2 0.00
graphpart_3pm-0333-0333 335 3.81 - 2 0.01
graphpart_3pm-0334-0334 930 9.67 - 2 0.00
graphpart_3pm-0344-0344 7,691 68.87 - 2 0.00
graphpart_3pm-0444-0444 197,619 1,302.55 - 2 0.00
graphpart_clique-20 235 5.31 - 5 0.01
graphpart_clique-30 3,897 76.65 - 5 0.01
graphpart_clique-40 23,007 672.29 - 5 0.01
graphpart_clique-50 39,276 limit 99.22 5 0.02
graphpart_clique-60 18,375 limit 147.04 5 0.02
graphpart_clique-70 11,393 limit 248.74 5 0.04
hadamard_4 28 0.48 - 15 0.00
hadamard_5 8,899 15.49 - 24 0.01
hadamard_6 162,449 limit 561.11 35 0.03
hadamard_7 5,229 limit 24,783.33 48 0.30
hadamard_8 12 limit - 63 3.18
hmittelman 1 0.02 - 3 0.00
ivalues 72,670 limit 448.77 2 0.01
kissing2 1 1,848.14 - 92 5.47
knp3-12 88,748 limit 137.81 35 0.00
knp4-24 7,631 limit 410.79 95 0.04
knp5-40 140 limit 765.25 199 0.19
knp5-41 1,238 limit 652.19 204 0.21
knp5-42 51 limit 791.33 209 0.22
knp5-43 393 limit 825.54 214 0.24
knp5-44 526 limit 835.42 219 0.25
kport20 25,409 122.71 - 6 0.00
lop97icx 2,083 24.14 - - 0.01
maxcsp-ehi-85-297-12 207 limit - 4 2.05
maxcsp-ehi-85-297-36 230 limit - 4 1.99
maxcsp-ehi-85-297-71 239 limit - 2 1.18
maxcsp-ehi-90-315-70 147 limit - 1 0.74
maxcsp-langford-3-11 28,408 limit - 1 0.09
maxmin 106,089 limit 46.83 23 0.00
mbtd 1,834 limit 173.33 10 0.47
netmod_dol1 3,929 limit 56.98 41 0.48
netmod_kar1 12,784 366.66 - 19 0.02
netmod_kar2 12,784 367.12 - 19 0.04
nuclear14 57 limit - 5 0.03
nuclear25 47 limit - 4 0.03
nuclear49 21 limit - 6 0.13
nuclearva 24 limit - 2 0.00
nuclearvb 265 limit - 2 0.01
nuclearvc 48 limit - 2 0.01
nuclearvd 396 limit - 2 0.01
nuclearve 90 limit - 2 0.01
nuclearvf 220 limit - 2 0.00
nvs09 15 0.18 - 9 0.00
oil2 111 24.29 - 4 0.01
orth_d4m6_pl 449,178 limit 263.43 1 0.00
pooling_bental5pq 1 0.16 - 2 0.00
pooling_bental5stp 6,076 33.82 - 2 0.00
pooling_bental5tp 1 0.13 - 2 0.00
power�ow2383wpp 1 limit - 2 0.22
power�ow2383wpr 1 limit - 2 0.26
procurement1large 88,537 limit 375.13 - 0.01
procurement1mot 844,579 limit 522.61 - 0.00
procurement2mot 167 4.37 - - 0.00
product 4,293 315.27 - 5 0.00
product2 1 12.39 - 290 0.21
radar-2000-10-a-6_lat_7 177 876.41 - 1,500 128.65
radar-3000-10-a-8_lat_7 881 1,351.73 - 1,500 81.11
ringpack_10_2 115,984 limit 3.95 1 0.00
ringpack_20_2 7,483 limit 400.00 1 0.02
ringpack_20_3 17,334 limit 566.67 17 0.16
ringpack_30_2 3,536 limit - 1 0.04
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name #nodes total-time gap #sbcs sym-time

rsyn0815m 151 1.03 - - 0.00
rsyn0815m02m 1,422 11.57 - - 0.00
rsyn0815m03m 1,347 18.47 - - 0.00
rsyn0815m04m 4,006 49.69 - - 0.00
sepasequ_complex 56,576 limit 53.37 9 0.00
sporttournament10 1 0.51 - 1 0.00
st_e09 1 0.03 - 1 0.00
st_e18 1 0.02 - 1 0.00
st_qpc-m3c 1 0.02 - 5 0.01
st_rv9 237 2.09 - 10 0.00
syn15m 1 0.31 - - 0.00
t1000 0 0.88 - - 0.00
tln2 1 0.01 - 1 0.01
topopt-zhou-rozvany_75 448 limit - 200 0.09
torsion100 13 limit 380.15 3 0.10
torsion25 1 limit 319.68 3 0.02
torsion50 17 limit 467.20 7 0.07
turkey 1 19.98 - - 0.01
util 29 0.39 - 1 0.00
waste 201,968 limit 85.82 23 0.01
watercontamination0202 19 99.20 - 1 0.00
waterund28 12,562 limit 21.74 3 0.00

Table B.3: Detailed results for variant S-cont on M-sym-all. Depicted are the number of nodes
(#nodes), the total CPU time in seconds (total-time), the remaining gap at the time limit as re-
ported by SCIP (gap), the number of added SBCs (#sbcs), and the time for symmetry computating
and handling in seconds (sym-time). If the gap is not displayed despite the problem hitting the
time limit, then SCIP reported either "Large" or "in�nite" as gap.

name #nodes total-time gap #sbcs sym-time

arki0002 1 limit - 10 0.02
arki0005 439 limit - - 0.05
arki0006 97 limit - - 0.06
arki0008 1 56.52 - 49 0.03
arki0016 8,100 limit - 4 0.02
arki0017 9,980 limit 989.38 7 0.02
arki0018 1 limit - 1,500 11.28
autocorr_bern20-03 1 0.04 - 3 0.00
autocorr_bern20-05 51,135 77.93 - 1 0.00
autocorr_bern20-10 178,610 1,168.96 - 1 0.00
autocorr_bern20-15 199,585 2,656.35 - 1 0.01
autocorr_bern25-03 1 0.04 - 2 0.00
autocorr_bern25-06 1,302,552 limit 27.50 1 0.01
autocorr_bern25-13 81,634 limit 123.47 1 0.01
autocorr_bern25-19 34,719 limit 248.60 1 0.02
autocorr_bern25-25 14,021 limit 395.34 1 0.02
autocorr_bern30-04 1,576,889 2,367.09 - 1 0.00
autocorr_bern30-08 188,041 limit 202.81 1 0.01
autocorr_bern30-15 31,932 limit 337.93 1 0.01
autocorr_bern30-23 5,075 limit 577.67 1 0.03
autocorr_bern30-30 3,360 limit 714.86 1 0.03
autocorr_bern35-04 720,896 limit 73.53 1 0.00
autocorr_bern35-09 89,523 limit 362.86 1 0.01
autocorr_bern35-18 5,005 limit 523.06 1 0.03
autocorr_bern35-26 2,294 limit 755.01 1 0.03
autocorr_bern35-35�x 2,185 limit 1,021.97 1 0.07
autocorr_bern40-05 382,904 limit 184.05 1 0.00
autocorr_bern40-10 36,567 limit 539.04 1 0.01
autocorr_bern40-20 2,278 limit 730.04 1 0.04
autocorr_bern40-30 1,024 limit 961.25 1 0.05
autocorr_bern40-40 1,029 limit 1,096.93 1 0.08
autocorr_bern45-05 263,873 limit 232.07 1 0.00
autocorr_bern45-11 16,195 limit 687.32 1 0.01
autocorr_bern45-23 1,404 limit 870.30 1 0.07
autocorr_bern45-34 1,066 limit 1,052.60 1 0.10
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name #nodes total-time gap #sbcs sym-time

autocorr_bern45-45 726 limit 1,238.79 1 0.13
autocorr_bern50-06 129,704 limit 416.95 1 0.01
autocorr_bern50-13 6,584 limit 862.03 1 0.03
autocorr_bern50-25 842 limit 1,028.12 1 0.08
autocorr_bern55-06 104,744 limit 446.14 1 0.00
autocorr_bern55-14 2,934 limit 930.85 1 0.04
autocorr_bern55-28 742 limit 1,122.54 1 0.12
autocorr_bern60-08 32,085 limit 707.80 1 0.01
autocorr_bern60-15 2,740 limit 1,115.49 1 0.04
ball_mk2_10 1 0.01 - 9 0.00
ball_mk2_30 1 0.02 - 29 0.00
ball_mk3_10 0 0.00 - - 0.00
carton7 231,293 586.67 - 3 0.01
carton9 827,606 limit 60.55 1 0.00
celar6-sub0 1,358 limit - 3 0.19
chp_partload 614 limit - 1 0.01
chp_shorttermplan1b 37,379 limit 4.90 1 0.00
chp_shorttermplan2a 1,546 280.43 - 2 0.01
chp_shorttermplan2c 21,553 limit - 5 0.02
color_lab3_3x0 52,523 limit 555.58 4 0.00
color_lab3_4x0 39,337 limit 1,257.62 4 0.00
crossdock_15x7 66,007 limit 463.20 1 0.00
crossdock_15x8 53,797 limit 1,759.14 1 0.01
crudeoil_li02 1,541,687 limit 1.13 3 0.00
crudeoil_li06 26,990 596.63 - 1 0.00
crudeoil_li21 168,678 limit 1.74 1 0.00
crudeoil_pooling_dt4 39,647 limit - - 0.01
cvxnonsep_normcon30 1 0.11 - 2 0.00
cvxnonsep_normcon30r 1 0.13 - 2 0.00
cvxnonsep_normcon40 1 0.06 - 2 0.00
cvxnonsep_normcon40r 29 0.68 - 2 0.00
cvxnonsep_psig20 8,302,421 limit 228.78 2 0.00
cvxnonsep_psig20r 1 0.17 - 2 0.00
cvxnonsep_psig30 7,199,280 limit 155.01 1 0.00
cvxnonsep_psig30r 87 0.96 - 1 0.00
cvxnonsep_psig40 6,261,646 limit 113.45 4 0.00
cvxnonsep_psig40r 22 0.80 - 5 0.00
densitymod 4,241 limit - 58 4.36
eigena2 1 limit - 49 1.15
elec100 1 limit - 299 1.84
elec200 1 limit - 599 26.58
elec25 4,409 limit - 74 0.02
elec50 1 limit - 149 0.22
elf 149 1.89 - 2 0.00
em�100_5_5 41 limit 32,331.87 21 0.03
ex14_1_5 1 0.02 - 3 0.00
ex2_1_3 1 0.21 - 1 0.00
ex5_2_5 1 1.17 - 2 0.00
ex8_1_6 17 0.16 - 1 0.00
ex8_3_1 373,811 limit 23.00 4 0.00
ex8_3_11 434,832 limit 25.07 4 0.01
ex8_3_13 304,184 limit 15.67 4 0.00
ex8_3_2 490,250 limit 40.66 4 0.00
ex8_3_3 554,397 limit 39.22 4 0.00
ex8_3_4 483,888 limit 62.01 4 0.00
ex8_3_5 502,844 limit 1,496.29 4 0.00
ex8_3_7 26 limit - 4 0.00
ex8_3_8 123,227 limit 207.11 4 0.00
ex8_3_9 696,943 limit 31.06 4 0.00
ex8_4_6 5 limit - 2 0.00
ex8_6_1 1,391 limit - 6 0.00
ex9_1_8 1 0.00 - 1 0.00
ex9_2_2 1 0.14 - 1 0.00
ex9_2_6 1 0.11 - 4 0.00
gabriel04 4,837 251.55 - 2 0.00
gams03 1 limit - 12 1.51
gastrans582_cold13 1 14.97 - 2 0.01
gastrans582_cold13_95 16 25.48 - 2 0.01
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name #nodes total-time gap #sbcs sym-time

gastrans582_cold17 41 30.77 - 1 0.00
gastrans582_cold17_95 32 28.28 - 1 0.00
gastrans582_cool12 1 16.86 - 2 0.01
gastrans582_cool12_95 31 47.79 - 2 0.01
gastrans582_cool14 77 55.17 - 2 0.00
gastrans582_cool14_95 22 39.78 - 2 0.00
gastrans582_freezing27 1 28.64 - 1 0.00
gastrans582_freezing27_95 1 33.46 - 1 0.00
gastrans582_freezing30 21 43.66 - 1 0.00
gastrans582_freezing30_95 25 29.65 - 1 0.01
gastrans582_mild10 29 37.58 - 2 0.00
gastrans582_mild10_95 18 27.03 - 2 0.01
gastrans582_mild11 5,014 286.23 - 2 0.01
gastrans582_mild11_95 13 38.05 - 2 0.00
gastrans582_warm15 7 24.12 - 2 0.01
gastrans582_warm15_95 27 25.31 - 2 0.01
gastrans582_warm31 12 36.73 - 2 0.00
gastrans582_warm31_95 22 22.89 - 2 0.00
gear 7,756 5.69 - 2 0.00
gear2 32,993 22.50 - 2 0.00
gear3 7,832 6.03 - 2 0.00
gear4 822 0.40 - 2 0.01
graphpart_2g-0044-1601 1 0.30 - 2 0.00
graphpart_2g-0055-0062 167 2.20 - 2 0.00
graphpart_2g-0066-0066 9 2.39 - 2 0.00
graphpart_2g-0077-0077 19 3.23 - 2 0.00
graphpart_2g-0088-0088 27 6.50 - 2 0.00
graphpart_2g-0099-9211 201 14.86 - 2 0.01
graphpart_2g-1010-0824 66 17.34 - 2 0.00
graphpart_2pm-0044-0044 6 0.71 - 2 0.00
graphpart_2pm-0055-0055 11 1.54 - 2 0.00
graphpart_2pm-0066-0066 118 2.91 - 2 0.00
graphpart_2pm-0077-0777 102 4.53 - 2 0.00
graphpart_2pm-0088-0888 266 8.56 - 2 0.00
graphpart_2pm-0099-0999 3,731 54.04 - 2 0.00
graphpart_3g-0234-0234 71 2.43 - 2 0.01
graphpart_3g-0244-0244 28 3.37 - 2 0.00
graphpart_3g-0333-0333 23 3.30 - 2 0.00
graphpart_3g-0334-0334 217 6.05 - 2 0.00
graphpart_3g-0344-0344 28 7.82 - 2 0.00
graphpart_3g-0444-0444 3,256 63.42 - 2 0.01
graphpart_3pm-0234-0234 41 2.56 - 2 0.00
graphpart_3pm-0244-0244 606 5.53 - 2 0.00
graphpart_3pm-0333-0333 335 4.02 - 2 0.00
graphpart_3pm-0334-0334 930 9.58 - 2 0.00
graphpart_3pm-0344-0344 7,691 69.18 - 2 0.00
graphpart_3pm-0444-0444 197,619 1,303.71 - 2 0.01
graphpart_clique-20 235 5.39 - 5 0.00
graphpart_clique-30 3,897 76.86 - 5 0.01
graphpart_clique-40 23,007 671.09 - 5 0.01
graphpart_clique-50 39,107 limit 99.38 5 0.02
graphpart_clique-60 18,248 limit 147.34 5 0.03
graphpart_clique-70 11,430 limit 248.41 5 0.04
hadamard_4 28 0.49 - 15 0.00
hadamard_5 8,899 15.47 - 24 0.00
hadamard_6 161,512 limit 561.11 35 0.03
hadamard_7 5,216 limit 24,783.33 48 0.30
hadamard_8 12 limit - 63 3.19
hmittelman 1 0.03 - 3 0.00
ivalues 72,993 limit 448.66 2 0.01
kissing2 1 1,835.72 - 92 5.44
knp3-12 88,801 limit 137.80 35 0.00
knp4-24 7,631 limit 410.79 95 0.04
knp5-40 140 limit 765.25 199 0.20
knp5-41 1,238 limit 652.19 204 0.20
knp5-42 51 limit 791.33 209 0.24
knp5-43 393 limit 825.54 214 0.23
knp5-44 526 limit 835.42 219 0.25

