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Abstract

Point-to-Multipoint systems are one kind of radio systems supply-
ing wireless access to voice/data communication networks. Such sys-
tems have to be run using a certain frequency spectrum, which typi-
cally causes capacity problems. Hence it is, on the one hand, necessary
to reuse frequencies but, on the other hand, no interference must be
caused thereby. This leads to the bandwidth allocation problem, a
special case of so-called chromatic scheduling problems. Both prob-
lems are NP-hard, and there exist no polynomial time approximation
algorithms with a guaranteed quality. One kind of algorithms which
turned out to be successful for many other combinatorial optimization
problems uses cutting plane methods. In order to apply such meth-
ods, knowledge on the associated polytopes is required. The present
paper contributes to this issue, exploring basic properties of chromatic
scheduling polytopes and several classes of facet-defining inequalities.
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1 Introduction

Point-to-Multipoint Radio Access Systems (PMP-Systems) are one kind of
radio systems supplying wireless access to voice/data communication net-
works. Base stations form the access points to the backbone network. Cus-
tomer terminals are linked to base stations by means of radio signals. Some
specific part of the radio frequency spectrum has to be used only to main-
tain the links. This typically causes capacity problems and, therefore, it is
necessary to reuse frequencies.

There are two main differences between PMP-Systems and cellular phone
networks. Firstly, each customer is provided a fixed antenna and is assigned
to a certain sector of a base station (see Figure 1a). Secondly, the customers
do not have a unique communication demand, but each customer has an
individual one, hence the task is to assign frequency intervals instead of
single channels (see Figure 1c).

(a) Sectorization (c) Frequency plan(b) Graph
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Figure 1: Bandwidth allocation in Point-to-Multipoint radio access systems.

A central issue is that a link connecting a customer terminal and a base
station may be subject to interference from another link that uses the same
frequency. In particular, links to customers of the same sector must not
use the same frequency, since they are served by the same antenna of a
base station. In addition, some links of customers in different sectors may
also cause interferences (see Figure 1b). The task of reusing frequencies due
to capacity constraints but providing an interference-free communication
leads to the bandwidth allocation problem. The goal is to assign a frequency
interval within the available radio frequency spectrum to each customer
(see Figure 1c), taking into account the individual communication demands,
possible interference, and several technical and legal restrictions.

This kind of problems is known in the literature in slightly different ver-
sions as chromatic scheduling problem [4] or, in some particular cases, as
consecutive coloring problem [5] and interval coloring problem [7, 8]. Such
problems are NP-hard in general [8] and there are no polynomial time ap-
proximation algorithms with a guaranteed quality. Small instances of the
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bandwidth allocation problem could be solved by greedy-like heuristics [1],
but in order to tackle problem sizes of real world applications, algorithms
have to be designed that rely on a deeper insight of the problem structure.
One kind of algorithms which turned out to be successful for many other
applications uses cutting plane methods [3]. To apply such methods to the
bandwidth allocation problem, the polytope representing the convex hull
of the incidence vectors of all feasible solutions of the problem has to be
studied. The present paper contributes to this issue.

This paper is organized as follows: Section 2 gives a precise description
of the bandwith allocation problem and presents an integer programming
formulation. Section 3 starts with the initial study of the associated poly-
topes. Section 4 presents several facet-defining inequalities. We end up with
some concluding remarks and open problems.

2 Problem description

In this section we discuss the details of the bandwith allocation problem and
provide an integer programming formulation. We interpret this problem as
a scheduling problem and introduce the associated polytopes.

The input of this problem is given as follows. Let T = {t1, . . . , tn} be the
set of all customer terminals, and S = {S1, . . . , Sk} be a partition of T into
sectors, providing the information to which sector Sj the terminal ti ∈ T
belongs. Let d = (d1, . . . , dn) be the vector of communication demands
associated with the customer terminals, indicating that customer ti ∈ T has
demand di ∈ Z. Additionaly, we have a set EX of unordered pairs (ti, tj) of
terminals in different sectors that must not use the same frequency due to
possible interference.

This setting can be viewed as a weighted graph (G, d) = (V,E, d), where

• V = {i : ti ∈ T } is the node set,

• E = EX ∪ EI is the edge set with

EI = {ij : ti, tj in the same sector Sl ∈ S},

EX = {ij : (ti, tj) ∈ EX},

• d = (d1, . . . , dn) is the node weighting.

Thus, the nodes represent customer terminals, the node weights reflect the
communication demands, and the edges indicate potential interference be-
tween the customer terminals. The latter is given by the set of external
interferers EX and the partition of the node set V corresponding to the sec-
torization of T . In graph theoretical terms, the partition of T into sectors
S = {S1, . . . , Sk} corresponds to a clique covering of G, i.e., to a partition
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of V into k subsets V1, . . . , Vk such that the nodes in every Vi are pairwise
adjacent.

