
Takustr. 7
14195 Berlin

Germany
Zuse Institute Berlin

JAKOB WITZIG TIMO BERTHOLD STEFAN HEINZ

Computational Aspects of Infeasibility
Analysis in Mixed Integer Programming

ZIB Report 19-54 (November 2019)

Zuse Institute Berlin
Takustr. 7
14195 Berlin
Germany

Telephone: +49 30-84185-0
Telefax: +49 30-84185-125

E-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

bibliothek@zib.de
http://www.zib.de

Computational Aspects of Infeasibility Analysis
in Mixed Integer Programming
Jakob Witzig1, Timo Berthold2, and Stefan Heinz3

1Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany
witzig@zib.de

2Fair Isaac Germany GmbH, Stubenwald-Allee 19, 64625 Bensheim, Germany
timoberthold@fico.com

3Gurobi GmbH, Ulmenstr. 37–39, 60325 Frankfurt am Main, Germany
heinz@gurobi.com

November 6, 2019

Abstract

The analysis of infeasible subproblems plays an important role in solv-
ing mixed integer programs (MIPs) and is implemented in most major
MIP solvers. There are two fundamentally different concepts to gener-
ate valid global constraints from infeasible subproblems. The first is to
analyze the sequence of implications, obtained by domain propagation,
that led to infeasibility. The result of this analysis is one or more sets
of contradicting variable bounds from which so-called conflict constraints
can be generated. This concept is called conflict graph analysis and has
its origin in solving satisfiability problems and is similarly used in con-
straint programming. The second concept is to analyze infeasible linear
programming (LP) relaxations. Every ray of the dual LP provides a set of
multipliers that can be used to generate a single new globally valid linear
constraint. This method is called dual proof analysis. The main contri-
bution of this paper is twofold. Firstly, we present three enhancements
of dual proof analysis: presolving via variable cancellation, strengthen-
ing by applying mixed integer rounding functions, and a filtering mech-
anism. Further, we provide an intense computational study evaluating
the impact of every presented component regarding dual proof analysis.
Secondly, this paper presents the first integrated approach to use both
conflict graph and dual proof analysis simultaneously within a single MIP
solution process. All experiments are carried out on general MIP instances
from the standard public test set Miplib 2017; the presented algorithms
have been implemented within the non-commercial MIP solver SCIP and
the commercial MIP solver FICO Xpress.

1

1 Introduction
In the last decades, mixed integer programming (MIP) has become one of the
most important techniques in Operations Research. The general framework of
mixed integer programming was successfully applied to many real world ap-
plications, e.g., chip design verification (Achterberg, 2007b), scheduling (Lee
et al., 1996; Heinz and Beck, 2012; Schade et al., 2018), supply chain man-
agement (You and Grossmann, 2008; Gamrath et al., 2016), and gas transport
optimization (Domschke et al., 2011; Hiller et al., 2018) to mention only few of
them. A lot of progress has been made in the performance of general MIP solver
software; problems that seemed out of scope a decade ago can often be solved
in seconds nowadays (Bixby et al., 1999; Achterberg and Wunderling, 2013).
Hereby, the development of commercial (e.g., CPLEX, FICO Xpress, Gurobi,
SAS) and non-commercial (e.g., CBC, SCIP) MIP solvers was directly stimulated
by the theoretical progress in the field. In this paper, we will focus at one
specific component that is used in almost every state-of-the-art MIP solver: the
analysis of infeasible subproblems. Without loss of generality, we consider MIPs
of the form

min{cTx |Ax ≥ b, ` ≤ x ≤ u, xj ∈ Z ∀j ∈ I}, (1)

with objective coefficient vector c ∈ Rn, constraint coefficient matrix A ∈ Rm×n,
constraint left-hand side b ∈ Rm, and variable bounds `, u ∈ Rn, where R :=
R∪{±∞}. Furthermore, let N = {1, . . . , n} be the index set of all variables let
I ⊆ N be the set of variables that need to be integral in every feasible solution.

When omitting the integrality requirements, we obtain the linear program
(LP)

min{cTx |Ax ≥ b, ` ≤ x ≤ u, x ∈ Rn}. (2)

The linear program (2) is called LP relaxation of (1). The LP relaxation pro-
vides a lower bound on the optimal solution value of the MIP (1). This fact is
an important ingredient of LP-based branch-and-bound (Dakin, 1965; Land and
Doig, 1960), the most commonly used method to solve MIPs. Branch-and-bound
is a divide-and-conquer method which splits the search space sequentially into
smaller subproblems that are intended to be easier to solve. During this proce-
dure, the solver may encounter infeasible subproblems. Infeasibility can either
be detected by contradicting implications, e.g., derived by domain propagation,
or by an infeasible LP relaxation.

Modern MIP solvers try to “learn” from infeasible subproblems, e.g., by
conflict analysis (e.g., Achterberg, 2007a). More precisely, each subproblem can
be identified by its local variable bounds, i.e., by local bound changes that come
from branching decisions and domain propagation (Savelsbergh, 1994) at the
current node and its ancestors. If domain propagation detects infeasibility, one
way of conflict learning is traversing the chain of decisions and deductions in a
reverse fashion, reconstructing which bound changes led to which other bound
changes, and will thereby identify explanations for the infeasibility. If it can be

2

shown that a small subset of the bound changes suffices to prove infeasibility, a
so-called conflict constraint is generated that can be exploited in the remainder
of the search for domain propagation. As a consequence, other parts of the
search tree can be pruned and additional variable bound can be deductions.

The power of conflict analysis arises because branch-and-bound algorithms
often repeat a similar search in a slightly different context in another part of
the search tree. Conflict constraints address such situations and aim to avoid
redundant work.

Conflict analysis for MIP has its origin in solving satisfiability problems
(SAT) and goes back to Marques-Silva and Sakallah (1999). Similar ideas are
used in constraint programming (e.g., Ginsberg, 1993; Jiang et al., 1994; Stall-
man and Sussman, 1977). Integrations of these techniques into MIP were in-
dependently suggested by Davey et al. (2002); Sandholm and Shields (2006);
Achterberg (2007b). In this paper, we mostly follow the concepts and the no-
tation of Achterberg (2007b). Follow-up publications suggested to use con-
flict information for variable selection in branching (Achterberg and Berthold,
2009; Kılınç Karzan et al., 2009), to tentatively generate conflicts before branch-
ing (Berthold et al., 2010; Berthold, 2014; Berthold et al., 2018b), and to analyze
infeasibility detected in primal heuristics (Berthold and Gleixner, 2014; Berthold
and Hendel, 2015; Witzig and Gleixner, 2019). In addition, instead of simply
analyzing infeasibility that is derived more or less coincidentally, methods were
introduced to explicitly generate additional conflict information (Dickerson and
Sandholm, 2013; Witzig and Gleixner, 2019).

In a preliminary study (Witzig et al., 2017), we examined a vanilla approach
of combining conflict graph analysis and dual proof analysis within SCIP. The
present paper builds upon this work. Our contribution is twofold: We present
various enhancements for dual proof analysis and provide an extensive compu-
tational study of the described techniques. Overall, the technique presented
in this paper improve the solving performance of SCIP by 7 % and lead to a
tree size reduction of 6.4 % compared to the approach reported in Witzig et al.
(2017).

The paper is organized as follows. In Section 2 we give a theoretical overview
on the analysis of infeasible subproblems. This covers the concept behind con-
flict graph analysis and the LP-based theory of dual proof analysis. Section 3
deals with three enhancements on dual proof analysis. We will discuss presolv-
ing techniques like nonzero cancellation and the application of mixed integer
rounding functions to strengthen the resulting dual proof constraint. Moreover,
we present an update mechanism that allows to strengthen certain dual proof
constraints during the tree search and a filtering method to only pick the most
promising dual proof constraints. An intense computational study of the tech-
niques presented in this paper will be given in Section 4. Next to an individual
evaluation, this study contains computational results with the first MIP solvers,
to the best of our knowledge, containing both conflict graph and dual proof
analysis.

3

x1 x2 x3 x4 x5

x6 x7 x8 x9 x10 x11

x12 x13 x14 x15

x16 x17 x18

λ

infeasibility

branching decisions

implied bounds

Figure 1: Example of a conflict graph describing all variable bound implications from
the branching decisions to the infeasibility λ due to propagation. All shown variables
are binary, negations are illustrated with a bar.

2 Infeasibility Analysis for MIP
The analysis of infeasible subproblems is widely established in solving MIPs, to-
day. Most state-of-the-art MIP solvers rely either on an adaption of the conflict
graph analysis techniques known from SAT or a pure LP-based approach. Both
approaches are strongly connected, as we will argue below.

Assume, we are given an infeasible node of the branch-and-bound tree de-
fined by the subproblem

min{cTx |Ax ≥ b, `′ ≤ x ≤ u′, xj ∈ Z∀j ∈ I} (3)

with local bounds ` ≤ `′ ≤ u′ ≤ u. In LP-based branch-and-bound, the in-
feasibility of a subproblem is typically detected by contradicting implications
or by an an infeasible LP relaxation. In the following, we describe how both
situations can be handled.