continued on next page...
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name #nodes total-time gap #sbcs sym-time

kport20 102,932 516.76 - 6 0.00
lop97icx 2,083 24.24 - - 0.00
maxcsp-ehi-85-297-12 209 limit - 4 2.08
maxcsp-ehi-85-297-36 232 limit - 4 1.92
maxcsp-ehi-85-297-71 238 limit - 2 1.15
maxcsp-ehi-90-315-70 147 limit - 1 0.65
maxcsp-langford-3-11 28,498 limit - 1 0.11
maxmin 106,325 limit 46.80 23 0.00
mbtd 1,834 limit 173.33 10 0.46
netmod_dol1 3,954 limit 56.98 41 0.46
netmod_kar1 12,784 368.67 - 19 0.05
netmod_kar2 12,784 365.88 - 19 0.04
nuclear14 18 limit - 5 0.01
nuclear25 65 limit - 4 0.00
nuclear49 16 limit - 6 0.03
nuclearva 22 limit - 2 0.00
nuclearvb 90 limit - 2 0.00
nuclearvc 974 limit - 2 0.00
nuclearvd 217 limit - 2 0.00
nuclearve 53 limit - 2 0.00
nuclearvf 49 limit - 2 0.00
nvs09 15 0.16 - 9 0.00
oil2 111 24.22 - 4 0.00
orth_d4m6_pl 447,537 limit 263.71 1 0.00
pooling_bental5pq 1 0.17 - 2 0.01
pooling_bental5stp 6,076 33.51 - 2 0.00
pooling_bental5tp 1 0.14 - 2 0.00
power�ow2383wpp 1 limit - 2 0.23
power�ow2383wpr 1 limit - 2 0.26
procurement1large 88,537 limit 375.13 - 0.01
procurement1mot 844,307 limit 522.63 - 0.01
procurement2mot 167 4.35 - - 0.00
product 4,293 314.15 - 5 0.01
product2 1 31.81 - 290 0.07
radar-2000-10-a-6_lat_7 9,661 limit 138.29 1,500 6.55
radar-3000-10-a-8_lat_7 10,855 limit 11,690.49 1,500 8.87
ringpack_10_2 116,180 limit 3.95 1 0.00
ringpack_20_2 7,517 limit 400.00 1 0.02
ringpack_20_3 17,353 limit 566.67 17 0.16
ringpack_30_2 3,483 limit - 1 0.06
rsyn0815m 151 1.03 - - 0.00
rsyn0815m02m 1,422 11.57 - - 0.00
rsyn0815m03m 1,347 18.47 - - 0.00
rsyn0815m04m 4,006 49.69 - - 0.00
sepasequ_complex 56,621 limit 53.31 9 0.01
sporttournament10 1 0.53 - 1 0.00
st_e09 1 0.02 - 1 0.00
st_e18 1 0.02 - 1 0.00
st_qpc-m3c 1 0.01 - 5 0.00
st_rv9 237 2.13 - 10 0.00
syn15m 1 0.31 - - 0.00
t1000 0 0.89 - - 0.00
tln2 1 0.01 - 1 0.00
topopt-zhou-rozvany_75 448 limit - 200 0.09
torsion100 13 limit 380.15 3 0.10
torsion25 1 limit 319.68 3 0.03
torsion50 17 limit 467.20 7 0.06
turkey 1 20.01 - - 0.00
util 29 0.36 - 1 0.00
waste 201,900 limit 85.82 23 0.01
watercontamination0202 19 99.28 - 1 0.00
waterund28 12,564 limit 21.74 3 0.00
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Table B.4: Detailed results for variant S-orbmax on M-sym-all. Depicted are the number of nodes
(#nodes), the total CPU time in seconds (total-time), the remaining gap at the time limit as re-
ported by SCIP (gap), the number of added SBCs (#sbcs), and the time for symmetry computating
and handling in seconds (sym-time). If the gap is not displayed despite the problem hitting the
time limit, then SCIP reported either "Large" or "in�nite" as gap.

name #nodes total-time gap #sbcs sym-time

arki0002 10 limit - 10 0.02
arki0005 439 limit - - 0.05
arki0006 97 limit - - 0.06
arki0008 1 64.25 - 49 0.02
arki0016 8,270 limit - 4 0.03
arki0017 9,971 limit 989.38 7 0.02
arki0018 1 limit - 1,500 13.11
autocorr_bern20-03 1 0.03 - 3 0.00
autocorr_bern20-05 51,135 77.41 - 1 0.00
autocorr_bern20-10 178,610 1,166.54 - 1 0.00
autocorr_bern20-15 199,585 2,651.33 - 1 0.01
autocorr_bern25-03 1 0.04 - 2 0.00
autocorr_bern25-06 1,295,777 limit 27.50 1 0.01
autocorr_bern25-13 81,211 limit 123.93 1 0.01
autocorr_bern25-19 34,968 limit 248.35 1 0.02
autocorr_bern25-25 14,034 limit 395.34 1 0.02
autocorr_bern30-04 1,576,889 2,371.47 - 1 0.00
autocorr_bern30-08 186,505 limit 203.08 1 0.01
autocorr_bern30-15 31,935 limit 337.93 1 0.02
autocorr_bern30-23 5,065 limit 578.44 1 0.04
autocorr_bern30-30 3,327 limit 715.09 1 0.04
autocorr_bern35-04 717,327 limit 73.61 1 0.00
autocorr_bern35-09 89,888 limit 362.79 1 0.00
autocorr_bern35-18 5,028 limit 523.06 1 0.02
autocorr_bern35-26 2,291 limit 755.01 1 0.04
autocorr_bern35-35�x 2,178 limit 1,023.68 1 0.06
autocorr_bern40-05 382,472 limit 184.05 1 0.00
autocorr_bern40-10 35,913 limit 539.77 1 0.01
autocorr_bern40-20 2,274 limit 730.04 1 0.05
autocorr_bern40-30 1,024 limit 961.25 1 0.06
autocorr_bern40-40 1,035 limit 1,096.93 1 0.10
autocorr_bern45-05 265,934 limit 231.91 1 0.00
autocorr_bern45-11 16,244 limit 686.65 1 0.00
autocorr_bern45-23 1,406 limit 870.30 1 0.06
autocorr_bern45-34 1,071 limit 1,052.60 1 0.10
autocorr_bern45-45 727 limit 1,238.79 1 0.11
autocorr_bern50-06 128,874 limit 417.14 1 0.01
autocorr_bern50-13 6,673 limit 862.03 1 0.02
autocorr_bern50-25 842 limit 1,028.12 1 0.08
autocorr_bern55-06 102,638 limit 446.83 1 0.00
autocorr_bern55-14 2,963 limit 929.77 1 0.03
autocorr_bern55-28 739 limit 1,122.54 1 0.13
autocorr_bern60-08 32,070 limit 707.80 1 0.01
autocorr_bern60-15 2,744 limit 1,115.49 1 0.05
ball_mk2_10 0 0.03 - 9 0.00
ball_mk2_30 4,129,026 2,819.40 - 29 0.00
ball_mk3_10 0 0.00 - - 0.00
carton7 231,293 583.11 - 3 0.00
carton9 827,707 limit 60.55 1 0.00
celar6-sub0 1,464 limit - 3 0.20
chp_partload 594 limit - 1 0.03
chp_shorttermplan1b 50,440 limit 6.80 1 0.02
chp_shorttermplan2a 441 129.73 - 2 0.01
chp_shorttermplan2c 20,998 limit - 5 0.07
color_lab3_3x0 55,234 limit 555.26 4 0.01
color_lab3_4x0 41,674 limit 1,252.25 4 0.01
crossdock_15x7 66,125 limit 463.14 1 0.01
crossdock_15x8 53,667 limit 1,759.14 1 0.01
crudeoil_li02 1,539,569 limit 1.13 3 0.01
crudeoil_li06 108,420 1,523.62 - 1 0.00
crudeoil_li21 166,633 limit 1.93 1 0.01
crudeoil_pooling_dt4 39,609 limit - - 0.01
cvxnonsep_normcon30 1 0.11 - 2 0.00

continued on next page...
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name #nodes total-time gap #sbcs sym-time

cvxnonsep_normcon30r 1 0.12 - 2 0.00
cvxnonsep_normcon40 1 0.07 - 2 0.00
cvxnonsep_normcon40r 29 0.68 - 2 0.00
cvxnonsep_psig20 8,257,990 limit 230.67 2 0.00
cvxnonsep_psig20r 1 0.14 - 2 0.00
cvxnonsep_psig30 7,290,134 limit 155.01 1 0.00
cvxnonsep_psig30r 87 0.92 - 1 0.00
cvxnonsep_psig40 6,213,802 limit 113.45 4 0.00
cvxnonsep_psig40r 22 0.80 - 5 0.00
densitymod 3,276 limit - 58 3.87
eigena2 1 limit - 49 1.16
elec100 1,767 limit - 299 1.79
elec200 1 limit - 599 26.21
elec25 73,520 limit - 74 0.02
elec50 8,356 limit - 149 0.21
elf 252 1.88 - 2 0.00
em�100_5_5 4,635 limit 17,404.38 21 0.03
ex14_1_5 1 0.03 - 3 0.00
ex2_1_3 1 0.22 - 1 0.00
ex5_2_5 1 1.17 - 2 0.00
ex8_1_6 17 0.15 - 1 0.00
ex8_3_1 653,674 limit 22.01 19 0.00
ex8_3_11 530,645 limit 25.07 19 0.00
ex8_3_13 411,081 limit 18.91 19 0.00
ex8_3_2 624,687 limit 40.66 19 0.00
ex8_3_3 655,453 limit 39.22 19 0.00
ex8_3_4 521,961 limit 62.01 19 0.00
ex8_3_5 599,281 limit 1,496.29 19 0.00
ex8_3_7 110 limit - 19 0.00
ex8_3_8 103,775 limit 207.11 19 0.00
ex8_3_9 702,711 limit 31.30 19 0.00
ex8_4_6 26 limit - 2 0.00
ex8_6_1 1 limit - 20 0.00
ex9_1_8 1 0.01 - 1 0.00
ex9_2_2 1 0.14 - 1 0.00
ex9_2_6 1 0.09 - 4 0.00
gabriel04 4,837 251.76 - 2 0.00
gams03 1 limit - 12 0.33
gastrans582_cold13 1 15.11 - 2 0.00
gastrans582_cold13_95 16 25.06 - 2 0.01
gastrans582_cold17 41 30.85 - 1 0.00
gastrans582_cold17_95 32 27.90 - 1 0.00
gastrans582_cool12 1 16.39 - 2 0.00
gastrans582_cool12_95 31 47.51 - 2 0.01
gastrans582_cool14 77 54.90 - 2 0.01
gastrans582_cool14_95 22 39.21 - 2 0.01
gastrans582_freezing27 1 28.48 - 1 0.00
gastrans582_freezing27_95 1 33.18 - 1 0.00
gastrans582_freezing30 21 43.23 - 1 0.00
gastrans582_freezing30_95 25 29.53 - 1 0.00
gastrans582_mild10 29 37.41 - 2 0.00
gastrans582_mild10_95 18 26.99 - 2 0.00
gastrans582_mild11 5,014 285.04 - 2 0.01
gastrans582_mild11_95 13 37.67 - 2 0.00
gastrans582_warm15 7 24.38 - 2 0.01
gastrans582_warm15_95 27 24.98 - 2 0.01
gastrans582_warm31 12 36.69 - 2 0.00
gastrans582_warm31_95 22 22.94 - 2 0.01
gear 7,756 5.84 - 2 0.00
gear2 32,993 22.24 - 2 0.01
gear3 7,832 5.94 - 2 0.00
gear4 822 0.38 - 2 0.00
graphpart_2g-0044-1601 3 1.00 - 2 0.00
graphpart_2g-0055-0062 11 1.46 - 2 0.00
graphpart_2g-0066-0066 23 4.01 - 2 0.00
graphpart_2g-0077-0077 479 9.19 - 2 0.00
graphpart_2g-0088-0088 37 8.44 - 2 0.00
graphpart_2g-0099-9211 313 16.73 - 2 0.00
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name #nodes total-time gap #sbcs sym-time

graphpart_2g-1010-0824 66 15.09 - 2 0.00
graphpart_2pm-0044-0044 5 1.37 - 2 0.00
graphpart_2pm-0055-0055 76 1.76 - 2 0.00
graphpart_2pm-0066-0066 197 3.72 - 2 0.00
graphpart_2pm-0077-0777 317 5.69 - 2 0.01
graphpart_2pm-0088-0888 272 7.54 - 2 0.00
graphpart_2pm-0099-0999 3,164 40.49 - 2 0.00
graphpart_3g-0234-0234 17 2.34 - 2 0.00
graphpart_3g-0244-0244 22 3.43 - 2 0.00
graphpart_3g-0333-0333 58 3.06 - 2 0.00
graphpart_3g-0334-0334 351 6.56 - 2 0.00
graphpart_3g-0344-0344 202 11.90 - 2 0.00
graphpart_3g-0444-0444 7,543 104.74 - 2 0.00
graphpart_3pm-0234-0234 250 2.64 - 2 0.00
graphpart_3pm-0244-0244 997 7.83 - 2 0.00
graphpart_3pm-0333-0333 421 4.40 - 2 0.00
graphpart_3pm-0334-0334 2,470 20.71 - 2 0.00
graphpart_3pm-0344-0344 16,264 135.75 - 2 0.00
graphpart_3pm-0444-0444 473,433 3,366.39 - 2 0.01
graphpart_clique-20 1,448 11.58 - 5 0.00
graphpart_clique-30 8,607 116.76 - 5 0.00
graphpart_clique-40 163,089 2,924.52 - 5 0.00
graphpart_clique-50 41,139 limit 105.38 5 0.00
graphpart_clique-60 22,702 limit 281.98 5 0.01
graphpart_clique-70 15,566 limit 455.66 5 0.02
hadamard_4 28 0.50 - 15 0.01
hadamard_5 26,593 34.60 - 24 0.00
hadamard_6 141,255 limit 683.33 35 0.02
hadamard_7 3,869 limit 38,388.89 48 0.09
hadamard_8 12 limit - 63 1.14
hmittelman 1 0.02 - 3 0.00
ivalues 72,267 limit 449.04 2 0.01
kissing2 1 1,621.09 - 92 5.61
knp3-12 107,477 limit 168.89 35 0.00
knp4-24 2,656 limit 415.41 95 0.04
knp5-40 1,417 limit 697.12 199 0.19
knp5-41 1,089 limit 776.21 204 0.21
knp5-42 477 limit 860.03 209 0.22
knp5-43 465 limit 833.27 214 0.23
knp5-44 366 limit 837.32 219 0.24
kport20 37,564 197.67 - 6 0.00
lop97icx 2,083 24.26 - - 0.00
maxcsp-ehi-85-297-12 202 limit - 4 2.03
maxcsp-ehi-85-297-36 232 limit - 4 1.59
maxcsp-ehi-85-297-71 238 limit - 2 1.11
maxcsp-ehi-90-315-70 146 limit - 1 0.73
maxcsp-langford-3-11 28,371 limit - 1 0.07
maxmin 94,273 limit 66.11 23 0.00
mbtd 1,948 limit 160.00 10 0.45
netmod_dol1 4,348 limit 44.79 89 0.13
netmod_kar1 6,656 225.50 - 19 0.01
netmod_kar2 6,656 224.59 - 19 0.01
nuclear14 4 limit - 5 0.01
nuclear25 41 limit - 4 0.01
nuclear49 18 limit - 6 0.03
nuclearva 194 limit - 2 0.00
nuclearvb 365 limit - 2 0.00
nuclearvc 382 limit - 2 0.00
nuclearvd 94 limit - 2 0.00
nuclearve 167 limit - 2 0.00
nuclearvf 361 limit - 2 0.00
nvs09 3 0.09 - 9 0.00
oil2 111 24.42 - 4 0.00
orth_d4m6_pl 447,716 limit 263.69 1 0.00
pooling_bental5pq 1 0.15 - 2 0.00
pooling_bental5stp 9,794 55.31 - 2 0.00
pooling_bental5tp 1 0.13 - 2 0.00
power�ow2383wpp 1 limit - 2 0.24
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name #nodes total-time gap #sbcs sym-time

