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Abstract

Conflict learning plays an important role in solving mixed integer pro-
grams (MIPs) and is implemented in most major MIP solvers. A major
step for MIP conflict learning is to aggregate the LP relaxation of an in-
feasible subproblem to a single globally valid constraint, the dual proof,
that proves infeasibility within the local bounds. Among others, one way
of learning is to add these constraints to the problem formulation for the
remainder of the search.

We suggest to not restrict this procedure to infeasible subproblems,
but to also use global proof constraints from subproblems that are not
(yet) infeasible, but can be expected to be pruned soon. As a special
case, we also consider learning from integer feasible LP solutions. First
experiments of this conflict-free learning strategy show promising results
on the MIPLIB2017 benchmark set.

1 Introduction
In this paper, we consider mixed integer programs (MIPs) of the form

min{cTx |Ax ≥ b, ` ≤ x ≤ u, xj ∈ Z ∀j ∈ I}, (1)

with objective coefficient vector c ∈ Rn, constraint coefficient matrix A ∈ Rm×n,
constraint right-hand side b ∈ Rm, and variable bounds `, u ∈ Rn

, where
R := R ∪ {±∞}. Furthermore, let N = {1, . . . , n} be the index set of all
variables and let I ⊆ N be the set of variables that need to be integr al in
every feasible solution. Moreover, we allow that the constraint right-hand side
b can be tightened at any point in time to b̃ ∈ Rm with b ≥ b̃ ≥ b and b ∈ Rm

.
Note, we say that b̃ is greater or equal to b, if b̃i ≥ bi for all i = 1, . . . ,m. An
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important special case of this general setting is the tightening of the so-called
cutoff bound c during the MIP search. The cutoff bound is either defined by the
objective value of current incumbent, i.e., the currently best known, solution x
or +∞ if no solution has been found yet. It gives rise to the objective cutoff
constraint

−cTx ≥ −c. (2)

The objective cutoff constraint (2) models an upper bound on all MIP solu-
tions found in the remainder of the search. In the following, we assume that
the objective cutoff constraint (2) is explicitly contained in Ax ≥ b. The com-
putational experiments of this paper will focus on the case that the objective
cutoff constraint is the only constraint being tightened during the search, the
theoretic background, however, will be given for the general case b ≥ b̃ ≥ b.
A lower bound on the MIP solution is given by the linear programming (LP)
relaxation which omits the integrality conditions of (1). The optimal objective
value of the LP relaxation provides a lower bound on the optimal solution value
of the MIP (1).

In LP-based branch-and-bound (Dakin, 1965; Land and Doig, 1960), the
most commonly used method to solve MIPs, the LP relaxation is used for bound-
ing. Branch-and-bound is a divide-and-conquer method which splits the search
space sequentially into smaller subproblems that are expected to be easier to
solve. During this procedure, we may encounter infeasible subproblems. Infea-
sibility can be detected by contradicting implications, e.g., derived by domain
propagation, by an infeasible LP relaxation, or an LP relaxation that exceeds
the objective value of the current incumbent solution. Following our assumption
that the objective cutoff constraint is part of the constraint matrix, the latter
is just a special case of an infeasible LP relaxation.

1.1 Conflict Analysis in MIP
Modern MIP solvers try to ’learn’ from infeasible subproblems, e.g., by applying
conflict graph analysis or dual proof analysis. Conflict graph analysis for MIP
has its origin in solving satisfiability problems (SAT) and goes back to (Marques-
Silva and Sakallah, 1999). Similar ideas are used in constraint programming,
e.g., see (Ginsberg, 1993; Jiang et al., 1994; Stallman and Sussman, 1977).
First integration of these techniques into MIP were independently suggested
by (Achterberg, 2007b; Davey et al., 2002; Sandholm and Shields, 2006). Dual
proof analysis and its combination with conflict graph analysis has been recently
studied for both MIPs (Pólik, 2015; Witzig et al., 2017) and mixed integer
nonlinear programs (MINLPs) (Lubin et al., 2016; Witzig et al., 2019b). While
conflict graph analysis is based on combinatorial arguments, dual proof analysis
is a purely LP-based approach. We will briefly describe both concepts in the
remainder of this section.

