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Abstract

A recently developed algorithm allows Rigid Body Docking of lig-
ands to proteins, regardless of the accessibility and location of the
binding site. The Docking procedure is divided into three subsequent
optimization phases, two of which utilize rigid body dynamics. The
last one is applied with the ligand already positioned inside the bind-
ing pocket and accounts for full flexibility. Initially, a combination of
geometrical and force-field based methods is used as a Point-Matching
strategy, considering only Lennard-Jones interactions between the tar-
get and pharmaceutically relevant atoms or functional groups. The
protein is subjected to a Hot Spot Analysis, which reveals points of
high affinity in the protein environment towards these groups. The
hot spots are distributed into different subsets according to their group
affiliation. The ligand is described as a complementary point set, con-
sisting of the same subsets. Both sets are matched in R?, by super-
imposing members of the same subsets. In the first instance, steric
inhibition is nearly neglected, preventing the system’s trajectory from
trapping in local minima and thus from finding false positive solu-
tions. Hence the exact location of the binding site can be determined
fast and reliably without any additional information. Subsequently,
errors resulting from approximations are minimized via Fine-Tuning,
this time considering both Lennard-Jones and Coulomb forces. Finally,
the potential energy of the whole complex is minimized. In a first eval-
uation, results are rated by a reduced scoring function considering only
non-covalent interaction energies. Exemplary Screening results will be
given for specific ligands.

Key words. Pharmacophore, Pharma Site, Point-Matching, identifica-
tion of active sites.
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Introduction

Structure based Virtual Screening (VS) is a theoretical method for the
prediction of binding affinities between small ligands, e.g. potential drugs,
and pharmaceutically interesting targets, e.g. proteins, on the basis of
structural information of the participating molecules. The process, which
brings the two structures together is called Docking. The Docking problem
can be subdivided into two steps. Exploring the conformational space of
ligands which bind to target molecules and scoring this set, i.e. ranking
it in accordance to the binding affinity. The binding affinity is estimated
rather than calculated, accounting for the term ’scoring’ function. The
different strategies of scoring [28] like shape and chemical complementary
scores, force field scoring, empirical scoring functions, and knowledge based
scoring functions are more or less combinations of ensemble-averaged terms
and constitute a compromise between exactness and computational effort.
They are not the topic of the current article, which concentrates on the
docking step.

A variety of docking methods exists, allowing for flexibility of the
ligand to different extent. To name a few there are conformational
ensemble methods [16], genetic algorithms and evolutionary programming
[13, 14, 31, 11, 27], fragment based methods with a place and join approach
[8, 15, 26, 21] or incremental construction [36, 18, 35]. Usage of internal
degrees of freedom as in distance geometry methods [23] allow fast searches,
whereas simulation or force-field based methods [3, 25, 22, 33, 38] , and
tabu searches [7] emphasize the physical modelling of the problem.

Only a few methods exist regarding protein flexibility. Principally, MD
is a convenient simulation technique when implying full-flexibility, however
the crucial point in this scope is runtime. Wasserman et al. developed a
method for MD simulations with flexible proteins by dividing the protein
into rigid and flexible regions [39, 22]. Knegtel et al. use energy-weighted
and geometry-weighted averages of protein structure ensembles [17].
Claussen et al. wuse a set of protein structures, as implemented in the
program FlexE, an expansion of FlexX. A so-called united protein represen-
tation is derived from a superposition of several experimentally determined
structures. Only regions comprising structural variations are handled as
alternatives, similar backbone regions or side-chains are combined in one
region [8].

With respect to computational costs, full Rigid Docking is invincible.
The target can be represented via a pre-computed grid, while the ligand
is regarded as a rigid body, i.e. the ligand has only 6 degrees of freedom.
Nevertheless, sampling all orientations of the ligand versus the target with



exhaustive search algorithms demands considerable computational effort.
Thus, geometrical or point complementary methods are employed after per-
forming a discretization. The basic idea is to match points, characterized by
certain features which represent molecular properties of ligand and protein,
in 3D space. Those points are matched if a ligand feature is superimposed
with a complementary protein feature. Complementarity can be achieved
sterically, i.e. via surface complementarity, or physico-chemically, e.g. a
hydrogen bond donor and its corresponding acceptor. A transformation is
desired, which maximizes the number of simultaneous matches. As the num-
ber of protein features usually exceeds the number of ligand features by far,
the problem sometimes is referred to as "needle in the haystack”. Three
major strategies are being applied.

Clique searches use distance compatibility graphs. With respect to dock-
ing, the nodes mirror all matches between protein features and ligand fea-
tures, edges are links between two compatible (mostly distance compatible)
nodes. Thus, a clique is a set of distance compatible (usually within a tol-
erance €) features. Maximizing the number of simultaneous matches means
searching for maximum cliques. This is a common problem in graph theory
and it is NP-complete. Nevertheless there are fast algorithms dealing with
this problem in practice.

The pioneer software in Molecular Docking called DOCK developed by
Kuntz et al. [20, 19, 24] generates a set of spheres inside the binding pocket
of the protein using molecular surfaces. The greater the diameter of the
spheres, the greater is the volume possibly occupied by the ligand. The lig-
and is similarly modelled by a set of spheres, either in the same fashion, by
spheres inside of it, or by taking atom positions as the centers of the spheres.
Maximum clique detection yields an initial orientation of the ligand inside
the binding pocket. Being a standard computer science method, hashing
facilitates fast access to data. Characteristic features of a data object are
transformed to a hash key (usually a short fixed-length value) via a hashing
function. Those hash keys can be easily compared to a template via the
hashing function, since only the hash values have to be checked. Particu-
larly Geometric hashing can be easily used to match features in R3". It has
been developed in the context of computer vision and is capable of handling
partial matches. This is important, since not necessarily all points of the
ligand have to or merely can be matched with protein points in Molecular
Docking. Some functional group or organic residue of the ligand may not
take part in the binding process.

