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Abstract

Quantitative photoacoustic tomography aims recover the spatial distribution of absolute chromophore con-
centrations and their ratios from deep tissue, high-resolution images. In this study, a model-based inversion
scheme based on a Monte-Carlo light transport model is experimentally validated on 3-D multispectral im-
ages of a tissue phantom acquired using an all-optical scanner with a planar detection geometry. A calibrated
absorber allowed scaling of the measured data during the inversion, while an acoustic correction method was
employed to compensate the effects of limited view detection. Chromophore- and fluence-dependent step
sizes and Adam optimization were implemented to achieve rapid convergence. High resolution 3-D maps
of absolute concentrations and their ratios were recovered with high accuracy. Potential applications of this
method include quantitative functional and molecular photoacoustic tomography of deep tissue in preclinical
and clinical studies.
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1. Introduction

Photoacoustic (PA) tomography is an emerging imaging modality that combines the high contrast and
spectral specificity of purely optical imaging methods with the high spatial resolution of ultrasound [1, 2].
It relies on the absorption of short optical pulses by tissue chromophores to generate broadband acoustic
fields. The spatial distribution of the optical absorbers within the illuminated volume is therefore encoded
onto the time-resolved pressure signals measured at multiple locations outside the imaged object. From
this data, 3-D images of the initial pressure distribution, which depends on the local abundance of all tissue
chromophores, are then reconstructed. Quantitative photoacoustic tomography (QPAT) aims to recover the
spatial distribution of absolute chromophore concentrations, such as oxy- and deoxyhemoglobin as well as
contrast agents, from these images to extend the capabilities of this modality to quantitative, deep-tissue
functional and molecular imaging. To reach this goal, a number of key challenges have to be addressed.
The accurate prediction of the spatially varying and wavelength-dependent fluence, which causes so-called
spectral coloring and structural corruption [3], is vital. Thermodynamic properties, such as the dependence
of the Grüneisen parameter on chromophore concentration, also need to be accounted for. In addition, factors
such as limited view detection, scanner-specific instrument transfer functions and detection noise determine
to which extent a measured PA image represents the true initial pressure distribution. Lastly, experimental
and computational methods are required to address the large scale of the inverse problem posed by high
resolution images, which can result in millions of variables [3, 4, 5, 6].

A variety of QPAT methods have been used to invert measured PA images. Early fluence correction
methods, which used linear inversions under the assumption of homogeneous optical properties and empir-
ical parameters to obtain images of relative concentrations [7, 8], have been shown to be severely limited
[9, 10]. Other studies based on linear inversions incorporated independent measurements using acousto-
optics [11, 12] or diffuse optical tomography [13, 14, 15] to obtain an estimate of the fluence. Data-driven
methods, by contrast, estimate the fluence using algorithms trained on a large number of data [16, 17]. How-
ever, obtaining sufficiently large training data through measurements is often impractical, and the use of
models to simulate images acquired using real imaging systems is non-trivial. It is therefore not yet clear to
which extent these methods are generally applicable.

Model-based inversion schemes are one of the most promising and potentially generally applicable meth-
ods for QPAT due to the flexibility numerical models afford. In principle, all physical processes involved
in the generation of a PA image can be represented. By expressing a forward model as a function of spe-
cific input parameters, e.g. chromophore concentrations and optical scattering, its output can be fitted to
measured data using, for example, a least-squares minimization technique. The set of parameter values de-
termined this way is then considered that which has the highest likelihood of explaining the experimental
results. Most studies in this field have relied on the diffusion approximation as a light transport model. It
has the advantage that it is easily implemented but lacks accuracy in non-diffuse illumination, e.g. close to
the optical source. It was nevertheless shown to enable the recovery of absolute concentrations and a global
scattering coefficient from multispectral 2-D images given prior knowledge of the wavelength dependence
of the molar absorption and of scattering [9, 18]. Fixed-point iteration schemes have been applied in 2-D
and 3-D [19, 20] but require a priori knowledge of the scattering distribution and quickly diverge if the scat-
tering coefficient is wrong [3]. Recently, an iterative optimization scheme for the fluence correction of 2-D
images taken with a commercially available scanner was reported [21, 22]. While 2-D images are generally
insufficient to support QPAT of complex 3-D objects, the method also relies on manual image segmentation
to enable stable inversions.