Moreover, a guard distance g is given that must be kept between intervals
of terminals (ti, tj) ∈ EX . Finally, we have the available radio frequency
spectrum [0, s] with s ∈ Z where all the frequency intervals have to be
placed in.

The task is to provide, for each customer ti ∈ T , a certain part of the
available frequency spectrum meeting the following two conditions. Firstly,
the individual communication demand di is satisfied. Secondly, the assign-
ment does not cause interference, i.e., no terminal within the same sector
uses the same frequencies, and the guard distance is obeyed for each external
interferer tj, (ti, tj) ∈ EX .

The desired output is, therefore, an assignment of an interval I(i) =
[li, ri] with li, ri ∈ Z to each customer ti ∈ T such that:

• ri − li ≥ di,

• [li, ri] ⊆ [0, s],

• max{li, lj}−min{ri, rj} ≥

{

0 if ti and tj belong to the same sector
g if (ti, tj) ∈ EX .

To represent a solution, we use besides the interval bounds li and ri for
all i ∈ V , in addition the ordering variables

xij =

{

1 if ri ≤ lj, i < j

0 otherwise

for all ij ∈ E, indicating a precedence relation on the set of intervals, due to
the following reason. In order to avoid interference, certain pairs of intervals
must not overlap. The antiparallelity requirements for intervals of potential
interferers are realized, in every feasible solution, by a precedence relation
(i.e. a partial order) on the set of intervals. A valid schedule is, therefore, an
assignment of values to li, ri ∀i ∈ V and xij ∀ij ∈ E such that the following
inequalities are satisfied:

di ≤ ri − li ∀i ∈ V (1)

0 ≤ li ≤ ri ≤ s ∀i ∈ V (2)

ri ≤ lj + s(1 − xij) ∀ij ∈ EI , i < j (3)

ri + g ≤ lj + s(1 − xij) ∀ij ∈ EX , i < j (4)

rj ≤ li + sxij ∀ij ∈ EI , i < j (5)

rj + g ≤ li + sxij ∀ij ∈ EX , i < j (6)

xij ∈ {0, 1} ∀ij ∈ E, i < j (7)

li, ri ∈ Z ∀i ∈ V (8)
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The demand constraints (1) and the bound constraints (2) assert that the
interval I(i) = [li, ri] must satisfy the demand di and fit within the available
frequency spectrum [0, s]. Inequalities (3) to (6) realize the antiparallelity
constraints, which prevent interfering pairs of intervals from overlapping.
Finally, the integrality constraints (7) resp. (8) force the x-variables to be
binary resp. the interval bounds to be integral.

Remark. This setting may be interpreted as k-machine scheduling problem
where the k sectors correspond to the k machines, and the customer termi-
nals to the jobs. In our case, the assignment of jobs to machines is fixed. The
processing time of a job corresponds to the communication demand of the
customer terminal. That no machine can process two jobs at the same time is
given by EI (recall that S corresponds to a clique covering of G by k cliques),
where EX gives antiparallelity requirements between jobs processed on dif-
ferent machines. Moreover, g can be interpreted as changeover time, and s

as upper bound on the allowed makespan max{ri : i ∈ V }−min{lj : j ∈ V }
with respect to a schedule (for more information on general scheduling prob-
lems see, e.g., [2]).
Moreover, if d = 1, i.e., di = 1 ∀i ∈ V , and g = 0, then we obtain the
ordinary graph coloring problem as special case of the bandwith allocation
problem, where s corresponds to the maximal number of available colors.

One is mainly interested in finding feasible solutions satisfying all the
constraints above. If this is possible, the task is, e.g., to find a span-minimal
solution among all feasible ones (there are several other possible objective
functions which we won’t discuss here). In order to apply cutting plane
methods to solve the problem, we are interested in investigating the convex
hull of all feasible solutions satisfying these constraints.

Definition 1 (Chromatic scheduling polytope) Let (G, d) = (V,E, d)
be a graph with node weights d, and let s be the allowed makespan. The
chromatic scheduling polytope P (G, d, s) ⊆ R2|V |+|E| is defined as the con-
vex hull of all integer solutions (l, r, x) ∈ R2|V |+|E| satisfying constraints
(1)-(8).

A special case of the bandwidth allocation problem is of particular inter-
est, namely the case where each customer receives an interval I(i) = [li, ri]
which has precisely the length of its demand, i.e., ri − li = di. This case is
in practice easier to solve and the solution space has lower dimension since
the right interval bounds can be dropped for representing solutions. Thus,
only the l- and x-variables are required, and every solution vector has only
|V | + |E| entries instead of the 2|V | + |E| entries in the general case.

Definition 2 (Fixed length chromatic scheduling polytope) Let us
denote by R(G, d, s) ⊆ R|V |+|E| the fixed-length chromatic scheduling poly-
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tope, defined as the convex hull of all feasible solutions (l, x) ∈ R|V |+|E|

satisfying ri = li + di and constraints (2)-(8).