2.1 Infeasibility due to Domain Propagation
If infeasibility is encountered by domain propagation, modern SAT and MIP
solvers construct a directed acyclic graph which represents the logic of how
the set of branching decisions led to the detection of infeasibility, see Figure 1.
This graph is called a conflict graph (or implication graph) (Marques-Silva and
Sakallah, 1999). The vertices of the conflict graph represent bound changes of
variables and the arcs (v, w) correspond to bound changes implied by propaga-
tion, i.e., the bound change corresponding to w is based (besides others) on the
bound change represented by v.

4

In addition to the inner vertices which represent the bound changes from
domain propagation, the graph features source vertices for bound changes that
correspond to branching decisions and an artificial sink vertex representing the
infeasibility. Valid conflict constraints can be derived from cuts in the graph that
separate the branching decisions from the artificial infeasibility vertex. Based
on such a cut, a conflict constraint can be derived consisting of a set of variables
with associated bounds, requiring that in each feasible solution at least one of
the variables has to take a value outside these bounds. Note that in general,
conflict constraints derived from this procedure have no linear representation if
general integer or continuous variables are present. Moreover, by using different
cuts in the graph, several different conflict constraints might be derived from a
single infeasibility.

A well-established strategy for finding good cuts in the conflict graph is
to rely on the so-called First-Unique-Implication-Point (FUIP) (Zhang et al.,
2001). For every level of branching decisions there exists a FUIP. Zhang et al.
(2001) have demonstrated that for solving SAT problems using 1-FUIP, i.e.,
the FUIP of the last branching decision level, is superior to other strategies.
In contrast to that, Achterberg (2007a) demonstrated that for solving MIPs
considering the FUIPs of all branching decisions and the corresponding conflict
constraints along the path to root node and selecting the most promising conflict
constraints outperforms using the 1-FUIP solely.

2.2 Infeasibility due to an Infeasible LP Relaxation
During LP-based branch-and-bound the LP relaxation of each subproblem is
solved. If the LP relaxation turns out to be infeasible the procedure described
in Section 2.1 can not be applied directly. The reason is that the LP does not
deduce infeasibility from a single constraint, but from the inequality system (2)
as a whole. Naïvely, one would only have to consider all local bound changes
as a reason for the infeasibility which would not allow to learn a conflict con-
straint that can be used for pruning elsewhere in the tree. Although the naïve
reason of infeasibility does not provide additional information for the remain-
der of the search, it can be used as a starting point for conflict graph analysis
that might lead to more general conflict constraints. However, it is desirable
to identify a small set of variables and bound changes that are sufficient to
render the LP infeasible. Such a set of variables and bound changes can be
identified by using LP duality theory. Afterwards, the same procedure as for
infeasibility due to contradicting variable bounds can be used to derive conflict
constraints. Achterberg proposed to pursue the same strategy for analyzing LP
infeasibility (see end of Section 2.2.2) as for analyzing infeasibility due to do-
main propagation, i.e., considering all FUIPs and choosing the most promising
conflict constraints Achterberg (2007a). In this paper, we propose to go one step
further and to consider the LP-based certificate of infeasibility that encodes all
reasons of infeasibility directly, i.e., the so-called dual proof constraint, instead
of using this reason of infeasibility as a starting point for conflict graph analysis
solely.

5

2.2.1 An Excursion to Duality Theory

If infeasibility is detected by the LP relaxation, the proof of infeasibility is given
by a ray in the dual space. Consider a node of the branch-and-bound tree and
the corresponding subproblem of type (3) with local bounds ` ≤ `′ ≤ u′ ≤ u.
The dual LP of the corresponding LP relaxation of (3) is given by

max{yTb+ rT{`′, u′} | yTA+ r = c, y ∈ Rn≥0, r ∈ Rn},

where

rT{`′, u′} :=
∑
j∈N
rj>0

rj`
′
j +

∑
j∈N
rj<0

rju
′
j =

∑
j∈N
r`j>0

r`j`
′
j −

∑
j∈N
−ruj <0

ruj u
′
j (4)

with r`, ru ∈ Rn+ representing the dual variable on the finite bound constraints,
i.e., r := r` − ru. Note, since every variable j can only be tight in at most one
bound constraint, it follows by complementary slackness that either r`j , ruj , or
none of them will be different to zero but not both at the same time. For every
variable xj it holds that rj = cj − yTA·j , where A·j denotes the j-th column of
A. By LP theory, each ray (y, r) ∈ Rm+n in the dual space that satisfies

yTA+ r = 0
yTb+ rT{`′, u′} > 0

(5)

proves infeasibility of (3), which is an immediate consequence of the Lemma
of Farkas (1902). Hence, if (2) is infeasible, there exists a solution (y, r) of (5).

2.2.2 Analysis of Infeasible LPs

It follows immediately from (5) that infeasibility within the local bounds `′
and u′ is proven by 0 < yTb + rT{`′, u′} = yTb − yTA{`′, u′}. Therefore, the
inequality

yTAx ≥ yTb (6)

has to be fulfilled by all feasible solutions. Since (6) is a non-negative aggregation
of globally valid constraints, it is globally valid, too. In the following, this type
of constraint will be called dual proof constraint. The dual ray is effectively a
list of multipliers on all constraints that are represented in LP relaxation like
model constraints (needed by the problem formulation) or additional valid global
inequalities, e.g., cutting planes, conflict constraints, and dual proof constraints.
Thus, aggregating the constraints according to the multipliers leads to globally
valid but redundant constraint. However, with respect to the local bounds `′
and u′ it leads to a false statement, thereby proving that the set described
by the constraints is empty inside the local bounds. The property of proving
infeasibility with respect to at least one set of local bounds distinguishes dual
proof constraints from arbitrary constraint aggregations and is used as some

6

x1

x3

x2

P

C1 C2

C3

C4

C5

a) Polytope P

A1·

A2·

A3· A4·

projx3=0(P)

(A1·) −x1 − x2 + x3 ≥ −0.5

(A2·) −0.75x1 + x2 ≥ −0.25

(A3·) 2x1 + 2x2 + x3 ≥ 3

(A4·) −x1 + x2 ≥ 0.5

1

0

0.5

0

y

3
2x3 ≥ 1

dummy

b) Projection of P . Dual multipliers y and the re-
sulting dual proof constraint.

Figure 2: Illustration of an infeasibility proof. The polytope P = {x ∈ R3 | Ax ≥
b, 0 ≤ xj ≤ 1 for j = 1, 2, 3} representing the convex hull of the global problem
min{0Tx | Ax ≥ b, x ∈ {0, 1}3}. After branching in x3, the subproblem with x3 = 0
can be proven to be infeasible due to an infeasible LP relaxation. The resulting dual
proof constraint is x3 ≥ 2

3
which lead to the global bound deduction x3 ≥ 1.

7

kind of natural “filtering” among the infinitely many different possible constraint
aggregations.

In general, infeasibility analysis can also be applied as explained in this paper
if locally valid inequalities are present. Here, we assume the corresponding dual
multiplier to be 0. The resulting dual proof might not prove local infeasibility
anymore. In that case, the analysis of the infeasibility is stopped immediately.
A modification of infeasibility analysis that incorporates also locally valid in-
equalities is described by (Witzig et al., 2019).

The situation of local infeasibility can be exploited as follows: Either, one
starts conflict analysis as described in Section 2.1 from the set of local bounds
or one considers only the weights given by the dual ray on the model con-
straints (Pólik, 2015a,b). If those are aggregated with respect to the dual mul-
tipliers, omitting the local bounds, we derive a new globally valid constraint,
which can be used for domain propagation. We refer to the latter as dual proof
analysis and to the outcome of this approach as dual proof constraint. For the
remainder of the paper, we will refer to the classical conflict analysis as described
in Achterberg (2007a) as conflict graph analysis in order to better disambiguate
the two concepts. We will speak about the analysis of infeasible subproblems if
we refer to both concepts together.

An example of an infeasible LP after branching on one variable and the
resulting dual proof constraint can be found in Figure 2. In this case, single
bound change is derived but in general the resulting constraint can be directly
used for domain propagation during the remainder of the search.

In practice, a dual proof constraint of type (6) is expected to be dense,
and therefore, it might be worthwhile to search for a sparser infeasibility proof.
Therefore, we will discuss in the following how this constraint can be sparsified
and strengthened via dual proof analysis or used as a starting point for con-
flict graph analysis, which is already described for infeasbility due to domain
propagation in Section 2.1.

Dual Proof Analysis Dual proof analysis denotes the modification of a dual
proof constraint (6) aiming to sparsify and strengthen the proof of infeasibil-
ity. In general, all presolving techniques that are applicable to a single con-
straint (e.g., Savelsbergh, 1994; Achterberg, 2007b; Achterberg et al., 2016),
can be used. In Section 3 we will especially elaborate on presolving reductions
that preserve the local proof of infeasibility. The outcome of dual proof analysis
is a single linear constraint that can be used in the remainder of the search to
derive further bound deductions, to prove infeasibility of other parts of the tree,
and as input for the conflict graph analysis.