The efficient calculation of functional gradients is a vital capability, particularly if the scale of the inverse
problem reaches millions of unknowns [23], and has been demonstrated using a diffusion light transport
model [24, 25]. An iterative method for inverting high-resolution images in silico using a Monte-Carlo light
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transport model was recently reported by the authors [26]. While this method is - in principle - generally
applicable, the inversion of measured images poses additional challenges since image reconstruction arti-
facts, limited detection apertures, and noise cause an inherent mismatch between the model output and the
experimental data.

In this work, methods for minimizing this mismatch were developed and applied to images acquired in
a tissue-mimicking phantom to recover absolute chromophore concentrations and concentration ratios from
high resolution 3-D PA images. A Monte-Carlo (MC) light transport model was used to obtain accurate
predictions of the fluence for superficial imaging depths (up to 1 cm). Multispectral image data sets were
obtained in planar detection geometry using a Fabry-Pérot based PA scanner [27, 28]. To account for the
partial mapping of the PA field due to the limited detection aperture and its effect on the reconstructed
images, an ad hoc correction method was employed. To accurately scale the image intensity of the measured
data sets, a calibrated absorber was used, and the concentration dependence of the Grüneisen parameter
was incorporated into the forward model. The Adam algorithm [29] enabled an efficient inversion despite
noisy gradients. While this methodology allows the simultaneous inversion of absorption and scattering
coefficients in principle, the scattering distribution was assumed to be known a priori in this study.

In Section 2, the methods are introduced. This includes the forward model (Sec. 2.1), the experimental
setup and tissue phantom (Sec. 2.2), the limited view correction method, and further details of the optimiza-
tion (Sec. 2.3). In Sec. 3 the inversion results are presented and limitations of the method are discussed.
Concluding remarks are given in Sec. 4.

2. Methods

2.1. Model-based inversion scheme

2.1.1. PA forward model
The intensity of a PA image is considered proportional to the initial pressure distribution, p0, which is

given by
p0(~r, λ) = Γ(~r)H(~r) = Γ(~r)µa(~r, λ)Φ(~r, λ), (1)

where Γ is the Grüneisen parameter, which describes the PA efficiency, H is the absorbed energy density,
µa is the absorption coefficient, Φ is the light fluence, ~r is the position, and λ is the excitation wavelength.
p0(~r, λ) is referred to as (PA) image data set throughout this paper. The wavelength-dependent absorption co-
efficient at position ~r due to the presence of k different chromophores is a function of the specific absorption
coefficients, αk(λ), and concentrations ck(~r) as given by

µa(λ,~r) =

Nk∑

k

ck(~r)αk(λ) (2)

where Nk is the number of chromophores. The Grüneisen parameter and its concentration dependence was
approximated using

Γ(~r) = Γwater(1 +
∑

k

βkck(~r)), (3)

where Γwater is the Grüneisen parameter of water and βk are empirical, chromophore-dependent coefficients
[18, 30, 31, 32]. To calculate a PA image data set, i.e. p0(~r, λ), a Monte Carlo (MC) model was used to predict
the fluence, Φ(~r, λ) [33, 34]. The input parameters were the illumination geometry, i.e. the incident laser
beam profile and its location, the chromophore concentrations, the scattering coefficients, and the refractive
index distribution.
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2.1.2. Iterative inversion scheme
The iterative inversion scheme is described in detail elsewhere [26]. Briefly, the spatial distribution of

the incident excitation pulses, the refractive index, and the scattering coefficient distribution were assumed
to be known a priori and remained constant during the inversion. The MC model was initialized assuming
homogeneous absorption by water and run to calculate a PA image data set, p0(~r, λ). The difference between
p0(~r, λ) and the measured PA image data set, pm

0 (~r, λ), which was reconstructed from the the measured
sensor-time series, pm(~x, t, λ), was represented by a least-squares error functional, ε, as given by

ε =

Nλ∑

l

∫

Ω

1
2

(
K pm

0 (~r, λl) − p0(~r, λl)
)2

dΩ, (4)

where K is a scaling factor (described in Sec. 2.3.2), Nλ is the number of excitation wavelengths λl and
Ω is the image volume. By minimizing ε, 3-D maps of chromophore concentrations were recovered from
measured image data sets. The gradient of ε with respect to the concentration of chromophore ck at position
~ri is given as