Fischer et al. [9] were the first to address geometric hashing to the molecu-
lar docking problem, using the sphere representation discussed above. Pose
clustering is a pattern recognition technique. Two point sets of features
can be matched in the following way. Both point sets are divided into all
possible triplets, each of the triplets of both sets is matched to each of the
triplets of the other set. A transformation can be calculated for every pair of



triangles accordingly. Cluster analysis of the sets of transformations yields
orientations with high numbers of matching features.

The Docking procedure is divided into three subsequent optimization
phases, two of which utilize rigid body dynamics. The last one is applied
with the ligand already positioned inside the binding pocket and accounts
for full flexibility.

In order to use conformational ensembles for Virtual Screening, a Rigid
Body Docking modul has to be developed first. This might seem as an ob-
solete approach, but Rigid Docking is fast, and it can be applied to small
or rigid molecules or molecular fragments, or conformational ensembles [28].
The overall strategy can be expanded to semi-flexible Docking, which in-
volves rigid targets but flexible ligands. Full-flexible docking on the basis of
a conformation ensemble for proteins can be used either by employing the
conformation analysis to macromolecules or by using experimental data.
We will introduce the docking algorithm without discussing the open ques-
tion which representatives should be drawn out of an ensemble of confor-
mations. The bioactive conformation is not necessarily identical with the
conformation featuring the lowest potential energy in the gas phase (induced
fit). Fragment Based Docking can circumvent this problem, but neglects co-
operative effects in the course of binding.

Actually, a self-evident Redocking experiment [8] is presented to demon-
strate the ability of the method to find the active site of proteins and ori-
entate and reproduce known 3D-structures of protein-ligand complexes, ob-
tained from NMR Spectroscopy or X-ray crystallography.

Theory

Free Energy of Binding

In Molecular Mechanics the spatial position of a molecule with n atoms
is represented and uniquely determined by a set P of 3n coordinates q €
Q C R3, and will further be referred to as positioning. We are looking
for a specific positioning Pj {q,...,qsn} € Qp of the ligand, relatively to
a positioning Pp {q1,....,q3m} € Qp of the protein, so that the binding
affinity A(Pr) : 1 — R between both sets reaches its maximum. Therefore
molecular docking can be described as an optimization problem:

A(Pr) = max!

The existence of a solution P} can be assumed for non-convex steady func-
tions A, if the set Q7 is compact. Uniqueness is not a necessary condition
since there could be several binding sites having identical affinity values.
Since the change in free energy ArG < 0 holds for all spontaneous chemical
reactions, the optimization problem can be written as:

ArG(Pr) = min!



The positioning P; is also called the correct binding mode. For conforma-
tional dynamics the canonical NV T-ensemble is generally employed. The
corresponding thermodynamic potential to an NVT-ensemble is the free
energy F'(T,V,N), rather than the Gibbs free energy G(T',p, N).

F(T,V,N)=U—-TS

dF =dU —TdS — SdT

For an NV T-ensemble the number of particles IV, the volume V, and the
temperature T are constant. Thus, the change in free energy can be de-
scribed as follows:

dF =dU —TdS

At first glance this approximation is crude, as it means substituting the
Gibbs free energy G(T,p, N) for the free energy F(T,V,N). However, at
constant atmospheric pressure the change in volume of the system target-
ligand-water during the binding reaction will be considerably small. Of
course binding is not only enthalpy-driven, but often also entropy-driven.
Thermodynamically two different types of reactions can be observed. Mostly
molecular recognition is enthalpy-driven. Albeit, especially big lipophilic
ligands sometimes bind to their targets despite a positive enthalpic contri-
bution because of a higher absolute change in entropy [6]. Since calculation
of entropy changes lies far beyond a screening experiment it will be neglected
within all explicit energy calculations. With this most drastic approximation
we yield:
dF ~ dU

Molecular Mechanics provides us with the required models to calculate
the interaction energy between target and ligand, i.e. the change in intrinsic
energy. If we further assume, that the average kinetic energy per degree of
freedom is invariant, then:

dU =~ dV

where dV is the change in potential energy. Thus, our optimization problem
in its final approximation is:

AV(Pr) = min!

Note that not only solvent entropic effects, but also hydrational contribu-
tions to the enthalpy H, arising from the presence of solvent molecules, are
ignored.

Gradient methods in rigid body dynamics

Minimization techniques using gradient methods include steepest descent,
conjugate gradient, Newton, and Quasi-Newton methods [34]. All these



strategies are renowned to minimize a given function from a starting co-
ordinate set, while the internal distances between points in R? may vary.
Minimizing a function under the rigid body constraint implies keeping in-
ternal distances fixed. Moving a point mass in a conservative force field along
the negative gradient will doubtlessly minimize the field function. The same
holds for a rigid body’s center of mass. A rigid body does not only have
translational degrees of freedom, but also rotational ones. If a rigid body
experiences a force 13 instantiated by a gradient of potential energy, it also
experiences a torque T unless the force is applied to the center of mass
only. The single forces fZ and torques £;, corresponding to the point masses’
belonging to the rigid body, are:

fi = —gradV (i) (1)

t = (& — ) x i (2)

The resultant force F} and torque T acting on the rigid body can be obtained
via superposition.
=21

-y
The question arises, if a rotation according to this torque will minimize
the field function in the same way as a translation along the downhill gra-

dient does? Mathematical physics [5] gives the following definitions and
theorems from which the laws of rigid body motion can be derived:

Definition 1 A rigid body is a system of point masses, constrained by holo-
nomic relations expressed by the fact that the distance between all the points
18 constant:

|Tj — 2| = rij = const. (3)

and

Theorem 2 The configuration manifold of a rigid body is a siz-dimensional
manifold, namely, R® x SO(3) = SE(3)( the direct product of a three-
dimensional space R? and the group SO(3) of its rotations).