power�ow2383wpr 1 limit - 2 0.25
procurement1large 88,537 limit 375.13 - 0.01
procurement1mot 843,897 limit 522.63 - 0.00
procurement2mot 167 4.44 - - 0.00
product 4,293 315.94 - 5 0.00
product2 1 18.22 - 253 0.09
radar-2000-10-a-6_lat_7 28,806 limit 630.17 1,500 14.11
radar-3000-10-a-8_lat_7 14,107 limit 37,261.75 1,500 10.37
ringpack_10_2 115,257 limit 3.95 1 0.00
ringpack_20_2 7,481 limit 400.00 1 0.02
ringpack_20_3 27,656 limit 12.35 29 0.13
ringpack_30_2 3,483 limit - 1 0.06
rsyn0815m 151 1.03 - - 0.00
rsyn0815m02m 1,422 11.57 - - 0.00
rsyn0815m03m 1,347 18.47 - - 0.00
rsyn0815m04m 4,006 49.69 - - 0.00
sepasequ_complex 56,461 limit 82.62 9 0.00
sporttournament10 1 0.51 - 1 0.00
st_e09 1 0.01 - 1 0.00
st_e18 1 0.02 - 1 0.00
st_qpc-m3c 1 0.03 - 5 0.00
st_rv9 237 2.12 - 10 0.00
syn15m 1 0.31 - - 0.00
t1000 0 0.90 - - 0.00
tln2 1 0.01 - 1 0.00
topopt-zhou-rozvany_75 450 limit - 200 0.09
torsion100 13 limit 380.15 3 0.11
torsion25 1 limit 319.68 3 0.02
torsion50 17 limit 467.20 7 0.06
turkey 1 19.95 - - 0.00
util 29 0.39 - 1 0.00
waste 206,454 limit 82.26 23 0.00
watercontamination0202 19 98.69 - 1 0.00
waterund28 12,653 limit 21.74 3 0.00

Table B.5: Detailed results for variant D on M-sym-all. Depicted are the number of nodes (#nodes),
the total CPU time in seconds (total-time), the remaining gap at the time limit as reported by SCIP
(gap), the number of orbitopes handled (#orbitope), the number of sbcs added (#sbcs), and the time
for symmetry computating and handling in seconds (sym-time). If the gap is not displayed despite the
problem hitting the time limit, then SCIP reported either "Large" or "in�nite" as gap.

name #nodes total-time gap #orbitope #sbcs sym-time

arki0002 4 limit - - - 0.03
arki0005 439 limit - - - 0.06
arki0006 97 limit - - - 0.05
arki0008 1 33.17 - - - 0.02
arki0016 8,718 limit - - - 0.02
arki0017 9,214 limit 996.25 - - 0.02
arki0018 2 limit - - - 8.85
autocorr_bern20-03 1 0.02 - 1 - 0.00
autocorr_bern20-05 23,260 43.16 - 1 - 0.00
autocorr_bern20-10 92,832 608.86 - 1 - 0.01
autocorr_bern20-15 89,307 1,169.29 - 1 - 0.00
autocorr_bern25-03 1 0.04 - 2 - 0.00
autocorr_bern25-06 723,859 1,923.60 - 1 - 0.00
autocorr_bern25-13 99,523 limit 78.02 1 - 0.01
autocorr_bern25-19 38,603 limit 218.25 1 - 0.01
autocorr_bern25-25 18,867 limit 387.21 1 - 0.01
autocorr_bern30-04 783,673 1,177.71 - 1 - 0.00
autocorr_bern30-08 201,616 limit 171.14 1 - 0.00
autocorr_bern30-15 33,143 limit 238.26 1 - 0.01
autocorr_bern30-23 8,121 limit 460.03 1 - 0.01
autocorr_bern30-30 3,650 limit 675.90 1 - 0.01
autocorr_bern35-04 759,042 limit 59.03 1 - 0.00
autocorr_bern35-09 84,780 limit 322.03 1 - 0.00
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name #nodes total-time gap #orbitope #sbcs sym-time

autocorr_bern35-18 7,463 limit 449.75 1 - 0.01
autocorr_bern35-26 2,538 limit 671.49 1 - 0.02
autocorr_bern35-35�x 1,946 limit 901.51 1 - 0.00
autocorr_bern40-05 344,302 limit 157.00 1 - 0.01
autocorr_bern40-10 40,320 limit 489.50 1 - 0.00
autocorr_bern40-20 2,118 limit 644.42 1 - 0.02
autocorr_bern40-30 1,257 limit 857.07 1 - 0.03
autocorr_bern40-40 1,276 limit 1,048.21 1 - 0.04
autocorr_bern45-05 291,158 limit 213.23 1 - 0.00
autocorr_bern45-11 16,410 limit 615.10 1 - 0.00
autocorr_bern45-23 1,340 limit 782.92 1 - 0.03
autocorr_bern45-34 790 limit 1,102.14 1 - 0.05
autocorr_bern45-45 603 limit 1,193.35 1 - 0.06
autocorr_bern50-06 111,581 limit 407.69 1 - 0.00
autocorr_bern50-13 6,741 limit 714.84 1 - 0.01
autocorr_bern50-25 834 limit 918.77 1 - 0.04
autocorr_bern55-06 111,155 limit 425.80 1 - 0.00
autocorr_bern55-14 2,770 limit 961.58 1 - 0.01
autocorr_bern55-28 702 limit 1,088.26 1 - 0.06
autocorr_bern60-08 32,686 limit 704.38 1 - 0.00
autocorr_bern60-15 2,464 limit 989.17 1 - 0.02
ball_mk2_10 1 0.02 - - - 0.00
ball_mk2_30 57 0.11 - - - 0.00
ball_mk3_10 0 0.00 - - - 0.00
carton7 1,371 limit 127.53 - - 0.00
carton9 338,042 limit 75.28 - - 0.01
celar6-sub0 2,071 limit - 1 - 0.21
chp_partload 69 limit - - - 0.01
chp_shorttermplan1b 40,633 limit 5.79 - - 0.00
chp_shorttermplan2a 134 141.68 - - - 0.00
chp_shorttermplan2c 21,310 limit - - - 0.00
color_lab3_3x0 45,494 limit 495.78 2 - 0.00
color_lab3_4x0 38,682 limit 1,066.23 2 - 0.01
crossdock_15x7 54,510 limit 316.21 1 - 0.01
crossdock_15x8 45,192 limit 1,448.01 1 - 0.01
crudeoil_li02 119 limit - - - 0.00
crudeoil_li06 7,160 limit 0.90 - - 0.01
crudeoil_li21 2,392 limit - - - 0.00
crudeoil_pooling_dt4 19,071 limit 8.17 - - 0.00
cvxnonsep_normcon30 1 0.10 - - - 0.00
cvxnonsep_normcon30r 1 0.12 - - - 0.00
cvxnonsep_normcon40 1 0.13 - - - 0.00
cvxnonsep_normcon40r 10 0.44 - - - 0.00
cvxnonsep_psig20 7,767,553 limit 227.18 - - 0.00
cvxnonsep_psig20r 1 0.15 - - - 0.00
cvxnonsep_psig30 7,073,121 limit 155.00 - - 0.00
cvxnonsep_psig30r 68 1.04 - - - 0.00
cvxnonsep_psig40 6,240,835 limit 113.24 - - 0.00
cvxnonsep_psig40r 36 0.87 - - - 0.00
densitymod 511 limit - 2 - 3.91
eigena2 1 limit - - - 1.13
elec100 404 limit - - - 1.80
elec200 1 limit - - - 26.42
elec25 3,673 limit - - - 0.03
elec50 3,564 limit - - - 0.21
elf 55 limit 6,663.44 - - 0.00
em�100_5_5 3,224 limit 29,267.53 1 - 0.03
ex14_1_5 1 0.01 - - - 0.00
ex2_1_3 1 0.17 - - - 0.00
ex5_2_5 1 1.04 - - - 0.00
ex8_1_6 19 0.13 - - - 0.00
ex8_3_1 374,403 limit 23.00 - - 0.00
ex8_3_11 436,330 limit 25.07 - - 0.00
ex8_3_13 305,811 limit 15.67 - - 0.00
ex8_3_2 489,163 limit 40.66 - - 0.00
ex8_3_3 555,099 limit 39.22 - - 0.00
ex8_3_4 479,337 limit 62.01 - - 0.00
ex8_3_5 502,872 limit 1,496.29 - - 0.00
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ex8_3_7 26 limit - - - 0.00
ex8_3_8 123,141 limit 207.11 - - 0.00
ex8_3_9 697,576 limit 31.06 - - 0.01
ex8_4_6 12 limit - - - 0.00
ex8_6_1 654 limit - - - 0.00
ex9_1_8 1 0.01 - - - 0.00
ex9_2_2 1 0.15 - - - 0.00
ex9_2_6 1 0.09 - - - 0.00
gabriel04 7,047 321.73 - - - 0.00
gams03 1 limit - - - 0.33
gastrans582_cold13 41,516 1,680.14 - - - 0.00
gastrans582_cold13_95 23 26.49 - - - 0.00
gastrans582_cold17 1 19.07 - - - 0.00
gastrans582_cold17_95 37 33.26 - - - 0.00
gastrans582_cool12 25 27.44 - - - 0.01
gastrans582_cool12_95 24 43.14 - - - 0.00
gastrans582_cool14 2,560 229.80 - - - 0.00
gastrans582_cool14_95 11 35.31 - - - 0.00
gastrans582_freezing27 1 25.33 - - - 0.00
gastrans582_freezing27_95 1 36.61 - - - 0.00
gastrans582_freezing30 21 44.28 - - - 0.00
gastrans582_freezing30_95 21 41.15 - - - 0.00
gastrans582_mild10 24 42.59 - - - 0.00
gastrans582_mild10_95 20 36.72 - - - 0.00
gastrans582_mild11 42 33.44 - - - 0.01
gastrans582_mild11_95 1 18.97 - - - 0.00
gastrans582_warm15 1,043 303.93 - - - 0.01
gastrans582_warm15_95 21 33.01 - - - 0.00
gastrans582_warm31 29 37.95 - - - 0.01
gastrans582_warm31_95 18 30.48 - - - 0.00
gear 14,488 9.11 - - - 0.00
gear2 99 limit - - - 0.00
gear3 14,076 9.71 - - - 0.00
gear4 1,060 0.37 - - - 0.00
graphpart_2g-0044-1601 1 0.35 - 1 - 0.00
graphpart_2g-0055-0062 5 1.17 - 1 - 0.00
graphpart_2g-0066-0066 11 2.35 - 1 - 0.00
graphpart_2g-0077-0077 54 4.71 - 1 - 0.00
graphpart_2g-0088-0088 23 6.79 - 1 - 0.00
graphpart_2g-0099-9211 70 13.72 - 1 - 0.00
graphpart_2g-1010-0824 24 12.75 - 1 - 0.00
graphpart_2pm-0044-0044 5 1.16 - 1 - 0.00
graphpart_2pm-0055-0055 21 1.84 - 1 - 0.00
graphpart_2pm-0066-0066 30 3.23 - 1 - 0.00
graphpart_2pm-0077-0777 34 4.20 - 1 - 0.00
graphpart_2pm-0088-0888 79 8.28 - 1 - 0.00
graphpart_2pm-0099-0999 1,569 28.43 - 1 - 0.00
graphpart_3g-0234-0234 17 2.02 - 1 - 0.00
graphpart_3g-0244-0244 17 4.64 - 1 - 0.00
graphpart_3g-0333-0333 10 3.32 - 1 - 0.00
graphpart_3g-0334-0334 94 5.80 - 1 - 0.00
graphpart_3g-0344-0344 125 8.35 - 1 - 0.00
graphpart_3g-0444-0444 1,117 32.22 - 1 - 0.00
graphpart_3pm-0234-0234 30 2.26 - 1 - 0.00
graphpart_3pm-0244-0244 175 3.96 - 1 - 0.00
graphpart_3pm-0333-0333 439 4.72 - 1 - 0.00
graphpart_3pm-0334-0334 876 9.42 - 1 - 0.00
graphpart_3pm-0344-0344 2,300 30.58 - 1 - 0.00
graphpart_3pm-0444-0444 90,112 699.09 - 1 - 0.00
graphpart_clique-20 341 5.76 - 1 - 0.00
graphpart_clique-30 2,682 54.74 - 1 - 0.00
graphpart_clique-40 43,499 849.54 - 1 - 0.00
graphpart_clique-50 39,565 limit 105.83 1 - 0.00
graphpart_clique-60 20,965 limit 276.40 1 - 0.00
graphpart_clique-70 13,118 limit 249.43 1 - 0.00
hadamard_4 173 0.56 - - - 0.00
hadamard_5 21,849 34.48 - - - 0.00
hadamard_6 123,327 limit 766.67 - - 0.03
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hadamard_7 3,513 limit 125,300.00 - - 0.28
hadamard_8 18 limit - - - 3.13
hmittelman 1 0.02 - 3 - 0.00
ivalues 63,645 limit 486.95 - - 0.00
kissing2 1 914.55 - - - 5.44
knp3-12 74,763 limit 142.33 - - 0.00
knp4-24 6,853 limit 391.48 - - 0.03
knp5-40 327 limit 820.08 - - 0.19
knp5-41 1,243 limit 727.74 - - 0.21
knp5-42 520 limit 830.93 - - 0.21
knp5-43 890 limit 807.30 - - 0.24
knp5-44 609 limit 823.92 - - 0.25
kport20 49,856 257.36 - - - 0.00
lop97icx 2,083 25.45 - - - 0.00
maxcsp-ehi-85-297-12 245 limit - 4 - 0.00
maxcsp-ehi-85-297-36 263 limit - 3 - 0.00
maxcsp-ehi-85-297-71 195 limit - 2 - 0.00
maxcsp-ehi-90-315-70 139 limit - 1 - 0.00
maxcsp-langford-3-11 31,278 limit - 1 - 0.00
maxmin 172,863 limit 9.03 - - 0.00
mbtd 1,570 limit 151.09 1 - 0.47
netmod_dol1 4,799 limit 47.82 - - 0.47
netmod_kar1 3,372 117.70 - - - 0.05
netmod_kar2 3,372 118.05 - - - 0.06
nuclear14 30 limit - - - 0.00
nuclear25 15 limit - - - 0.01
nuclear49 21 limit - - - 0.03
nuclearva 22 limit - - - 0.00
nuclearvb 111 limit - - - 0.00
nuclearvc 212 limit - - - 0.00
nuclearvd 287 limit - - - 0.00
nuclearve 59 limit - - - 0.01
nuclearvf 66 limit - - - 0.00
nvs09 39 0.20 - - - 0.00
oil2 168 81.68 - - - 0.00
orth_d4m6_pl 426,404 limit 166.56 - - 0.00
pooling_bental5pq 1 0.16 - - - 0.00
pooling_bental5stp 7,198 37.57 - - - 0.00
pooling_bental5tp 1 0.14 - - - 0.00
power�ow2383wpp 1 limit - - - 0.23
power�ow2383wpr 1 limit - - - 0.26
procurement1large 87,925 limit 375.13 - - 0.01
procurement1mot 842,483 limit 522.71 - - 0.00
procurement2mot 167 4.48 - - - 0.00
product 4,293 316.28 - - - 0.01
product2 1 9.48 - - - 0.07
radar-2000-10-a-6_lat_7 341 361.31 - - - 0.00
radar-3000-10-a-8_lat_7 4,924 limit 292.58 - - 0.00
ringpack_10_2 110,478 limit 8.22 1 - 0.00
ringpack_20_2 8,833 limit 233.33 1 - 0.02
ringpack_20_3 17,380 limit 566.67 - - 0.16
ringpack_30_2 61 limit 1,400.00 1 - 0.06
rsyn0815m 151 1.01 - - - 0.00
rsyn0815m02m 1,422 11.68 - - - 0.00
rsyn0815m03m 1,347 18.43 - - - 0.00
rsyn0815m04m 4,006 50.04 - - - 0.00
sepasequ_complex 54,234 limit 62.58 - - 0.00
sporttournament10 1 0.69 - 1 - 0.00
st_e09 1 0.01 - - - 0.00
st_e18 1 0.02 - - - 0.00
st_qpc-m3c 1 0.03 - - - 0.00
st_rv9 331 2.78 - - - 0.00
syn15m 1 0.32 - - - 0.00
t1000 0 0.88 - - - 0.00
tln2 1 0.00 - - - 0.01
topopt-zhou-rozvany_75 478 limit - - - 0.00
torsion100 20 limit 380.39 - - 0.11
torsion25 1 limit 319.02 - - 0.03
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torsion50 16 limit 373.99 - - 0.06
turkey 1 20.01 - - - 0.00
util 14 0.28 - 1 - 0.00
waste 203,212 limit 84.75 - - 0.00
watercontamination0202 33 98.04 - - - 0.00
waterund28 10,033 limit 7.76 - - 0.00