Conflict Graph Analysis To use the concept of a conflict graph as described
in Section 2.1, one needs an initial, preferably small, reason for infeasibility.
This can be constructed from an infeasibility proof of type (6): It suffices to
consider all local bounds which have a nonzero coefficient in (6). The vertices
of the conflict graph which correspond to those local bounds are then connected

8

x

z

y

1
2

1
2

1
2

1

(2
3 , 0,

1
3)

(0, 2
3 ,

1
3)

a) Convex hull of the
global problem.

x

z

y

1
2

1
2

1
2

1

b) Convex hull of the
global problem after con-
flict graph analysis.

x

z

y

1
2

1
2

1
2

1

c) Convex hull of the
global problem after dual
proof analysis.

Figure 3: Illustration of Example 1.

to the artificial sink representing the infeasibility; global bounds are omitted.
From thereon, conflict graph analysis can be applied as described in Section 2.1.

To strengthen this procedure, one can sparsify the proof of infeasibility (6)
by a heuristic introduced by Achterberg (2007a). The heuristic relaxes some of
the local bounds [`′, u′] that appear in the dual proof constraint such that the
relaxed local bounds [`′′, u′′] with ` < `′′ ≤ `′ ≤ u′ ≤ u′′ < u still fulfill

yTb+ rT{`′′, u′′} > 0.

Note, the more bounds can be relaxed, the smaller the initial reason gets and
consequently the stronger are the resulting conflict constraints in the end.

Example 1. A main difference between using a dual proof directly instead of
applying conflict graph analysis is the consideration of variables that contribute
with their global bound. Consider the following MIP

maxx+ y + z

s.t. x+ y + 2z ≤ 2

x+ y − 2z ≤ 0

x+ y + z ≤ 1

x, y, z ∈ {0, 1}.

An optimal solution of the LP relaxation is (0, 23 ,
1
3) with objective value 1. After

branching on y the resulting subproblem with y = 1 gets infeasible, because its
LP relaxation can be proven to be infeasible. A valid infeasibility proof, i.e., an
unbounded ray in its dual, is (0,− 1

2 ,−1). Following Section 2.2.2, the resulting
dual proof constraint is 1.5x+1.5y ≤ 1. Applying conflict graph analysis leads to
a single global deduction: (y ≤ 0), see Figure 3b. In contrast to that, propagating
the dual proof constraint directly leads to two global bound changes: (x ≤ 0) ∧
(y ≤ 0), see Figure 3c.

9

3 Three Enhancements for Dual Proof Analysis
Dual proof constraints derived as described in Section 2.2.2 can be used directly
in the remainder of the search. However, similar to conflict graph analysis,
the dual proof constraint can be modified and strengthened. In this section, we
describe presolving and updating steps for strengthening dual proof constraints.
Moreover, we discuss how filtering steps can used to decide which dual proof
constraint should be applied and which should be rejected.

3.1 Presolving and Strengthening
Presolving plays an important role in solving mixed integer programs (e.g.,
Brearley et al., 1975; Guignard and Spielberg, 1981; Savelsbergh, 1994; Achter-
berg, 2007b; Achterberg et al., 2016). In this section, we will discuss presolving
techniques that can be applied to a single linear constraint with the aim to
preserve the property of proving local infeasibility.

Since we consider MIPs of form Ax ≥ b, only constraints of type aTx ≥ b0 are
discussed in the remainder of this section. However, in Section 3.2 we will stick
to the notation used in the literature and consider constraints of form aTx ≤ b0.
Note, by scaling with −1 each representations can be transformed into the other.
Many presolving and strengthening techniques use activity arguments Brearley
et al. (1975). Formally, the maximal activity of a constraint aTx ≥ b0 with
respect to the (local) bounds `, u is given by

∆max(a, `, u) =
∑

j∈N : aj>0

ajuj +
∑

j∈N : aj<0

aj`j .

Analogously, the minimal activity is given by

∆min(a, `, u) =
∑

j∈N : aj>0

aj`j +
∑

j∈N : aj<0

ajuj .

Moreover, we will denote the violation of a constraint with respect to the (lo-
cal) bounds ` and u by νviol(a, b0, `, u) = b0−∆max(a, `, u). Hence, a constraint
proves infeasibility with respect to ` and u if νviol(a, b0, `, u) > 0.

3.1.1 Nonzero Cancellation

Nonzero cancellation is a presolving technique to reduce the number of nonzero
coefficients in a constraint (Achterberg et al., 2016). One way of doing so is
the addition of constraints. More precisely, adding an equality constraint to an
inequality constraint will preserve the feasible region of an LP or a MIP. The
crucial part of this presolving technique is to choose a pair of constraints and a
scaling factor for the equality constraint such that the support of the modified
inequality gets reduced. In this section, we present two variants of nonzero
cancellation that can be applied to dual proof constraints. Both variants have
a linear run time in the size of the support of the modified constraint.

10

Cancellation with Variable Bound Dual proof constraints might contain
variables that contribute to the maximal activity with their global bound. Since
the local and global contributions to the maximal activity are equal, e.g., aj`′ =
aj`, those variables can be removed from the infeasibility proof without changing
the violation. Let `′, u′ be the current local bounds of an infeasible subproblem.
Then, a new constraint φB(a)Tx ≥ ψB(b0) that still proves local infeasibility
can be constructed by

φB(a)j =

{
aj , if j /∈ NB
0, otherwise

(7)

ψB(b0) = b0 −
∑
j∈NB

aj{`j , uj}, (8)

where NB := {j ∈ N | aj < 0 and `′ = ` or aj > 0 and u′ = u}.

Proposition 2. Let aTx ≥ b0 be a globally valid constraint and φB(a)Tx ≥
ψB(b0) be constructed as described in (7)– (8) with respect to the local bounds
`′ and u′. Then, the following holds:

(i) νviol(a, b0, `, u) = νviol(φB(a), ψB(b0), `, u), and

(ii) X̃ := {(`′, u′) ∈ Rn×Rn | ` ≤ `′ ≤ u′ ≤ u, ∆max(φB(a), `′, u′) < ψB(b0)} ⊆
X := {(`′, u′) ∈ Rn × Rn | ` ≤ `′ ≤ u′ ≤ u, ∆max(a, `′, u′) < b0}.

Proof. (i) This follows immediately by construction.

(ii) We show, that for every subproblem defined by (`′, u′) ∈ X̃ it follows
that aT{`′, u′} < b0. In other words, every tuple of bound vectors that is
proven to be infeasible after applying (7) and (8) is proven to be infeasible
by the original infeasibility proof, too. With the following observation∑

j∈NB

φB(a)j=0

aj{`′, u′} <
∑
j∈NB

φB(a)j=0

aj{`, u},

where we use the short notation as introduced in (4), it follows immediately
that

∆max(φB(a), `′, u′) +
∑
j∈NB

φB(a)j=0

aj{`′, u′} < ψB(b0) +
∑
j∈NB

φB(a)j=0

aj{`j , uj}

⇐⇒ ∆max(a, `′, u′) < b0,

where `′, u′, `, u are chosen to maximize every expression.

Proposition 2 shows that using variable bounds to cancel nonzero coefficients
in a dual proof constraint leads to a weaker infeasibility proof in general. Note
that in LP-based branch-and-bound, as it is implemented in most of the modern

11

MIP solvers, branching is performed on integer variables only. Therefore, we
suggest to apply the nonzero cancellation procedure as described in this section
to continuous variables only. In our implementation we pursue a slightly more
conservative strategy which only removes continuous variables that contribute
with a global bound to the maximal activity with respect to the current local
bounds, i.e., depending on the sign of the coefficient in the dual proof it holds
`′ = ` and u′ = u, respectively. We apply this cancellation as long as supp(a) >
0.15 · |N |, where supp(a) := {j ∈ N | aj 6= 0} denotes the support of aTx ≥ b.
This threshold is identically to the default threshold used to decide whether a
conflict constraint, i.e., an infeasibility certificate derived from conflict graph
analysis, should be accepted.

For the special case of all j ∈ supp(a) ∩ I are binary and all continuous
variables contribute with a global bound, i.e., j ∈ supp(a) ∩ (N \ I) : j ∈ NB ,
we apply a more sophisticated strategy. Consider a maximal set of binary
variables Imax ⊂ (supp(a)∩I) which is not sufficient to prove infeasibility with
respect to the local bounds `′ and u′, i.e.,

∆max(a|Imax , `′, u′) + ∆max(a|N\Imax , `, u) ≥ b

but for any binary variable xj with j /∈ Imax it holds

∆max(a|Imax∪j , `
′, u′) + ∆max(a|N\(Imax∪j), `, u) < b ∀j ∈ (supp(a) ∩ I) \ Imax.

If such a set exists, all continuous variables can be canceled with their global
bound without weakening the dual proof if they are never sufficient to prove
infeasibility, i.e.,

∆max(a|Imax , `′, u′) + ∆max(a|I\Imax , `, u) + ∆min(a|N\I , `, u) ≥ b.