In other words, a rigid body has 6 degrees of freedom 3 translational ones
and 3 rotational ones. The rigid body motion can be split into a translation
applied to the center of mass and a rotation, according to the following
theorems [5]:

Theorem 3 Under the free motion of a rigid body, its center of mass moves
uniformly and linearly.

'In the following all summation symbols go over all point masses i



Theorem 4 A free rigid body rotates about its center of mass as if the center
of mass was fized at a stationary point 0.

We consider an inertial coordinate system K (reference frame) in R3¥
and a moving coordinate system k fixed to a rigid body (body-fixed frame)
also in R3YN. The coordinates of the mass points 4 in k are given by 7} =
(27 —4). According to theorem 4 only rotations are allowed in coordinate
system k. Those rotations are elements of SO(3). As SO(3) is isomorphic
to R we can define a rotation vector @:

G e R~ SO(3)
An infinitesimally small rotation is an element of SO(3), as well.
dp € SO(3)

We define the projection of an infinitesimally small movement in SO(3) on
R3 by:

dr; = dip x 7 (4)
In fact, dp represents a rotation around the axis do by the angle ||dp]||. If
we consider a system comprised of a rigid body in a conservative field, an
infinitesimally small change in potential energy V can be described as the
sum of all forces f; acting on all the single point masses of the rigid body
multiplied by the distance d;i by which each point mass is moved in R3.

AV == (f;,dr;)

where () denotes the scalar product. Disregarding any translation we can
apply the projection as defined in 4 and we yield.

AV == (fidp x 77)

Since ( f;,d_gb X 77) is a spat product, we can make use of its cyclic shifting
properties.

AV ==Y (de,7i x fi)

Application of the constraints of rigid body motion (see 3), yields the fact
that the angle dp is identical for all the point masses. Thus, it can be
pre-drawn.

AV o= —(dp,> 7 x fi) (5)
= —(dp,T) (6)
(7)



dorix f; is identical with the definition of the torque T. Since the vectors
dy and T are composed as follows,

. dpr ~ T
dpo=1| dps |, andT =\ Ts
dps 13

dV = —Tidpy — Todps — Tsdps

A comparison of coefficients yields:
| -

Thus, in SO(3) the following relation holds:
T = —gradV ()
Whereas, in R3V,
F = —gradV (r)

A gradient method, which minimizes the energy of a rigid body is set
up by a translation of the center of mass and a rotation around the rotation
axis defined by the torque.

Modelling

Extended Pharmacophore Model (EPM)

As mentioned in the introduction the rigid docking problem can be mod-
eled as a Point-Matching problem in R3 between two complementary subsets
of points belonging to the ligand and target. Therefore, pharmacologically
predominant interactions, accounting for specificity and binding mode pre-
definition in molecular recognition have to be explored. These are for ex-
ample hydrogen bonds or Lennard-Jones interactions of aromatic functional
groups. Now we can classify these interactions, and all the atoms of the
ligand respectively:

1. H-Bond Donor

2. Non-aromatic H-Bond Acceptor

3. Atom belonging to an aromatic group
4. Aromatic H-Bond Acceptor

5. Atom belonging to none of the above groups



We will call subsets 1-4 pharma groups and a representation of a molecule
based on these pharma groups an extended pharmacophore model (EPM).
The classification into pharma groups is accomplished according to the typ-
ing rules in MMFF94 [12].
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Figure 1: Left: ATP in ball and stick representation, bond types are not
depicted. Carbons are displayed in green, hydrogens in grey, oxygens in
red, nitrogens in blue, and phosphorus atoms in purple Right: Extended
Pharmacophore Model (EPM) of ATP. The heterocyclic rings show aromatic
behavior (green) and some aromatic atoms are additionally acceptors (blue).
Hydrogens are regarded as H-bond donors (grey) in MMFF94, donors and
acceptors can possess both acceptor properties (red).

Pharma Site

Neglecting dynamic information results in a very powerful computational
simplification with respect to rigid body docking. By this constraint, the
order of the costly non-bonded interactions between the macromolecule with
N and a ligand with n atoms can be reduced to O(Nn). Now, the interac-
tions between a macromolecule and a small molecule can be pre-computed,
by shifting a probe atom with distinct properties in R? in the expected range
of the considered interaction. The appropriate function, e.g. Lennard-Jones
energy, is evaluated in distinct intervals for the three directions in space.
Thus, a 3D lattice is acquired containing the appropriate normalized inter-
action energy at a given resolution, usually between 0.25 and 1 A. During
runtime, the potential energy function for interatomic interaction can then
be evaluated very fast with O(n) by multiplying physical attributes, e.g.
charges, of the small molecule by the function value at the current location.
This value can be obtained by interpolation on the grid values.