3 General facts on chromatic scheduling polytopes

In this section we explore a special property of chromatic scheduling poly-
topes, namely their symmetry, and we provide some partial results on the
dimension of these polytopes.

Recall that we only have antiparallelity constraints for potential interfer-
ers ij ∈ E. Hence, in a feasible solution either the interval I(i) of i has to be
scheduled before the interval I(j) of j or I(j) comes before I(i). Thus, for
every feasible schedule S, there is a feasible schedule symmetric to S w.r.t.
the available spectrum [0, s], obtained by swapping all intervals of S. This is
obviously not true for scheduling problems in general. The reason is that we
have only antiparallelity requirements for chromatic scheduling problems,
but no precedence relation on the jobs given in advance. Clearly, the poly-
topes P (G, d, s) and R(G, d, s) reflect the symmetry of the schedules. The
polytope R(G, d, s) is even symmetric to a certain point [6], namely,

p =
1

2
(s1− d,1) = (

s − d1

2
, . . . ,

s − dn

2
︸ ︷︷ ︸

i∈V

,
1

2
, . . . ,

1

2
︸ ︷︷ ︸

ij∈E

),

where 1 = (1, . . . , 1).

Definition 3 If y ∈ R(G, d, s) is a feasible integer solution, then sym(y) =
2p − y denotes its symmetrical solution, i.e.,

sym

(

l

x

)

=

(

s 1 − d

1

)

−

(

l

x

)

.

Due to the symmetry of the polytope R(G, d, s), to every face exists a
parallel face of the same dimension and there is a simple formula to compute
this parallel face.

Theorem 1 Let b ≤ aT x be a valid (facet-inducing) inequality of R(G, d, s).
Then aT x ≤ 2aT p − b is also valid (facet-inducing) for R(G, d, s).

Proof. Let S be a feasible fixed-length schedule and let yS ∈ R(G, d, s) be
its associated vector. Consider the hyperplane H = {x ∈ R|V |+|E| : aT x =
b}. The straight line through yS and the symmetry point p of R(G, d, s)
meets H in a point, say yS

H . Then sym(yS
H) lies on a hyperplane sym(H) =

{x ∈ R|V |+|E| : aT x = b′} and R(G, d, s) ⊆ {x ∈ R|V |+|E| : −b′ ≤ −aT x}
follows by R(G, d, s) ⊆ {x ∈ R|V |+|E| : b ≤ aT x} and the symmetry of the
polytope, i.e., aT x ≤ b′ is valid for R(G, d, s). It is left to determine b′. Since
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p is the symmetry point, sym(yS
H) = 2p − yS

H holds. Thus aT yS
H = b and

aT sym(yS
H) = b′ imply

b′ = aT sym(xS
H) = aT (2p − yS

H) = 2aT p − aT yS
H = 2aT p − b

and aT x ≤ 2aT p−b is, therefore, the valid inequality of R(G, d, s) symmetric
to b ≤ aT x. If there are k affinely independent points in H ∩ R(G, d, s),
there are obviously k affinely independent points in H ′∩R(G, d, s). Thus, if
b ≤ aT x is facet-inducing for R(G, d, s), then aT x ≤ 2aT p−b is facet-defining
too. 2

Moreover, this symmetry provides us some tools for identifying facet-
defining inequalities.

Theorem 2 Let F be a face of R(G, d, s) such that y ∈ F ⇔ sym(y) 6∈ F

for every y ∈ R(G, d, s) ∩ Z|V |+|E|. Then F is a facet of R(G, d, s).

Proof. Assume that dim(F ) = k, and let y0, . . . , yk be a maximal set
of affinely independent points in F . Let yk+1 6∈ F be any feasible solution
outside F . Then, y0, . . . , yk, yk+1 are affinely independent, because y0, . . . , yk

satisfy the equation which defines F and yk+1 does not.
Now let yk+2 6∈ F be some other feasible solution not in F . Note that

sym(yk+1) and sym(yk+2) are in F , and thus they can be written as affine
combinations of y0, . . . , yk. Then,

yk+2 − yk+1 =

(

s 1 − d

1

)

− yk+1 −

(

s 1− d

1

)

+ yk+2

= sym(yk+1) − sym(yk+2)

=
k∑

i=0

αiyi −
k∑

i=0

βiyi

=
k∑

i=0

(αi − βi)yi,

where
∑

i αi =
∑

i βi = 1. But then

yk+2 = yk+1 +
k∑

i=0

(αi − βi)yi

implies that yk+2 is an affine combination of the points y0, . . . , yk, yk+1. This
proves dim(R(G, d, s)) = dim(F )+ 1, and thus F is a facet of R(G, d, s). 2

There is also a symmetrical solution S ′ of every feasible schedule S in
the general case. Here, the swapping of the intervals maps the left interval
bounds of the intervals of S to the right interval bounds of the intervals of
S′, and vice versa.
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Definition 4 The symmetrical point of a solution y ∈ P (G, d, s) is sym(y)
with

sym





l

r

x



 =





s 1− r

s 1− l

1− x



 =





s 1
s 1
1



−





r

l

x



 .