Table B.6: Detailed results for variant D-lp on M-sym-all. Depicted are the number of nodes
(#nodes), the total CPU time in seconds (total-time), the remaining gap at the time limit as reported
by SCIP (gap), the number of orbitopes handled (#orbitope), the number of sbcs added (#sbcs), and
the time for symmetry computating and handling in seconds (sym-time). If the gap is not displayed
despite the problem hitting the time limit, then SCIP reported either "Large" or "in�nite" as gap.

name #nodes total-time gap #orbitope #sbcs sym-time

arki0002 11 limit - - 10 0.03
arki0005 922 limit - - 1 0.06
arki0006 97 limit - - - 0.06
arki0008 1 32.86 - - - 0.03
arki0016 9,317 limit - - 5 0.03
arki0017 9,226 limit 995.08 - 6 0.01
arki0018 2 limit - - 77 8.99
autocorr_bern20-03 1 0.03 - 1 - 0.00
autocorr_bern20-05 23,260 40.98 - 1 - 0.00
autocorr_bern20-10 92,832 584.71 - 1 - 0.00
autocorr_bern20-15 89,307 1,126.27 - 1 - 0.00
autocorr_bern25-03 1 0.03 - 2 - 0.00
autocorr_bern25-06 723,859 1,857.02 - 1 - 0.00
autocorr_bern25-13 104,248 limit 76.35 1 - 0.01
autocorr_bern25-19 40,459 limit 216.25 1 - 0.00
autocorr_bern25-25 19,296 limit 385.40 1 - 0.01
autocorr_bern30-04 783,673 1,141.84 - 1 - 0.00
autocorr_bern30-08 210,547 limit 169.33 1 - 0.01
autocorr_bern30-15 34,741 limit 233.29 1 - 0.01
autocorr_bern30-23 8,285 limit 457.26 1 - 0.02
autocorr_bern30-30 3,707 limit 672.47 1 - 0.01
autocorr_bern35-04 765,720 limit 58.85 1 - 0.00
autocorr_bern35-09 88,078 limit 320.01 1 - 0.00
autocorr_bern35-18 7,661 limit 447.49 1 - 0.00
autocorr_bern35-26 2,551 limit 668.02 1 - 0.03
autocorr_bern35-35�x 1,962 limit 900.76 1 - 0.00
autocorr_bern40-05 349,434 limit 156.47 1 - 0.00
autocorr_bern40-10 42,094 limit 486.92 1 - 0.01
autocorr_bern40-20 2,153 limit 643.85 1 - 0.02
autocorr_bern40-30 1,266 limit 854.80 1 - 0.03
autocorr_bern40-40 1,295 limit 1,048.21 1 - 0.05
autocorr_bern45-05 294,467 limit 212.93 1 - 0.00
autocorr_bern45-11 16,671 limit 615.10 1 - 0.01
autocorr_bern45-23 1,365 limit 782.92 1 - 0.02
autocorr_bern45-34 810 limit 1,092.85 1 - 0.05
autocorr_bern45-45 609 limit 1,193.35 1 - 0.07
autocorr_bern50-06 115,133 limit 406.22 1 - 0.00
autocorr_bern50-13 6,884 limit 714.84 1 - 0.01
autocorr_bern50-25 833 limit 918.77 1 - 0.03
autocorr_bern55-06 112,931 limit 425.29 1 - 0.01
autocorr_bern55-14 2,790 limit 959.75 1 - 0.02
autocorr_bern55-28 705 limit 1,088.26 1 - 0.06
autocorr_bern60-08 33,570 limit 703.49 1 - 0.01
autocorr_bern60-15 2,535 limit 988.55 1 - 0.02
ball_mk2_10 1 0.00 - - - 0.00
ball_mk2_30 3,884,971 3,298.63 - - - 0.00
ball_mk3_10 0 0.01 - - - 0.00
carton7 260,530 686.28 - - 2 0.00
carton9 887,030 limit 60.22 - 1 0.01
celar6-sub0 2,072 limit - 1 - 0.21
chp_partload 778 limit - - 1 0.01
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chp_shorttermplan1b 41,240 limit 6.06 - - 0.00
chp_shorttermplan2a 135 135.91 - - - 0.00
chp_shorttermplan2c 21,346 limit - - - 0.00
color_lab3_3x0 46,659 limit 495.24 2 - 0.00
color_lab3_4x0 38,542 limit 1,066.23 2 - 0.01
crossdock_15x7 56,942 limit 312.25 1 - 0.01
crossdock_15x8 47,047 limit 1,426.76 1 - 0.01
crudeoil_li02 1,527,328 limit 1.13 - 3 0.00
crudeoil_li06 58,816 926.55 - - 1 0.00
crudeoil_li21 153,002 limit 2.53 - 1 0.01
crudeoil_pooling_dt4 32,663 limit - - 1 0.00
cvxnonsep_normcon30 1 0.10 - - - 0.00
cvxnonsep_normcon30r 1 0.11 - - - 0.00
cvxnonsep_normcon40 1 0.14 - - - 0.00
cvxnonsep_normcon40r 10 0.39 - - 1 0.00
cvxnonsep_psig20 8,095,612 limit 229.64 - 3 0.00
cvxnonsep_psig20r 1 0.14 - - - 0.00
cvxnonsep_psig30 7,155,868 limit 154.98 - 1 0.00
cvxnonsep_psig30r 68 1.02 - - 1 0.00
cvxnonsep_psig40 6,257,927 limit 113.43 - 4 0.00
cvxnonsep_psig40r 48 0.93 - - 4 0.00
densitymod 511 limit - 2 - 3.91
eigena2 1 limit - - - 1.17
elec100 159 limit - - 1,663 1.83
elec200 1 limit - - - 25.93
elec25 2,389 limit - - 269 0.02
elec50 589 limit - - 639 0.22
elf 187 1.76 - - 2 0.00
em�100_5_5 3,225 limit 29,267.53 1 - 0.03
ex14_1_5 1 0.02 - - - 0.00
ex2_1_3 1 0.16 - - - 0.00
ex5_2_5 1 1.03 - - - 0.00
ex8_1_6 10 0.12 - - 1 0.00
ex8_3_1 373,703 limit 23.00 - - 0.00
ex8_3_11 429,617 limit 25.07 - - 0.00
ex8_3_13 303,666 limit 15.67 - - 0.00
ex8_3_2 485,541 limit 40.66 - - 0.00
ex8_3_3 554,310 limit 39.22 - - 0.01
ex8_3_4 479,764 limit 62.01 - - 0.00
ex8_3_5 499,196 limit 1,496.29 - - 0.00
ex8_3_7 26 limit - - - 0.00
ex8_3_8 123,077 limit 207.11 - - 0.00
ex8_3_9 697,103 limit 31.06 - - 0.00
ex8_4_6 9 limit - - 3 0.00
ex8_6_1 654 limit - - - 0.00
ex9_1_8 1 0.01 - - - 0.01
ex9_2_2 1 0.15 - - - 0.00
ex9_2_6 1 0.12 - - - 0.00
gabriel04 7,563 332.88 - - 2 0.01
gams03 1 limit - - - 0.33
gastrans582_cold13 14,262 593.88 - - 1 0.00
gastrans582_cold13_95 99,388 limit - - - 0.00
gastrans582_cold17 1 18.61 - - - 0.00
gastrans582_cold17_95 27 32.13 - - - 0.00
gastrans582_cool12 25 25.81 - - - 0.00
gastrans582_cool12_95 24 42.80 - - - 0.00
gastrans582_cool14 124 47.17 - - - 0.00
gastrans582_cool14_95 20 36.16 - - - 0.00
gastrans582_freezing27 1 25.32 - - - 0.00
gastrans582_freezing27_95 1 36.22 - - - 0.00
gastrans582_freezing30 21 43.14 - - - 0.00
gastrans582_freezing30_95 1 29.92 - - - 0.00
gastrans582_mild10 24 41.96 - - - 0.01
gastrans582_mild10_95 20 36.15 - - - 0.00
gastrans582_mild11 18 25.96 - - - 0.00
gastrans582_mild11_95 1 18.49 - - - 0.00
gastrans582_warm15 28,888 2,446.33 - - - 0.00
gastrans582_warm15_95 17 31.51 - - - 0.00
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gastrans582_warm31 35 36.38 - - - 0.01
gastrans582_warm31_95 65 30.97 - - - 0.00
gear 10,834 8.42 - - 2 0.00
gear2 24,051 15.19 - - 2 0.00
gear3 10,885 8.34 - - 2 0.00
gear4 803 0.27 - - 2 0.00
graphpart_2g-0044-1601 1 0.32 - 1 - 0.00
graphpart_2g-0055-0062 5 1.15 - 1 - 0.00
graphpart_2g-0066-0066 11 2.28 - 1 - 0.00
graphpart_2g-0077-0077 54 4.54 - 1 - 0.00
graphpart_2g-0088-0088 23 6.64 - 1 - 0.00
graphpart_2g-0099-9211 70 12.93 - 1 - 0.00
graphpart_2g-1010-0824 24 12.23 - 1 - 0.00
graphpart_2pm-0044-0044 5 1.16 - 1 - 0.00
graphpart_2pm-0055-0055 21 1.86 - 1 - 0.00
graphpart_2pm-0066-0066 30 3.22 - 1 - 0.00
graphpart_2pm-0077-0777 34 4.18 - 1 - 0.00
graphpart_2pm-0088-0888 79 8.09 - 1 - 0.00
graphpart_2pm-0099-0999 1,569 27.80 - 1 - 0.00
graphpart_3g-0234-0234 17 1.96 - 1 - 0.00
graphpart_3g-0244-0244 17 4.53 - 1 - 0.00
graphpart_3g-0333-0333 10 3.28 - 1 - 0.00
graphpart_3g-0334-0334 94 5.54 - 1 - 0.00
graphpart_3g-0344-0344 125 8.27 - 1 - 0.00
graphpart_3g-0444-0444 1,117 31.68 - 1 - 0.00
graphpart_3pm-0234-0234 30 2.15 - 1 - 0.00
graphpart_3pm-0244-0244 175 3.74 - 1 - 0.00
graphpart_3pm-0333-0333 439 4.62 - 1 - 0.00
graphpart_3pm-0334-0334 876 9.22 - 1 - 0.00
graphpart_3pm-0344-0344 2,300 29.82 - 1 - 0.00
graphpart_3pm-0444-0444 90,112 682.69 - 1 - 0.00
graphpart_clique-20 341 5.95 - 1 - 0.00
graphpart_clique-30 2,682 55.77 - 1 - 0.00
graphpart_clique-40 43,499 848.37 - 1 - 0.00
graphpart_clique-50 39,277 limit 105.91 1 - 0.00
graphpart_clique-60 21,067 limit 276.26 1 - 0.00
graphpart_clique-70 13,065 limit 249.43 1 - 0.00
hadamard_4 173 0.57 - - - 0.00
hadamard_5 21,849 33.82 - - - 0.00
hadamard_6 123,138 limit 766.67 - - 0.03
hadamard_7 3,481 limit 125,400.00 - - 0.29
hadamard_8 18 limit - - - 3.16
hmittelman 1 0.03 - 3 - 0.00
ivalues 73,868 limit 356.43 - 2 0.01
kissing2 1 913.97 - - - 5.46
knp3-12 109,798 limit 142.58 - 70 0.00
knp4-24 5,475 limit 391.00 - 227 0.03
knp5-40 393 limit 797.54 - 397 0.19
knp5-41 222 limit 782.18 - 553 0.20
knp5-42 457 limit 759.73 - 452 0.21
knp5-43 306 limit 842.26 - 453 0.24
knp5-44 235 limit 840.02 - 504 0.25
kport20 97,294 332.65 - - 7 0.00
lop97icx 2,083 24.07 - - - 0.00
maxcsp-ehi-85-297-12 274 limit - 4 - 0.00
maxcsp-ehi-85-297-36 295 limit - 3 - 0.00
maxcsp-ehi-85-297-71 224 limit - 2 - 0.00
maxcsp-ehi-90-315-70 159 limit - 1 - 0.00
maxcsp-langford-3-11 33,283 limit - 1 - 0.00
maxmin 79,691 limit 46.83 - 36 0.00
mbtd 1,569 limit 151.09 1 - 0.46
netmod_dol1 4,794 limit 47.82 - - 0.48
netmod_kar1 3,372 117.93 - - - 0.05
netmod_kar2 3,372 120.72 - - - 0.04
nuclear14 52 limit - - 15 0.01
nuclear25 48 limit - - 10 0.00
nuclear49 26 limit - - 21 0.02
nuclearva 22 limit - - 3 0.00
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nuclearvb 480 limit - - 3 0.00
nuclearvc 97 limit - - 3 0.00
nuclearvd 227 limit - - 3 0.00
nuclearve 98 limit - - 3 0.00
nuclearvf 250 limit - - 3 0.00
nvs09 614 1.39 - - - 0.00
oil2 232 53.92 - - - 0.00
orth_d4m6_pl 433,055 limit 210.64 - 1 0.00
pooling_bental5pq 1 0.17 - - - 0.00
pooling_bental5stp 25,450 152.27 - - 3 0.00
pooling_bental5tp 1 0.12 - - - 0.00
power�ow2383wpp 1 limit - - - 0.24
power�ow2383wpr 1 limit - - - 0.26
procurement1large 92,443 limit 378.29 - 36 0.01
procurement1mot 851,934 limit 505.27 - 5 0.00
procurement2mot 167 4.41 - - - 0.00
product 4,293 314.52 - - - 0.00
product2 1 9.30 - - - 0.07
radar-2000-10-a-6_lat_7 15,884 limit 138.30 - - 0.00
radar-3000-10-a-8_lat_7 11,945 limit 10,110.83 - - 0.00
ringpack_10_2 111,638 limit 8.22 1 - 0.00
ringpack_20_2 8,977 limit 233.33 1 - 0.02
ringpack_20_3 17,358 limit 566.67 - - 0.15
ringpack_30_2 61 limit 1,400.00 1 - 0.06
rsyn0815m 149 1.07 - - 4 0.00
rsyn0815m02m 1,296 10.65 - - 7 0.00
rsyn0815m03m 1,464 19.06 - - 11 0.00
rsyn0815m04m 3,450 48.06 - - 15 0.00
sepasequ_complex 54,200 limit 62.59 - - 0.01
sporttournament10 1 0.69 - 1 - 0.00
st_e09 1 0.02 - - - 0.00
st_e18 1 0.01 - - - 0.00
st_qpc-m3c 1 0.02 - - - 0.00
st_rv9 261 2.73 - - 7 0.00
syn15m 1 0.31 - - - 0.00
t1000 0 0.89 - - - 0.00
tln2 1 0.01 - - - 0.00
topopt-zhou-rozvany_75 451 limit - - 200 0.00
torsion100 20 limit 380.39 - - 0.10
torsion25 1 limit 319.02 - - 0.02
torsion50 16 limit 373.99 - - 0.06
turkey 1 19.94 - - - 0.00
util 14 0.28 - 1 - 0.00
waste 205,277 limit 83.05 - - 0.01
watercontamination0202 33 96.51 - - - 0.00
waterund28 10,026 limit 7.76 - - 0.01