∂ε

∂ck(~ri)
= − 1

Nλ

Nλ∑

l

(K pm
0 (~ri, λl) − p0(~ri, λl))Vvox

(
βkH(~ri, λ) + Γ(~ri)αk,lΦ(~ri, λl)

)
, (5)

where Vvox is the volume of a single image voxel. It should be noted that this gradient is an approximation.
It was was found to be valid for inversions where the scattering coefficient can be assumed known and fixed
[26]. The chromophore concentrations, the gradients, and the chromophore- and fluence-dependent step size
were updated at each iteration (described in sec. 2.3.4).

2.2. Data acquisition

2.2.1. Experimental setup
The experimental setup is shown in Fig. 1. A custom-built Fabry-Pérot (FP) based PA scanner with

planar detection geometry was used to acquire multispectral PA image data sets [27, 35]. The thickness of
the Fabry-Pérot polymer film sensor was 40 µm, resulting in a flat acoustic frequency response from 50 kHz
to 20 MHz. Due to the small element size of 60 µm, the response of the sensor is near omni-directional
[36]. An OPO laser (Spitlight 1000, Innolas GmbH) with a pulse repetition frequency of 30 Hz was used
as an excitation source. Its output was coupled into a 1.5 mm dia. multimode fiber to homogenize the
beam. The collimated fiber output illuminated the phantom through the FP sensor in a backward-mode
imaging configuration. The beam profile, which exhibited a near Gaussian profile (1/e2 dia. ≈ 13 mm), was
determined from the maximum intensity projection of a PA image of a water-coupled neutral density filter
that was in close proximity to the sensor.

PA image data sets were acquired by 2-D raster-scanning the focused beam of a cw interrogation laser
(Tunics T100s, Yenista) across the FP sensor (16 mm x 16 mm with 110 µm increments) and by recording
the time-resolved modulation of the reflected optical power, i.e. the PA signal, at each scan position. Images
were acquired at five excitation wavelengths (i.e. 688 nm, 721 nm, 765 nm, 811 nm, 867 nm) and were re-
constructed using the time-reversal method of the k-Wave toolbox [37]. The speed of sound was determined
from the measured images using an auto-focus function [38] and was found to be 1499 m/s. The intensity
of the images was normalized to correct for the wavelength dependent pulse energy with an incident fluence
ranging from 5 to 15 mJ/cm2 at the surface of the phantom.
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Figure 1: Schematic of the experimental setup. Excitation pulses were generated by a wavelength-tunable OPO laser, the output of
which was fiber-coupled to homogenize the beam. The output of the distal end of the fiber was collimated and directed through the FP
sensor using a dichroic mirror.

2.2.2. Tissue phantom
The tissue-mimicking phantom consisted of nine polymer tubes (THV, Paradigm Optics, Inc.) with an

inner diameter of 670 µm and an outer diameter of 800 µm. The tubes were immersed in diluted whole milk
(3.5% fat) with a milk-to-water ratio of 1:3. The scattering coefficient was measured using time-resolved
transmittance spectroscopy [39] at wavelengths between 710 nm and 890 nm. To interpolate the data, an
empirical function for the wavelength dependence of scattering (µs′ (λ) = a · λb

+ mm−1 with λ+ = λ/nm)
was fitted to the measured spectrum. The best fit yielded a = 6.65 × 103 and b = −1.317. The anisotropy
factor g was assumed to be 0.9. To mimic the optical absorption of oxy- and deoxyhemoglobin, mixtures
of aqueous stock solutions of copper and nickel sulfate (CuSO4 and NiSO4) were prepared to fill the tubes.
The concentrations of the CuSO4 and NiSO4 stock solutions were 0.28 M and 1.54 M, respectively. CuSO4
and NiSO4 are ideal chromophores for PA tissue phantoms because they are photostable during high peak
power illumination and their absorption spectra mix linearly [31]. The concentration- and chromophore-
dependence of the Grüneisen parameter was described using Eq. 3 and empirically determined coefficients
(βCuSO4 = 0.708 M−1, βNiSO4 = 0.325 M−1) [31]. Γwater was set to 0.124 [40, 31]. The tubes were mounted
parallel to each other at depths of approximately 2 mm, 4 mm and 7 mm and were filled with mixtures of the
CuSO4 and NiSO4 solutions at different concentration ratios. The concentration ratio R represented a blood
oxygen saturation (sO2) analogue and was given by