The symmetry for the general case also provides some tools for identi-
fying facet-defining inequalities. In order to state these results, we need to
introduce some notations.

Definition 5 Define Fs(G) as the set of nodes i such that there exists some
feasible solution of P (G, d, s) in which interval I(i) has length strictly greater
than di. That is, Fs(G) := {i ∈ VG : yri

− yli > di for some y ∈ P (G, d, s)}.

Definition 6 Let y ∈ R(G, d, s). The extension of y is ext(y) ∈ P (G, d, s)
with

ext(y)li = yli i = 1, . . . , n
ext(y)ri

= yli + di i = 1, . . . , n
ext(y)xij

= yxij
ij ∈ EG

Conversely, the reduction of a point z ∈ P (G, d, s) is red(z) ∈ R(G, d, s)
defined by:

red(z)li = zli i = 1, . . . , n
red(z)xij

= zxij
ij ∈ EG.

Remark. Note that red(ext(y)) = y holds but ext(red(y)) differs from y if
yrj

− ylj > dj for some j ∈ V .

Lemma 1 dim
(

P (G, d, s)
)

= dim
(

R(G, d, s)
)

+ |Fs(G)|.

Proof. For each i ∈ Fs(G) let yi ∈ P (G, d, s) be a solution such that yi
ri
−

yi
li

> di and yi
rj
− yi

lj
= dj for j 6= i (such a solution exists by the definition

of Fs(G)). Now, if w0, . . . , wk ∈ R(G, d, s) is a set of affinely independent
points, then ext(w0), . . . , ext(wk) are also affinely independent, and more-
over ext(w)ri

= ext(w)li+di for i = 1, . . . , n. Then, w0, . . . , wk, y1, . . . , y|Fs(G)|

are affinely independent points in P (G, d, s), and thus dim
(

R(G, d, s)
)

+

|Fs(G)| ≤ dim
(

P (G, d, s)
)

.

For the reverse inequality, let z0, . . . , zk be a maximal set of affinely in-
dependent points in P (G, d, s). We have that red(z0), . . . , red(zk) are points
in R(G, d, s) and

dim
{

red(z0), . . . , red(zk)
}

= dim
(

P (G, d, s)
)

− |Fs(G)|,

since yi
rj

= yi
lj

+ di for every i 6∈ Fs(G). We constructed dim
(

P (G, d, s)
)

−

|Fs(G)| affinely independent points in R(G, d, s) and thus dim
(

R(G, d, s)
)

≥

dim
(

P (G, d, s)
)

− |Fs(G)|. 2
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Theorem 3 Let F = {y ∈ R(G, d, s) : aT y = b} be a face of R(G, d, s)
such that red(z) ∈ F ⇔ red(sym(z)) 6∈ F for every z ∈ P (G, d, s)∩Z2|V |+|E|.
Then F ′ = {z ∈ P (G, d, s) : aT red(z) = b} is a facet of P (G, d, s).

Proof. If y ∈ R(G, d, s), then ext(y) ∈ P (G, d, s). By the hypothesis,
we have that either red(ext(y)) ∈ F or red(sym(ext(y))) ∈ F (but not
both). But red(ext(y)) = y and red(sym(ext(y))) = sym(y) imply y ∈
F ⇔ sym(y) 6∈ F . F is a facet of R(G, d, s) by Theorem 2. Let r =
dim(R(G, d, s)), then there exist r affinely independent vectors y1, . . . , yr in
the facet F (i.e., with aT yk = b). Then, ext(y1), . . . , ext(yr) are affinely
independent points satisfying aT red(ext(yk)) = b by definition.

Now, for each k ∈ Fs(G) let zk ∈ P (G, d, s) be a solution such that
zk
rk

− zk
lk

> dk and zk
rl
− zk

ll
= dl for l 6= k. We can assume that red(zk) ∈ F ′

(otherwise, consider the reduction of its symmetrical point sym(zk)). Define
the following set of feasible solutions:

A = {ext(y1), . . . , ext(yr)} ∪ {zk : k ∈ Fs(G)}.

For every k ∈ Fs(G), zk is affinely independent w.r.t. the points in A\{zk},
since all the points in A\{zk} satisfy rk − lk = dk, but zk does not. This
way we have by Lemma 1 |A| = dim(R(G, d, s))+ |Fs(G)| = dim(P (G, d, s))
affinely independent points in P (G, d, s) which satisfy aT red(z) ≤ b at
equality and this inequality defines, therefore, a facet of P (G, d, s). 2

Corollary 1 Let F = {y ∈ R(G, d, s) : aT y = b} be a face of R(G, d, s)
such that y ∈ F ⇔ sym(y) 6∈ F for every y ∈ R(G, d, s) ∩ Z2|V |+|E| and
projl(a) = 0 (i.e. only x-variables have nonnegative coefficients in aT y ≤ b).
Then F ′ = {z ∈ P (G, d, s) : aT red(z) = b} is a facet of P (G, d, s).