The grid representation can be used, for creating point groups of the



target molecule, which fulfill criteria of complementarity against the EPM.
Attractive points or hot spots in 3D space can be selected by extracting a
sufficiently large number n of points per grid, having the lowest potential
energy values. Performing this hot spot analysis for each grid which contains
the potential field of a given pharma group, we yield a point set consisting
of four subsets of hot spots, which we call pharma groups again. The classi-
fication into pharma groups are according to the respective potential value.
The whole set will be referred to as a pharma site.

We can expect, that for most cases of good binding the pharma site and
the pharmacophore share a common but unknown subset. Figure 2 shows
HIV-1-protease together with its pharma site. Note, that the active site is
the spatial location featuring the highest ’hot spot’-density. This involves
also the highest number of possible simultaneous interactions between EPM
and pharma site and thus the highest number of possible positionings, that
may lead to a binding position.

Figure 2: HIV-1-protease in molecular surface view together with its pharma
site. Donors in grey, acceptors in red, aromatics in green and aromatic
acceptors in blue.
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Docking Algorithm

The designated docking algorithm is divided into three subsequent optimiza-
tion phases, two of which utilize rigid body minimization. The last one is
applied with the ligand already positioned inside the binding pocket and
accounts for full flexibility.

1. Point-Matching
2. Fine-Tuning

3. Relaxation

Point-Matching

An attractive force between pharma site and the extended pharmacophore
model (EPM) is introduced, which allows the solution of the Point-Matching
by energy minimization of the rigid body coordinates defined by the EPM.
Given two different point sets z,, y,, with n € {1,...., N} denotes the point
set of the ligand and m € {1,...., M} denotes the point set of the target. A
so called pharma force field is defined by the force ﬁnm between the sets:

= Tn = Ym
Frm = wimnd MU 8
nm m¥pnpm Hxn _ ym”2 ( )
with the corresponding potential
Enm = —wm0p,p, In([[2n — yml|) (9)
and the torque

Wy, is the weight, which results from the hot spot analysis, i.e. the
Lennard Jones potential at the corresponding grid point belonging to a
pharma group. d,,,, is 1 if points belong to the same pharma group and 0
else. vg is the geometrical center of gravity of the EPM. The single forces
and torques are summed up yielding a resultant force F and a resultant
torque f, which will be used in the energy minimization algorithm.

For each minimization step the EPM is translated and rotated as a rigid
body. The translation direction is governed by the direction of the model
force, acting on the geometrical center of gravity ¥z of the EPM. The rota-
tion axis is determined by the torque. The Basic Rigid Body Docking
Scheme for Point-Matching so far reads as follows:

1. Choose a starting position for the rigid body.

2. Compute a resultant force F and torque T acting on the rigid body
as obtained from the employed force field
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3. Calculate a translational step-size z(||F||) and a rotational step-size
a(]|T||) and apply a minimization step to the rigid body by translating
and rotating it.

4. Continue steps 2-3 until the convergence criterion, i.e. appropriate
minima of the force and torque are reached.

5. Rank the acquired solutions according to the chosen scoring function.

This basic scheme can be used for any minimization of a rigid body
within a given force field. Especially for the Point-Matching problem fol-
lowing peculiarities and modifications have been considered:

ad 1: Multi-start initialization For Point-Matching the whole mini-
mization scheme is repeated with a distinct number 500 < s < 2000 of
starting positions, which are chosen randomly on a spherical surface around
the pharma site’s center of gravity. The diameter of the sphere depends on
the extension of target and ligand.

ad 2: surface term and cut off The binding cleft is often very steep
and narrow. Moreover it is commonly observed that proteins form small
cavities, which are in vivo not accessible for ligands. Nevertheless some
‘hot spots’ can be located beneath the protein surface. The pharma
force field modelled so far allows a penetration of target and ligand. An
additional constraint must be implied, which guarantees that the global
minimum is located at the protein surface. Therefore, another grid is
constructed, which contains for every grid point a neighbor list of target
atoms. A 3D vector field is derived from the scalar field of neighbors, which
is directed towards the protein surface and converges to zero outside or
deep inside of the target. Adding this gradient vector to the single forces
in every step, the overall solution will be shifted towards the protein surface.

With increasing number of iteractions a decreasing cut-off for the model
force is applied, which guarantees that initially the extended pharmacophore
model is attracted by all points, according to complementarity. Subse-
quently, only points in the spatial vicinity of the extended pharmacophore
model are regarded to allow local exploration of the pharma site.

ad 3: translation and rotation The translational stepsize x is calcu-
lated with a factor k, proportional to || E|| and for the Point-Matching also
to the distance d between the geometrical centers of gravity of the two point
sets. If the scalar product of the current iteration’s force and the previous
iteration’s force is negative/positive and the factor k, exceeds/falls below a
distinct value, k, will be halved/doubled In close vicinity of the minimum,
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d < 24, ky is set to 1, to allow full influence of local environment.

The rotational stepsize a is calculated with a factor k, proportional to || T
and for the Point-Matching it also depends on d. If the scalar product of
the current iteration’s torque and the previous iteration’s torque is nega-
tive/positive and the factor k, exceeds/falls below a distinct value, k, will
be also halved/doubled.

ad 5: scoring As can be obtained from Fig. 3 the scoring energy, which
results from the pharma force field does not perform reliably enough. Only
a weak correlation exists between this scoring energy and the RMSD from
the crystal coordinates for Point-Matching solutions of CDK2. The 1000
time-steps corresponding to the lowest RMSDs have nearly identical energy
values. For the estrogen receptor the situation is even worse. No correlation
between RMSD and scoring energy can be observed (Fig. 3). Therefore,
the MMFF94 energy term will be used as a scoring energy in both docking
steps, the Point-Matching and the Fine-Tuning.

