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Abstract. We propose an extended box method which turns out to be a 
variant of standard finite element methods in the case of pure diffusion and 
an extension of backward differencing to irregular grids if only convective 
transport is present. Together with the adaptive orientation proposed in a 
recent paper and a streamline ordering of the unknowns, this discretization 
leads to a highly efficient adaptive method for the approximation of internal 
layers in the case of large local Peclet numbers. 
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1. Introduction 
We consider boundary value problems for the scalar, linear convection diffu
sion equation 

dW(-eVu + ßu) = f (1.1) 

on a bounded, polygonal domain Q, C IR2 with constant e > 0 and ß = 
ß(x) € IR2, a; 6 fi. We assume that ß has no loops, i.e. that ß(x) ^ ß(y) if 
x ^ y. Additionally, we impose Dirichlet boundary conditions on the inflow 
boundary Tm = {x € dti\(ß(x),n) < 0} and natural outflow conditions on 
Tout = dQ,\T-m: 

u | r i B = u o , ^ u l r O u t = 0 (1-2) 

Though boundary layers are excluded by (1.2), internal layers still lead to 
severe problems both with respect to discretization and efficient resolution 
of the resulting linear system. 

In a recent paper KORNHUBER AND RoiTZSCH [5] have proposed an adaptive 
orientation of the underlying triangulation in streamline direction ß together 
with local directed (blue) refinement. Compared to common adaptive strate
gies they obtained the same or even higher accuracy involving a much lower 
number of nodes. Note that no a priori information on the flux direction ß 
is used so that the technique carries over to more general situations in fluid 
dynamics where ß is depending on the solution. 

The purpose of this paper is to exploit the local structure of the triangulation 
provided by adaptive orientation and directed refinement, in order to con
struct a monotone discretization with minimal crosswind. We introduce the 
so called extended box method which turns out to be a variant of standard 
Galerkin methods in the self-adjoint case and gives a permanent extension 
of backward differencing to irregular grids, if only convective transport is 
present. In the latter case optimal orientation together with streamline or
dering of the unknowns leads to a lower diagonal stiffness matrix so that ILU 
and Gauß-Seidel iterations reduce to exact solvers. Non-vanishing physical 
or artificial diffusion is viewed äs perturbation of this ideal case. It turns out 
that for large Peclet numbers the resulting linear systems are very efficiently 
solved by ordinary ILU or Gauß-Seidel iterations while an additional coarse 
grid transport becomes necessary as soon as the elliptic part of the problem 

• becomes dominant. Note that a related approach to the anisotropic diffusion 
problem has been carried out successfully by WITTUM [9]. 
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2. The Extended Box Method 

Let T be a triangulation of the bounded polygonal domain 0, C IR2 with £ 
and V denoting the set of edges and nodes, respectively. The subset of nodes 
which are not situated oil the Dirichlet boundary is called V°. We assume 
that T is regular in the sense that the intersection of two triangles of T is 
either containing a common edge, a common node or is empty. The finite 
dimensional space of continuous functions being linear on each t € T is called 
S(T). We provide S(T) with basis functions \p 6 S(T), p € V defined by 
Xp(q) = 8Ptg (Kronecker symbol). For a given triangulation T we choose a 
partition B = {Bp , p € V} with the properties 

(Bi) uP€7>£P=n 
(B2) Bp C {t € T\p is vertex of t} 
(B3) BpnBqCdBp, p,q£V. 

Now integrate the differential equation (1.1) on Bq, q € V°, apply Greens 
formula and use the piecewise linear ansatz 

uB = E vP\P e S(T) (2.1) 
pep 

to obtain the well-known box method 

£ { L -z-S-K + {ß^q)\Pdo}Up=i fdx, 9€P°, (2.2) 
^ V 3 ß , dnq

 J JBq 

where we used the outward normal nq to dBq and the Euclidean scalarproduct 
(•, •) in IR2. To avoid instabilities in case of dominating convection, we use a 
piecewise constant approximation of the first order terms, taking the values 
UB |ae, from upstream. The resulting upwind discretization reads 

£ { / -e1r-\pda}Up+ 
^JBB, dnq J 

+ { / 09, nq)+ da} Uq+ E { / {ß, n,)_ da} Up = (2.3) 
JdBq p^qeV JdBl™BP 

= [ fdx, qeV°. 
JBq 

with r+ = max(0,r) and r_ = min(0,r), r £ IR, respectively. 