R =
cNiSO4/1.54

cNiSO4/1.54 + cCuSO4/0.28
, (6)

i.e. the concentrations of mixed solutions were normalized to the molar concentration of the stock solutions.
Spectra of the absorption coefficient of the solutions and the reduced scattering coefficient are shown in
Fig. 2. Figure 3 shows a 3-D rendering of the phantom structure, which was extracted from the measured
PA images using a mixture of manual image segmentation and a slice-wise template-matching algorithm to
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Figure 2: Absorption spectra of aqueous stock solutions of NiSO4 (green) and CuSO4 (blue) with concentrations of 1.54 and 0.28
M, respectively. Black crosses indicate the measured reduced scattering coefficient of diluted whole milk, the black line shows the
exponential fit to the data.

identify the center position of each tube.

2.3. Image correction and inversion details

2.3.1. Limited view correction
For a truthful acoustic reconstruction of p0, a detection surface angle of greater than 2π steradian is

required [41, 42]. Since a finite detection aperture, such as the planar aperture of the all-optical FP scanner,
limits the surface angle, the reconstructed images exhibit the effects of partial data, such as erroneous image
intensities and artifacts. This can reduce the accuracy of concentrations recovered using inversion schemes.
Limited aperture effects can nevertheless be compensated to some extent by either correcting the measured
images using approximate methods or by incorporating a numerical model of acoustic propagation and
detection into the PA forward model. In this study, an ad hoc method based on the calculation of a correction
matrix, which represents the ratio of images acquired using limited and full aperture detection, was applied
to account for the loss of information. The calculation of the correction matrix required the following
steps: First, the measured PA image data set, pm

0 (~r, λ), was smoothed using the built-in smooth function
(k-Wave) [37] to reduce effects of detection noise. To avoid division by zero during subsequent steps,
intensities below a threshold of 1/100 of the maximum p0 were set to the threshold value. The smoothed
and thresholded data set is referred to as pm

0,smooth(~r, λ). Second, pm
0,smooth(~r, λ) was used as an initial pressure

distribution in a 3-D acoustic propagation model (k-Wave) to obtain a PA time series pm
fw(~xi, t, λ) detected

over an aperture identical to that of the planar FP sensor with which pm
0 (~r, λ) was originally acquired. ~xi

indicates the detector positions. From pm
fw(~xi, t, λ), the PA image data set pm

0,fw/bw(~r, λ) was reconstructed.
pm

0,fw/bw(~r, λ) exhibits different (lower) image intensities compared to the original pm
0 (~r, λ). This difference

can be used to approximate the error caused by the limited detection aperture. Third, the correction matrix,
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Figure 3: 3-D rendered structure of the phantom obtained using manual image segmentation of the PA images. The color of the tubes
indicates the relative concentrations, i.e. green indicates cNiSO4 , blue indicates cCuSO4 . The illumination beam profile of the excitation
pulses is shown in the x-y-plane.

η(~r), was obtained by dividing the two data sets and averaging over all wavelengths:

η(~r) =
1

Nλ

∑

λ

pm
0,fw/bw(~r, λ)

pm
0,smooth(~r, λ)

. (7)

Finally, the measured PA images were corrected using

pm
0,corrected(~r, λ) = pm

0 (~r, λ)/η(~r). (8)

By averaging η over all wavelengths, it was ensured that the spectral information of the image data set was
not distorted.

2.3.2. Calibrated absorber
Measured PA image intensities, i.e. pm

0 (~ri, λ), are rarely presented in units of absolute pressure as the
calibration of an imaging system is challenging. It is nevertheless advantageous to scale measured images
to the output of a model to achieve an efficient and accurate inversion. In this study, a calibrated absorber
positioned within the image volume (tube 2 in Fig. 3) was used as a reference with which the measured
images were scaled to those calculated using the forward model. The optical and acoustic properties of the
calibrated absorber, such as µa(λ) and Γ, were known a priori. The sub-volume of the calibrated absorber
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was segmented manually, and the corresponding µa(λ) and Γ remained fixed during the inversion. The
scaling factor K was updated after every iteration using

K =
∑

λ

∑

~rCA

ΓH0(~ri, λ)
pm

0 (~ri, λ)
, (9)

where ~rCA indicates the sub-volume of the calibrated absorber. Using K, the measured data were scaled
according to Eq. 4.