Proke: {1 , 0.440121)

7t 1250.75 3750.25 1 1250 75

15_ Histogramm 1o _ Histogramm

0.00109135 fl 0474117 [1.56511

Figure 3: Left: Trajectory containing 5000 Point-Matching solutions for
CDK 2 sorted by RMSD from crystal coordinates starting from the smallest
value. In the upper graph the individual time-steps are plotted against the
scoring energy. Right: Same for the estrogen receptor

Fine-Tuning

The proposed minimization scheme can be used for Point-Matching the EPM
onto the pharma site as well as for Fine-Tuning the rigid body orientation of
the ligand within the active site of the target. The first uses the pharma force
field, whereas the second needs a full atom representation of the molecules
e.g. based on the MMFF94 force field [12]. The following modifications of
the basic scheme are proven to be reasonable for the Fine-Tuning step:

ad 1: Multi-start initialization The Fine-Tuning starts with the best
solutions of the Point-Matching.

13



ad 2: surface term and cut off The surface term is almost needless
for the Fine-Tuning, because steric clashes are implicit considered within
the Lennard-Jones interactions. Nonetheless, if the interatomic distance of
an atom pair drops below 70% of their van der Waals contact distance, the
surface term is switched on and the MMFF contribution is switched off, to
prevent effectively too much penetration of the molecules.

ad 3: translation and rotation The modification of translational and
rotational stepsize is handled in the same way as in the Point-Matching step,
besides the fact, that the distance d between the centers of masses has no
influence.

Relaxation

A vital reason for a fully-flexible energy minimization is the fact that coor-
dinates for hydrogens cannot be resolved by X-ray crystallography. When
obtaining target structures from the PDB [1], for instance, all hydrogen
coordinates have to be computed by geometrical optimization. For this
task a Quasi-Newton method proposed by Broyden, Fletcher, Goldfarb, and
Shanno (BFGS), as can be found in [34], was employed. Quasi-Newton
methods are powerful minimization strategies, since they are quadratically
convergent and more exact than steepest descent or conjugate gradient
methods|[34].

Alternatively, a short Relaxation of the docked complex conformation is per-
formed by Molecular Dynamics [10]. For the target-ligand complexes 500
trajectories comprising 10 time-steps and a step-size of 1 fs are computed.
The starting values for momenta were chosen from a velocity distribution ac-
cording to Maxwell-Boltzmann at a low temperature of 30 Kelvin. In order
to conserve the complex coordinates as much as possible and also to reduce
computational costs, only those atoms located in the range of 10 A from the
ligand were regarded as flexible. The remaining atoms were considered as a
rigid body. The dynamic simulation is performed using a cut off criterion of
10 A. The complex conformation featuring the lowest intramolecular poten-
tial energy (according to MMFF94) is selected. For this particular state the
intermolecular potential energy between ligand and protein is monitored.

Results

The generation of pharma sites for the Point-Matching is based on the
computation of grids for every atom type in MMFF94 which belongs to a
particular pharma group. MMFF94 includes more than 100 atom types.
Generally more than one atom type will belong to every pharma group.
A virtual probe atom is shifted through 3D space and the Lennard Jones
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potential energy is assigned to the appropriate lattice point. The single
grids for every pharma group are summed up and a mean grid is calculated
for every pharma group, in order to obtain a simplified but specific average
potential energy for each pharma group.

Several Redocking experiments were conducted. A first self-evident test

of the docking scheme is the reproduction of experimentally detected bind-
ing modes. A second validation method is docking a natural ligand of an
arbitrary protein into its uncomplexed conformation. All the subsequently
studied protein structures were obtained from the PDB [1], as a selection of
pharmaceutically promising targets. All hetero-atoms, i.e. water molecules,
ions, and complexed ligands, were erased from the files. Ligands were stored
in extra files. Bond types were assigned, where required. Subsequently hy-
drogen coordinates for protein and ligand were determined via geometrical
optimization. In a preprocessing phase molecules were parameterized ac-
cording to MMFF94. Grids were pre-computed using zibMol~, a software
developed at ZIB. Grid resolution ranged from 0.5 to 1.0 A, depending on
the target size.
Each Docking was repeated 5 times for each of the test targets, in order to
proof the reproductional properties of the algorithm. In all cases, identical
solutions were obtained. All results presented here neglect an electrostatic
contribution for the Point-Matching step (see Discussion). More details of
the used parameter set for all docking steps are listed in the Appendix.

The following targets were docked with their native ligands, as found in
the PDB. The experimentally determined binding mode was predicted with
an RMSD of less than 1 A.

Target PDB-entry
HIV-Reverse Transcriptase? | 1RT1
B-Trypsin 1BJU
Elastase? 1ELA

Arabinose Binding Protein | 1ABE
pp60(c-src) SH2 domain® 1A07

In the next paragraphs results are presented for five target molecules,
which have been studied in more detail.

Cyclin dependent kinase 2

Cyclin dependent kinases (cdk) control the cell division cycle, making
them interesting targets in cancer therapy. They consist of a catalytic
subunit (cdkl-cdk8) and a regulatory subunit (cyclin A-cyclin H). They are

2For this target the active site has been manually determined, since the Point-Matching
did not work in this particular case.
3Membrane-associated tyrosine-specific kinase encoded by the c-src genes
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regulated in different ways, by subunit production or complex formation
to name a few. Most importantly they are controlled by reversible phos-
phorylation of hydroxyl groups, which is a common property of all protein
kinases. This broadens the spectrum of application in drug design to
diseases like arthritis and diabetes. The majority of known protein kinase
inhibitors are competitors of ATP. Development of purin-like inhibitors is
an obvious aim [37, 32].