Table B.7: Detailed results for variant D-lpf on M-sym-all. Depicted are the number of nodes
(#nodes), the total CPU time in seconds (total-time), the remaining gap at the time limit as reported
by SCIP (gap), the number of orbitopes handled (#orbitope), the number of sbcs added (#sbcs), and
the time for symmetry computating and handling in seconds (sym-time). If the gap is not displayed
despite the problem hitting the time limit, then SCIP reported either "Large" or "in�nite" as gap.

name #nodes total-time gap #orbitope #sbcs sym-time

arki0002 23 limit - - 10 0.02
arki0005 816 limit - - 1 0.06
arki0006 97 limit - - - 0.08
arki0008 1 32.76 - - - 0.02
arki0016 8,980 limit - - 5 0.02
arki0017 9,372 limit 996.18 - 6 0.01
arki0018 2 limit - - 71 9.10
autocorr_bern20-03 1 0.03 - 1 - 0.00
autocorr_bern20-05 23,260 41.40 - 1 - 0.00
autocorr_bern20-10 92,832 587.68 - 1 - 0.00
autocorr_bern20-15 89,307 1,124.71 - 1 - 0.00
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name #nodes total-time gap #orbitope #sbcs sym-time

autocorr_bern25-03 1 0.03 - 2 - 0.00
autocorr_bern25-06 723,859 1,852.49 - 1 - 0.00
autocorr_bern25-13 105,918 limit 75.74 1 - 0.01
autocorr_bern25-19 40,716 limit 215.60 1 - 0.01
autocorr_bern25-25 19,241 limit 385.42 1 - 0.01
autocorr_bern30-04 783,673 1,141.83 - 1 - 0.00
autocorr_bern30-08 210,552 limit 169.33 1 - 0.00
autocorr_bern30-15 34,660 limit 233.45 1 - 0.00
autocorr_bern30-23 8,262 limit 457.26 1 - 0.01
autocorr_bern30-30 3,670 limit 675.01 1 - 0.02
autocorr_bern35-04 776,239 limit 58.59 1 - 0.00
autocorr_bern35-09 87,644 limit 320.31 1 - 0.00
autocorr_bern35-18 7,695 limit 447.31 1 - 0.01
autocorr_bern35-26 2,555 limit 668.02 1 - 0.02
autocorr_bern35-35�x 1,957 limit 901.51 1 - 0.00
autocorr_bern40-05 352,890 limit 156.14 1 - 0.00
autocorr_bern40-10 42,352 limit 486.67 1 - 0.01
autocorr_bern40-20 2,137 limit 643.85 1 - 0.01
autocorr_bern40-30 1,268 limit 854.80 1 - 0.03
autocorr_bern40-40 1,276 limit 1,048.21 1 - 0.03
autocorr_bern45-05 296,053 limit 212.83 1 - 0.00
autocorr_bern45-11 16,706 limit 615.10 1 - 0.00
autocorr_bern45-23 1,352 limit 782.92 1 - 0.03
autocorr_bern45-34 805 limit 1,092.85 1 - 0.04
autocorr_bern45-45 612 limit 1,193.08 1 - 0.07
autocorr_bern50-06 115,543 limit 406.04 1 - 0.00
autocorr_bern50-13 6,913 limit 714.84 1 - 0.01
autocorr_bern50-25 840 limit 914.33 1 - 0.04
autocorr_bern55-06 115,104 limit 424.60 1 - 0.00
autocorr_bern55-14 2,812 limit 958.49 1 - 0.01
autocorr_bern55-28 705 limit 1,088.26 1 - 0.05
autocorr_bern60-08 33,674 limit 703.32 1 - 0.00
autocorr_bern60-15 2,532 limit 988.55 1 - 0.01
ball_mk2_10 1 0.01 - - - 0.00
ball_mk2_30 3,884,971 3,336.53 - - - 0.00
ball_mk3_10 0 0.00 - - - 0.00
carton7 271,560 686.34 - - 3 0.00
carton9 849,860 limit 60.22 - 1 0.00
celar6-sub0 2,071 limit - 1 - 0.21
chp_partload 786 limit - - 1 0.00
chp_shorttermplan1b 41,280 limit 6.06 - - 0.00
chp_shorttermplan2a 135 136.59 - - - 0.00
chp_shorttermplan2c 21,299 limit - - - 0.00
color_lab3_3x0 46,820 limit 494.85 2 - 0.00
color_lab3_4x0 38,687 limit 1,066.23 2 - 0.01
crossdock_15x7 56,784 limit 312.38 1 - 0.00
crossdock_15x8 47,283 limit 1,425.00 1 - 0.01
crudeoil_li02 1,484,820 limit 1.14 - 3 0.00
crudeoil_li06 45,205 763.71 - - 1 0.01
crudeoil_li21 158,853 limit 1.72 - 1 0.01
crudeoil_pooling_dt4 19,960 limit 8.18 - 1 0.00
cvxnonsep_normcon30 1 0.11 - - - 0.00
cvxnonsep_normcon30r 1 0.12 - - - 0.00
cvxnonsep_normcon40 1 0.12 - - - 0.00
cvxnonsep_normcon40r 10 0.44 - - 1 0.00
cvxnonsep_psig20 8,151,067 limit 227.98 - 3 0.00
cvxnonsep_psig20r 1 0.18 - - - 0.01
cvxnonsep_psig30 7,204,990 limit 155.02 - 1 0.00
cvxnonsep_psig30r 68 1.04 - - 1 0.00
cvxnonsep_psig40 6,442,387 limit 112.65 - 4 0.00
cvxnonsep_psig40r 50 0.98 - - 4 0.00
densitymod 511 limit - 2 - 3.96
eigena2 1 limit - - - 1.14
elec100 44 limit - - 2,024 1.80
elec200 1 limit - - - 26.31
elec25 1,874 limit - - 284 0.03
elec50 511 limit - - 519 0.22
elf 176 1.76 - - 2 0.00
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name #nodes total-time gap #orbitope #sbcs sym-time

em�100_5_5 3,226 limit 29,267.53 1 - 0.03
ex14_1_5 1 0.01 - - - 0.00
ex2_1_3 1 0.17 - - - 0.00
ex5_2_5 1 1.01 - - - 0.00
ex8_1_6 15 0.12 - - 1 0.00
ex8_3_1 373,777 limit 23.00 - - 0.00
ex8_3_11 434,839 limit 25.07 - - 0.00
ex8_3_13 304,880 limit 15.67 - - 0.00
ex8_3_2 489,622 limit 40.66 - - 0.00
ex8_3_3 554,680 limit 39.22 - - 0.00
ex8_3_4 483,344 limit 62.01 - - 0.00
ex8_3_5 503,868 limit 1,496.29 - - 0.00
ex8_3_7 26 limit - - - 0.00
ex8_3_8 122,890 limit 207.11 - - 0.00
ex8_3_9 696,756 limit 31.06 - - 0.00
ex8_4_6 5 limit - - 3 0.00
ex8_6_1 654 limit - - - 0.00
ex9_1_8 1 0.00 - - - 0.00
ex9_2_2 1 0.16 - - - 0.00
ex9_2_6 1 0.11 - - - 0.00
gabriel04 7,529 353.65 - - 2 0.00
gams03 1 limit - - - 0.35
gastrans582_cold13 14,275 589.00 - - 1 0.00
gastrans582_cold13_95 98,709 limit - - - 0.00
gastrans582_cold17 1 18.35 - - - 0.00
gastrans582_cold17_95 27 32.24 - - - 0.00
gastrans582_cool12 25 25.88 - - - 0.01
gastrans582_cool12_95 24 42.38 - - - 0.00
gastrans582_cool14 124 47.52 - - - 0.01
gastrans582_cool14_95 20 36.09 - - - 0.00
gastrans582_freezing27 1 25.02 - - - 0.00
gastrans582_freezing27_95 1 36.01 - - - 0.00
gastrans582_freezing30 21 42.98 - - - 0.00
gastrans582_freezing30_95 1 29.85 - - - 0.00
gastrans582_mild10 24 41.87 - - - 0.00
gastrans582_mild10_95 20 35.80 - - - 0.00
gastrans582_mild11 18 25.98 - - - 0.01
gastrans582_mild11_95 1 18.66 - - - 0.00
gastrans582_warm15 28,888 2,429.33 - - - 0.01
gastrans582_warm15_95 17 31.99 - - - 0.00
gastrans582_warm31 35 36.80 - - - 0.01
gastrans582_warm31_95 65 30.62 - - - 0.00
gear 10,972 8.70 - - 2 0.00
gear2 30,935 18.46 - - 2 0.00
gear3 11,771 9.45 - - 2 0.00
gear4 563 0.21 - - 2 0.00
graphpart_2g-0044-1601 1 0.34 - 1 - 0.00
graphpart_2g-0055-0062 5 1.12 - 1 - 0.00
graphpart_2g-0066-0066 11 2.34 - 1 - 0.00
graphpart_2g-0077-0077 54 4.48 - 1 - 0.00
graphpart_2g-0088-0088 23 6.54 - 1 - 0.00
graphpart_2g-0099-9211 70 13.23 - 1 - 0.00
graphpart_2g-1010-0824 24 12.33 - 1 - 0.00
graphpart_2pm-0044-0044 5 1.11 - 1 - 0.00
graphpart_2pm-0055-0055 21 1.86 - 1 - 0.00
graphpart_2pm-0066-0066 30 3.05 - 1 - 0.00
graphpart_2pm-0077-0777 34 3.99 - 1 - 0.00
graphpart_2pm-0088-0888 79 8.09 - 1 - 0.00
graphpart_2pm-0099-0999 1,569 27.44 - 1 - 0.00
graphpart_3g-0234-0234 17 1.99 - 1 - 0.00
graphpart_3g-0244-0244 17 4.56 - 1 - 0.00
graphpart_3g-0333-0333 10 3.13 - 1 - 0.00
graphpart_3g-0334-0334 94 5.53 - 1 - 0.00
graphpart_3g-0344-0344 125 8.39 - 1 - 0.00
graphpart_3g-0444-0444 1,117 31.76 - 1 - 0.00
graphpart_3pm-0234-0234 30 2.16 - 1 - 0.00
graphpart_3pm-0244-0244 175 3.68 - 1 - 0.00
graphpart_3pm-0333-0333 439 4.71 - 1 - 0.00
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name #nodes total-time gap #orbitope #sbcs sym-time

graphpart_3pm-0334-0334 876 9.24 - 1 - 0.00
graphpart_3pm-0344-0344 2,300 30.03 - 1 - 0.00
graphpart_3pm-0444-0444 90,112 680.71 - 1 - 0.00
graphpart_clique-20 341 5.87 - 1 - 0.00
graphpart_clique-30 2,682 55.03 - 1 - 0.00
graphpart_clique-40 43,499 848.07 - 1 - 0.00
graphpart_clique-50 39,471 limit 105.83 1 - 0.00
graphpart_clique-60 21,117 limit 276.26 1 - 0.00
graphpart_clique-70 13,065 limit 249.43 1 - 0.00
hadamard_4 173 0.55 - - - 0.00
hadamard_5 21,849 33.94 - - - 0.00
hadamard_6 121,998 limit 770.37 - - 0.03
hadamard_7 3,494 limit 125,375.00 - - 0.29
hadamard_8 18 limit - - - 3.17
hmittelman 1 0.01 - 3 - 0.00
ivalues 77,279 limit 365.50 - 2 0.01
kissing2 1 915.56 - - - 5.47
knp3-12 79,044 limit 145.68 - 79 0.00
knp4-24 4,446 limit 447.37 - 303 0.03
knp5-40 178 limit 785.11 - 469 0.18
knp5-41 1,271 limit 661.17 - 491 0.21
knp5-42 367 limit 797.11 - 436 0.21
knp5-43 334 limit 788.54 - 593 0.23
knp5-44 203 limit 779.83 - 591 0.25
kport20 67,556 333.46 - - 7 0.00
lop97icx 2,083 24.35 - - - 0.00
maxcsp-ehi-85-297-12 276 limit - 4 - 0.00
maxcsp-ehi-85-297-36 293 limit - 3 - 0.00
maxcsp-ehi-85-297-71 221 limit - 2 - 0.00
maxcsp-ehi-90-315-70 165 limit - 1 - 0.00
maxcsp-langford-3-11 32,612 limit - 1 - 0.00
maxmin 135,137 limit 43.85 - 35 0.00
mbtd 1,568 limit 151.09 1 - 0.47
netmod_dol1 4,789 limit 47.82 - - 0.48
netmod_kar1 3,372 117.94 - - - 0.05
netmod_kar2 3,372 118.36 - - - 0.04
nuclear14 19 limit - - 15 0.00
nuclear25 66 limit - - 10 0.01
nuclear49 19 limit - - 20 0.03
nuclearva 22 limit - - 2 0.00
nuclearvb 338 limit - - 3 0.01
nuclearvc 424 limit - - 3 0.00
nuclearvd 57 limit - - 3 0.01
nuclearve 82 limit - - 3 0.00
nuclearvf 1,098 limit - - 3 0.00
nvs09 614 1.45 - - - 0.00
oil2 232 54.91 - - - 0.00
orth_d4m6_pl 409,157 limit 166.41 - 1 0.00
pooling_bental5pq 1 0.17 - - - 0.00
pooling_bental5stp 179 4.08 - - 3 0.00
pooling_bental5tp 1 0.12 - - - 0.00
power�ow2383wpp 1 limit - - - 0.23
power�ow2383wpr 1 limit - - - 0.26
procurement1large 99,233 limit 375.13 - 35 0.01
procurement1mot 927,261 limit 552.12 - 5 0.00
procurement2mot 167 4.46 - - - 0.00
product 4,293 314.87 - - - 0.00
product2 1 9.22 - - - 0.07
radar-2000-10-a-6_lat_7 15,917 limit 138.30 - - 0.00
radar-3000-10-a-8_lat_7 12,097 limit 10,110.83 - - 0.00
ringpack_10_2 111,943 limit 8.22 1 - 0.01
ringpack_20_2 8,974 limit 233.33 1 - 0.02
ringpack_20_3 17,340 limit 566.67 - - 0.15
ringpack_30_2 61 limit 1,400.00 1 - 0.06
rsyn0815m 151 1.02 - - 3 0.00
rsyn0815m02m 1,422 11.94 - - 6 0.00
rsyn0815m03m 1,347 18.32 - - 9 0.01
rsyn0815m04m 3,857 52.02 - - 12 0.00
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name #nodes total-time gap #orbitope #sbcs sym-time

sepasequ_complex 54,365 limit 62.58 - - 0.01
sporttournament10 1 0.67 - 1 - 0.00
st_e09 1 0.02 - - - 0.00
st_e18 1 0.01 - - - 0.00
st_qpc-m3c 1 0.03 - - - 0.00
st_rv9 240 2.70 - - 6 0.00
syn15m 1 0.32 - - - 0.00
t1000 0 0.87 - - - 0.00
tln2 1 0.01 - - - 0.00
topopt-zhou-rozvany_75 442 limit - - 200 0.00
torsion100 20 limit 380.39 - - 0.10
torsion25 1 limit 319.02 - - 0.02
torsion50 16 limit 373.99 - - 0.06
turkey 1 19.97 - - - 0.00
util 14 0.26 - 1 - 0.00
waste 204,774 limit 83.06 - - 0.01
watercontamination0202 33 96.14 - - - 0.00
waterund28 10,025 limit 7.76 - - 0.00