In that case the assignment of one additional binary variable xj with j /∈ Imax

to its current local bound is always needed to prove infeasibility, independently
from the assignment of the continuous variables.

Cancellation with Variable Bound Constraints Next to variable bounds
that are explicitly given by the problem formulations, modern MIP solvers detect
and use so-called variable bound constraints (Gamrath et al., 2019).

Definition 3 (Variable Bound Constraint (Gamrath et al., 2019)). Let bl, bu ∈
R, c ∈ R with c 6= 0. A variable bound constraint has the form

bl ≤ x+ cy ≤ bu,

where x is a continuous or integer variable and y a binary or integer variable.

If bl = −∞ and bu finite, the constraint gives an upper bound on x, while
a lower bound on x is given if bl is finite and bu = ∞. A typical example of
variable upper bound constraints are so-called big-M constraints x ≤My, where
M is a (usually) very large constant and y is binary. Other typical use-cases are
precedence constraints in start time variables in scheduling.

12

Let NV ⊆ supp(a) be the index of variable for which a compatible variable
bound constraint exists. A variable bound constraint on variable xj with aj > 0
is compatible if it defines an upper bound. Analogously, a variable lower bound
constraint on xj is compatible if aj < 0. Moreover, let V be an arbitrary set of
compatible variable bound constraints with respect to a containing for every j
at least one variable bound constraint

blj ≤ xj + cjkyk ≤ buj

such that yk is binary or general integer, respectively, if xj is general integer or
continuous, respectively. Since yk defines a bound on xj , we identify variable
bound constraint in V by the tuple (j, k).

Given the sets NV and V, one can construct an alternative proof φV (a)Tx ≥
ψV (b0), where

φV (a)j =

0, if j ∈ NV
aj −

∑
k 6=j

(k,j)∈V

akckj , if j /∈ NV (9)

ψV (b0) = b0 −
∑
j∈NV

(j,k)∈V

aj{blj , buj }. (10)

Proposition 4. Let aTx ≥ b0 be a globally valid dual proof constraint and
φV (a)Tx ≥ ψV (b0) be a modified constraint following (9)– (10) with respect
to the local bounds `′ and u′. For every j ∈ NV with (j, k) ∈ V and blj =
`′j + cjk{`′k, u′k} or u′j + cjk{`′k, u′k} = buj it holds

νviol(a, b0, `
′, u′) = νviol(φV (a), ψV (b0), `′, u′).

The proof of the proposition follows by construction because only variable
bound constraints that are satisfied with equality with respect to the local
bounds are used for substitution.

By construction, the substitution of variables with variable bound con-
straints does not need to lead to a smaller support in general. However, it
can improve the capability of propagating the modified infeasibility proof, as
the following example shows.

Example 5. Let x1+x2− 1
2y ≥ 1, x1, x2 ∈ {0, 1} with `j = `′j = 0, uj = u′j = 1,

y ∈ Z with 0 ≤ y ≤ 4. Moreover, let y − 2x1 ≥ 0 be a variable lower bound
constraint of y. Applying (9) and (10) leads to

x1 + x2 − 0.5y ≥ 1
− x1 + 0.5y ≥ 0

}
=⇒ x2 ≥ 1.

Let x1 + x2 − z ≥ 1, x1, x2 ∈ {0, 1} with `j = `′j = 0, uj = u′j = 1, z ∈ R with
0 ≤ z ≤ M and M > 2. Moreover, let z −Mw ≥ 0 be a variable lower bound

13

constraint of z with w ∈ {0, 1}. Applying (9) and (10) leads to

x1 + x2 − z ≥ 1
+ z − Mw ≥ 0

}
=⇒ w = 0.

In our implementation we make use of both described nonzero cancellation
strategies. Firstly, we try to replace continuous and general integer variables
with a variable bound constraint that is tight with respect to the local bounds
such that no additional nonzero coefficient is introduced. Afterwards, we cancel
continuous variables that contribute to the activity of the dual proof with their
global bound following the procedure and case distinction described above.

3.1.2 Updating Procedure

During the tree search subproblems are pruned due to infeasibility or because of
the corresponding LP is proven to exceed the solution value of the currently best
known solution. This threshold is called the cutoff bound. In general, an LP
that is proven to exceed the cutoff bound can be transformed into an infeasible
LP by adding a constraint

cTx ≤ cTx?, (11)

where x? denotes the currently best known solution. In the following, we will
denote this solution as incumbent solution.

A valid proof that the LP relaxation exceeds the cutoff bound is given by
every dual feasible solution (y, r) fulfilling

yTb+ rT{`′, u′} > cTx? ⇐⇒ yTb+ (c− yTA)T{`′, u′} > cTx?, (12)

where rj denotes the reduced costs of xj for all j ∈ N . A globally valid dual
proof constraint can be derived from (12):

(yTA− c)Tx ≥ yTb− cTx?. (13)

This dual proof constraint has to be fulfilled by all improving solutions. Con-
straint (13) is globally valid since it is a convex combination of all rows Ai· and
the cutoff constraint (11) scaled by −1.

Proposition 6. Let x? be the incumbent solution and (yTA− c)x ≥ yTb− cTx?
an infeasibility proof for a boundexceeding LP with respect to local bounds `′ and
u′. For every feasible solution x̄? with cTx̄? < cTx? the dual proof constraint
can be strengthened to (yTA − c)x ≥ yTb − cTx̄? by tightening the right-hand
side. Afterwards, the strengthened constraint

(i) still proves infeasibility with respect to `′ and u′ and

(ii) is globally valid.

14

Proof. (i) yTb+ rT{`′, u′} > cTx? > cTx̄?

(ii) By construction (yTA − c)x ≥ yTb − cTx̄? is a convex combination of all
rows Ai· and the strengthened constraint (11) scaled by −1. Hence, the
dual proof constraint is globally valid.

In our implementation we use this updating scheme to strengthen dual in-
feasibility proofs derived from boundexceeding LPs each time a new incumbent
solution is found.

3.2 Mixed-Integer Rounding
Applying mixed integer rounding (MIR) cuts (Nemhauser and Wolsey, 1988,
1990) was proven to be very successful (e.g., Bixby et al., 2004; Bonami et al.,
2008) when generating strong cutting planes for mixed integer programming. It
has been shown (Nemhauser and Wolsey, 1988) that Gomory’s mixed integer
cuts (Gomory, 1960) are implied by MIR cuts. The family of mixed integer
rounding cuts has a wide range and covers structured as well as unstructured
MIPs. In this section, we will focus on complemented MIR (Marchand and
Wolsey, 2001) inequalities and we will discuss how this well-established type of
mixed integer rounding function can be used to strengthen dual proofs.

3.2.1 c-MIR Inequalities

The MIR procedure strengthens a single linear inequality by rounding the coef-
ficients of integer variables.

Theorem 7 (Cornuéjols (2008)). Consider a mixed integer set defined by a
single inequality

S := {(x, z) ∈ Zn+ × Rp+ | aTx+ gTy ≤ b}.

Let f0 = b− bbc and fj = aj − bajc. Then the inequality

n∑
j=1

(
bajc+

(fj − f0)
+

1− f0

)
xj +

1

1− f0

p∑
j=1 : gj<0

gjyj ≤ bbc (14)

is a valid inequality for conv(S).

For the proof of this theorem we refer to Cornuéjols (2008). Inequality (14)
is called MIR inequality. Note, Theorem 7 defines the MIR inequality for non-
negative variables only. However, every variable with at least one finite bound
can be shifted into the nonnegative space by complementing with one of its
(finite) bounds. Complementing variables can be used to strengthen the MIR
inequality, too. A variant of the MIR inequality combined with a special scaling
parameter was proposed by Marchand and Wolsey (2001).

15

Theorem 8 (Marchand and Wolsey (2001)). Consider a mixed integer set de-
fined by a single inequality

S := {(x, y) ∈ Zn+ × R+ | aTx+ y ≤ b, xj ≤ uj ∀j ∈ I}.

Let (T,C) be a partition of I and δ > 0. A complemented-MIR (c-MIR) for S
associated with (T,C) and δ > 0 is obtained by complementing variables in C
and dividing by δ before generating the MIR inequality.∑

j∈T
G
(aj
δ

)
xj +

∑
j∈C

G

(
−aj
δ

)
(uj − xj) ≤ bβ0c+

y

δ(1− f0)
,

where β0 = (b−
∑
j∈C ajuj)/δ, f0 = β0 − bβ0c, and G(d) =

(
bdc+ (fd−f0)+

1−f0

)
.

In the context of cutting planes, the MIR inequality is usually built from a
nonnegative linear combination of valid inequalities. A heuristic how to derive
a proper nonnegative linear combination that separates a given point (x, y)
was proposed in Marchand and Wolsey (2001), where (x, y) is valid for the LP
relaxation but violates the integrality conditions. Using the dual ray (y, r) yields
a nonnegative linear combination which is valid for the global problem, see 2.2.1.
Thus, the MIR procedure can be applied to the resulting proof constraint.