2.3.3. Monte Carlo light model
5 × 106 photon packets were launched to simulate a PA image p0(~r, λ) at a single excitation wavelength.

The domain of the model was discretized into isotropic voxels with a width of 110 µm. The model domain
was extended to 300 × 300 × 150 voxels compared to the size of the measured data (146 × 145 × 75 voxels)
to ensure the correct calculation of optical scattering beyond the boundaries of the measured image [43]. In
the extended volume, water was assumed to be the sole chromophore. The internal refractive index was set
to that of water (1.33). The external refractive index was set to 1.5 to match that of the FP sensor.

2.3.4. Optimization
The gradients of the error functional, ε, (Eq. 4), are affected by noise due to the stochastic nature of

the MC model. This makes standard gradient descent methods unsuitable because the noise increases the
likelihood of convergence to a local minimum or saddle point. To overcome this limitation, the Adam
algorithm was employed. It is an extension of the momentum gradient descent specifically designed to deal
with noisy gradients [29]. In this study, most parameters of the algorithm, except for the step size γ, were set
to the value suggested by the creators of the algorithm. γ was preconditioned for stable and fast convergence
[26] by making it dependent upon the type of chromophore and the fluence. To account for the differences
in the specific absorption coefficients of the three chromophores (NiSO4, CuSO4, H2O), γk for CuSO4 was
set ad hoc to γCu = 0.1, and the step size for the remaining two chromophores was calculated using

γk = γCu

∑
λ αk,λ · cmax,Cu∑
λ αCu,λ · cmax, k

, (10)

where k ∈ {CuSO4, NiSO4, H2O}, and αk,λ represents the specific absorption coefficients of NiSO4 and
CuSO4 and the absorption coefficient of water at wavelength λ. cmax,k are maximum concentrations of the
chromophores and were set to cmax,Cu = 0.28 M, cmax,Ni = 1.54 M, and cmax,H2O = 1. It is worth mentioning
that in cases where the maximum concentrations of the chromophores are not known, rough estimates are
also sufficient. Lastly, the step size at each location ~r was expressed as a function of the local fluence using

γk, scaled(~r) =
γk

Φ̃norm(~r) + εΦ

, (11)

where Φ̃norm(~r) is the normalized fluence, averaged over all wavelengths. εΦ is a fixed-value parameter to
avoid division by zero ( εΦ = 10−4). The range of chromophore concentrations was restricted to plausible
values, i.e. only non-negative concentrations were allowed and upper bound constraints of NiSO4 and CuSO4
were set to their solubility (2.36 and 1.28 M, respectively). The water content was allowed to vary between
0 and 1. The inversion scheme was run for 300 iterations on both the original PA image data sets and those
corrected using the methods described in Sec. 2.3.1.
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3. Results and Discussion

3.1. Comparison of original and corrected PA images
Cross-sectional x-z-images of the measured 3-D PA images before and after applying the limited view

correction method are shown in Fig. 4. The FP sensor plane is at the bottom of the images in the xy-plane.
A center xz-slice at y = 8 mm of an original PA image is shown in Fig. 4 A (λexc = 726 nm, normalized to
1 J incident pulse energy). Fig. 4 B shows the result of the limited view correction (Eq. 7). The arc-shaped
features indicated by black arrows in Fig. 4 B are artifacts that result from the limited planar detection
geometry. While the limited view correction increased the image intensity in general, the intensity of the
deeper lying objects was amplified more strongly than those located at shallow depths. The signals of the
shallow tubes were doubled in amplitude by the limited view correction, while the amplitudes of the deepest
row of tubes were increased by a factor of 3 to 5.

Figure 4: Cross-sectional x-z-images (y = 8 mm) of the tissue phantom at an excitation wavelength of 721 nm. (A) original image and
(B) after applying the limited view correction (Sec. 2.3.1).