Proof. We verify that the assumptions of Theorem 3 are satisfied. Con-
sider any feasible solution z ∈ P (G, d, s). By the hypothesis, we know that
red(z) ∈ F ⇔ sym(red(z)) 6∈ F . Moreover,

aT red(sym(z)) = projx(a) projx(red(sym(z)))

= projx(a) projx(sym(red(z)))

= aT sym(red(z)).

Then, we have that

red(z) ∈ F ⇔ aT red(z) = b

⇔ aT sym(red(z)) < b

⇔ aT red(sym(z)) < b

⇔ red(sym(z)) 6∈ F.

So, the hypotheses of Theorem 3 are satisfied, and thus F ′ is a facet of
P (G, d, s). 2
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G Variables s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s = 7
C3 6 — — 3 6 6 6 . . .

C4 8 — 1 7 8 8 8 . . .

C2n+3 4n + 6 — — 4n + 6 4n + 6 4n + 6 . . .

C2n+4 4n + 8 — 1 4n + 8 4n + 8 4n + 8 . . .

Pn 2n − 1 — 1 2n − 1 2n − 1 2n − 1 . . .

K1,n 2n + 1 — 1 2n + 1 2n + 1 2n + 1 . . .

K4 − e 9 — — 3 9 9 9 . . .

K5 − e 14 — — — 6 14 14 14
K6 − e 20 — — — — 10 20 20

Table 1: Dimension of R(G,1, s) as a function of s.

A common way of proving that a valid inequality is facet-defining for a
certain polytope is to construct as many affinely independent points in the
particular hyperplane as the dimension of the polytope is. However, deter-
mining the dimension of chromatic scheduling polytopes turns out to be a
difficult task. It is easy to verify that dim(P (G, d, s)) and dim(R(G, d, s)) are
nondecreasing functions of s. Obviously both polytopes are empty as long as
s is strictly less than the weighted clique number ω(G, d) = max{

∑

i∈Q di :
Q ⊆ G is a clique}. As s increases, more feasible solutions exist. From a
certain value of s on, all possible orderings among the intervals are feasible
and the polytopes are full-dimensional. Table 1 shows some examples. Pn,
Cn and Kn denote a chordless path, cycle and complete graph, respectively,
on n nodes. Kn,m stands for a complete bipartite graph with color classes
A, B and n = |A|, m = |B|.

A lower bound on s such that both polytopes P (G, d, s) and R(G, d, s)
are full-dimensional if s increases this bound has been obtained in [9]. Fur-
ther partial results can be found in [9] showing some cases in which these
polytopes are not full-dimensional.

4 Facets of P (G, d, s) and R(G, d, s)

We now turn into devising facet-defining inequalities for chromatic schedul-
ing polytopes. A first issue to tackle is determining which of the model
constraints introduced in Section 2 induce facets of the polytopes. In this
section, we give a characterization of the cases where the demand constraints
(1) define facets of P (G, d, s). We also show that the lower and upper bounds
on the ordering variables 0 ≤ xij ≤ 1 ∀ij ∈ E implied by constraints (7) are
always facet-defining whenever the polytopes are nonempty, and we present
a further class of valid inequalities which admits the same property. In this
section, we assume the polytopes to be nonempty. We start with the bounds
on the ordering variables.
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Theorem 4 If ij ∈ E, then xij ≥ 0 and xij ≤ 1 define facets of R(G, d, s)
and P (G, d, s).

Proof. Let F = {y ∈ R(G, d, s) : yxij
= 1} be the face defined by xij ≤ 1,

i.e., the convex hull of the set of points having I(i) before I(j). A point has
I(i) before I(j) if and only if its symmetrical point has I(j) before I(i), and
thus y ∈ F ⇔ sym(y) 6∈ F . Theorem 2 shows that F is a facet of R(G, d, s),
and Corollary 1 implies that F ′ = {z ∈ P (G, d, s) : zxij

= 1} is a facet of
P (G, d, s). The same argumentation applies to xij ≥ 0. 2

Definition 7 (Triangle inequalities) Consider a triangle T = i, j, k of
G, i.e., a set of three pairwise adjacent nodes of G. We define

xij + xjk + xki ≤ 2 (9)

to be the triangle inequality associated with T .

Theorem 5 Triangle inequalities define facets of R(G, d, s) and P (G, d, s).

Proof. It is easy to verify that triangle inequalities are valid for both
polytopes, since xij = xjk = xki = 1 is obviously not possible in any feasible
solution.