It is well-known from the pioneering work of BANK/ROSE [1] and HACK-
BUSCH [3] that for self-adjoint problems the box method and traditional 
Ritz-Galerkin scheme are closely related. In fact, if the regularity condition 

(B4) dBp n e C { midpoint of e}, p € V, e € £. 

is satisfied, the resulting stiffness matrices coincide and the difference of the 
approximations UB and UG can be estimated by 

l |tfB-^!li<^§ll/llo (2-4) 
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with h denoting the minimal size of e 6 £ and || • | |i, || • ||o the usual norms in 
H1 and Z>2, respectively. Moreover, if / is smooth enough and B satisfies an 
additional symmetry condition, related second order estimates are available. 
We refer to [3] for details. 

Obviously the construction of special box-schemes amounts to a special 
choice of the box-mesh B. In our case this choice is preceded by a suit
able extension of the underlying triangulation T. More precisely, from a 
given T we construct an extended triangulation. T by adding the barycenter 
s of each triangle t £ T to the set of nodes and joining it to the vertices as 
shown in Figure 2.1. Now the corresponding extended box-mesh B is ob
tained from the subdivision of t in four similar subtriangles, where the inner 
triangle forms the box B3 and the others contribute to the boxes related to 
the remaining vertices. 

r r 

A A 
p q p * q Figure 2.1 Extended triangulation T and box mesh B 

Note that the additional unknowns Us are coupled only with Up,Uq and Ur. 
Now the extended box method reads as follows. 

• Use the upwind box scheme with respect to the extended triangulation 
T and the related box-mesh B. 

• Eliminate the additional unknowns Us by local condensation to obtain 
the linear system 

AU=b (2.5) 

for the remaining unknowns U_ — (Up)pe-po. 

We will investigate the properties of this scheme for pure diffusion and pure 
convection starting with the self-adjoint case ß = 0. Note that the pair T, 
B does not satisfy the regularity condition (B4). However, we can state the 
following Theorem which is closely related to the results summarized above. 
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Theorem 2.1 

Let ß = 0. Then A coincides with the stiffness matrix resulting from the 
standard Ritz - Galerkin Method with respect to the original triangulation T. 
Moreover, the difference of U and the Ritz - Galerkin approximation UG can 
be estimated according to (2.4). 

Proof: Let us apply the standard box method to the extended meshes 
T and B. In view of (2.2), the contributions of some triangle t £ T to the 
stiffness matrix A are given by 

Lv,p = -I_ e-^—X^da, i/,fi=p,q,r,s, (2.6) 
JdBvnt Onv 

with AM,/i € V denoting the standard basis functions in S(T). Note that 
Ls,n, p = P, <?5 >", coincides with the entries of A as Bs is contained in t. Hence 
the local contributions LUili to A can be obtained by local condensation: 

LVtli = !„,„ - Y^L^S , u,p = p,q,r. (2.7) 

To show the desired equality of the stiffness matrices, we will prove 

Lv,ß = Jte(V\v,V\ß)dx=:L?tli, v,fi = p,q}r. (2.8) 

For this reason assume for the moment that 

^ = - | , M = p,<?,r. (2.9) 

Then in view of 
K + |AS = A„ on t, u = p,q,r, (2.10) 

the desired identity (2.8) takes the form 

JBV 

e-^—Xßda = L°, u,p=p,q,r. (2.11) 

As dBu intersects the edges of t at their midpoints, (2.11) is easily shown 
along the lines of [1] or [3]. We still have to prove (2.10) which can be 
rewritten as 

L&&+W"0- (2-12) 
Now in view of (2.11) the assertion easily follows from Greens formula. To 
estimate the difference of the approximations U and UG, observe that on 
each triangle t € T the right hand side is approximated by 

Fv= [_ f dx + ctv [_ f dx , u = p,qyr, (2.13) 
Joy JB$ 
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with coefficients a„ given by 

au:==r-= , u=p, q, r. (2.14) 
Ls,s |ep |H-|e? | + |e r | 

Now the proof is completed following almost literally the arguments in [3]. 
• 

If T satisfies the strong regularity condition |e| = const., e €. £, then 
(2.13) obviously holds with a„ = | , u — p,q,r, and the extended box method 
reduces to a variant of the box method proposed by HACKBUSCH[3]. In this 
case we have an analogue of (2.4) of second order. Note that for ß ^ 0 the 
right hand side / is still approximated as in (2.13) but with av replaced by 
a modified partition of unity af, v = p,q,r. 