3.2.2 Applying c-MIR to Dual Proofs

In the following, we will define the partition (T,C) of I, such that we always
choose the closest bound (Marchand and Wolsey, 2001). Formally, if ` ≤ x ≤ u
is the given reference point it follows C := {j ∈ I | xj > (uj − `j)/2} and
T := I \ C.

In contrast to the classical separation procedure, where an LP-valid point
should be separated from the convex hull, no such point is given when analyzing
a subproblem with an infeasible LP relaxation. Due to this fact, there exists a
certain degree of freedom when choosing a reference point that is used for the
flow-cover separation or complementing the MIR inequality. The (arbitrary) ref-
erence point is used to compute the efficacy of the infeasibility proof before and
after applying the c-MIR procedure. We aim to strengthen the initial proof of
infeasibility such that it propagates well in the remainder of the search. Since
we aim at using globally valid proofs, the global bounds need to be used for
complementation.

The question remains which reference point to use for complementation. The
LP solution of the root node or the current incumbent solution are not related
to the current subproblem. In contrast to that, a natural choice that is related
to the bounds contributing to the activity seem to be x̂ with

x̂j =

{
uj if aj < 0,

`j if aj ≥ 0.

16

However, always using the bounds contributing to the minimal activity accord-
ing to the respective signs for complementation might in general lead to weak
local proofs, as can be seen from the following lemma.

Lemma 9. Let aTx ≤ b be a proof of local infeasibility with respect to `′ and u′
and `′ ≤ x̃ ≤ u′ be a reference point minimizing the activity of aTx. Moreover,
let δ = 1 and (T,C) and (T ′, C ′) be two partitions of I such that C ′ ⊂ C and
|C \ C ′| = 1. Further, let k ∈ C \ C ′ with ak < 0. Assume (1 − fk)uk > u′k,
G(ak) = bakc, and G(−ak) = b−akc, i.e., the fractionality of the coefficient
is smaller than the fractionality of the right-hand side in both cases. Then,
complementing with (T ′, C ′) yields a stronger local infeasibility proof with respect
to x̃.

Proof. Let R(x) :=
∑
j∈T G(aj)xj +

∑
j∈C′ G(−aj)(uj − xj) be the common

part of both inequalities after applying the c-MIR procedure

R(x) +G(ak)xk ≤ bβ0c (15)
and R(x) +G(−ak)(uk − xk) ≤ bβ0c − akuk. (16)

We show that (15) has a smaller slack than (16) with respect to x̃ under the
assumption that (1− fk)uk > u′k.

R(x̃) +G(ak)x̃k + s1 = bβ0c
and R(x̃) +G(−ak)(uk − x̃k) + s2 = bβ0c − akuk.

Assume s1 < s2:

G(ak)x̃k + s1 −G(−ak)(uk − x̃k)− s2 = akuk

⇔ G(ak)u′k + s1 −G(−ak)(uk − u′k)− s2 = akuk

⇔ G(ak)u′k −G(−ak)(uk − u′k) > akuk

⇔ (bakc+ b−akc)u′k − b−akcuk > akuk

⇔ (bakc − dake)u′k + dakeuk > akuk

⇔ −u′k + dakeuk > akuk

⇔ (1− fk)uk > u′k

Proposition 10. For arbitrary but finite lower bounds `j 6= 0 Lemma 9 gener-
alizes to

u′k < (1− fk)uk + fk`k.

The proof of the above proposition follows the proof of Lemma 9 whereby
inequality (15) changes to R(x) +G(ak)(xk − `k) ≤ bβ0c − ak`k. Based on the

17

above proposition we propose to use the reference point x̄ with

x̄j =

uj if aj > 0 and `′j ≥

uj+`j
2 ,

uj if aj < 0 and u′j ≥
uj+`j

2 ,

`j if aj > 0 and `′j <
uj+`j

2 ,

`j if aj < 0 and u′j <
uj+`j

2 ,

instead of using the global upper or lower bound depending on the sign of the
respective coefficients, when applying the c-MIR procedure to dual infeasibility
proofs. This heuristic relaxes the result of Lemma 9 and Proposition 10 by
dropping the dependency on the fractionality of the coefficients.

3.3 Filtering
Conflict graph analysis and dual proof analysis share the initial reason of infea-
sibility yTb + rT{`, u} > 0 as a common starting point (see Section 2). Both
techniques follow different paths such that the resulting constraints are of very
different nature. Conflict constraints derived from analyzing the conflict graph
rely on combinatorial arguments. Consequently, these constraints are not chal-
lenging with respect to their numerical properties and expected to be short.
Here, the shorter the conflict constraint is the stronger it is (Iwama, 1997).
This gets easily clear when looking at a conflict constraint from the SAT per-
spective, i.e., interpreting it as set of clauses which cannot be all satisfied at the
same time. Thus, adding an additional clause weakens the proof. In contrast to
that, constraints derived from dual proof analysis purely rely on the numerical
conditions of the constraints of the MIP and the properties of the dual proof
derived by solving the infeasible LP relaxation. Therefore, these proofs can be
expected to be numerically more challenging and more dense than those derived
from analyzing the conflict graph. In the case of dual proofs, “sparser is better”
does not hold anymore. Therefore, it is essential to pick the most promising
infeasibility proofs derived from dual proof analysis. In contrast to conflict con-
straints derived by conflict graph analysis, dual proof constraints rely on the
actual coefficients of the initial proof because these coefficients are needed to
define the actual constraint. We filter out dual proof constraints that might
lead to numerically unstable propagation steps. This is done by restricting the
maximal absolute range of all coefficients. For a given constraint aTx ≥ b we
consider the minimal and maximal absolute coefficient which will be denoted by

amin := min{|aj | | j ∈ supp(a)} and amax := max{|aj | | j ∈ supp(a)}.

In our implementation we discard all proof constraints for which amax/amin ex-
ceeds a threshold of 1e+8.

Dual infeasibility proofs derived by aggregating constraints Ai· weighted by
a dual ray (y, r) are often dense; but it is a priori not clear whether sparse,

18

i.e., short, dual proofs are to prefer. The reason why longer proof constraints
are assessed to be inferior against shorter proof constraints is twofold and hold
for general constraints as well. On the one hand, it is to expect that fewer
bound changes on the support of a short constraint are necessary to derive new
deductions. Therefore, constraints with a small support are expected to prop-
agate “earlier” than constraints with a large support. Moreover, there are also
technical reasons to prefer constraints with a small support. Firstly, dense con-
straints consume more memory. Secondly, certain types of constraints are much
more computational costly to propagate than others. For example, consider a
general linear constraint involving arbitrary variables and coefficients–which is
most likely the case for a dual proof. Propagating a general linear constraint
aTx ≥ b, e.g., by activity based bound tightening (Brearley et al., 1975), might
be computational costly with O(| supp{a}|). In contrast to that, set covering
constraints which contain binary variables only are very efficient to propagate
in O(1) when using the 2-literal watching scheme (Moskewicz et al., 2001).

To not systematically abolish dense dual proof we propose a dynamic thresh-
old on the size of its support to decide whether the proof should be accepted
and maintained in the remainder of the search or immediately rejected. To this
end, we consider the average density of all model constraints Ai· which will be
denoted by

supp∅(A) :=

∑
Ai·∈A | supp(Ai·)|

|A|
.

Further, let C be the set of all dual proofs currently maintained and aTx ≥ b a
new dual proof. We accept the constraint if,

supp∅(C ∪ {aTx ≥ b}) ≤ max{α supp∅(A), β|N |},

with α, β > 0. By this, we do not restrict the density of a single constraint but
rather the average density over all maintained dual proofs. Since dense dual
proof constraints are expected to cover a larger variety of reasons of infeasibility
but are computational costly during domain propagation, we try to balance
both properties. With this strategy we aim to adjust the threshold dynamically
depending on the actual density of all accepted dual proof constraints. Thus,
if sufficiently many sparse dual proof constraints are maintained at the current
point in time, we are willing to spent some more effort on dense dual proof
constraints as long as the average expected effort does not exceed the dynamic
threshold. Note that dual proof constraints with a support of size one are
immediately transformed into bound change and therefore not included in the
average density.

4 Computational Study
In this section we present an intense computational study on general MIP prob-
lems investigating the computational impact of the different ways of analyzing

19

infeasibility in MIP presented in this paper. To evaluate the individual impact
of all the different technique presented in this paper, we will analyze each of
them in detail.

In Section 4.1, we compare the impact of conflict graph analysis and dual
proof analysis. Moreover, we present computational results where both tech-
niques were simultaneously within the state-of-the-art MIP solvers SCIP and
FICO Xpress. To the best of our knowledge, these are the first implementa-
tions of a combined approach within a single solver. In Section 4.2– 4.4 we
present individual computational results for all enhancement techniques pre-
sented in Section 3.