Let y ∈ R(G, d, s) be an integer solution. Since {i, j, k} is a complete
subgraph, the intervals I(i), I(j) and I(k) cannot overlap in y. Thus y

contains one of the six configurations depicted in Figure 2. Note that the
cases (a), (b), and (c) satisfy (9) at equality, whereas the cases (d), (e),
and (f) do not. Moreover, the cases (a), (b), resp. (c) are the symmetric
cases of (d), (e), resp. (f). Thus, if F is the face defined by (9), then
y ∈ F ⇔ sym(y) 6∈ F holds. Theorem 2 resp. Corollary 1 implies that F is
a facet of R(G, d, s) resp. P (G, d, s). 2

Figure 2: Possible cases for y.

Let us now analyze the demand constraints (1) for P (G, d, s) (recall that
these constraints are replaced by equalities in the definition of R(G, d, s)). If
there is a node i 6∈ Fs(G), i.e., if every point in P (G, d, s) satisfies li +di ≤ ri

11



at equality, then P (G, d, s) ⊆ {y : yli + di = yri
} holds. On the other hand,

if i ∈ Fs(G), i.e., if there exists a feasible solution z ∈ P (G, d, s) with
zli + di < zri

, then the latter inequality is a proper face of P (G, d, s) and
defines a facet.

Theorem 6 If i ∈ Fs(G), then the demand constraint li + di ≤ ri defines a
facet of P (G, d, s).

Proof. Call dim(P (G, d, s)) = k, and let y0, . . . , yk ∈ P (G, d, s) be k + 1
affinely independent points in P (yj ∈ R2n+m). For i = 0, . . . , k, consider
the vector ȳj obtained from yj by replacing its ri-entry by y

j
li
+di. Note that

this shrinks the interval I(i) to its minimum length di in every yj , leaving the
remaining intervals unchanged, which does not introduce any infeasibility.
These new points lie in the face F of P (G, d, s) defined by li + di ≤ ri.
Moreover, since dim{y0, . . . , yk} = k then dim{ȳ0, . . . , ȳk} ≥ k − 1. But
there is a point z ∈ P (G, d, s) which does not satisfy the demand constraint
li +di ≤ ri at equality, and thus dim{ȳ0, . . . , ȳk} = k− 1, implying that this
inequality defines a facet of P (G, d, s). 2

The bound constraints (2) and the antiparallelity constraints (3)-(6)
do not define facets in general. For example, suppose P (G, d, s) is full-
dimensional. All the points z ∈ P (G, d, s) which satisfy li ≥ 0 at equality
must have zxij

= 1 for all j ∈ N(i) = {j ∈ V : ij ∈ E}. Thus, the face
{z ∈ P (G, d, s) : zli = 0} is strictly contained in the facet {z ∈ P (G, d, s) :
zxij

= 1}.
Furthermore, it is not difficult to verify that all the points z ∈ P (G, d, s)

satisfying the antiparallelity constraint (3) at equality must have zxik
= zxjk

for every k ∈ N(i) ∩ N(j). Thus the face defined by (3) cannot have the
required dimension. The same is true for the constraints (4)-(6), showing
that these inequalities do not define facets of P (G, d, s) if N(i) ∩ N(j) 6= ∅.

However, we present a strengthening of these constraints so that the
resulting inequalities define facets of P (G, d, s) and R(G, d, s). To this end,
we shall consider the following structure in N(i) ∩ N(j):

Definition 8 (Clique-star) We say that (K,S) is a clique-star if K and
S are disjoint node sets such that K induces a clique and every node k ∈ S

satisfies dk ≤
∑

i∈K\N(k) di.

Definition 9 (Spanning clique-star) Let H = (V ′, E′) be an induced
subgraph of G. If V ′ admits a partition V ′ = K ∪ S s.t. (K,S) is a clique-
star, then (K,S) is called a spanning clique-star of H.

Proposition 1 There exists a spanning clique-star of G, and it can be found
in polynomial time.

12



Proof. Let i1, i2, . . . , in be an ordering of the nodes in V such that
dik ≥ dik+1

. Consider every node in this sequence and construct K and
S iteratively as follows. At step k, we must decide whether ik has to be in-
serted into K or into S. If there is some it ∈ K with ikit 6∈ E, then insert ik
into S. Otherwise, insert ik into K. Note that in both cases (K,S) remains
a clique-star due to the ordering of the nodes, so upon termination of the
algorithm (K,S) is a spanning clique-star of G. This procedure is clearly
polynomial. 2

Definition 10 (Clique-star inequalities) Let ij ∈ E be an edge of G,
and let (K,S) be a spanning clique-star of N(i) ∩ N(j). We call

ri +
∑

k∈K

dk(xik − xjk) ≤ lj + (s − d(K))xji (10)

the clique-star inequality associated with (K,S), where d(K) =
∑

k∈K dk.

Lemma 2 The clique-star inequalities (10) are valid for P (G, d, s).