Let us now consider the case of pure convection appearing as reduced problem 
of (1.1) in the sense of asymptotic analysis. 

Theorem 2.2 

Let e — 0. Assume that ß(x) — const., x £ 0 and that T is oriented in the 
sense that in each triangle t € T one edge is parallel to ß. Then the extended 
box method reduces to the first order upwind difference scheme. 

Proof: Let p G V°. Then it is easily seen from the assumptions on T 
and the boundary conditions (1.2) that there is one and only one edge eo = 
(p,Po) G £ pointing from p in upstream direction. Hence upwind differencing 
is feasible. Refering to the denotation introduced in Figure 2.1, we first 
observe that in case of pure convection the unknowns Up,Uq, and Ur are 
coupled only via the intermediate unknowns Us. Exploiting the orientation 
of T in (2.3), it is easily checked that Us and Uq or UT are coupled only if 
q = po or r = p0. 
• 

The above Theorem makes sure that for oriented triangulations there is no 
unphysical coupling of different streamlines. This is not the case in usual 
variants of the Petrov-Galerkin method (see [4]), where certain averages of 
upwind differences are obtained. Of course, there is no artificial viscosity 
in this ideal case, while on unstructured grids we expect the usual diffusive 
behaviour of an upwind method. 

Of course, the condition ß(x) = const, can be weakened. 
Having treated the ideal cases e = 0 and ß = 0 let us finally state that the 
properties of the extended box method applied to general convection diffusion 
equations are not obtained as the sum but as a nonlinear interpolation of 
these results. This is due to the local elimination of the U3 which is not 
additive. 
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3. Iterative Solution 
In this chapter we consider the iterative solution of the linear system (2.5) 
resulting from the extended box method. We further assume that the trian-
gulation T is oriented in the sense of Theorem 2.2 and that e <C \ß\. This 
allows to treat the general convection diffusion equation as perturbation of 
the singular case e = 0. 

Theorem 3.1 

Let e = 0. Assume that ß(x) = const., x € Cl, and that T is oriented in the 
sense that in each triangle t € 1 one edge is parallel to ß. Then the nodes 
V can be ordered in streamlines following the flux direction ß. With respect 
to this ordering the extended box method provides a lower triangular stiffness 
matrix A. 

Proof: The Proof is obvious from Theorem 2.2 . 
• 

Again, the assumption ß = const, can be weakened. 

Of course iterative schemes like the ILU or Gauß-Seidel iteration reduce to 
exact solvers, if the assumptions of Theorem 3.1 are fulfilled. But this ideal 
situation may be disturbed in several ways. First adaptive orientation of T , 
as performed in the sequel, is supposed to be not exact. Hence a certain 
amount of artificial diffusion may be introduced by the discretization. On 
the other hand, any nonvanishing physical diffusion becomes dominant as 
soon as the local stepsize is chosen small enough. Both phenomena will show 
up in our numerical experiments. We conjecture that these problems arising 
from too much diffusion can be remedied by additional coarse grid correction, 
using the iterative scheme as smoother. This will be subject to subsequent 
work. 

We are left with the problem to provide an efficient streamline ordering of 
the unknowns. This will be done in the well-known adaptive framework 
described for example in [2] or [5]. Starting with some initial triangulation 
TQ, we assume that a sequence of triangulations T\, %,,..., Tj is obtained from 
local regular (red) or directed (blue) refinement and irregular (green) closure. 
The enumeration of the corresponding nodes will be performed inductively 
with respect to the refinement levels j . 

First, let us briefly discuss the additional requirements on the underlying 
data structures. As we do not insist on uniform refinement, the polygonals 
of edges following the streamlines may be disconnected and grow together 
on subsequent levels. Hence, the nodes belonging to different streamlines are 
stored in different linked lists. By a pointer on the initial node of the corre-
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sponding list, each node is located in its line. The further implementation 
heavily relies on the data structures provided by the underlying finite element 
code KASKADE. In particular we have a pointer from each refined triangle 
T € Tj, called father, to the resulting triangles ^1,^2,^3,^4 € Tj+i, called sons, 
and vice versa. Note that t3,t4 are void in case of blue refinement. We refer 
to LEINEN[6] or RoiTZSCH[7, 8] for details. 

Now the initial numeration of Vo corresponding to the intentionally coarse 
grid % may be provided by the user or derived automatically from the ap
proximation UQ on level 0. In any case the initial grid has to be fine enough 
to guarantee that the detected streamline direction does not change dramat
ically in course of the refinement process ( see [5]). 