All experiments of Section 4.2 were performed with the academic MIP solver
SCIP 5.1.0 using SoPlex 3.1.1 as LP solver (Gleixner et al., 2017). The exper-
iments in Section 4.1 were conducted with SCIP and FICO Xpress 8.6.3 FICO
Xpress Optimizer. To evaluate the generated data the interactive performance
evaluation tool (IPET) (Hendel, 2019) was used. The SCIP experiments were
run on a cluster of identical machines equipped with Intel Xeon E5-2690 CPUs
with 2.6GHz and 128GB of RAM. The FICO Xpress experiments were run on
a cluster of identical machines equipped with Intel Xeon E5-2640 CPUs with
2.4GHz and 64GB of RAM. A time limit of 7200 seconds was set in either case.

As test set we used the newly released benchmark set of Miplib 20171.
To account for the effect of performance variability (Danna, 2008; Lodi and

Tramontani, 2013) all SCIP experiments were performed with three different
global random seeds; FICO Xpress experiments were run on three different per-
mutations of the problem. Determinism is preserved because SCIP and FICO
Xpress use pseudo-random number generators only. Every pair of MIP prob-
lem and seed/permutation is treated as an individual observation, effectively
resulting in a test set of 720 instances. We will use the term “instance” when
referring to a problem-seed combination or a specific permutation of a problem.

In the following, we present aggregated results for every experiment con-
taining the number of solved instances (S) and the absolute and relative solving
times in seconds (T and TQ) and number of explored branch-and-bound nodes
(N and N Q). Absolute numbers are always given for the baseline setting,
whereas relative numbers are shown for all other settings. To aggregate the
individual observations a shifted geometric mean (Achterberg, 2007b) is used,
where a shift of 1 and 100 is used for solving time and nodes, respectively.

Relative solving times of setting s are defined by the quotient ts/tb, where
ts is the absolute solving time of setting s and tb is the absolute solving time of
setting b that is used as a baseline. An analogous definition holds for explored
branch-and-bound nodes. Thus, numbers less then one implies that the setting
s is superior and a number greater than one implies that it is inferior to the
baseline setting b. Note, that a relative solving time ts/tb corresponds to a

1http://miplib.zib.de

20

http://miplib.zib.de

Table 1: LP-based infeasibility analysis parameters of the different settings. Note,
infeasibility due to propagation remains enabled in all settings.

Parameter Description Type Value

nolpinf confgraph dualproof combined

useboundlp Analyze bound exceeding LPs. char o c d b

useinflp Analyze infeasible LPs. char o c d b

speedup factor of tb/ts.
Besides the results for the benchmark set of Miplib 20172, that are denoted

by all, the tables state the impact on instances that are affected. An instance
is called affected, if it can be solved by at least one setting within the time
limit and the number of tree nodes differs between settings. Further, the subset
of affected instances is grouped into a hierarchy of increasingly harder classes
“≥ k”. Class “≥ k” contains all instances for which at least one setting needs
at least k seconds and can be solved by at least one setting within the time
limit. As explained by Achterberg and Wunderling (2013), this excludes in-
stances that are “easy” for all settings in an unbiased manner. Detailed tables
with instance-wise computational results regarding SCIP can be found in the
electronic supplement ().

4.1 General Overview
To analyze the overall computational impact of infeasibility analysis of infeasi-
ble LPs or bound exceeding LPs within SCIP, we consider four different con-
figurations: disabled infeasibility analysis (nolpinf), conflict graph analysis
(confgraph) or dual proof analysis (dualproof) solely, and using a combina-
tion of both techniques (combined). Note, all four settings only differ in the way
how infeasible and bound exceeding LP relaxations are analyzed. Infeasibility
due to propagation remains unchanged, see Table 1 for the different configura-
tions of infeasibility analysis considered in this paper. In the following, nolpinf
is used as a baseline.

Both settings using dual proof analysis (dualproof and combined) were us-
ing all techniques described in Section 3. Aggregated results on all four settings
are shown in Table 2.

For every LP relaxation considered for infeasibility analysis, at most 10 con-
flict constraints and at most 2 dual proof constraints are stored. As suggested
by Achterberg (2007a), we store the 10 most promising conflict constraints gen-
erated by All-FUIP. When dual proof analysis is enabled, we store the modified
and strengthened dual proof and the result of applying c-MIR to that proof
constraints, if the procedure succeeds (see Section 4.3).

To maintain all conflict constraints and dual proofs we use a pool-based
approach (Witzig et al., 2017). Here, the maximal number of conflict constraints

2Excluding instances where at least one settings finished with numerical violations.

21

Table 2: Aggregated computational results on Miplib 2017 benchmark. Relative
changes by at least 5% are highlighted in bold and blue (improvement) or italic and
red (deterioration).

nolpinf dualproof confgraph combined

S T N S TQ NQ S TQ NQ S TQ NQ

all 711 324 1482 7314 317 0.998 0.975 339 0.916 0.876 342 0.897 0.851
affected 283 254 532 9885 247 0.993 0.943 269 0.799 0.707 272 0.759 0.677
≥10 274 245 620 11046 238 0.991 0.941 260 0.795 0.702 263 0.753 0.671
≥100 228 199 1113 18866 192 0.977 0.932 214 0.760 0.659 217 0.699 0.620
≥1000 151 122 2387 49751 115 1.009 0.967 137 0.697 0.575 140 0.628 0.545

maintained at the same time when using nolpinf, confgraph, and combined
was limited to 10.000. When using dualproof and combined, at most 100 dual
proofs of infeasible and 75 dual proofs of bound exceeding LPs are maintained
simultaneously. These pool sizes turned out to have the best trade-off between
additional information and time spent in evaluating these constraints. A similar
observation regarding the performance of dual proof analysis within Gurobi was
made by Achterberg et al. (2016). If one of the pools reached its limit, the
constraint that did not lead to new bound deductions for the longest time is
removed before adding the new conflict or dual proof constraint. This procedure
corresponds to an aging scheme as it is used in SAT (Moskewicz et al., 2001).

Our computational results indicate that 80 % of the instances that can be
solved by at least one of the four settings are affected by analyzing infeasible
and bound exceeding LP relaxations.

All three variants of LP infeasibility analysis are superior to SCIP without
any of these techniques. Over all subsets of instances shown in Table 2 we
observe a clear ordering. combined is superior to confgraph and confgraph is
superior to nolpinf with respect to both solving time and tree size. At the same
time dualproof is clearly inferior to both confgraph and combined but superior
to nolpinf regarding tree size. Surprisingly, dualproof has hardly any impact
regarding the solving time compared to nolpinf. However, the reduction of
the tree size on affected instances by using dual proof analysis solely is 6.7 %.
Here, our observations differ from those reported by Achterberg et al. (2016),
where dual proof analysis leads to a reduction of solving time by 6 % on affected
instances. The disparity in the observations may be caused by different test sets
and a different implementation in Gurobi, which is tuned to relay solely on dual
proof analysis.

The version that combines both conflict graph analysis and dual proof anal-
ysis (combined) solves 18 additional instances compared to nolpinf and 3 more
instances compared to confgraph. In our experiments the impact on the tree
size by applying conflict analysis is consistently larger than the impact on the
overall solving time. This observation is to expect because every additional
constraints derived from either of the presented techniques and considered in
the remainder of the search increases the time spent at every node of the search
tree, i.e., during domain propagation.

22

Table 3: Aggregated computational results on Miplib 2017 benchmark for FICO
Xpress. Relative changes by at least 5% are highlighted in bold and blue
(improvement) or italic and red (deterioration).

nolpinf confgraph combined

S T N S TQ NQ S TQ NQ

all 693 515 77.5 7024 530 0.926 0.876 529 0.909 0.856
affected 350 330 225 70842 344 0.847 0.784 343 0.833 0.772
≥10 306 286 394 90997 300 0.832 0.779 299 0.815 0.763
≥100 224 204 948 137229 218 0.780 0.728 217 0.767 0.719
≥1000 118 98 2794 287999 112 0.706 0.648 111 0.699 0.642

On affected instances we observed a success rate of 83 % for combined, i.e.,
the portion of analyzed infeasible and bound exceeding LP relaxations from
which at least one conflict constraint or dual proof could be derived. dualproof
and confgraph yield a success rate of 67 % and 34 %, respectively. The small
success rate of confgraph is due a very strict limit on the size of the support
to accept a conflict constraint. Due to the combinatorial nature of conflict
constraints it is known that shorter is always better. Moreover, on the set of
affected instances bound exceeding LP relaxations were analyzed 3.3 to 4.4 times
as often as infeasible LP relaxations.

On instances that are known to be infeasible confgraph and combined per-
form best while reducing the solving time by roughly 65 %. In contrast to
that, dualproof performs like nolpinf. Hence, we conclude that on infeasible
instances conflict graph analysis is superior to dual proof analysis. Note, Mi-
plib 2017 contains only 8 infeasible instances. Thus, our observation is based
on a small test set of 24 instances. On the other hand, on the set of non-
trivial feasibility instances3 confgraph performs worse compared to the set of
affected instances. Here, confgraph improves the solving time by 10.9 % (af-
fected: 20.1 %) only. In contrast to that, combined improves the solving time
by 24.5 % (affected: 24.1 %) and dualproof leads to slight slowdown of 2.3 %.
Consequently, we conclude that the combination of both conflict graph analysis
and dual proof analysis is particularly beneficial on feasibility instances.