Proof. Let y ∈ P (G, d, s) be any integer feasible solution, and consider two
cases:

Case 1: yxij
= 1. The interval I(i) is located to the left of I(j). Let

M ⊆ K be the set of nodes k such that the interval I(k) is between the
intervals I(i) and I(j), i.e., M = {k ∈ K : yxik

= 1 and yxjk
= 0}. Since

K ∪ {i, j} is a clique, the corresponding intervals cannot overlap, and thus
ylj − yri

≥ d(M) implies that every y ∈ P (G, d, s) satisfies (10).
Case 2: yxij

= 0. In this case, the interval I(j) is before I(i).
Partition K = L ∪ M ∪ R as follows:

L = {k ∈ K : yxjk
= 0}

M = {k ∈ K : yxjk
= 1 and yxik

= 0}

R = {k ∈ K : yxik
= 1}

Note that d(L) ≤ ylj and yri
≤ s− d(R). Moreover,

∑

k∈K dk(yxik
− yxjk

) =
−d(M). These observations imply:

yri
− ylj +

∑

k∈K

dk(yxik
− yxjk

) ≤ s − d(L) − d(M) − d(R)

= s − d(K).

Thus, (10) is satisfied by y. 2

Let sG be the least integer s such that P (G, d, s) is nonempty, i.e.,
P (G, d, sG) 6= ∅ and P (G, d, sG − 1) = ∅. Furthermore, let ∆ = maxi∈V di

denote the maximum demand.

13



Theorem 7 If g = 0 and s ≥ sG+4∆, then the clique-star inequalities (10)
define facets of P (G, d, s).

Proof. By Lemma 2, clique star inequalities are valid for P (G, d, s). We
now prove that these inequalities define facets of this polytope. Let F be
the face of P (G, s) defined by inequality (10), and suppose that λy = λ0 for
every y ∈ F . We will show that (λ, λ0) is in fact a multiple of (10), thus
proving that this inequality is facet-inducing, i.e., that F is not contained
in any other facet. To this end, we prove the following sequence of claims:

Claim 1: λlk = 0 for k 6= j. Let k 6= j and let y ∈ F be an
integer solution with yrk

−ylk > dk (which exists because s > sG). Define y′

to be the solution obtained from y by just setting y ′
lk

= ylk + 1. Note that
this new solution is feasible. Both points lie in F , implying λy = λy ′ = λ0.
Moreover, they only differ in their lk-coordinates, and thus

λlkylk = λlky′lk = λlk(ylk + 1).

Thus λlk = 0, proving the claim. 3

Claim 2: λrk
= 0 for k 6= i. A similar construction, with points

y, y′ ∈ F such that yrk
− ylk > dk and y′rk

= yrk
− 1 shows that λrk

= 0 for
k 6= i. 3

Claim 3: λxkl
= 0 if both k, l differ from i, j. Let y ∈ F be a

feasible solution with ylk = 0, yll = dk, and all the remaining intervals to the
right of I(k) (this construction is possible since s ≥ sG + 4∆, see Figure 3).
Let y′ be a new feasible solution obtained from y by switching intervals I(k)
and I(l). Both solutions are in F , and thus λy = λy ′. These two feasible
solutions only differ in their lk-, ll- and xkl-coordinates. Moreover, we know
from the previous claims that λlk = λrk

= λll = λrl
= 0, implying λxkl

= 0.
3

Figure 3: Feasible points for Claim 3.

Claim 4: λri
= −λlj . Let y ∈ F be a feasible solution with yri

= ylj ,
such that it is possible to move the intervals I(i) and I(j) one unit to the
right (this is possible since s > sG). Let y′ be the solution obtained after
this shifting. Since both solutions are in F and we know that λli = λrj

= 0,
then

λri
yri

+ λlj ylj = λri
(yri

+ 1) + λlj (ylj + 1).

14



Figure 4: Feasible points for Claim 5.

This implies that λri
+ λlj = 0, thus justifying the claim. 3

Claim 5: λxik
= dkλri

for k ∈ N(i) ∩ N(j). Let y be an integer
point in F with yri

= ylj , and let y′ be a feasible solution with only intervals
k and j changed, in such a way that y′

lk
= yri

and y′lj = y′rk
= y′lk + dk (see

Figure 4). This construction is possible since s > sG + di + dj + dk. Both
solutions lie in F , so λy = λy′ = λ0, and thus

λlkylk + λljylj = λlky′lk + λlj y
′
lj

+ λxik
.

But λlk = 0 and y′lj = yri
+ dk imply λxik

= dkλri
, proving the claim. 3

Claim 6: λxjk
= −dkλri

for k ∈ N(i) ∩ N(j). A similar con-
struction proves this claim, by considering the solutions presented in Figure
5. 3

Figure 5: Feasible points for Claim 6.