Figure 5: Cross-sectional x-z-images (y = 8 mm) of the true and recovered chromophore concentrations. (A) and (D): True cNiSO4 and
cCuSO4 , respectively. (B) and (E): cNiSO4 and cCuSO4 recovered from uncorrected images. (C) and (F): cNiSO4 and cCuSO4 recovered
from corrected images.

3.2. Convergence
The inversion was found to fully converge within 300 iterations after 8 hours computation time using an

NVIDIA Titan X (Pascal) GPU. The use of chromophore- and fluence-dependent step sizes (Eqs. 10 and 11)
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produced an increase in convergence speed of more than an order of magnitude due to a better efficiency in
regions of low fluence. Importantly, inversions without the step size correction were found to fail.

3.3. Recovered chromophore concentrations

Table 1: Absolute chromophore concentrations and their ratio R recovered using the model-based inversion (BKG = background, Orig
= original images, Corr = acoustically corrected images). Values in brackets indicate the standard deviation (concise notation) within
the sub-volume.

cNiSO4 [M] cCuSO4 [M] R [%]

Tube ID True Orig Corr True Orig Corr True Orig Corr

BKG 0 0.02(7) 0.02(9) 0 0.003(11) 0.004(23) n/a 51.1 44.4
1 0.385 0.25(6) 0.26(7) 0.21 0.13(3) 0.13(3) 25 25.8 25.5
2 0.77 0.77(0) 0.77(0) 0.14 0.14(0) 0.14(0) 50 50.0 50.0
3 1.154 1.14(26) 1.18(29) 0.07 0.05(1) 0.05(1) 75 80.7 80.2
4 1.154 0.60(15) 0.97(24) 0.07 0.03(1) 0.04(1) 75 78.1 80.7
5 0 0.012(27) 0.005(19) 0.28 0.12(4) 0.28(8) 0 1.9 0.3
6 0.385 0.41(13) 0.54(19) 0.21 0.13(3) 0.21(5) 25 36.7 32.4
7 1.539 0.80(28) 1.29(39) 0 0.001(3) 0.001(4) 100 99.0 99.4
8 0.77 0.39(17) 0.76(30) 0.14 0.06(2) 0.10(3) 50 55.2 58.5
9 0 0.002(10) 0.000(0) 0.28 0.07(4) 0.33(2) 0 0.5 0.0

The recovered chromophore concentrations are shown in Fig. 5. Fig. 5 A and D illustrate the true distri-
bution of cNiSO4 and cCuSO4 , Fig. 5 B and E show the concentrations recovered from the original image data
set, and Fig. 5 C and F show those from the aperture-corrected data set. Several observations can be made.
First, significant cNiSO4 and cCuSO4 were recovered in the background sub-volume even though this region
contained only water. This is explained by image reconstruction artifacts, which lead to significant recovered
concentrations in regions coinciding with positive-going artifacts. Second, the circular tube cross-sections
are distorted in the deeper lying tubes, which is due to the limited detection aperture. The concentrations
recovered for the the most superficial tubes (including the calibrated absorber, bottom center) are largely
unaffected by the acoustic correction. This is in strong contrast to the deeper lying tubes where significantly
higher concentrations were recovered from the corrected image data set compared to those obtained from
the original. This also resulted in a better agreement with the true values (Fig. 5 A and D). However, the
increase in the absolute values also applied to concentrations recovered from the background, i.e. regions
corresponding to image artifacts.

Line profiles through the recovered concentration maps are shown in Fig. 6. The profiles were extracted
from the 3-D maps along the dashed line in the inset of Fig. 6 A, which intersects the locations of three
tubes (tube IDs 2, 5 and 8). The profiles of cNiSO4 and cCuSO4 are shown in Fig. 6 A and B. The solid lines
depict the true concentrations, the dotted lines the concentrations recovered from the original images and the
dashed lines those recovered from limited view corrected images. The first peak at a depth of approximately
2 mm corresponds to the tube that served as a calibrated absorber, showing perfect agreement between the
true and recovered values. A small second peak in cNiSO4 (Fig. 6 A) can be found at around 4 mm depth,
which corresponds to the location of tube 5 in which cNiSO4 = 0 M. By contrast, the high cCuSO4 within tube
5 is clearly visible in Fig. 6 B. The peaks at a depth of 6 mm to 7 mm in Fig. 6 A and B correspond to the
location of tube 8, which contained a mixture of CuSO4 and NiSO4. In general, the concentrations recovered
from the original image data set are significantly lower than the true values. By contrast, good agreement

10



was observed for the corrected images. The peak in cNiSO4 and cCuSO4 at a depth of approximately 8 mm
corresponds to an image reconstruction artifact.