Cyclin dependent kinase 2

PDB Source: 1HCK
Ligand: ATP
Point-Matching

RMSD(A): 2.57
Non-covalent energy (kJ/mol): | -3762.64
Fine-Tuning

RMSD(A): 1.95

Non-covalent energy (kJ/mol): | -5318.39
Lennard-Jones energy (kJ/mol): | 281.45

Coulomb energy (kJ/mol): -5599.84
Relaxation BFGS MD
Non-covalent energy (kJ/mol): | -5721.34 -7030.98

HIV-1-Protease

HIV-1-protease is the main protease of human immunodeficiency virus, and
thus also represents its ’Achilles Heel’. The RNA of the virus is poly-
cistronic, several genes are encoded in one RNA molecule, accounting for
a high processing speed. After translation a precursor polypeptide chain
has to be cleaved into several polypeptides, allowing for correct folding and
thus activity of the different proteins. If the main protease is prevented from
dissecting, the precursor polypeptide remains in its unmature state and is
digested by the proteasome.

HIV protease is unique in the way that, in contrast to human enzymes
it can cleave between phenylalanine and tyrosine or proline.
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Figure 4: HIV-1-protease depicted in molecular surface representation, HIV-
1-protease Inhibitors in ball and stick representation. Experimentally re-
solved binding mode mapped in green, binding mode according to Point-
Matching in red (RMSD:0.77A).

HIV-1-protease

PDB Source: 1AJV
Ligand: Aha006*
Point-Matching

RMSD(A): 0.77
Non-covalent energy (kJ/mol): | 159.90
Fine-Tuning

RMSD(A): 0.22

Non-covalent energy (kJ/mol): | -283.15
Lennard-Jones energy (kJ/mol): | -110.83

Coulomb energy (kJ/mol): -172.32
Relaxation BFGS MD
Non-covalent energy (kJ/mol): | -292.57  -442.03

a-Thrombin

Thrombin is a serine protease and plays a major role in the initiation of
blood coagulation. Inhibitors of thrombin may act as powerful anticoagu-
lant therapeutics.

4Cyclic Sulfamide Inhibitor
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Figure 5: HIV1-protease depicted in molecular surface representation, in-
hibitors in ball and stick representation. Experimentally resolved bind-
ing mode mapped in green, docked binding mode after Fine-Tuning in red
(RMSD:0.224A).

a-Thrombin

PDB Source: 1DWD
Ligand: NAPAP
Point-Matching

RMSD(A): 1.45
Non-covalent energy (kJ/mol): | 410.50
Fine-Tuning

RMSD(A): 0.46

Non-covalent energy (kJ/mol): | -94.11
Lennard-Jones energy (kJ/mol): | -92.66

Coulomb energy (kJ/mol): -1.46
Relaxation BFGS MD
Non-covalent energy (kJ/mol): | -192.20  -290.71

As a test on robustness the bioactive conformation of NAPAP, obtained
from PDB-entry 1DWD, was docked against the unligated conformation
as obtained from 1MKX. Although thrombin as complexed in 1IDWD is
from a human source and thrombin as complexed in IMKX is from bovine,
thrombin is highly conserved and thus NAPAP exhibits binding affinity
towards both thrombin molecules as can be seen in PDB-entry 1ETR. The
two conformations of thrombin differ only slightly in the vicinity of the
binding site. Nearly the same binding mode as observed in 1IDWD was
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predicted. Due to the slight difference of the two conformational states,
a hydrogen bond between NAPAP and Gly 216, which can be observed
in 1IDWD, cannot be formed. As already mentioned in the introduction,
small modifications in protein structures can lead to large deviations in
complex formation. Hence, only this single example of docking a ligand into
a ’foreign’ structure is given here.

Ligand binding domain of Human Estrogen-Receptor

The estrogen receptor serves as nuclear transcription factor. Binding of
an agonist to the estrogen receptor can trigger the activation or repression
of genes. Estrogens are steroids and can induce growth, development and
homeostasis of several tissues. The estrogen receptor is an oligomeric
protein, consisting of several subunits. For Docking only one of the two
ligand binding polypeptide chains (as contained in the PDB-entry 1ERR)
was selected as target, since an algorithm capable of distinguishing between
several binding sites has not been implemented, yet.

Estrogen-Receptor

PDB Source: 1ERR

Ligand: Raloxifene
(Antagonist)

Point-Matching

RMSD(A): 1.14

Non-covalent energy (kJ/mol): 234.13

Fine-Tuning

RMSD(A): 0.93

Non-covalent energy (kJ/mol): | 103.41
Lennard-Jones energy (kJ/mol): | 220.22

Coulomb energy (kJ/mol): -116.75
Relaxation BFGS MD
Non-covalent energy (kJ/mol): | 5.64 -306.93

A comparison of the location of the hydroxy-hydrogen atom on the right
side of Fig. 6 with the Point-Matching result exhibits that the Fine-Tuning
routine draws the Point-Matching solution from a sterically hindered (the
oxygen-hydrogen bond penetrates the surface of the binding pocket) to an
unhindered positioning.

Fab’ Fragment of the Db3 Anti-Steroid Monoclonal Antibody

Steroids are the basic compound class of a variety of hormones.