Claim 7: λxji
= (s − d(K)). Let y ∈ F be any integer solution

with yri
= ylj , and let y′ be a solution with y′

li
= s − di and y′lj = 0 (and

thus y′xji
= 1), as in Figure 6. Note that yxik

− yxjk
= 0, y′xik

= 0, and
y′xjk

= 1 for k ∈ N(i) ∩ N(j). This implies that y ′ satisfies (10) at equality,

and, therefore, y′ ∈ F . Moreover, we have that

λy = λri
yri

+ λlj ylj +
∑

k∈K

(λxik
yxik

− λxjk
yxjk

)

= λri
(yri

− yri
) +

∑

k∈K

λxik
(yxik

− yxjk
) = 0

λy′ = λri
y′ri

+ λlj y
′
lj

+
∑

k∈K

λxjk
y′xjk

+ λxji
y′xji

= λri
s +

∑

k∈K

λxjk
+ λxji
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= s +
∑

k∈K

dk + λxji

Thus, λxji
= s − d(K), proving the claim. 3

Figure 6: Feasible points for Claim 7.

This way, we have that

λy = yri
− ylj +

∑

k∈K

dk(yxik
− yxjk

) − (s − d(K))yxji
.

Then λ is a multiple of the LHS of inequality (10), which implies that λ0 = 0.
Thus, the face F defined by (10) cannot be contained in any other facet
of P (G, d, s) and defines, therefore, itself a facet of the (full-dimensional)
polytope P (G, d, s). 2

Corollary 2 Let ij ∈ E be an edge of G such that N(i) ∩ N(j) = ∅. If
g = 0 and s ≥ sG + 4∆, then the antiparallelity constraints (3)-(6) define
facets of P (G, d, s).

Corollary 3 Let ij ∈ E. The clique-star inequality

li + di +
∑

k∈K

dk(xik − xjk) ≤ lj + (s − d(K))xji (11)

is valid for R(G, d, s) and defines a facet of this polytope if g = 0 and
s ≥ sG + 4∆.

Clique-star inequalities are not always facet-defining. To construct a
counterexample, let V = {1, . . . , 5} and E = {12, 13, 15, 23, 24, 45}, with
d2 = d3 = d4 = 1 and d1 = d5 = 2. Set s = 4, g = 0, i = 4 and j = 2. This
instance has dim(P (G, d, s)) = 4. All the feasible solutions satisfying (10)
at equality are the 4 points za, zb, zc, zd presented in Figure 7. It is not
difficult to verify that zd = za − zb + zc. Thus, zd is an affine combination of
the other three solutions and the dimension of the face of P (G, d, s) defined
by (10) is, therefore, at most 2. This shows that this clique-star inequality
is not a facet of P (G, d, s).
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Figure 7: The only four points which satisfy (10) at equality.

Proposition 2 The symmetric inequality of a clique-star inequality for the
polytope R(G, d, s) is again a clique-star inequality for the polytope.

Proof. Let aT y ≤ b be the clique-star inequality (11) associated with
(K,S). Recall that the symmetric inequality of aT y ≤ b is 2aT p − b ≤ aT y,
where p = 1

2(s1− d,1) is the symmetry point of R(G, d, s). We have that

2aT p − b = 2




(s − di)

2
−

(s − dj)

2
+
∑

k∈K

(
dk

2
−

dk

2
) +

d(K) − s

2



+ di

= dj + d(K) − s

This implies that 2aT p − b ≤ aT y is the inequality:

dj + d(K) − s ≤ li − lj +
∑

k∈K

dk(xik − xjk) − (s − d(K))xji,

which can be rewritten as

lj + dj +
∑

k∈K

dk(xjk − xik) ≤ li + (s − d(K))(1 − xji). (12)

With the notation xij = 1 − xji, we have that (12) is again a clique-star
inequality. 2

Clique-star inequalities describe the interaction between two adjacent
intervals of feasible solutions. The same ideas can be applied to the inter-
action between a single node i and the border of the frequency spectrum.
In this case, we must consider a spanning clique-star of N(i). The following
theorem can be proved in a similar way as Theorem 7.
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Theorem 8 Let i ∈ V and let (K,S) be a spanning clique-star of N(i).
Then, the following inequalities are valid for P (G, d, s):

li ≥
∑

k∈K

dkxki (13)

ri ≤ s −
∑

k∈K

dkxik (14)

Moreover, if g = 0 and s > sG + 3∆, then these inequalities define facets of
P (G, d, s).

5 Concluding remarks

In this article, we started a polyhedral study of chromatic scheduling poly-
topes, which arise in connection with bandwith allocation problems. We
studied the dimension and the special symmetry of these polytopes. We
also identified the facet-defining constraints from the integer programming
model, and presented some new facets of both polytopes.

There are many open questions concerning the dimension of these poly-
topes, and so it would be interesting to continue the investigations in this di-
rection. Also, the relationship between the symmetry and the facet-defining
property of valid inequalities deserves more research.

Further, more valid inequalities must be found and analyzed, since this
would lead to substantial improvements for solving this kind of bandwith
allocation problems in practice with the help of cutting plane methods.
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