Table B.8: Detailed results for variant D-sepa on M-sym-all. Depicted are the number of nodes
(#nodes), the total CPU time in seconds (total-time), the remaining gap at the time limit as reported
by SCIP (gap), the number of domain reductions performed (#red), the number of node cuto�s
detected (#cuto�), and the time for symmetry computating and handling in seconds (sym-time). If
the gap is not displayed despite the problem hitting the time limit, then SCIP reported either "Large"
or "in�nite" as gap.

name #nodes total-time gap #red #cuto� sym-time

arki0002 4 limit - - - 0.02
arki0005 439 limit - - - 0.06
arki0006 97 limit - - - 0.05
arki0008 1 33.17 - - - 0.02
arki0016 8,718 limit - - - 0.02
arki0017 9,214 limit 996.25 - - 0.02
arki0018 2 limit - - - 8.92
autocorr_bern20-03 1 0.02 - - - 0.00
autocorr_bern20-05 23,260 43.16 - 403 - 0.00
autocorr_bern20-10 92,832 608.86 - 351 - 0.01
autocorr_bern20-15 89,307 1,169.29 - 376 - 0.00
autocorr_bern25-03 1 0.04 - - - 0.00
autocorr_bern25-06 723,859 1,923.60 - 3,561 3 0.00
autocorr_bern25-13 99,523 limit 78.02 836 - 0.00
autocorr_bern25-19 38,603 limit 218.25 641 - 0.00
autocorr_bern25-25 18,867 limit 387.21 463 - 0.01
autocorr_bern30-04 783,673 1,177.71 - 15,862 - 0.00
autocorr_bern30-08 201,616 limit 171.14 2,634 - 0.00
autocorr_bern30-15 33,143 limit 238.26 285 - 0.01
autocorr_bern30-23 8,121 limit 460.03 479 - 0.01
autocorr_bern30-30 3,650 limit 675.90 141 - 0.02
autocorr_bern35-04 759,042 limit 59.03 5,994 - 0.00
autocorr_bern35-09 84,780 limit 322.03 7,392 - 0.01
autocorr_bern35-18 7,463 limit 449.75 520 - 0.01
autocorr_bern35-26 2,538 limit 671.49 102 - 0.03
autocorr_bern35-35�x 1,946 limit 901.51 152 - 0.00
autocorr_bern40-05 344,302 limit 157.00 5,281 - 0.01
autocorr_bern40-10 40,320 limit 489.50 678 - 0.01
autocorr_bern40-20 2,118 limit 644.42 89 - 0.02
autocorr_bern40-30 1,257 limit 857.07 101 - 0.03
autocorr_bern40-40 1,276 limit 1,048.21 45 - 0.03
autocorr_bern45-05 291,158 limit 213.23 7,357 - 0.00
autocorr_bern45-11 16,410 limit 615.10 1,467 - 0.00
autocorr_bern45-23 1,340 limit 782.92 79 - 0.03
autocorr_bern45-34 790 limit 1,102.14 70 - 0.05
autocorr_bern45-45 603 limit 1,193.35 42 - 0.05
autocorr_bern50-06 111,581 limit 407.69 1,105 - 0.00
autocorr_bern50-13 6,741 limit 714.84 321 - 0.01
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name #nodes total-time gap #red #cuto� sym-time

autocorr_bern50-25 834 limit 918.77 22 - 0.03
autocorr_bern55-06 111,155 limit 425.80 585 - 0.00
autocorr_bern55-14 2,770 limit 961.58 249 - 0.01
autocorr_bern55-28 702 limit 1,088.26 86 - 0.06
autocorr_bern60-08 32,686 limit 704.38 1,090 - 0.00
autocorr_bern60-15 2,464 limit 989.17 1 - 0.02
ball_mk2_10 1 0.02 - - - 0.00
ball_mk2_30 57 0.11 - - 1 0.00
ball_mk3_10 0 0.00 - - - 0.00
carton7 1,371 limit 127.53 12 - 0.00
carton9 338,042 limit 75.28 5,579 25 0.00
celar6-sub0 2,071 limit - 133 143 0.20
chp_partload 69 limit - 8 - 0.01
chp_shorttermplan1b 40,633 limit 5.79 578 - 0.00
chp_shorttermplan2a 134 141.68 - 18 1 0.00
chp_shorttermplan2c 21,310 limit - 389 - 0.00
color_lab3_3x0 45,494 limit 495.78 472 20 0.00
color_lab3_4x0 38,682 limit 1,066.23 827 22 0.01
crossdock_15x7 54,510 limit 316.21 5,633 102 0.01
crossdock_15x8 45,192 limit 1,448.01 3,875 32 0.01
crudeoil_li02 119 limit - 9 - 0.00
crudeoil_li06 7,160 limit 0.90 284 4 0.00
crudeoil_li21 2,392 limit - 30 1 0.01
crudeoil_pooling_dt4 19,071 limit 8.17 - - 0.00
cvxnonsep_normcon30 1 0.10 - - - 0.00
cvxnonsep_normcon30r 1 0.12 - - - 0.00
cvxnonsep_normcon40 1 0.13 - - - 0.00
cvxnonsep_normcon40r 10 0.44 - - - 0.00
cvxnonsep_psig20 7,767,553 limit 227.18 - - 0.00
cvxnonsep_psig20r 1 0.15 - - - 0.00
cvxnonsep_psig30 7,073,121 limit 155.00 - - 0.00
cvxnonsep_psig30r 68 1.04 - - - 0.00
cvxnonsep_psig40 6,240,835 limit 113.24 - 2 0.00
cvxnonsep_psig40r 36 0.87 - - - 0.00
densitymod 511 limit - 170 237 3.94
eigena2 1 limit - - - 1.16
elec100 404 limit - - - 1.79
elec200 1 limit - - - 26.28
elec25 3,673 limit - - - 0.03
elec50 3,564 limit - - - 0.21
elf 55 limit 6,663.44 7 - 0.00
em�100_5_5 3,224 limit 29,267.53 - - 0.02
ex14_1_5 1 0.01 - - - 0.00
ex2_1_3 1 0.17 - - - 0.00
ex5_2_5 1 1.04 - - - 0.00
ex8_1_6 19 0.13 - - - 0.00
ex8_3_1 374,403 limit 23.00 - - 0.00
ex8_3_11 436,330 limit 25.07 - - 0.00
ex8_3_13 305,811 limit 15.67 - - 0.00
ex8_3_2 489,163 limit 40.66 - - 0.00
ex8_3_3 555,099 limit 39.22 - - 0.00
ex8_3_4 479,337 limit 62.01 - - 0.00
ex8_3_5 502,872 limit 1,496.29 - - 0.00
ex8_3_7 26 limit - - - 0.00
ex8_3_8 123,141 limit 207.11 - - 0.00
ex8_3_9 697,576 limit 31.06 - - 0.00
ex8_4_6 12 limit - - - 0.00
ex8_6_1 654 limit - - - 0.00
ex9_1_8 1 0.01 - - - 0.00
ex9_2_2 1 0.15 - - - 0.00
ex9_2_6 1 0.09 - - - 0.00
gabriel04 7,047 321.73 - - - 0.00
gams03 1 limit - - - 0.34
gastrans582_cold13 41,516 1,680.14 - - - 0.00
gastrans582_cold13_95 23 26.49 - - - 0.00
gastrans582_cold17 1 19.07 - - - 0.00
gastrans582_cold17_95 37 33.26 - - - 0.00
gastrans582_cool12 25 27.44 - - - 0.00
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name #nodes total-time gap #red #cuto� sym-time

gastrans582_cool12_95 24 43.14 - - - 0.00
gastrans582_cool14 2,560 229.80 - - - 0.01
gastrans582_cool14_95 11 35.31 - - - 0.00
gastrans582_freezing27 1 25.33 - - - 0.00
gastrans582_freezing27_95 1 36.61 - - - 0.00
gastrans582_freezing30 21 44.28 - - - 0.00
gastrans582_freezing30_95 21 41.15 - - - 0.00
gastrans582_mild10 24 42.59 - - - 0.00
gastrans582_mild10_95 20 36.72 - - - 0.00
gastrans582_mild11 42 33.44 - - - 0.01
gastrans582_mild11_95 1 18.97 - - - 0.00
gastrans582_warm15 1,043 303.93 - - - 0.00
gastrans582_warm15_95 21 33.01 - - - 0.00
gastrans582_warm31 29 37.95 - - - 0.00
gastrans582_warm31_95 18 30.48 - - - 0.00
gear 14,488 9.11 - - 4 0.00
gear2 99 limit - 25 - 0.00
gear3 14,076 9.71 - - 3 0.00
gear4 1,060 0.37 - - - 0.00
graphpart_2g-0044-1601 1 0.35 - - - 0.00
graphpart_2g-0055-0062 5 1.17 - 2 1 0.00
graphpart_2g-0066-0066 11 2.35 - 3 2 0.00
graphpart_2g-0077-0077 54 4.71 - 2 2 0.00
graphpart_2g-0088-0088 23 6.79 - 8 1 0.00
graphpart_2g-0099-9211 70 13.72 - 11 2 0.00
graphpart_2g-1010-0824 24 12.75 - 4 3 0.00
graphpart_2pm-0044-0044 5 1.16 - 3 - 0.00
graphpart_2pm-0055-0055 21 1.84 - 4 2 0.00
graphpart_2pm-0066-0066 30 3.23 - 3 1 0.00
graphpart_2pm-0077-0777 34 4.20 - 3 1 0.00
graphpart_2pm-0088-0888 79 8.28 - 15 2 0.00
graphpart_2pm-0099-0999 1,569 28.43 - 12 1 0.00
graphpart_3g-0234-0234 17 2.02 - 4 2 0.00
graphpart_3g-0244-0244 17 4.64 - 5 3 0.00
graphpart_3g-0333-0333 10 3.32 - 3 - 0.00
graphpart_3g-0334-0334 94 5.80 - 10 5 0.00
graphpart_3g-0344-0344 125 8.35 - 12 3 0.00
graphpart_3g-0444-0444 1,117 32.22 - 24 44 0.00
graphpart_3pm-0234-0234 30 2.26 - 3 1 0.00
graphpart_3pm-0244-0244 175 3.96 - 13 1 0.00
graphpart_3pm-0333-0333 439 4.72 - 10 5 0.00
graphpart_3pm-0334-0334 876 9.42 - 58 1 0.00
graphpart_3pm-0344-0344 2,300 30.58 - 19 100 0.00
graphpart_3pm-0444-0444 90,112 699.09 - 32 47 0.00
graphpart_clique-20 341 5.76 - 16 5 0.00
graphpart_clique-30 2,682 54.74 - 142 25 0.00
graphpart_clique-40 43,499 849.54 - 226 19 0.00
graphpart_clique-50 39,565 limit 105.83 81 2 0.00
graphpart_clique-60 20,965 limit 276.40 409 19 0.00
graphpart_clique-70 13,118 limit 249.43 27 20 0.00
hadamard_4 173 0.56 - - - 0.00
hadamard_5 21,849 34.48 - - - 0.01
hadamard_6 123,327 limit 766.67 - - 0.03
hadamard_7 3,513 limit 125,300.00 - - 0.31
hadamard_8 18 limit - - - 3.19
hmittelman 1 0.02 - - - 0.00
ivalues 63,645 limit 486.95 - 6 0.00
kissing2 1 914.55 - - - 5.45
knp3-12 74,763 limit 142.33 - 328 0.00
knp4-24 6,853 limit 391.48 - 3 0.03
knp5-40 327 limit 820.08 - - 0.19
knp5-41 1,243 limit 727.74 - - 0.20
knp5-42 520 limit 830.93 - - 0.21
knp5-43 890 limit 807.30 - - 0.23
knp5-44 609 limit 823.92 - - 0.24
kport20 49,856 257.36 - 1,322 - 0.00
lop97icx 2,083 25.45 - - - 0.00
maxcsp-ehi-85-297-12 245 limit - 3 - 0.00
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name #nodes total-time gap #red #cuto� sym-time

maxcsp-ehi-85-297-36 263 limit - 5 - 0.00
maxcsp-ehi-85-297-71 195 limit - - - 0.00
maxcsp-ehi-90-315-70 139 limit - - - 0.00
maxcsp-langford-3-11 31,278 limit - 196 242 0.00
maxmin 172,863 limit 9.03 - - 0.00
mbtd 1,570 limit 151.09 4 1 0.46
netmod_dol1 4,799 limit 47.82 - - 0.46
netmod_kar1 3,372 117.70 - - - 0.05
netmod_kar2 3,372 118.05 - - - 0.05
nuclear14 30 limit - - - 0.01
nuclear25 15 limit - - - 0.00
nuclear49 21 limit - - - 0.02
nuclearva 22 limit - - - 0.01
nuclearvb 111 limit - - - 0.00
nuclearvc 212 limit - - - 0.00
nuclearvd 287 limit - - - 0.00
nuclearve 59 limit - - - 0.00
nuclearvf 66 limit - - - 0.00
nvs09 39 0.20 - - 1 0.00
oil2 168 81.68 - - - 0.00
orth_d4m6_pl 426,404 limit 166.56 - 43 0.00
pooling_bental5pq 1 0.16 - - - 0.00
pooling_bental5stp 7,198 37.57 - - - 0.00
pooling_bental5tp 1 0.14 - - - 0.00
power�ow2383wpp 1 limit - - - 0.23
power�ow2383wpr 1 limit - - - 0.27
procurement1large 87,925 limit 375.13 - - 0.01
procurement1mot 842,483 limit 522.71 - - 0.00
procurement2mot 167 4.48 - - - 0.00
product 4,293 316.28 - - - 0.00
product2 1 9.48 - - - 0.07
radar-2000-10-a-6_lat_7 341 361.31 - 26,206 - 0.00
radar-3000-10-a-8_lat_7 4,924 limit 292.58 144,643 - 0.00
ringpack_10_2 110,478 limit 8.22 1,428 37 0.00
ringpack_20_2 8,833 limit 233.33 9 3 0.01
ringpack_20_3 17,380 limit 566.67 - - 0.15
ringpack_30_2 61 limit 1,400.00 - - 0.05
rsyn0815m 151 1.01 - - - 0.00
rsyn0815m02m 1,422 11.68 - - - 0.00
rsyn0815m03m 1,347 18.43 - - - 0.00
rsyn0815m04m 4,006 50.04 - - - 0.01
sepasequ_complex 54,234 limit 62.58 - - 0.01
sporttournament10 1 0.69 - - - 0.00
st_e09 1 0.01 - - - 0.00
st_e18 1 0.02 - - - 0.00
st_qpc-m3c 1 0.03 - - - 0.00
st_rv9 331 2.78 - - 4 0.00
syn15m 1 0.32 - - - 0.00
t1000 0 0.88 - - - 0.00
tln2 1 0.00 - - - 0.00
topopt-zhou-rozvany_75 478 limit - - - 0.00
torsion100 20 limit 380.39 - - 0.11
torsion25 1 limit 319.02 - - 0.02
torsion50 16 limit 373.99 - - 0.06
turkey 1 20.01 - - - 0.00
util 14 0.28 - 1 - 0.00
waste 203,212 limit 84.75 - - 0.01
watercontamination0202 33 98.04 - - - 0.00
waterund28 10,033 limit 7.76 - - 0.01
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Table B.9: Detailed results for variant D-sepa* on M-sym-all. Depicted are the number of nodes
(#nodes), the total CPU time in seconds (total-time), the remaining gap at the time limit as reported
by SCIP (gap), the number of domain reductions performed (#red), the number of node cuto�s
detected (#cuto�), and the time for symmetry computating and handling in seconds (sym-time). If
the gap is not displayed despite the problem hitting the time limit, then SCIP reported either "Large"
or "in�nite" as gap.