Only two of the 53 atoms of Progesterone belong to a pharma group,
namely two carbonyl oxygen atoms (see Fig. 7). Although, the pharma
site outlines the binding pocket very nicely, the Point-Matching fails to

19



Figure 6: Estrogen receptor depicted in molecular surface representation
(transparent), antagonist as contained in lerr in ball and stick represen-
tation. FExperimentally resolved binding mode mapped in green, docked
binding mode after Fine-Tuning in red.

produce a solution, which is close enough to the local minimum of the
energy surface for the non-covalent interaction. Therefore, the Fine-Tuning
and relaxation step are omitted here. Nevertheless, the binding pocket is
found and progesterone is positioned inside of it. The interaction energy of
-90.95 kJ/mol suggests, that progesterone is able to bind to the target.

Fab’ Fragment

PDB Source: 1DBB
Ligand: Progesterone
Point-Matching

RMSD(A): 3.79

Non-covalent energy (kJ/mol): | -90.95
Lennard-Jones energy (kJ/mol): | -66.11
Coulomb energy (kJ/mol): -24.84

Screening

The energy-minimized ligand molecules provided by the Cambridge Crystal-
lographic Data Center (CCDC) the Cambridge Structure Database (CSD)
[4] in the CCDC/Astex test set [2] were screened against the Sh2 domain of
pp60 (PDB-entry:1A07).
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Figure 7: Left: Pharma site of the anti-steroid antibody together with molec-
ular surface. Attentive observation reveals the grid structure of the pharma
site. Right: Progesterone featuring two carbonyl oxygen atoms.

The interaction energy has been employed as a default scoring function
for the screening. Surprisingly more than 60% of the approximately 300
ligands contained in the CCDC can build a complex with the target featuring
a negative non-covalent interaction energy. The bioactive conformation of
the 'native ligand’ (Ace-Malonyl Tyr-Glu- (N, N-Dipentyl Amine)) is ranked
on position 117. Meaning it is rated among the first 40% of the total library,
and among the first 60% of the hits.

Small molecules, i.e. molecules having a molecular weight, which is below
the weight of the native ligand found in the PDB file, can exert considerably
strong interactions in the narrow side pocket of the binding cleft. There-
fore, a correlation between interaction energy and molecular weight can be
observed.

Discussion

Redocking

The Redocking results are encouraging, 9 out of 10 complexes could be re-
produced with an RM SD of less than 2 A, only for the anti-steroid antibody
the RMSD is about 3.8 A (see above). 8 complexes could even be repro-
duced with an RMSD below 1 A. The conclusion arises that if the solution
space is properly sampled, the Fine-Tuning routine manages to predict the
correct binding mode. Although a random multi-start strategy is applied,
the solutions are highly reproducible. This is due to the uniform sampling
of the starting sphere, which accounts for most of the computational effort
in the Point-Matching phase (see computational effort). The fact that the
Docking routine finds the binding site as well as the binding mode for the
bioactive conformation of NAPAP, as obtained from the PDB-entry 1DWD,
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docked against an unligated conformation of thrombin as obtained from
1MKX is a further indication of the robustness of the designated method.

Point-Matching

Estrogen receptor agonist and ATP as ligand of CDK2 are the only ligands
comprising atoms from all 4 pharma groups. All the others lack the fourth
pharma group, which is made up of aromatic acceptors. In the future an
investigation should be conducted, using a larger test set, in order to fathom
if the fourth pharma group can be discarded or replaced by a different one,
e.g. metal binding atoms. Additionally, the native ligand of the arabinose
binding protein (PDB-entry:1ABE) only has donors and acceptors, which
does not result in diminished reproductional exactness. Whereas, the fact
that the EPM of the native ligand of the anti-steroid antibody only com-
prises 2 acceptors, leads to an inadequate sampling of the solution space.
This can be improved by including an additional pharma group. The Point-
Matching algorithm manages to get sufficiently close to the local minimum
in all other cases discussed here. Although steric effects were not directly
regarded during Point-Matching, they are, to a certain extent, implicitly in-
cluded in the 'hot spot’ distribution. Moreover, all the solutions are shifted
towards the protein surface. This strategy works extremely well in both
Point-Matching and Fine-Tuning. The percentage of undesired, i.e. steri-
cally hindered, Point-Matching solutions could be diminished to a very low
value.

Fine-Tuning

The Fine-Tuning routine manages to diminish the RM SD by 20-60% and as
expected also the non-covalent interaction energy in all observed cases, even
for the one case where the Point-Matching did not work very well (FAB’
fragment of the anti-steroid antibody). The reasons for choosing only a low
number of iteration steps, which does not guarantee convergence for every
minimization run, are the following:

Hydrogen atoms were added to the pdb-entries without any subsequent
energy minimization. Thus one would certainly expect the local minimum to
be shifted slightly compared to the minimum yielded after X-ray structure
determination. Additionally, refinement of X-ray structures is always com-
bined with energy minimization using force fields like AMBER or CHARMM
but not MMFF94.

When Fine-Tuning a set of Point-Matching solutions, most probably there
will be some solutions that will be too far from the minimum to converge to
it in a reasonable time. These solutions will rather converge to a local min-
imum, wasting a great amount of computational time leading to no gain.
Additionally, finding a distinct value for a gradient convergence criterion
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is not a trivial task, since the potential energy surfaces, and thus absolute
values differ widely between targets. Provided that at least one of the Point-
Matching solutions comes as close to the minimum to converge in a feasible
number of steps, a strategy using a low maximal number of iteration steps
seems to be justifiable. Anyway, subsequently an energy-minimization with
a profound convergence criterion should be applied with the best candidates.

