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Abstract

We consider the problem of designing a network that employs a non-bifurcated shortest path routing
protocol. The network’s nodes and the set of potential links are given together with a set of forecasted end-
to-end traffic demands. All relevant hardware components installable at links or nodes are considered. The
goal is to simultaneously choose the network’s topology, to decide which hardware components to install
on which links and nodes, and to find appropriate routing weights such that the overall network cost is
minimized.

In this paper, we present a mathematical optimization model for this problem and an algorithmic solution
approach based on a Lagrangian relaxation. Computational results achieved with this approach for several
real-world network planning problems are reported.

Keywords: Network Planning, Routing, IP Networks, Lagrangian relaxation

1 Introduction

Most routing protocols in today’s data networks are based on shortest path routing. Open Shortest Path First
(OSPF), for example, is the most commonly used intra-domain routing protocol in the Internet at the moment.
Shortest path routing protocols are based on administrative routing weights that are assigned to the links of the
network. These weights determine the routing paths: Data packages are forwarded from their source to their
destination on a shortest path with respect to the assigned weights. The fact that the routing paths and traffic
flows can be (re-)configured only to some limited degree and only indirectly by modifying the administrative
routing weights makes network design and traffic engineering in these networks often very difficult.

In this paper, we study the problem of designing a cost minimal network that uses a non-bifurcated shortest path
routing protocol. We are given network’s node locations, the set of all potential links between these nodes, and a
set, of forecasted end-to-end traffic demands. Furthermore, for each of the nodes and links we are given the list of
hardware components that can be installed as well as a number of constraints that a hardware installation must
satisfy. Such components may be router racks, interface cards, or link configurations corresponding to certain
capacity levels, for example. The given constraints describe which combinations of components are locally and
globally valid, i.e., can be 'plugged together’ without violating technical or operational side-constraints. The
task of the integrated network design and routing problem is to decide simultaneously which components to
install at the nodes and links (thereby also decide the network’s topology and node and link capacities) and to
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provide the routing weights which determine the traffic flows such that the capacities are not exceeded. The
objective is to minimize the overall network cost, which is the sum of the costs of all installed components.

Extensions that allow to split the traffic among several shortest paths are not considered in this paper. These
are mostly non-standardized and proprietary. We restrict our attention to the case of non-bifurcated shortest
path routing, i.e., all data packages between two nodes must be sent on the same path. Furthermore, we
consider only the case where different routing weights may be chosen for the two directions of a link and, hence,
asymmetric routing is possible.

Over the last decade, various mathematical models and solution techniques for this and related problems have
been developed. Ben-Ameur and Gourdin [BAGO0] studied the structural properties of undirected shortest path
routings and developed linear programming formulations for the corresponding inverse shortest path problem,
where the task is to find routing weights that induce a given set of paths. They also addressed the issue of finding
small integer weights, which is a crucial issue for some shortest path routing protocols. A Lagrangian relaxation
approach similar to ours was proposed by Lin and Wang [LW93] for a traffic engineering problem in networks
with shortest path routing. Given a capacitated network and some end-to-end traffic demands, the task is
to find routing weights such that the maximum congestion of the links is minimized. For a similar problem,
where traffic splitting is allowed and the objective is to minimize the sum over all links of a barrier-like penalty
function of the single link’s congestion, a number of genetic and local search algorithms have been developed
by various groups of authors [ERPOTL [FT00, [FGLT00]. Integer programming formulations for non-bifurcated
shortest path routing problems have been proposed by Berry et. al. [BKSTGO0] for traffic engineering problems
and by Holmberg and Yuan [HY(T] and Prytz [Pry02] for network design problems with discrete link capacities.
Bley et al. [BGWIS| [BK02] studied the network design problem with additional survivability constraints and
presented mixed-integer programming approaches for traffic engineering and network design problems with
non-bifurcated shortest path routing and a modular link and node hardware model.

The remainder of this paper is organized as follows. In Section Bl we present a mathematical model of the inte-
grated network design and shortest path routing problem. The Lagrangian relaxation based solution approach
is described in Section Finally in Section Hl, we report on computational results for a number of instances
that are based on real-world planning problems.