Assume we are given an infeasible node of the branch-and-bound tree defined
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by the subproblem

min{cTx |Ax ≥ b, `′ ≤ x ≤ u′, x ∈ Zk × Rn−k} (3)

with local bounds ` ≤ `′ ≤ u′ ≤ u. In LP-based branch-and-bound, the infeasi-
bility of a node/subproblem is either detected by an infeasible LP relaxation or
by contradicting implications in domain propagation.

In the latter case, a conflict graph gets constructed which represents the logic
of how the set of branching decisions led to the detection of infeasibility. More
precisely, the conflict graph is a directed acyclic graph in which the vertices
represent bound changes of variables and the arcs (v, w) correspond to bound
changes implied by propagation, i.e., the bound change corresponding to w is
based (besides others) on the bound change represented by v. In addition to
these inner vertices which represent the bound changes from domain propaga-
tion, the graph features source vertices for the bound changes that correspond
to branching decisions and an artificial sink vertex representing the infeasibil-
ity. Then, each cut that separates the branching decisions from the artificial
infeasibility vertex gives rise to a valid conflict constraint. A conflict constraint
consists of a set of variables with associated bounds, requiring that in each
feasible solution at least one of the variables has to take a value outside these
bounds. This corresponds to no-good learning in CP. A variant of this procedure
is implemented in SCIP, the solver in which we will conduct our computational
experiments.

1.2 Deriving Dual Proofs for Infeasible LP Relaxations
If infeasibility is proven by the LP relaxation, however, the proof of infeasibility
is given by a ray in the dual space. Consider a node of the branch-and-bound tree
and the corresponding subproblem of type (3) with local bounds ` ≤ `′ ≤ u′ ≤ u.
The dual LP of the corresponding LP relaxation of (3) is given by

max{yTb+ rT{`′, u′} | yTA+ rT = cT, y ∈ Rn
≥0, r ∈ Rn}, (4)

rT{`′, u′} :=
∑

j∈N : r`j>0

r`j`
′
j −

∑
j∈N : −ruj <0

ruj u
′
j (5)

with r`, ru ∈ Rn
+ representing the dual variables on the finite bound constraints.

Note, variable xj can only be tight in at most one bound constraint, thus, r`j
and ruj cannot be non-zero at the same time. For every variable xj it holds that
rj = cj − yTA·j , where A·j denotes the j-th column of A. By LP theory, each
ray (y, r) ∈ Rm+n in the dual space that satisfies

yTA+ rT = 0
yTb+ rT{`′, u′} > 0

(6)

proves infeasibility of (the LP relaxation of) (3), which is a direct consequence
of the Farkas Lemma (Farkas, 1902). Hence, there exists a solution (y, r) of (6)
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with

∆max(yTA, `′, u′) < yTb,

where ∆max(yTA, `′, u′) :=
∑

yTA<0(yTA)`′+
∑

yTA>0(yTA)u′ is called the max-
imal activity of yTA w.r.t. the local bounds `′ and u′. Consequently, the inequal-
ity

yTAx ≥ yTb (7)

has to be fulfilled by every feasible solution of the MIP. In the following, this
type of constraint will be called dual proof constraint. If locally valid constraints
are present in subproblem (3), e.g., due to the separation of local cutting planes,
the corresponding dual multipliers are assumed to be zero, thereby leaving those
constraints out of aggregation (7). Otherwise, the resulting dual proof constraint
might not be globally valid anymore.

Observation 1 Let b ∈ Rm be the right-hand side vector and yTAx ≥ yTb
be a dual proof constraint that was derived from an infeasible subproblem. If
tightening the (global) right-hand side to b̃ ∈ Rm with b ≥ b̃ ≥ b, the following
holds.

(i) yTAx ≥ yTb is still globally valid.

(ii) The dual proof can be strengthened to yTAx ≥ yTb̃, while preserving global
validity.