Computational Impact of Infeasibility Analysis in FICO Xpress. Ta-
ble 2 shows the overall computational impact of using or a combination of con-
flict graph and dual proof analysis (combined), neither of the two (nolpinf), or
only conflict graph analysis (confgraph) within the state-of-the-art commercial
MIP solver FICO Xpress. Using only dual proof analysis is not easily possible
within the current FICO Xpress implementation.

Independent of the actual experiments, there are some principal differences
between the SCIP results and those of FICO Xpress. We observed a significantly
larger number of memouts. This has three major reasons. Firstly, the machines

3The set of instances with a nontrivial objective function for which the gap between the
final dual bound at the root node and the best known solution is below 0.1%.

23

on which FICO Xpress was run only have half the RAM compared to those
of SCIP. Secondly, FICO Xpress was run with 20 threads, which leads to 64
MIP tasks being created and therefore 64 copies of the problem being taken,
see Berthold et al. (2018a). Thirdly, the node throughput on hard problems was
much larger, see the “≥k” row. This leads to a much larger search tree being
created (and partly is a consequence of the larger thread number). Instances for
which at least one variant of FICO Xpress hit the memory limit were removed,
which is the reason for the smaller number of instances in the testbed.

FICO Xpress solved significantly more instances than SCIP. This increases
the number of affected instances. At the same time, FICO Xpress solved a
larger share of instances at the root node. This decreases the number of affected
instances. As a consequence, the set of affected instances differs a lot between
the two solvers, although the number (330 versus 283) is only slightly different.

Nevertheless, our observations show quite similar tendencies. As for SCIP,
conflict graph analysis gives a clear performance boost to the solver and a com-
bined approach of conflict graph and dual proof analysis gives the best perfor-
mance. Altogether, we observe a speed-up of 9%, when applying infeasibility
analysis techniques in FICO Xpress. On affected instances, the speed-up is
roughly 17%, and goes up to 30% on the hardest models. Those number are
smaller than the corresponding numbers for SCIP (10% on all, 24% on affected,
37% on the hardest). Next to the different sets of affected instances, there is
also a technical explanation for this deviation: The balancing between local
cutting and infeasibility analysis differs between the two solvers. FICO Xpress
separates significantly more cuts that are only locally valid, which constrains
the applicability and the impact of infeasibility analysis. As a consequence, only
65% of the solved instances are affected (compared to 80% for SCIP).

As for SCIP, the reductions in the number of branch-and-bound nodes are
larger than the time reductions and by using infesibility analysis techniques,
more instances can be solved. However, in marked difference, using dual proof
analysis on top of conflict graph analysis does not lead to more solved instances,
but to one instance less being solved. Nevertheless, the consistently better
running times of the combined setting lead us to the conclusion that an approach
that conducts both techniques is preferable. Consequently, this is the default
setting of FICO Xpress.

4.2 Presolving and Strengthening Techniques
To evaluate the computational impact within SCIP of the nonzero cancellation
techniques described in Section 3.1.1 and the strengthening of dual proof con-
straints based on the current incumbent solution described in Section 3.1.2, we
disable both features and compare it to combined. In the following, we will refer
to both variable cancellation strategies by cancellation, whereas the individ-
ual procedures using global variables bound and variable bound constraints,
respectively, will be called bound-cancellation and vbound-cancellation,
respectively. Moreover, we will refer to the strengthening step by update.

24

Table 4: Aggregated computational results on instances affected by applying all
cancellation techniques. Relative changes by at least 5% are highlighted in bold and
blue (improvement) or italic and red (deterioration).

cancellation disabled combined

S T N S TQ NQ

all 714 345 1334 6349 344 0.996 0.996
affected 146 146 596 26147 145 0.983 0.981
≥10 144 144 634 27527 143 0.983 0.978
≥100 119 119 1135 47143 118 0.973 0.961
≥1000 78 78 2313 144897 77 0.965 0.958

Variable Cancellation. cancellation affects 146 instances that can be solved
by at least one setting, see Table 4. On these instances, our computational ex-
periments indicate a slight performance improvement with respect to solving
time of up to 3.5 % and a reduction on the tree size by up to 4.2 % gained by ac-
tivating cancellation. The observed improvements gained by cancellation
are small but consistent over all increasingly hard groups of affected instances.
In our experiments we observed a speed up (slowdown) of at least 5 % on 36 %
(24 %) of the the affected instances when cancellation is enabled. The num-
ber dual proof constraints rejected due to restrictions on the size of the support
decreased by 73.6 % when cancellation is enabled.

Within cancellation, bound-cancellation and vbound-cancellation were
successfully applied on roughly 3 % and 7 % of all analyzed infeasible LP relax-
ations.

When disabling bound-cancellation solely 76 instances are affected. Note,
in our implementation nonzero variable cancellation with their global variable
bounds is applied to continuous variables only. On the set of affected instances,
using bound-cancellation improves the solving time by up to 6.2 %. The
reduction of the tree size is up to 7.7 %.

Compared to bound-cancellation, deactivating vbound-cancellation af-
fects 115 instances. When vbound-cancellation is enabled, the impact with re-
spect to solving time is between 2.2 % (affected) and 4.1 % (“≥1000”). Although
we observe a minor reduction of solving time on the set of affected instances,
vbound-cancellation reduces the tree size by 4.6 % to 8.1 %. Since vbound-
cancellation substitutes continuous variables with variable bound constraints
defined by general integer or binary variables, it is to expect that the time
spent for domain propagation slightly increases for this constraints. However,
the modified dual proof constraints propagate better, i.e., lead to more addi-
tional variable bound deductions, since less continuous variables are involved.

In our implementation, vbound-cancellation is called before bound-can-
cellation. Consequently, every success of vbound-cancellation might have
an immediate impact on the success rate of bound-cancellation. In our com-
putational study, we observe that the success rate with respect to applied can-
cellations of the latter reduced by 15 % when vbound-cancellation is called

25

Table 5: Aggregated computational results on instances affected by updating dual
bound exceeding proofs. Relative changes by at least 5% are highlighted in bold and
blue (improvement) or italic and red (deterioration).

update disabled combined

S T N S TQ NQ

all 715 347 1328 6415 345 1.001 0.986
affected 161 160 566 25898 158 1.005 0.990
≥10 160 159 580 26124 157 1.005 0.990
≥100 136 135 932 42217 133 1.003 0.981
≥1000 80 79 2151 165943 77 1.044 1.032

first.

Updating Dual Proofs of Bound Exceeding LPs. Dual proof constraints
derived from LP relaxations exceeding the current cutoff bound can be strength-
ened whenever a new incumbent solution is found. We will refer to this strength-
ening step by update. Enabling or disabling update affects 161 instances in our
test set, see Table 5. The reduction of the solving time and tree size on the
complete set of affected is neutral. On the hardest instances update leads to
a slowdown of 4.4 %. During the whole solving process update was applied to
35 % of all accepted dual proof constraints derived from a bound exceeding LP
relaxation. In our experiments we observed a speed up (slowdown) of at least
5 % on 31 % (29 %) of the affected instances when update is enabled.

In contrast to the previously discussed strengthening techniques, update
explicitly incorporate the objective function and the cutoff bound. Thus, it is
to expect that this kind of dual proof constraints especially works well if the
primal bound incrementally improve over time. On the other hand, if either a
near optimal solution is found right in the beginning or all solutions are found
at the very end of the tree search, update might have a noticeable impact
an the overall solving process. Consequently, the impact of this strengthening
technique strongly depends on the progress on the primal side. The better the
solutions found early in the solving process, the less impact by activating update
is to expect.

4.3 Mixed Integer Rounding
In order to generate an alternative proof of infeasibility we separate a c-MIR
(see Section 3.2.1) inequality based in the dual proof constraint after applying
the techniques discussed in Section 3.1. In the following, we will refer to this
procedure as mir-procedure. To decide whether the additionally separated
inequality should be accepted for further considerations its efficacy

b− aTx̄
max{0.000001, ‖a‖2}

26

Table 6: Aggregated computational results on instances affected by applying the
c-MIR procedure. Relative changes by at least 5% are highlighted in bold and blue
(improvement) or italic and red (deterioration).

mir-procedure disabled combined

S T N S TQ NQ

all 715 346 1335 6373 345 0.996 0.992
affected 70 69 1048 81118 68 0.932 0.950
≥10 70 69 1048 81118 68 0.932 0.950
≥100 63 62 1518 114782 61 0.895 0.933
≥1000 50 49 2240 166041 48 0.874 0.931

with respect to the reference point x̄ discussed in Section 3.2.2 is taken into
account. A positive efficacy gives the normalized violation, otherwise the nor-
malized redundancy. Thus, a larger efficacy is preferred and we only accept the
separated inequality if the corresponding efficacy is larger than the efficacy of
the dual proof constraint from which it was derived.