2 Problem and model

2.1 Hardware configuration

Let V denote the set of all node locations and E the set of all potentially installable links. These form the
undirected supply graph G = (V, E).

At each node and each link that is used in the network, appropriate node hardware or link capacities must be
installed. In practice, these systems are combinations of various devices or transmission systems. For example,
an IP router consists of a router rack and a number of interface cards. Of course, these devices cannot be
combined arbitrarily. A number of technical constraints must be respected. It depends on the chosen router
rack type what types of and how many router interface cards can be installed. If a certain capacity is installed
on a link, the corresponding interfaces must be provided by some router interface card at the two end-nodes.
In the planning of IP-over-SDH or IP-over-WDM networks, the SDH or WDM equipment usually has to be
considered, too.

We model the different node hardware devices and the link capacities as abstract node and link components.
For each node v € V, we are given the set of all components C(v) that are available at v. The set of possible link
capacities for e € E is C(e). Local technical or administrative constraints, like the usage of router card slots at
a node or the number of link capacities that can be installed in parallel on a link, are modeled by node and link
specific resources r € R(v), for v € V, and r € R(e), e € E, respectively. The contribution of component ¢ to a
resource 7 at some node v is denoted by a$". If a$” > 0, then installing one component ¢ provides a$" units



of r at v, if %™ < 0, then |aS"| units are consumed. For example, installing a router rack at a node provides
a number of empty router card slots while installing a link capacity consumes the corresponding link interfaces
at both end-nodes. Analogous, the contribution of a component ¢ to a link specific resource r at e € E is
denoted by a$”. With an appropriate choice of components and resources, most technical constraints related
to the modular structure of the hardware can be expressed. At each node and each link, the consumption of
a resource must not exceed the provision by the installed components. With the help of global components
C(@G), which contribute to the resources at all nodes and links in the network, and global resources R(G), which
impose global constraints on all the components installed in the network, we can also model global aspects of
the network design problem. This includes, for example, global budgets, network reconfiguration restrictions,
or rebates for purchasing bundles of components. Other local or global side constraints, like the requirement to
provide some additional link interfaces at certain nodes for peering, can be modeled with artificial components.

The number of installations of node, edge, and global components is modeled by integer variables 2z € N, z$ € N,
and z¢ € N, respectively. Lower and upper bound on the number of installations of a node component c at a
node v are expressed by z; . and 27, . respectively, and analogous for edge and global components. The

problem of choosing a valid hardware installation (and, thereby, also the network’s topology) can be formulated

as follows:

Z Z ag"ze + Z ay"zg > 0 forallveV,re R(v), (1)

e€d(v) ceC(e) ceC(v)
Z al’ 28 + Z oy "z + Z agy"zs > 0 foralluv=e€ E, r € R(e), (2)

ceCl(e) ceC(u) ceC(v)
Z Z alzg + Z Z ayzs + Z ag'z& > 0 forall r € R(G), (3)

e€E ceC(e) veV ceC(v) ceC(G)
Zmin S z S Zmazx - (4)

Inequalities () state that at each node and for each node resource the amount consumed must not exceed the
amount provided of that resource by the installed components. The analogous constraint is expressed for link
and global resources in ([£) and (@), respectively. The lower and upper bounds on the number of installations of
components are expressed in @l). Let C := {(v,¢) :v €V, ce C(v)}U{(e,c):e € E,ce C(e)}U{c:ce C(G)}
be the component variable space and define

Z :={z € N° : z satisfies ()~ (@)}

2.2 Routing

For the Lagrangian solution approach presented in the next section, variables that explicitly describe the routing
paths of the demands are not needed. The following model of the non-bifurcated shortest path routing implicitly
describes the relation between the routing weights and the resulting link flows.

For each pair of nodes u,v € V, let d»” € R, d“¥ > 0, denote the directed traffic demand from u to v.
For each undirected link uv € E, we denote by (u,v) and (v,u) its two associated directed arcs and set
A = {(u,v), (v,u) : uv € E}. We assume that components installed on an undirected link wv € E provide
the same routing capacity for both directions of the link. The resource corresponding to the provision of this
routing capacity is denoted by cap, cap € R(e) for all e € E. The routing weights assigned to the arcs (u,v) € A
are modeled by the variables w, ) € N. The traffic flows resulting from the chosen routing weights for the
given demands are expressed by the variables f(, . € Ry, (u,v) € A. We define

P {(f ) e (RA NE) w induces unique shortest paths between all node pairs u,v € V, u # v, and }
= , W , . .