Fig. 6 C shows a cross-sectional xy-image of an original pm
0 (~r, λ) at a depth of z = 4.2 mm (λexc =

726 nm). While the tubes 4, 5 and 6 are clearly shown, image reconstruction artifacts are also noticeable.
The profiles of the cNiSO4 and cCuSO4 along the length of tube 5 (corresponding to the dashed line in Fig. 6 C)
are shown in Fig. 6 D together with that of the initial pressure distribution to illustrate the effectiveness
of the fluence correction provided by this method. The dashed and dotted green and blue lines represent
cNiSO4 and cCuSO4 , respectively, recovered from the original and corrected image data sets (averaged over
the tube cross-section). The solid red line illustrates the initial pressure distribution (original image data
set), which is six times greater at the center of the image than at the boundary. By contrast, the values of
the recovered concentrations show much smaller variations along the length of the tube, demonstrating that
the inversion scheme is highly effective at compensating the fluence variation. A deviation of the recovered
from the true values was observed at the edge of the imaged volume (1–2 mm from the image boundary).
This may be explained by the inherently low SNR in this region and the potential limitations in estimating
the backscattering of light from adjacent regions into the image volume using the extended MC model.
Importantly, the chromophore concentrations determined from the corrected image data set are much closer
to the true values compared to those obtained from the original images.

The concentrations recovered from each sub-volume of the phantom are listed in Table 1. It was found
that the concentration of water had a negligible effect on the PA pressure, which is explained by its low
absorption coefficient at the excitation wavelengths used in this study. This resulted in low sensitivity and
accuracy for the recovered water concentrations. On a positive note, the errors in the water concentration
were found to have a negligible effect on the accuracy of the recovered cNiSO4 and cCuSO4 .

3.4. Concentration ratios

In Fig. 7, cross-sectional x-z-images of the true and recovered maps of the concentration ratio R are
shown. Fig. 7 C illustrates the true distribution, which ranges from 0 to 1. In regions where NiSO4 and
CuSO4 were not present, Eq. 6 is not defined (division by zero) and the corresponding regions are rendered
in gray. Fig. 7 A shows R recovered from the original image data set. Due to the image reconstruction
artifacts, significant cNiSO4 and cCuSO4 were recovered across large regions of the background. It was also
observed that the value of R determined at the location of an artifact is similar to that of the specific absorber,
i.e. a tube, where it originated. To aid visualization, the location of the tubes is indicated by green circles
in Fig. 7 A. Figure 7 B shows the inversion result (Fig. 7 A) after masking the background to allow a better
comparison of the recovered R with the true values (Fig. 7 C). In Fig. 7 D, profiles of the cross-sectional
average of R along the length of the nine tubes are shown. For most tubes, R is close to the true value
and deviates little for the entire length of the tube, including near the image boundaries. The strongest
deviation is noticeable for tube 6, where R is significantly greater at the center of the image compared to the
boundaries. This may be explained by the presence of an arc-shaped artifact that originates from the strong
PA signal of tube 2. It is superimposed onto the region that corresponds to tube 6, resulting in a corruption of
its PA spectrum. Since tube 2 contained a solution with higher R than that of tube 6, the superposition of the
PA spectra may explain the error. In general, most values for R are slightly higher than their true values (see
also Tab. 1). The reason for this systematic error is unclear. While the limited view correction was found
to have a major impact on the recovered absolute chromophore concentrations, its effect on the accuracy of
the recovered R was negligible. A possible explanation is the absence of significant background absorbers
in this specific phantom. In a scenario where the background also contains chromophores at significant
concentrations, any change in the image intensity, e.g. from the acoustic ad hoc correction, may in turn
affect R in deeper lying vessels.
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Figure 6: Depth profile of the true and recovered 3-D maps of cNiSO4 (A) and cCuSO4 (B) along the dashed line indicated in the inset of
(A). Inset of (A): x-z-slice of the true cCuSO4 distribution (see Fig. 5 D). C: cross-sectional x-y-image of the initial pressure distribution
at depth of z = 4.2 mm (λ = 726 nm). The initial pressure along the dashed line is shown in (D), which also shows the chromophore
concentrations recovered from original and corrected image data sets. The solid, dotted and dashed lines indicate the true values, those
recovered from original images, and those recovered from corrected images, respectively. cNiSO4 is shown in green and cCuSO4 in blue.
The red solid line illustrates the initial pressure distribution (original image data set).