2 LP-Based Solution Learning
Conflict-driven learning or no-good learning (Prosser, 1993; Zhang et al., 2001),
is a fundamental concept in SAT and CP. Besides learning from infeasibility,
the methodology of solution-driven learning or good-learning (Chu and Stuckey,
2019; Giunchiglia et al., 2003), i.e., learning from feasibility, has been applied
in SAT and CP. Recently, good learning has been successfully applied to nested
constraint programming (Chu and Stuckey, 2014). Generally, algorithms for
infeasibility learning can be extended to solution learning by pretending that
the corresponding cutoff constraint with the updated incumbent was already
present for the current subproblem and would prove it to be infeasible (after
the incumbent update).

To the best of our knowledge, solution learning has not yet been studied for
MIP. Every LP that yields an optimal solution that is MIP-feasible, i.e., feasible
for (1), can be used to apply LP-based solution learning.

Consider a subproblem (3) with local bounds `′ and u′. Moreover, let x?LP
be an optimal solution of its LP relaxation that is feasible for MIP (1). If x?LP is
an improving solution, i.e., cTx?LP < c, x?LP defines the new incumbent solution.
Consequently, the cutoff bound can be updated to

c = cTx?LP − ε
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with ε > 0. Note that MIP solvers using floating point arithmetic typically
subtract a small epsilon in the order or magnitude of the used tolerances, e.g.,
SCIP uses ε = 10−6, to enforce strict improvement during the search. If all
variables with a non-zero coefficient in the objective function are integral, the
minimal improvement in the objective value can be computed by a GCD-like
algorithm and used as an epsilon. For example, the objective value always
improves by a multiple of 1 if cj ∈ {−1, 0, 1} with j ∈ I and cj = 0 with
j ∈ N \ I. Thus, ε = 1 could be used in this case.

Since the objective cutoff constraint (2) is part of the constraint matrix A,
the right-hand side vector b changes when updating the cutoff bound. Assume
that row index k represents the matrix row associated to the objective cutoff
constraint, i.e., Ak·x ≥ bk with −cT = Ak· and bk = −c. After an incumbent
update, the right-hand side vector changes to b̃ with b̃k = bk + c − cTx?LP and
b̃i = bi for all i = 1, . . . ,m with i 6= k. Thus, the feasible LP relaxation defined
by the local bounds `′ and u′ turns infeasible after the update. Henceforth, we
can apply both conflict graph analysis and dual proof analysis to learn from LP
relaxations that yield integer feasible solutions.

2.1 Implementation
In our implementation, LP-based solution learning is applied whenever the LP
relaxation yields a feasible solution, i.e., all integrality conditions are satisfied,
that improved the incumbent solution. Note, in principle LP-based solution
learning could also be applied for all improving solutions, e.g., found within a
heuristic, with an objective value equal to the objective value of the LP relax-
ation. However, this is not considered in this publication and subject of future
research.

Since sollearning can immediately be applied when the feasible LP relax-
ation turns into a bound exceeding LP both conflict graph analysis and dual
proof analysis (Witzig et al., 2019a) are applied in our implementation without
introducing much computational overhead.

3 Conflict-Free Dual Proofs
State-of-the-art MIP solvers like SCIP and FICO Xpress do not actively steer
the tree seach towards the exploration of infeasible subproblems. Thus, learning
from infeasibility information can be considered to be a “byproduct”.

Here, we will discuss how the concept of conflict analysis can be extended
to learn from subproblems that are not (yet) infeasible. Therefore, we consider
dual proofs of form (7) that are conflict-free.

Definition 2 (Conflict-Free Dual Proof) Let ` ≤ `′ ≤ u′ ≤ u be a set of
local bounds and yTAx ≥ yTb be an aggregation of globally valid constraint
weighted by y ∈ Rm

≥0. The inequality yTAx ≥ yTb is called conflict-free dual
proof with respect to `′ and u′ if
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i) ∆max(yTA, `′, u′) ≥ yTb and

ii) ∃ b̃ ∈ R with b ≥ b̃ ≥ b such that ∆max(yTA, `′, u′) < yTb̃.

Within a black-box MIP solver (e.g., SCIP, FICO Xpress, Gurobi, and CPLEX)
that considers the cutoff bound for pruning subproblems, the concept of conflict-
free dual proofs simplifies as follows. W.l.o.g. let Am·x ≥ bm be the row assigned
to the cutoff bound. Moreover, let Â ∈ Rn×(m−1) be the coefficient matrix with-
out the row assigned to the objective cutoff constraint (2) and b̂ ∈ Rm−1 the
corresponding constraint right-hand side, i.e.,

A :=

[
Â
−c

]
and b :=

[
b̂
−c

]
.