" f is induced flow of the corresponding shortest path routing of the demands d



With this notation, the problem of finding a shortest path routing can be formulated as follows:
(f,w) € F, ()

fawy <D a5z, forall (u,v) € A. (6)
ceC(uv)

Constraint (), which involves the implicitely defined set F', ensures that w induces unique shortest paths for
all demands and that f is the corresponding flow on the directed links. Inequality () guarantees that this flow
does not exceed the provided link capacities.

Note that, in order to guarantee non-ambiguous non-bifurcated shortest path routing, the routing weights are
required to induce unique shortest paths between all node pairs u,v € V. If the routing weights do not satisfy
this requirement but non-bifurcated routing is enforced, it solely depends on the implementation of the routing
protocol in the real network, which of the shortest paths is chosen in case of ambiguity. As the administrator
may loose some control over the routing and capacities might no longer be adequate for the real traffic flows,
such routing weights should be strictly avoided. If the implemented routing protocol resolves ambiguities in
a stable and deterministic manner, then there also exist non-ambiguous routing weights that induce the same
routing paths.

Another issue is that the weights in all real routing protocols are bounded, in OSPF between 0 and 65535, for
example. Nevertheless, even for large networks it is possible to find small integer routing weights that induce the
same shortest paths like some given other (even non-integer valued) routing weights do. If one is not interested
in minimizing the maximum or the sum of the weights but only in finding integer weights within the given
bounds, a simple scaling-and-rounding procedure or solving the integer inverse shortest path problem for the
path set induced by the given weights are computationally admissible for real-world size networks.

2.3 Cost minimization

The objective of the network design problem is to minimize the total network cost. If we let cost € R(G) denote
the global cost resource, the objective function can be formulated as follows:

min k’z ::Z Z QS eostz¢ +Z Z abeostyC 4 Z aG ot zg,. (7)

e€E ceC(e) vEV ceC(v) ceC(G)

Of course, any other objective that is linear in the components can be formulated via an appropriate resource.

3 A Lagrangian solution algorithm

In this section, we present our solution approach for the integrated network design and shortest path routing
problem and discuss some implementation details.

3.1 The Lagrangian relaxation

The complete model ([[)—() can be written as
min k7z
st fluw) < Z asew e for all (u,v) € A
ceC(uv) (8)
z€Z
(f,w) e F



We relax the capacity constraints and denote the corresponding Lagrangian dual multipliers by ¢, .) > 0 for
all (u,v) € A. The resulting Lagrangian function is

L)

min kTZ - Z Z M(u,v)aifapzviv + Z :U/(u,v)f(u,v) P ZE 27 (fa W) EF
(u,v)EA ceC(uv) (u,v)EA

= min{ kTz — Z Z Buyo) Xy P20y + 2 € Z p + min Z Puo) fuwy @ (£, W) € F
(u,v)EA ceC(uv) (u,v)EA

= L? () + L () - 9)

It is well known that, for each dual vector u € Rf, the value L(u) is a lower bound for the optimal value of the
original problem (B). Hence,
L* := max L(p) < kz"*,
uGRi

where (z*, f*, w*) is an optimal solution of (B). As there are only finitely many different (basic) solutions z and
f with z € Z and (f,w) € F, both functions LZ(u) and L¥ (1) are concave in p. Hence, —L(u) is convex and
the problem of finding the optimal dual multipliers p can be solved by a general convex function optimization
algorithm.

Note that exactly the same Lagrangian function L(u) and the same lower bound L* is obtained, if the analogous
network design problem with general multicommodity flow routing instead of non-bifurcated shortest path
routing is relaxed. Hence, we cannot expect to obtain very tight lower bounds with this approach.

Nevertheless, this Lagrangian approach is attractive for practical computations. One reason is that the La-
grangian function L(u) decomposes into the sum of two functions LZ(u) and L (u), both of which can be
evaluated efficiently for real-world size networks.