3.5. Limitations and general applicability

The method described in this paper was tailored to the inversion of multispectral PA image data sets
acquired over a planar detection aperture. It is a flexible approach that allows the inversion of multispectral
3D PA images acquired using constant illumination geometry and is applicable to other targets, scan geome-
tries, and experimental setups. The required a priori knowledge does not result in undue restrictions. For
example, the chromophores that are expected within the image volume, as well as their absorption spectra
and approximate maximum concentrations, are typically known. Similarly, the Grüneisen parameter and its
concentration dependence is known for most endogenous tissue chromophores or can be measured. While
the use of a calibrated absorber results in additional image processing steps, such as segmentation, it was
found to greatly improve the efficiency and accuracy of the inversion. The ad hoc acoustic correction was
found to compensate the corrupting effects of limited-view detection geometries with sufficient accuracy.
The effects of inhomogeneities in the speed of sound and refractive index were not considered in this work
but strategies for addressing these effects can be found elsewhere [6]. The assumption of a priori knowledge
of the wavelength dependence of the scattering coefficient, which is required to solve the non-uniqueness
problem of QPAT [44], and its magnitude is a limitation of the current implementation of the method. In the-
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Figure 7: Chromophore ratio R calculated from the recovered cNiSO4 and cCuSO4 maps. A: Cross-sectional x-z-image of the recovered
concentration ratio R, B: Recovered R, background subvolume is masked and rendered in gray, C: true concentration ratios. Gray
indicates areas where R is not defined, i.e. cNiSO4 = cCuSO4 = 0 M. D: Profiles of R (cross-sectional average) along the length of the
nine tubes. True values are represented by dashed lines, recovered values by dotted lines.

ory, the method can be extended to facilitate inversions that recover the spatial distribution of the scattering
coefficient (in addition to the chromophore maps) from multispectral images by solely relying on a priori
knowledge of the scattering wavelength dependence. The inversion of the scattering coefficient may also
be achieved by incorporating multiple illuminations in the image acquisition protocol. Lastly, a parameter
that currently requires manual optimization when the method is applied to a new set of measurements is the
chromophore-dependent step size to minimize the number of iterations needed for convergence.

4. Conclusions

In this study, an iterative model-based inversion scheme was successfully used to recover maps of the
absolute chromophore concentrations and their ratios from high resolution 3-D PA image data sets measured
in a tissue phantom. The forward model, which was based on a MC light transport model, was used to
predict 3-D images of the initial pressure distribution. To address the mismatch between the image data sets
predicted by the model and those measured using an all-optical PA scanner based on a planar Fabry-Pérot
ultrasound sensor, an ad hoc correction method was introduced to compensate the effects of limited view
detection. A calibrated absorber was used to scale measured data to the output of the forward model. In addi-
tion, the Adam algorithm and a chromophore- and fluence-dependent step size were used to address the large
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scale of the inverse problem (>10 million variables). High resolution 3-D maps of absolute chromophore
concentrations and their ratios were recovered with high accuracy. The limited-view correction was found to
greatly improve the agreement between true and recovered concentrations, while having a negligible effect
on the accuracy of the recovered concentration ratios. Current limitations of the method lie in an insufficient
compensation of image reconstruction artifacts, which can corrupt the parameter values recovered from re-
gions containing a discrete absorber, and a priori knowledge of the scattering coefficient. The adverse effect
of artifacts can be compensated by incorporating a model of the acoustic propagation and detection into the
forward model, albeit at the expense of computation speed. While the method also enables the recovery of
the scattering coefficient in principle, additional methods, such as multiple source illumination, may increase
the sensitivity to this parameter.
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