The fact that the native binding mode of progesterone could be repro-
duced with an RMSD of approximately 3.8 A accounts also for the robust-
ness of the designated procedure. In this case the potential energy surface is
not that steep, since there are not many highly specific non-covalent interac-
tions (nearly all atoms of progesterone belong to simple aliphatic residues),
that is why the interaction energy is fairly negative. Thus, although the
RMSD is above 3 A, in a virtual screening experiment progesterone would
have been selected as a potentially binding ligand.

Relaxation

In a Redocking experiment Relaxation is not necessary, whereas in Screening
flexibility is essential, since both the ligand’s and the target’s bioactive con-
formation are unknown. Moreover, the interaction energy between target
and ligand can serve as a first approximation towards the binding energy.
Naturally, when conducting a Screening experiment one would perform an
energy minimization for ligand and target independently in the preprocess-
ing phase, to ensure that degrees of freedom that are not influenced by the
binding process are energy-minimized only once. Results are given here in
order to illustrate the fact that, determination of a minimum energy coor-
dinate set for the target or the target-ligand complex is not a trivial task
with a unique solution. Using two different Relaxation strategies we obtain
different energies and coordinates for identical starting complexes. This is
due to the fact that different strategies, local versus semi-global, as well as
different convergence criteria for MD and BFGS were employed. Another
crucial point stems from the fact that calculations are performed in the ab-
sence of solvent molecules. Thus, partial charges saturated in vivo could
attract each other. As a consequence, minimizing over many iteration cy-
cles until the gradient vanishes can yield a conformation that is far from any
conformational state occupied in vivo. When determining the coordinate set
for Scoring and adding the non-covalent energy contribution to the Scoring
value, this observation becomes a highly intricate problem.

Electrostatic contribution

Electrostatic interaction is, though strong in absolute value and in many
cases specific (salt bridges), not as highly specific as Lennard-Jones
interaction, since it does not decay that fast in dependence of the range.
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Additionally, different atom pairs possess different dispersion terms,
whereas electrostatic interaction only depends on range and charge.
Binding specificity arises out of the three-dimensional structure of the
interacting molecules. A single Lennard-Jones interaction may be weak,
but specific. If the number of interacting atoms increases, dispersion
interactions will become more and more important. The larger the
intersection of the surface areas of two interacting molecules, the more
dispersion interactions can occur simultaneously and the stronger is the
overall attractive or repulsive force. Hence molecular recognition requires
steric complementarity, meaning ligand and target must fit together like
key and lock. One can assume that electrostatics are often highly specific
only in conjunction with hydrogen bonds. Additionally salt bridges can
be saturated by water molecules. Presumably, electrostatic forces are less
important for a coarse spatial orientation of the ligand inside the binding
pocket. Since the relation of the two terms within the pharma force field
remains unclear and a positive effect cannot be proven within some test
experiments, an eletrostatic term has been neglected in the proposed
pharma force field used in the Point-Matching.

Apart from that, Coulomb forces are surely essential for guiding the lig-
and towards the binding site, but this effect is not subject of this study.
For the positioning within the binding site (Fine-Tuning). Otyepka et al.,
found that Coulomb energy contributes strongly to the overall interaction
energy of all observed ligands, but not very specifically, when regarding bind-
ing of ligands to CDK2 [32]. Calculated electrostatic energies are usually
largely overestimated. This leads to systematic errors in ranking of screen-
ing results. Scaling down electrostatic interactions by a uniform dielectric
constant is not a decent approach, because in the absence of solvent, dipole
interactions have to be scaled down less than interaction between ion pairs
[29, 30].

Screening

Due to the overestimation of electrostatics, molecules of low molecular
weight get higher scores, because the probability of sterical clashes is con-
siderably low and the number of possible positions in the active site is high.
Screening with respect to interaction energy tends to choose molecules with
maximal attractive electrostatic interaction. Moreover, the non-covalent in-
teraction energy is correlated with the number of ligand atoms.

A reduced scoring function which is based only on the intermolecular inter-
action energy derived from a force field, is not valid for Screening a ligand
library, at most it can be used as a pre-filter. Taking into account all the
approximations connected to the interaction energy between target and lig-
and, the fact that the native ligand is ranked on position 117 is encouraging
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for a physically motivated model of a scoring function. Even for more so-
phisticated scoring functions the native ligand is not always ranked among
the top 10%. A high false positive ratio seems quite inevitable, when scoring
is applied only with regard to non-covalent interaction.

Computational effort

Despite several simplifying assumptions, the overall run-time of approxi-
mately 5 minutes per processor for docking one ligand conformation is too
long. Whereas, runtime decreases considerably with the size of the ligand.
A Redocking run for the arabinose binding protein (PDB-entry:1ABE)
with arabinose (20 atoms) takes approximately 1 minute. When aiming at
semi-flexible Docking, this is a first argument for a strategy with a single
fragment placed inside the binding pocket, rather than employing a place
and join algorithm.
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Appendix
Coarse Docking:
"Hot spots’ per pharma group: 150
Runs for finding the binding site: 100
Runs for Coarse Docking: 1000
Convergence tolerance e: 10-8
Minimum value for dynamic cut-off: 2
Fine-Tuning:
Input steps for Fine-Tuning: 20
Steps in Fine-Tuning: 100
Initial translational step-size (A): 0.1
Initial k,: 0.5
Initial k: 0.5
Interval for k,: 0.2-2.0
Interval for k,: 0.2-2.0
Cut-off for non-covalent interactions (A): 14
Cut-off for H-bonds only ( A): 4
Update number for cut off list: 4
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Relaxation with BFGS [34]:

gtol: 0.1
tolX: 10715
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