Evaluating the first function LZ(u) corresponds to the problem of finding a valid hardware installation that
minimizes a linear objective function. Although this problem may be NP-hard in general, its integer program-
ming formulation can be solved very efficiently by state-of-the-art integer programming solvers for real-world
problems. Note that this formulation contains only the variables z and the inequalities ()—@). The traffic de-
mands and flows only affect the objective function coefficients via the Lagrangian dual multipliers. For simple
hardware models, this problem decomposes even further. For example, if only one capacity may be chosen for
each link and no node or global components or constraints are considered, choosing for each edge the minimum
cost capacity yields a cost minimal overall hardware installation.

The optimization problem associated with evaluating the second function L (u) can be solved by any shortest
path algorithm. The task is to find a non-bifurcated shortest path routing that minimizes the total flow costs
for . It is not hard to see that choosing for each pair of nodes the shortest path with respect to p yields the
optimal solution. Ties between equally long shortest paths can be broken by using an arbitrary numbering of
the nodes or links as a secondary length function (or perturbing u accordingly, see [BGWOS§]). This guarantees
the existence of some integer routing weights that induce the same set of shortest paths as .

The second reason for this Lagrangian relaxation approach being computationally interesting is the possibility
to include other heuristics. After each iteration of the convex optimization algorithm, the current duals p can
be easily interpreted as routing weights, as in the evaluation of L¥(u). In practice, these weights seem to
provide good starting points for other heuristics that are based on evaluation of routing weights. From this
perspective, our Lagrangian relaxation approach also can be seen as a primal heuristic that modifies the current
routing weights according to the dual information and, as a byproduct, produces a lower bound for the optimum
solution value.



3.2 Implementation

The presented solution approach is implemented as part of the DISCNET network optimization library [afe03].
The data structures and algorithms are based on the standard C++ library and LEpA [Alg03]. The CoN-
ICBUNDLE algorithm of Helmberg [HK02, [HRO0] is used to solve the convex optimization problem of finding the
optimal Lagrangian duals p*. Both functions LZ () and L¥ () have an independent bundle of subgradients. In
order to keep the number of function evaluations small, the number of directed links in the network is used as
bundle-size for both functions. The integer programming problem corresponding to the evaluation of L (u) and
the integer inverse shortest path problem to compute small integer routing weights when post-processing solu-
tions are solved by cPLEX [[LO0Z]. For shortest path computations, we apply a variant of Dijkstra’s algorithm
that breaks ties between equally long shortest paths based on some numbering of the edges.

The formulation of the hardware installation subproblem Z was tightened by adding band and strengthened
metric inequalities [Wes((] associated with single-node and two-node cuts in the graph. These inequalities cut
off many hardware installations that cannot even accommodate a fractional multicommodity flow routing of the
given demands. Adding these inequalities speeds up the convergence of the algorithm and improves the lower
bound L*, but the evaluation time for LZ(p) is increased, too.

Two types of primal heuristics were used in the computations reported in the following section. The first
heuristic was applied for all but the GWIN instances. It first computes the shortest path routing for the current
Lagrangian duals interpreted as routing weights. Then it computes a cost-minimal hardware installation that
can accommodate the resulting link flows, by solving an integer linear program. This heuristic performs well if
for almost any flow of the given demands in the underlying graph there exists such a hardware installation. This
is usually the case if large enough capacities are available and no constraints restrict the topology of feasible
hardware configurations. If there are tight budget constraints, small node degree bounds, or very restrictive
hardware reconfiguration constraints, this heuristic often fails to find feasible solutions.

The second heuristic tries to cope with these difficulties. It first computes an initial topology by solving the
integer program associated with the hardware installation problem LZ(u) for the current duals. It sets the
routing weights for those arcs contained in the initial topology to the current Lagrangian duals and for all other
arcs to some large value and then continues as the first heuristic, computing a shortest path routing for these
weights and a hardware installation. With this strategy, those arcs not in the initial topology are avoided by
the shortest path routing, if possible. Thus, the resulting flows can often be accommodated by another feasible
hardware installation. This heuristic was used for the GWIN instances, which have a tight bound on the number
of installations of each link capacity type.