In the induction step we assume that the initial triangles T G % are ordered 
according to the numeration of the nodes Vo- Based on the existing numer
ation of Vj the new nodes p 6 Vj+i\Vj arising from the actual refinement 
step are sorted by the recursive procedure NUMERATE(-) which is applied 
subsequently to the initial triangles T 0 ,T i , . . . , 2V0 € %. 

procedure NUMERATE^) 
while ( t has sons ti,t2,t3,t4 ) 

if ( * € Tj+1\Tj ) 
file the new points into an existing line or make up a new one 

else 
perform NUMERATE^,), i = 1, • • •, 4, following the order 
induced by the existing numeration of Vj (see Figure 3.1) 

fi + 1 

v + 1 y 1/-+1 

Figure 3.1 Local numeration of sons 

The above algorithm may be viewed as a recursive search for new nodes 
p £ Vj+i\Vj, taking care that they are picked up according to the existing 
order of Vj. Note that the numeration follows the streamlines together with 
the corresponding polygonals of edges. Hence local orientation only leads to 
a local streamline ordering of the nodes. 



4. Numerical Results 
In our numerical experiments we concentrate on the behaviour of the ex
tended box method and of the ILU iteration applied to the resulting linear 
systems. For details on the underlying adaptive concept we refer to [5]. 
In our first example we chose ß = (1,0.5)T, / = 0 on tt = [0 x 1,0 x 1] and the 
boundary conditions (1.2) with discontinuous u0 defined by ^0(^1)^2) = 1 if 
i 2 < 0.3 and uo = 0 elsewhere on Tm. The initial triangulation % is depicted 
in Figure 4.1. 

Figure 4.1 Initial triangulation % 

We first illustrate the properities of the extended box method in the case 
of pure convection e = 0. The next Figure 4.2 shows the approximation Ug 
together with the corresponding triangulation %, resulting from 9 isotropic 
refinement steps without orientation. As expected, we observe the monotone 
but diffusive behaviour of usual upwind schemes. Using adaptive orientation 
and directed (blue) refinement, we end up with the anisotropic triangulation 
% depicted in Figure 4.3. In this case, the extended box method leads 
to the approximation U9, introducing almost no unphysical crosswind but 
preserving the good stability properties. Note that % is involving a much 
smaller number of nodes than %. The next Figure 4.4 shows the convergence 
properties of the ILU iteration applied to the linear systems (2.5), arising 
from the extended box method for the choice e - 10~4,10~5,0. We depict 
the number of iterations depending on the refinement levels which are taken 
as a measure for the local stepsize h. We always started with U^ = 0 and 
required the unrealistic accuracy 

It/O'+D _[ / ( " ) | , 2 <10 . - 1 2 
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to amplify the effects of various physical diffusion. Note that only the adap-
tively oriented triangulations are considered. Obviously the method performs 
excellent for large local Peclet numbers p = - ^ and deteriorates as soon as 
the local mesh size h is small enough to resolve the internal layer. Note 
that the small increase of the line corresponding to e = 0 is due to non-
optimal orientation. It should be mentioned that the Gauß - Seidel method 
shows a very similar behaviour but appears to be less robust with respect to 
perturbing diffusion. 

Figure 4.2 Standard triangulation % (2716 nodes) and approximation ÜQ 

Figure 4.3 Oriented triangulation % (121 nodes) and approximation U$ 
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Figure 4.4 ILU iteration for a linear layer 

In the second example we produce a curved layer by the choice ß(x\,X2) = 
(aj2, —x\)T and a corresponding modification of Uo. The other data including 
the initial triangulation remain unchanged. Of course we cannot expect that 
the non-linear layer is approximated by linear edges as good as the linear 
layer considered above. Indeed, the effect of less accurate orientation is visible 
both in the diffusivity of the approximate solution ( see Figure 4.5 ) and the 
behaviour of the iterative solver ( see Figure 4.6 ). But compared to the 
solution produced by a standard triangulation and illustrated in Figure 4.4, 
this approach still provides a considerable advantage both with respect to 
accuracy and efficiency. 

Acknowledgements. The authors are indebted to Rainer Roitzsch from the 
Konrad-Zuse-Zentrum Berlin for his support at all stages of the preparation 
of this manuscript. 
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Figure 4.5 Standard triangulation % (3106 nodes) and approximation £/g 

Figure 4.6 Oriented triangtdation % (243 nodes) and approximation UQ 
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Figure 4.7 ILU iteration for a curved layer 
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