Let (y, r) be a dual feasible solution for (4) with respect to the local bounds `′
and u′. From complementary slackness, it follows that ym = 0. Thus, it holds
that

cTx ≥ yTb+ rT{`′, u′}
⇔ c ≥ yTb+ (c− yTA){`′, u′}

⇔ c ≥ ŷTb̂+ ymc+ (c− (ŷTÂ+ ymc)){`′, u′}

⇔ c ≥ ŷTb̂+ (c− ŷTÂ){`′, u′}

⇔ (ŷTÂ− c){`′, u′} ≥ ŷTb̂− c
⇔ yTA{`′, u′} ≥ yTb with ym = 1.

Consequently, from every dual feasible solution (y, r) ∈ Rm+n a globally valid
constraint

yTAx ≥ yTb (8)

can be derived. This constraint is generally not violated with respect to `, u
and will not be violated with respect to `′ and u′ either, when the local LP
relaxation is feasible. Moreover, let c ∈ R be the current dual bound, i.e., the
global lower bound on the MIP solution value. If there exists a c̃ ∈ R with
c < c̃ < c such that

(ŷTÂ− c){`′, u′} < ŷTb̂− c̃,

then (8) is a conflict-free dual proof. The new global right-hand side is defined
by b̃ :=

[
b− c̃

]T.
3.1 Implementation
In our implementation, we maintain a storage of conflict-free dual proofs which is
restricted to at most 200 entries. For every conflict-free dual proof we calculate
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the primal target bound c̃ := c+(∆max(yTA, `′, u′)− ŷTb). The decision whether
a conflict-free dual proof is added to the storage for later considerations only
depends on the primal target bound. If the storage maintains less than 200
entries, a conflict-free dual proof is accepted if its primal target bound is at
least the current global dual bound. In case of a completely filled storage,
the newly derived conflict-free dual proof is immediately rejected if its primal
target bound is smaller (i.e., worse) than the smallest target bound among all
maintained conflict-free dual proofs. Otherwise, the conflict-free dual proof is
accepted if it has a larger (i.e., better) target bound are less nonzero entries.
With this strategy we aim to prefer short conflict-free dual proofs that tend
to propagate earlier with respect to the cutoff bound, i.e., the improvements
on the primal side. Whenever a new conflict-free dual proof is derived, all
maintained conflict-free dual proofs whose primal target bound become worse
than the global dual bound are immediately removed from the storage.

If a new incumbent solution x is found, we add at most 10 conflict-free dual
proofs for which c̃ ≥ cTx holds to the actual solving process, i.e., these (conflict-
free) dual proofs become “active” and are considered during the remainder of
the search for, e.g., variable bound propagation. Moreover, we allow for slight
relaxed primal target bounds. Thus, every conflict-free dual proof for which
c̃ ≥ (1 + α)cTx, with α ≥ 0, holds is considered to become active. In our
computational experiments we used α = 0.1.

4 Computational Experiments
This section presents a first computational study of solution learning and conflict-
free learning for MIP. Our preliminary implementation covers the main features,
but is still missing some fine-tuning, as we will see in the following.

We implemented the techniques presented in this paper within the academic
MIP solver SCIP 6.0.2, using SoPlex 4.0.2 as LP solver (Gleixner et al., 2017).
In the following, we will refer to SCIP with default settings as default and to
SCIP with enabled LP-based solution learning and enabled conflict-free learning
as sollearning and conffree, respectively. To SCIP using both techniques
simultaneously, we will refer to as combined. Our experiments were run on
a cluster of identical machines equipped with Intel Xeon E5-2690 CPUs with
2.6GHz and 128GB of RAM. A time limit of 7200 seconds was set.

As test set we used the benchmark set of Miplib 2017 (Gleixner et al., 2019)
which consists of 240 MIP problems. To account for the effect of performance
variability (Koch et al., 2011; Lodi and Tramontani, 2013) all experiments were
performed with three different global random seeds. Every pair of MIP problem
and seed is treated as an individual observation, effectively resulting in a test set
of 720 instances. Instances where at least one setting finished with numerical
violations are not considered in the following.