name #nodes total-time gap #red #cuto� sym-time

arki0002 7 limit - - - 0.02
arki0005 439 limit - - - 0.06
arki0006 97 limit - - - 0.05
arki0008 1 33.28 - - - 0.02
arki0016 8,690 limit - - - 0.02
arki0017 9,218 limit 996.25 - - 0.01
arki0018 3 limit - - - 9.13
autocorr_bern20-03 1 0.03 - - - 0.00
autocorr_bern20-05 23,260 42.80 - 403 - 0.00
autocorr_bern20-10 92,832 611.47 - 351 - 0.01
autocorr_bern20-15 89,307 1,169.16 - 376 - 0.00
autocorr_bern25-03 1 0.04 - - - 0.00
autocorr_bern25-06 723,859 1,918.40 - 3,561 3 0.00
autocorr_bern25-13 99,959 limit 77.82 836 - 0.01
autocorr_bern25-19 38,909 limit 218.19 641 - 0.00
autocorr_bern25-25 18,846 limit 387.63 463 - 0.01
autocorr_bern30-04 783,673 1,180.86 - 15,862 - 0.00
autocorr_bern30-08 200,308 limit 171.36 2,621 - 0.00
autocorr_bern30-15 33,125 limit 238.26 285 - 0.01
autocorr_bern30-23 8,117 limit 460.03 479 - 0.01
autocorr_bern30-30 3,661 limit 675.01 141 - 0.02
autocorr_bern35-04 757,819 limit 59.03 5,987 - 0.00
autocorr_bern35-09 83,542 limit 323.06 7,322 - 0.00
autocorr_bern35-18 7,459 limit 449.75 520 - 0.01
autocorr_bern35-26 2,510 limit 673.97 102 - 0.02
autocorr_bern35-35�x 1,947 limit 901.51 152 - 0.00
autocorr_bern40-05 345,337 limit 156.90 5,290 - 0.01
autocorr_bern40-10 40,561 limit 489.12 680 - 0.00
autocorr_bern40-20 2,121 limit 643.85 89 - 0.02
autocorr_bern40-30 1,259 limit 857.07 101 - 0.03
autocorr_bern40-40 1,258 limit 1,048.21 45 - 0.04
autocorr_bern45-05 288,957 limit 213.42 7,318 - 0.00
autocorr_bern45-11 16,341 limit 615.10 1,458 - 0.01
autocorr_bern45-23 1,351 limit 782.92 79 - 0.02
autocorr_bern45-34 792 limit 1,102.14 70 - 0.05
autocorr_bern45-45 609 limit 1,193.35 42 - 0.04
autocorr_bern50-06 110,062 limit 408.33 1,056 - 0.00
autocorr_bern50-13 6,737 limit 714.84 321 - 0.00
autocorr_bern50-25 832 limit 918.77 22 - 0.03
autocorr_bern55-06 112,664 limit 425.34 599 - 0.00
autocorr_bern55-14 2,775 limit 961.58 250 - 0.02
autocorr_bern55-28 702 limit 1,088.26 86 - 0.06
autocorr_bern60-08 32,822 limit 704.24 1,091 - 0.01
autocorr_bern60-15 2,487 limit 989.09 1 - 0.02
ball_mk2_10 1 0.00 - - - 0.00
ball_mk2_30 227 0.28 - - 84 0.00
ball_mk3_10 0 0.00 - - - 0.00
carton7 1,371 limit 127.53 12 - 0.00
carton9 338,042 limit 75.28 5,579 25 0.00
celar6-sub0 2,072 limit - 133 143 0.21
chp_partload 69 limit - 8 - 0.01
chp_shorttermplan1b 40,593 limit 5.79 578 - 0.00
chp_shorttermplan2a 134 142.71 - 18 1 0.00
chp_shorttermplan2c 21,405 limit - 390 - 0.00
color_lab3_3x0 46,725 limit 495.24 474 20 0.00
color_lab3_4x0 38,873 limit 1,066.23 827 23 0.01
crossdock_15x7 54,490 limit 316.24 5,628 102 0.00
crossdock_15x8 45,328 limit 1,443.87 3,878 32 0.01
crudeoil_li02 119 limit - 9 - 0.01
crudeoil_li06 7,160 limit 0.90 284 4 0.00
crudeoil_li21 2,392 limit - 30 1 0.01
crudeoil_pooling_dt4 18,944 limit 8.17 - - 0.00
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name #nodes total-time gap #red #cuto� sym-time

cvxnonsep_normcon30 1 0.12 - - - 0.00
cvxnonsep_normcon30r 1 0.13 - - - 0.00
cvxnonsep_normcon40 1 0.12 - - - 0.00
cvxnonsep_normcon40r 10 0.40 - - - 0.00
cvxnonsep_psig20 7,939,826 limit 228.54 - 11 0.00
cvxnonsep_psig20r 1 0.16 - - - 0.00
cvxnonsep_psig30 7,096,224 limit 155.00 - 1 0.00
cvxnonsep_psig30r 68 1.03 - - - 0.00
cvxnonsep_psig40 6,412,437 limit 113.25 - 23851 0.00
cvxnonsep_psig40r 41 0.95 - - - 0.00
densitymod 511 limit - 170 237 3.92
eigena2 1 limit - - - 1.14
elec100 287 limit - - - 1.81
elec200 1 limit - - - 26.50
elec25 6,859 limit - - 11 0.03
elec50 2,055 limit - - - 0.20
elf 55 limit 6,663.44 7 - 0.00
em�100_5_5 3,224 limit 29,267.53 - - 0.02
ex14_1_5 1 0.01 - - - 0.00
ex2_1_3 1 0.15 - - - 0.00
ex5_2_5 1 0.99 - - - 0.00
ex8_1_6 17 0.14 - - - 0.00
ex8_3_1 373,853 limit 23.00 - - 0.00
ex8_3_11 436,021 limit 25.07 - - 0.00
ex8_3_13 305,827 limit 15.67 - - 0.00
ex8_3_2 489,793 limit 40.66 - - 0.00
ex8_3_3 552,618 limit 39.22 - - 0.00
ex8_3_4 481,679 limit 62.01 - - 0.00
ex8_3_5 505,614 limit 1,496.29 - - 0.00
ex8_3_7 26 limit - - - 0.00
ex8_3_8 123,325 limit 207.11 - - 0.00
ex8_3_9 697,524 limit 31.06 - - 0.00
ex8_4_6 14 limit - - 1 0.00
ex8_6_1 654 limit - - - 0.00
ex9_1_8 1 0.00 - - - 0.00
ex9_2_2 1 0.15 - - - 0.00
ex9_2_6 1 0.11 - - - 0.00
gabriel04 6,831 324.49 - - - 0.00
gams03 1 limit - - - 0.35
gastrans582_cold13 41,516 1,676.32 - - - 0.00
gastrans582_cold13_95 23 26.72 - - - 0.00
gastrans582_cold17 1 19.00 - - - 0.00
gastrans582_cold17_95 37 33.32 - - - 0.00
gastrans582_cool12 25 26.35 - - - 0.00
gastrans582_cool12_95 24 43.36 - - - 0.00
gastrans582_cool14 2,560 228.85 - - - 0.01
gastrans582_cool14_95 11 35.38 - - - 0.00
gastrans582_freezing27 1 25.53 - - - 0.00
gastrans582_freezing27_95 1 37.07 - - - 0.00
gastrans582_freezing30 21 44.26 - - - 0.00
gastrans582_freezing30_95 21 41.10 - - - 0.00
gastrans582_mild10 24 42.82 - - - 0.01
gastrans582_mild10_95 20 36.88 - - - 0.00
gastrans582_mild11 42 33.02 - - - 0.00
gastrans582_mild11_95 1 19.24 - - - 0.00
gastrans582_warm15 1,043 302.74 - - - 0.01
gastrans582_warm15_95 21 33.15 - - - 0.00
gastrans582_warm31 29 37.46 - - - 0.01
gastrans582_warm31_95 18 29.87 - - - 0.00
gear 18,615 11.92 - - 146 0.00
gear2 99 limit - 25 - 0.01
gear3 18,455 11.80 - - 56 0.00
gear4 912 0.34 - - 60 0.00
graphpart_2g-0044-1601 1 0.37 - - - 0.00
graphpart_2g-0055-0062 5 1.23 - 2 1 0.00
graphpart_2g-0066-0066 11 2.33 - 3 2 0.00
graphpart_2g-0077-0077 54 4.63 - 2 2 0.00
graphpart_2g-0088-0088 23 6.82 - 8 1 0.00
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name #nodes total-time gap #red #cuto� sym-time

graphpart_2g-0099-9211 70 13.64 - 11 2 0.00
graphpart_2g-1010-0824 24 12.71 - 4 3 0.00
graphpart_2pm-0044-0044 5 1.20 - 3 - 0.00
graphpart_2pm-0055-0055 21 1.91 - 4 2 0.00
graphpart_2pm-0066-0066 30 3.25 - 3 1 0.00
graphpart_2pm-0077-0777 34 4.21 - 3 1 0.00
graphpart_2pm-0088-0888 79 8.42 - 15 2 0.00
graphpart_2pm-0099-0999 1,569 28.37 - 12 1 0.00
graphpart_3g-0234-0234 17 2.08 - 4 2 0.00
graphpart_3g-0244-0244 17 4.61 - 5 3 0.00
graphpart_3g-0333-0333 10 3.23 - 3 - 0.00
graphpart_3g-0334-0334 94 5.67 - 10 5 0.00
graphpart_3g-0344-0344 125 8.71 - 12 3 0.00
graphpart_3g-0444-0444 1,117 32.07 - 24 44 0.00
graphpart_3pm-0234-0234 30 2.28 - 3 1 0.00
graphpart_3pm-0244-0244 175 3.79 - 13 1 0.00
graphpart_3pm-0333-0333 439 4.78 - 10 5 0.00
graphpart_3pm-0334-0334 876 9.26 - 58 1 0.00
graphpart_3pm-0344-0344 2,300 30.76 - 19 100 0.00
graphpart_3pm-0444-0444 90,112 706.99 - 32 47 0.00
graphpart_clique-20 341 5.68 - 16 5 0.00
graphpart_clique-30 2,682 55.21 - 142 25 0.00
graphpart_clique-40 43,499 847.70 - 226 19 0.00
graphpart_clique-50 39,284 limit 105.91 81 2 0.00
graphpart_clique-60 21,199 limit 275.97 427 19 0.00
graphpart_clique-70 13,136 limit 249.43 27 20 0.00
hadamard_4 173 0.59 - - - 0.00
hadamard_5 21,849 34.57 - - - 0.00
hadamard_6 123,144 limit 766.67 - - 0.03
hadamard_7 3,507 limit 125,375.00 - - 0.30
hadamard_8 18 limit - - - 3.17
hmittelman 1 0.03 - - - 0.00
ivalues 69,513 limit 444.53 - 107 0.00
kissing2 1 913.34 - - - 5.56
knp3-12 100,093 limit 123.12 - 246 0.00
knp4-24 9,153 limit 389.97 - 1 0.03
knp5-40 1,131 limit 782.40 - - 0.19
knp5-41 452 limit 798.99 - - 0.20
knp5-42 192 limit 871.81 - - 0.22
knp5-43 265 limit 878.66 - - 0.23
knp5-44 799 limit 784.37 - - 0.25
kport20 66,735 342.70 - 1,761 10 0.00
lop97icx 2,083 25.31 - - - 0.01
maxcsp-ehi-85-297-12 245 limit - 3 - 0.00
maxcsp-ehi-85-297-36 264 limit - 5 - 0.00
maxcsp-ehi-85-297-71 195 limit - - - 0.00
maxcsp-ehi-90-315-70 143 limit - - - 0.00
maxcsp-langford-3-11 31,227 limit - 192 239 0.00
maxmin 165,677 limit 51.13 - 75 0.00
mbtd 1,568 limit 151.09 4 1 0.46
netmod_dol1 4,789 limit 47.82 - - 0.52
netmod_kar1 3,372 117.88 - - - 0.04
netmod_kar2 3,372 118.22 - - - 0.03
nuclear14 30 limit - - - 0.00
nuclear25 15 limit - - - 0.01
nuclear49 21 limit - - - 0.03
nuclearva 22 limit - - - 0.00
nuclearvb 111 limit - - - 0.00
nuclearvc 212 limit - - - 0.00
nuclearvd 287 limit - - - 0.00
nuclearve 59 limit - - - 0.01
nuclearvf 66 limit - - - 0.00
nvs09 285 0.66 - - 3 0.00
oil2 168 81.26 - - - 0.00
orth_d4m6_pl 443,898 limit 246.89 - 330 0.00
pooling_bental5pq 1 0.15 - - - 0.00
pooling_bental5stp 436 5.20 - - - 0.00
pooling_bental5tp 1 0.14 - - - 0.00
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name #nodes total-time gap #red #cuto� sym-time

power�ow2383wpp 1 limit - - - 0.24
power�ow2383wpr 1 limit - - - 0.26
procurement1large 87,979 limit 375.13 - - 0.02
procurement1mot 839,224 limit 522.87 - - 0.00
procurement2mot 167 4.39 - - - 0.00
product 4,293 315.91 - - - 0.00
product2 1 9.42 - - - 0.07
radar-2000-10-a-6_lat_7 341 362.62 - 26,206 - 0.00
radar-3000-10-a-8_lat_7 4,924 limit 292.58 144,585 - 0.00
ringpack_10_2 110,024 limit 8.22 1,420 37 0.00
ringpack_20_2 8,831 limit 233.33 9 3 0.02
ringpack_20_3 17,360 limit 566.67 - - 0.15
ringpack_30_2 61 limit 1,400.00 - - 0.06
rsyn0815m 151 1.01 - - - 0.00
rsyn0815m02m 1,422 11.56 - - - 0.01
rsyn0815m03m 1,347 18.31 - - - 0.00
rsyn0815m04m 4,006 49.83 - - - 0.01
sepasequ_complex 54,290 limit 62.58 - - 0.01
sporttournament10 1 0.72 - - - 0.00
st_e09 1 0.03 - - - 0.00
st_e18 1 0.01 - - - 0.00
st_qpc-m3c 1 0.02 - - - 0.00
st_rv9 274 2.68 - - - 0.00
syn15m 1 0.28 - - - 0.00
t1000 0 0.88 - - - 0.00
tln2 1 0.00 - - - 0.00
topopt-zhou-rozvany_75 480 limit - - - 0.00
torsion100 20 limit 380.39 - - 0.12
torsion25 1 limit 319.02 - - 0.02
torsion50 16 limit 373.99 - - 0.06
turkey 1 19.82 - - - 0.00
util 14 0.29 - 1 - 0.00
waste 203,402 limit 84.75 - - 0.01
watercontamination0202 33 98.89 - - - 0.00
waterund28 10,016 limit 7.76 - - 0.01