4 Computational results

In this section, we report on computational results for ten real-world based instances. The three GWIN instances
originate from planning problems of the German Research Network [DEN]. The traffic demands were obtained
by end-to-end measurements in the real network. For each link, one of several capacities can be chosen, but,
for each capacity type, the number of installations is restricted. In consequence, only sparse subnetworks of the
given supply graph are feasible. Both SDH and IP equipment is considered at the nodes. The LINK and ALL
instances stem from real-world SDH and WDM network design problems that we encountered in other projects
with industry. We assumed that the traffic demands must be routed on non-bifurcated shortest paths, although
this is not required in the original applications. In the LINK instances only link capacities are considered, while
in the ALL instances we consider all hardware components and restrictions of the original application.

The characteristic properties of the ten instances and our computational results are listed in Table [l In order
to evaluate the practical usefulness and the theoretical strength of the algorithm, we not only report the best
solution, final lower bound, total time (including heuristics), and total number of dual function evaluations of
the Lagrangian algorithm, but also the time when the algorithm found the best solution and an alternative



GWIN LINK ALL

G1 G2 G3 L1 L2 L3 Al A2 A3 A4
Nodes 11 11 11 15 14 27 24 22 36 19
Links 47 47 47 22 21 51 55 34 122 148
Demands 110 110 110 210 182 571 276 231 630 171
Avg. capacities/Link 3 4 2 7 7 7 12 6 5 5
Avg. comps./Node 6 8 4 0 0 0 12.2 9.2 6 4.1
Best Solution 108.7 112.3  *100.0 107.0 109.7 163.7 106.2 102.4 110.0 104.8
Lower Bound 65.1 77.3 60.6 75.8 72.3 100.0 | *100.0 97.5 76.1 88.0
Branch&Cut 100.0 *100.0 *100.0 | *100.0 *100.0 85.8 | *100.0 *100.0 100.0 100.0
Total time 01:02 0:32 0:41 1:52 30:00 30:00 00:01 00:01  30:00 30:00
Total evals. 156 168 171 69 74 847 2 8 75 163
Time best soluon 0:07 0:02 0:06 00:39 1:18 6:39 00:01 00:01  23:45 2:09

Table 1: Test instances and computational results (times in min:sec, optimal solutions marked by * )

lower bound obtained by a branch-and-cut algorithm ([BK02]). The cost values are scaled such that the best
of the two lower bound values equals 100. The computations were performed on a 3 GHz Pentium4 PC
running Linux. For each instance, both the Lagrange algorithm’s (including heuristics) and the branch-and-
cut algorithm’s computation times were limited to 30 minutes. The Lagrange algorithm terminated when the
optimum Lagrangian duals were determined with a relative precision of 107%.

From a practical viewpoint, the main advantage of the Lagrangian algorithm compared to the branch-and-cut
approach is its better scalability. Even for the larger instances, the Lagrangian algorithm produces resonably
good solutions very quickly and with little memory consumption. Even for instance A3, where it took 23 minutes
to find the best solution, a feasible solution was found immediately and a solution with cost 111.5 in less than 5
minutes. The branch-and-cut algorithm does not scale well with the problem size, because its underlying linear
programming formulation contains not only the hardware component variables but also a huge number of flow
variables to model the chosen routing paths. On the other hand, in most cases the lower bound obtained by
the Lagrangian approach is less than the bound obtained with the branch-and-cut algorithm. Especially for
instances with restrictions on the feasible network topologies, like the GWIN instances, the difference is large.
In these instances, the capacity constraints do not play the central role in linking the flows to the hardware
installation. Also finding good solutions is harder in general for such instances. For larger networks with less
topology-restrictive constraints, the flows and hardware installation can be easier ’adjusted’ to each other via
the Lagrangian duals and both the lower bounds and the solutions computed by the Lagrangian approach are
reasonably good.

5 Conclusions

We proposed a Lagrangian relaxation approach to solve the problem of designing a network that uses a non-
bifurcated shortest path routing protocol. Albeit this approach produces worse lower bounds than a branch-and-
cut algorithm, our computational results demonstrate that this approach is useful to compute good solutions
for real-world problems in a very short time, especially for large networks.
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