Aggregated results on Miplib 2017 comparing all three configurations to
SCIP with default settings as baseline are shown in Table 1. For every set of
instances the group of affected and hard instances is shown. We denote an
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Table 1: Aggregated computational results on Miplib 2017 benchmark over three
random seeds. Improvements by at least 5% are highlighted in bold and blue.

default conffree sollearning combined

# S T N S TQ NQ S TQ NQ S TQ NQ

Miplib 2017
all 716 369 1124 6069 370 1.001 0.976 368 0.995 0.991 368 1.000 0.973
affected 127 122 567 30265 123 0.993 0.927 121 0.975 0.952 121 0.987 0.902
≥100s 107 102 969 45972 103 0.987 0.919 101 0.970 0.944 101 0.979 0.887

Mixed Binary
all 523 272 1153 5639 273 1.000 0.976 272 0.991 0.983 273 0.996 0.967
affected 83 81 517 26406 82 0.983 0.913 81 0.943 0.901 82 0.958 0.857
≥100s 72 70 817 42289 71 0.973 0.899 70 0.934 0.886 71 0.942 0.834

instance to be hard, when at least one setting takes more than 100 seconds and
as affected, if it could be solved by at least one setting and the number of nodes
differs among settings. The columns of Table 1 show the number of instances
in every groups (#) and the number of solved instances (S). For the baseline
(default) the shifted geometric mean (Achterberg, 2007b) of solving times in
seconds (T, shift = 1) and explored search tree nodes (N, shift = 100) is shown.
For conffree, sollearning, and combined relative solving times (TQ) and
nodes (NQ) compared to default are shown. Relative numbers less than 1
indicate improvements.

Our computational experiments indicate that both individual techniques
and the combination of them are superior compared to default on affected
instances. There, we observe an overall speed-up of up to 2.5 % (sollearning).
At the same time, the tree size reduced by up to 10 % (combined). Regard-
ing solving time and tree size, sollearning alone is superior to conffree.
combined is superior to both individual settings regarding nodes and almost
identical to sollearning regarding solving time. For the set of all instances,
the number of nodes reduces for all settings, while the impact on running time
is almost neutral.

A reason why conffree seems to be less powerful than sollearning might
be the fact that dual proof constraints are known to work better in the neigh-
borhood of the subproblem where they were derived from, which is usually con-
trolled by maintaining a small pool of around 100 dual proof constraints (Achter-
berg et al., 2016; Witzig et al., 2017, 2019a). In our implementation, the origin
of conflict-free dual proofs is not yet considered; this is a direction of future
research. Also, conflict-free learning is applied much more frequently than solu-
tion learning (every feasible LP relaxation versus every integral LP relaxation),
leading to a larger overhead. While sollearning only increases the time SCIP
spends during conflict analysis by marginal 2.4 %, conffree learning increases
it by a factor of 3.4. This shows the need to better choose at which nodes to
run conflict-free learning in future implementations.

In our computational study we observed that both techniques perform poorly
on instances with general integer variables. One reason for the deterioration
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might be that for such instances, conflict graph analysis will generate bound
disjunction constraints (Achterberg, 2007a) which are generally weaker than
conflict constraints on binary variables. Table 1 also presents results when
applying the techniques only to (mixed) binary problems. In this case, im-
provements of over 5 % (sollearning) with respect to running time and 14 %
(combined) with respect to the number of nodes can be observed on affected
individual.

5 Conclusion and Outlook
In this paper, we discussed how conflict analysis techniques can be applied to
learn from subproblems that are not (yet) proven to be infeasible. For our com-
putational study, we implemented two conflict-free learning techniques, namely
conflict-free dual proofs and LP-based solution learning, within the academic
MIP solver SCIP. The results of our study indicate promising results on the
benchmark set of Miplib 2017 when applying conflict-free learning techniques
within SCIP. In particular, our experiments indicate that solution learning seems
to work best on mixed binary instances.

For future research, we plan to consider the locality of derived proofs to
increase the efficiency and we plan to predict, e.g., by ML techniques, from
which subproblems conflict-free dual proofs should be derived to reduce the
overhead.
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