Table B.10: Detailed results for variant orbfix on M-sym-all. Depicted are the number of nodes
(#nodes), the total CPU time in seconds (total-time), the remaining gap at the time limit as reported
by SCIP (gap), the number of domain reductions performed (#red), the number of node cuto�s
detected (#cuto�), and the time for symmetry computating and handling in seconds (sym-time). If
the gap is not displayed despite the problem hitting the time limit, then SCIP reported either "Large"
or "in�nite" as gap.

name #nodes total-time gap #red #cuto� sym-time

arki0002 24 limit - - - 0.00
arki0005 439 limit - - - 0.00
arki0006 97 limit - - - 0.00
arki0008 1 32.90 - - - 0.00
arki0016 8,947 limit - - - 0.00
arki0017 10,303 limit 995.85 - - 0.00
arki0018 2 limit - - - 0.00
autocorr_bern20-03 1 0.02 - - - 0.00
autocorr_bern20-05 44,669 70.63 - 153 - 0.07
autocorr_bern20-10 118,016 715.60 - 317 - 0.25
autocorr_bern20-15 103,785 1,291.37 - 260 - 0.25
autocorr_bern25-03 1 0.03 - - - 0.00
autocorr_bern25-06 755,891 1,950.32 - 726 - 2.32
autocorr_bern25-13 106,084 limit 82.71 431 - 0.75
autocorr_bern25-19 38,204 limit 219.21 141 - 0.20
autocorr_bern25-25 19,353 limit 356.71 84 - 0.15
autocorr_bern30-04 1,395,483 1,905.29 - 598 2 3.61
autocorr_bern30-08 217,344 limit 164.48 134 - 0.75
autocorr_bern30-15 40,833 limit 204.19 216 - 0.31
autocorr_bern30-23 5,775 limit 490.40 23 - 0.03
autocorr_bern30-30 5,066 limit 658.05 9 - 0.06
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name #nodes total-time gap #red #cuto� sym-time

autocorr_bern35-04 1,152,819 limit 60.59 140 - 3.37
autocorr_bern35-09 108,443 limit 333.73 325 - 0.50
autocorr_bern35-18 5,815 limit 471.82 65 - 0.05
autocorr_bern35-26 1,913 limit 742.39 19 - 0.06
autocorr_bern35-35�x 1,957 limit 971.43 5 - 0.00
autocorr_bern40-05 361,809 limit 166.52 179 - 1.57
autocorr_bern40-10 43,101 limit 507.54 19 - 0.31
autocorr_bern40-20 2,156 limit 641.79 32 - 0.03
autocorr_bern40-30 1,304 limit 908.86 5 - 0.06
autocorr_bern40-40 1,459 limit 1,095.03 8 - 0.09
autocorr_bern45-05 253,717 limit 232.33 38 - 1.05
autocorr_bern45-11 16,708 limit 613.20 5 - 0.17
autocorr_bern45-23 1,119 limit 799.77 22 - 0.06
autocorr_bern45-34 984 limit 1,082.72 13 - 0.09
autocorr_bern45-45 665 limit 1,173.04 5 - 0.09
autocorr_bern50-06 118,615 limit 416.67 31 - 0.58
autocorr_bern50-13 7,654 limit 729.62 5 - 0.05
autocorr_bern50-25 825 limit 937.44 18 - 0.06
autocorr_bern55-06 106,392 limit 436.54 23 - 0.54
autocorr_bern55-14 3,162 limit 947.20 8 - 0.04
autocorr_bern55-28 636 limit 1,070.55 5 - 0.05
autocorr_bern60-08 32,680 limit 706.80 12 - 0.20
autocorr_bern60-15 2,459 limit 986.81 5 - 0.07
ball_mk2_10 1 0.00 - - - 0.00
ball_mk2_30 3,884,971 3,333.13 - - - 2.50
ball_mk3_10 0 0.00 - - - 0.00
carton7 265,440 710.44 - 55,092 34 1.37
carton9 819,699 limit 54.54 166,261 89 4.74
celar6-sub0 1,545 limit - 95 - 0.28
chp_partload 688 limit - 20 8 0.03
chp_shorttermplan1b 28,599 limit 5.72 - - 0.00
chp_shorttermplan2a 808 166.12 - 6 - 0.00
chp_shorttermplan2c 19,663 limit - 6 - 0.00
color_lab3_3x0 56,660 limit 535.23 670 2 0.66
color_lab3_4x0 38,975 limit 1,249.71 1,007 47 0.39
crossdock_15x7 70,060 limit 480.32 14 1 0.51
crossdock_15x8 52,001 limit 1,701.34 - - 0.20
crudeoil_li02 1,573,805 limit 1.15 14,862 37 11.92
crudeoil_li06 20,619 393.46 - - - 0.05
crudeoil_li21 182,708 limit 2.04 - - 0.67
crudeoil_pooling_dt4 18,099 limit 8.16 - - 0.00
cvxnonsep_normcon30 1 0.12 - - - 0.00
cvxnonsep_normcon30r 1 0.11 - - - 0.00
cvxnonsep_normcon40 1 0.11 - - - 0.00
cvxnonsep_normcon40r 10 0.40 - - - 0.00
cvxnonsep_psig20 8,155,273 limit 231.12 - - 6.65
cvxnonsep_psig20r 1 0.16 - - - 0.00
cvxnonsep_psig30 7,382,522 limit 155.14 - - 5.75
cvxnonsep_psig30r 68 1.02 - - - 0.00
cvxnonsep_psig40 6,723,979 limit 113.51 - - 5.50
cvxnonsep_psig40r 51 1.00 - - - 0.00
densitymod 3,028 limit - 903 - 6.54
eigena2 1 limit - - - 0.00
elec100 1,385 limit - - - 0.00
elec200 1 limit - - - 0.00
elec25 55,810 limit - - - 0.09
elec50 15,723 limit - - - 0.00
elf 134 1.66 - 2 - 0.00
em�100_5_5 3,147 limit - - - 0.00
ex14_1_5 1 0.01 - - - 0.00
ex2_1_3 1 0.15 - - - 0.00
ex5_2_5 1 1.03 - - - 0.00
ex8_1_6 17 0.13 - - - 0.00
ex8_3_1 718,415 limit 23.00 - - 0.63
ex8_3_11 564,934 limit 30.77 - - 0.55
ex8_3_13 381,171 limit 16.86 - - 0.37
ex8_3_2 658,798 limit 42.73 - - 0.69
ex8_3_3 680,778 limit 39.22 - - 0.82
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name #nodes total-time gap #red #cuto� sym-time

ex8_3_4 606,003 limit 62.01 - - 0.52
ex8_3_5 650,956 limit 1,496.29 - - 0.66
ex8_3_7 59 limit - - - 0.00
ex8_3_8 127,806 limit 207.11 - - 0.09
ex8_3_9 795,980 limit 31.06 - - 0.80
ex8_4_6 3 limit - - - 0.00
ex8_6_1 1 limit - - - 0.00
ex9_1_8 1 0.00 - - - 0.00
ex9_2_2 1 0.14 - - - 0.00
ex9_2_6 1 0.11 - - - 0.00
gabriel04 6,181 278.60 - - - 0.01
gams03 1 limit - - - 0.00
gastrans582_cold13 22 33.63 - - - 0.00
gastrans582_cold13_95 35 25.70 - - - 0.00
gastrans582_cold17 47 37.60 - - - 0.01
gastrans582_cold17_95 115 42.39 - - - 0.00
gastrans582_cool12 38 30.20 - - - 0.00
gastrans582_cool12_95 30 41.12 - - - 0.00
gastrans582_cool14 34 35.40 - - - 0.00
gastrans582_cool14_95 26 30.06 - - - 0.00
gastrans582_freezing27 0 22.64 - - - 0.00
gastrans582_freezing27_95 1 36.87 - - - 0.00
gastrans582_freezing30 22 44.22 - - - 0.00
gastrans582_freezing30_95 5 31.69 - - - 0.00
gastrans582_mild10 17 30.48 - - - 0.00
gastrans582_mild10_95 47 29.25 - - - 0.00
gastrans582_mild11 63 36.64 - - - 0.01
gastrans582_mild11_95 31 37.01 - - - 0.00
gastrans582_warm15 1 17.66 - - - 0.00
gastrans582_warm15_95 20 28.47 - - - 0.00
gastrans582_warm31 35 38.93 - - - 0.00
gastrans582_warm31_95 65 31.10 - - - 0.00
gear 26,844 18.77 - - - 0.01
gear2 25,556 15.62 - 283 - 0.01
gear3 27,844 19.28 - - - 0.01
gear4 1,268 0.45 - - - 0.00
graphpart_2g-0044-1601 1 0.33 - - - 0.00
graphpart_2g-0055-0062 7 1.20 - 3 - 0.00
graphpart_2g-0066-0066 11 2.27 - 3 - 0.00
graphpart_2g-0077-0077 81 5.19 - 2 - 0.00
graphpart_2g-0088-0088 16 6.64 - 4 - 0.00
graphpart_2g-0099-9211 63 11.33 - 4 - 0.00
graphpart_2g-1010-0824 16 10.98 - 5 - 0.00
graphpart_2pm-0044-0044 9 1.18 - 2 - 0.00
graphpart_2pm-0055-0055 13 1.69 - 5 - 0.00
graphpart_2pm-0066-0066 21 2.86 - 4 - 0.00
graphpart_2pm-0077-0777 77 4.62 - 2 - 0.00
graphpart_2pm-0088-0888 30 5.66 - 4 - 0.00
graphpart_2pm-0099-0999 584 16.21 - 10 - 0.00
graphpart_3g-0234-0234 15 1.88 - 2 - 0.00
graphpart_3g-0244-0244 12 4.29 - 4 - 0.00
graphpart_3g-0333-0333 10 3.26 - 3 - 0.00
graphpart_3g-0334-0334 45 5.22 - 2 - 0.00
graphpart_3g-0344-0344 25 5.80 - 3 1 0.00
graphpart_3g-0444-0444 1,661 35.46 - 16 18 0.00
graphpart_3pm-0234-0234 30 2.12 - 6 - 0.00
graphpart_3pm-0244-0244 140 3.52 - 6 - 0.00
graphpart_3pm-0333-0333 415 4.31 - 2 - 0.00
graphpart_3pm-0334-0334 1,531 12.24 - 2 - 0.00
graphpart_3pm-0344-0344 7,016 53.00 - 48 21 0.00
graphpart_3pm-0444-0444 182,761 1,405.42 - 2 - 0.00
graphpart_clique-20 539 6.87 - 5 - 0.00
graphpart_clique-30 3,557 61.92 - 13 - 0.00
graphpart_clique-40 20,809 441.39 - 16 1 0.00
graphpart_clique-50 38,394 limit 102.13 19 - 0.00
graphpart_clique-60 20,962 limit 345.64 5 - 0.00
graphpart_clique-70 13,878 limit 216.05 20 - 0.00
hadamard_4 79 0.46 - 21 - 0.00
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hadamard_5 35,843 55.78 - 995 - 0.08
hadamard_6 127,575 limit 811.11 504 - 0.66
hadamard_7 3,601 limit 63,833.33 82 - 0.15
hadamard_8 14 limit - 63 - 0.89
hmittelman 1 0.02 - - - 0.00
ivalues 72,237 limit 409.52 - - 0.10
kissing2 1 908.01 - - - 0.00
knp3-12 123,815 limit 197.28 - - 0.08
knp4-24 5,991 limit 485.79 - - 0.00
knp5-40 1,885 limit 770.96 - - 0.00
knp5-41 2,185 limit 811.31 - - 0.00
knp5-42 2,139 limit 807.71 - - 0.00
knp5-43 2,367 limit 765.37 - - 0.00
knp5-44 841 limit 763.42 - - 0.00
kport20 153,400 714.60 - - - 0.37
lop97icx 2,083 24.23 - - - 0.01
maxcsp-ehi-85-297-12 261 limit - - - 0.00
maxcsp-ehi-85-297-36 296 limit - - - 0.00
maxcsp-ehi-85-297-71 257 limit - - - 0.00
maxcsp-ehi-90-315-70 200 limit - - - 0.00
maxcsp-langford-3-11 27,640 limit - 4 - 0.00
maxmin 106,817 limit 73.36 - - 0.13
mbtd 1,647 limit 156.25 24 - 0.52
netmod_dol1 4,197 limit 44.61 1,541 2 0.79
netmod_kar1 1,143 54.60 - 147 11 0.01
netmod_kar2 1,143 54.96 - 147 11 0.02
nuclear14 30 limit - - - 0.01
nuclear25 15 limit - - - 0.00
nuclear49 21 limit - - - 0.03
nuclearva 22 limit - - - 0.00
nuclearvb 111 limit - - - 0.01
nuclearvc 269 limit - 4 - 0.01
nuclearvd 159 limit - 7 - 0.00
nuclearve 59 limit - - - 0.00
nuclearvf 66 limit - - - 0.00
nvs09 614 1.48 - - - 0.00
oil2 1,697 94.88 - - - 0.00
orth_d4m6_pl 433,001 limit 168.52 - - 0.48
pooling_bental5pq 1 0.15 - - - 0.00
pooling_bental5stp 40 2.13 - - - 0.00
pooling_bental5tp 1 0.13 - - - 0.00
power�ow2383wpp 1 limit - - - 0.00
power�ow2383wpr 1 limit - - - 0.00
procurement1large 93,263 limit 375.15 - - 1.21
procurement1mot 850,260 limit 473.05 - - 3.03
procurement2mot 167 4.43 - - - 0.02
product 990 88.44 - - - 0.01
product2 1 14.23 - - - 0.00
radar-2000-10-a-6_lat_7 707 721.64 - 8,259 - 0.00
radar-3000-10-a-8_lat_7 7,351 limit 1,621.70 275,171 - 0.00
ringpack_10_2 116,925 limit 3.95 4 863 0.32
ringpack_20_2 7,490 limit 233.33 1 1 0.03
ringpack_20_3 37,878 limit 82.91 6,433 - 0.49
ringpack_30_2 9,906 limit 1,400.00 1 2 0.17
rsyn0815m 151 1.02 - - - 0.02
rsyn0815m02m 1,190 11.65 - - - 0.01
rsyn0815m03m 1,949 22.50 - - - 0.01
rsyn0815m04m 6,634 76.82 - - - 0.10
sepasequ_complex 61,795 limit 63.92 - - 0.36
sporttournament10 1 0.72 - - - 0.00
st_e09 1 0.02 - - - 0.00
st_e18 1 0.02 - - - 0.00
st_qpc-m3c 1 0.02 - - - 0.00
st_rv9 1,791 3.32 - - - 0.01
syn15m 1 0.32 - - - 0.00
t1000 0 0.20 - - - 0.00
tln2 1 0.01 - - - 0.00
topopt-zhou-rozvany_75 464 limit - - - 0.00
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torsion100 20 limit 380.39 - - 0.00
torsion25 1 limit 319.02 - - 0.00
torsion50 16 limit 373.99 - - 0.00
turkey 1 19.85 - - - 0.00
util 14 0.23 - 1 - 0.00
waste 81,999 limit 91.24 - - 0.30
watercontamination0202 19 107.19 - - - 0.00
waterund28 10,017 limit 7.76 - - 0.00
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