In our computational study mir-procedure affects 70 instances, while re-
ducing the solving time and tree size by 6.8 % and 5 %, respectively. Our compu-
tational results indicate, that harder the instances are the more benefit is gained
by applying mir-procedure. On the set of affected instances, mir-procedure
is successfully applied to 12 % of all analyzed infeasible LP relaxations. In our
experiments we observed a speed up (slowdown) of at least 5 % on 25 % (25 %)
of the affected instances when mir-procedure is enabled.

4.4 Filtering
To distinguish between dual proof constraints that are expected to be promising
in the remainder of the search and those that might lead to numerical troubles
or an increase of the time spent during propagation, we apply a filtering step as
described in Section 3.3. In the following, we refer to this step by filtering.
Both filtering due to numerical conditions and size of the support are applied
after all previously discussed techniques are applied.

Our computational study indicates that filtering has the most significant
impact among all presented techniques, see Table 7. filtering affects 135
instances and leads to a reduction of solving time and tree size by 4.5 % and
4.6 %, respectively, on these instances. The harder instances are the larger is
the impact of filtering. On the group of hardest instances, the solving time
can be reduced by 8.9 %. Moreover, it leads to 7 additionally solved instances.
In our experiments we observed a speed up (slowdown) of at least 5 % on 35 %
(33 %) of the affected instances when filtering is enabled.

By applying filtering, 34 % of the dual proof constraints were rejected,
where less than 1 % were rejected due to numerical properties, i.e., the ratio of
the maximal and minimal nonzero coefficient in absolute value were larger than
1e+8. Thus, the most important filtering criterion is the size of the support. As
described in Section 3.3, we consider the ratio of the average number of nonzeros

27

Table 7: Aggregated computational results on instances affected by filtering
dual proofs. Relative changes by at least 5% are highlighted in bold and blue
(improvement) or italic and red (deterioration).

filtering disabled combined

S T N S TQ NQ

all 715 338 1342 6378 345 0.991 0.992
affected 135 127 539 16806 134 0.955 0.954
≥10 134 126 555 16932 133 0.955 0.954
≥100 107 99 1117 34141 106 0.933 0.916
≥1000 69 61 2581 101951 68 0.911 0.899

of all maintained dual proof constraints and all model constraints.

5 Conclusion and Outlook
In this paper, we studied the combination of conflict graph analysis and dual
proof analysis for infeasible and bound exceeding LP relaxations within a single
solver. Our computational results indicate that both improve the performance
of MIP solvers, with conflict graph analysis being the more powerful technique.
A combined approach performed best, for both solvers, SCIP and FICO Xpress,
that we used for our experiments.

Furthermore, we introduced three enhancements for dual proof analysis:
presolving via variable cancellation, strengthening by applying mixed integer
rounding functions, and a filtering mechanism. All of those led to clear perfor-
mance improvements. A method to update bound-exceeding proofs, however,
did not benefit the solver.

We conclude that infeasibility analysis plays an important role for the solu-
tion of mixed integer programming problems and that a combination of different
techniques is worthwhile. The generalization of the presented methods towards
the field of mixed integer nonlinear programming provides an interesting line
for future research. First results in this direction have recently been published
in Witzig et al. (2019).

Acknowledgments
The work for this article has been conducted within the Research Campus Modal
funded by the German Federal Ministry of Education and Research (fund num-
ber 05M14ZAM).

References
T. Achterberg. Conflict analysis in mixed integer programming. Discrete Opti-
mization, 4(1):4–20, 2007a.

28

T. Achterberg. Constraint integer programming, 2007b.

T. Achterberg and T. Berthold. Hybrid branching. In W.-J. van Hoeve and
J. N. Hooker, editors, Integration of AI and OR Techniques in Constraint Pro-
gramming for Combinatorial Optimization Problems, 6th International Con-
ference, CPAIOR 2009, volume 5547 of Lecture Notes in Computer Science,
pages 309–311. Springer Berlin Heidelberg, May 2009.

T. Achterberg and R. Wunderling. Mixed integer programming: Analyzing 12
years of progress. In Facets of combinatorial optimization, pages 449–481.
Springer, 2013.

T. Achterberg, R. E. Bixby, Z. Gu, E. Rothberg, and D. Weninger. Presolve
reductions in mixed integer programming. Technical Report 16-44, ZIB,
Takustr. 7, 14195 Berlin, 2016.

T. Berthold. Heuristic algorithms in global MINLP solvers. PhD thesis, 2014.

T. Berthold and A. M. Gleixner. Undercover: a primal MINLP heuristic ex-
ploring a largest sub-MIP. Mathematical Programming, 144(1–2):315–346,
2014.

T. Berthold and G. Hendel. Shift-And-Propagate. Journal of Heuristics, 21(1):
73–106, 2015.

T. Berthold, T. Feydy, and P. J. Stuckey. Rapid learning for binary programs.
In A. Lodi, M. Milano, and P. Toth, editors, Proc. of CPAIOR 2010, volume
6140 of LNCS, pages 51–55. Springer Berlin Heidelberg, June 2010.

T. Berthold, J. Farmer, S. Heinz, and M. Perregaard. Parallelization of the
FICO Xpress-Optimizer. Optimization Methods and Software, 33(3):518–529,
2018a.

T. Berthold, P. J. Stuckey, and J. Witzig. Local rapid learning for integer
programs. Technical Report 18-56, ZIB, Takustr. 7, 14195 Berlin, 2018b.

E. R. Bixby, M. Fenelon, Z. Gu, E. Rothberg, and R. Wunderling. MIP: Theory
and practice—closing the gap. In IFIP Conference on System Modeling and
Optimization, pages 19–49. Springer, 1999.

R. E. Bixby, M. Fenelon, Z. Gu, E. Rothberg, and R. Wunderling. Mixed-integer
programming: A progress report. In The sharpest cut: the impact of Manfred
Padberg and his work, pages 309–325. SIAM, 2004.

P. Bonami, G. Cornuéjols, S. Dash, M. Fischetti, and A. Lodi. Projected
Chvátal–Gomory cuts for mixed integer linear programs. Mathematical Pro-
gramming, 113(2):241–257, 2008.

A. Brearley, G. Mitra, and H. Williams. Analysis of mathematical programming
problems prior to applying the simplex algorithm. Mathematical Program-
ming, 8(1):54–83, 1975.

29

G. Cornuéjols. Valid inequalities for mixed integer linear programs. Mathemat-
ical Programming, 112(1):3–44, 2008.

R. J. Dakin. A tree-search algorithm for mixed integer programming problems.
The Computer Journal, 8(3):250–255, 1965.

E. Danna. Performance variability in mixed integer programming. In Workshop
on Mixed Integer Programming, Columbia University, New York, volume 20,
2008.

B. Davey, N. Boland, and P. J. Stuckey. Efficient intelligent backtracking using
linear programming. INFORMS Journal of Computing, 14(4):373–386, 2002.

J. P. Dickerson and T. Sandholm. Throwing darts: Random sampling helps tree
search when the number of short certificates is moderate. In Sixth Annual
Symposium on Combinatorial Search, 2013.

P. Domschke, B. Geißler, O. Kolb, J. Lang, A. Martin, and A. Morsi. Combina-
tion of nonlinear and linear optimization of transient gas networks. INFORMS
Journal on Computing, 23(4):605–617, 2011.

J. Farkas. Theorie der einfachen ungleichungen. Journal für die reine und ange-
wandte Mathematik, 124:1–27, 1902. URL http://eudml.org/doc/149129.

FICO Xpress Optimizer. https://www.fico.com/de/products/
fico-xpress-optimization.

G. Gamrath, A. Gleixner, T. Koch, M. Miltenberger, D. Kniasew, D. Schlögel,
A. Martin, and D. Weninger. Tackling industrial-scale supply chain problems
by mixed-integer programming. Technical Report 16-45, ZIB, Takustr. 7,
14195 Berlin, 2016.

G. Gamrath, T. Berthold, S. Heinz, and M. Winkler. Structure-driven
fix-and-propagate heuristics for mixed integer programming. Math-
ematical Programming Computation, Apr 2019. ISSN 1867-2957.
doi: 10.1007/s12532-019-00159-1. URL https://doi.org/10.1007/
s12532-019-00159-1.

M. L. Ginsberg. Dynamic backtracking. Journal of Artificial Intelligence Re-
search, 1:25–46, 1993.

A. Gleixner, L. Eifler, T. Gally, G. Gamrath, P. Gemander, R. L. Gottwald,
G. Hendel, C. Hojny, T. Koch, M. Miltenberger, B. Müller, M. E. Pfetsch,
C. Puchert, D. Rehfeldt, F. Schlösser, F. Serrano, Y. Shinano, J. M. Vier-
nickel, S. Vigerske, D. Weninger, J. T. Witt, and J. Witzig. The SCIP Op-
timization Suite 5.0. Technical Report 17-61, ZIB, Takustr. 7, 14195 Berlin,
2017.

R. Gomory. An algorithm for the mixed integer problem. Technical report,
RAND CORP SANTA MONICA CA, 1960.

30

http://eudml.org/doc/149129
https://www.fico.com/de/products/fico-xpress-optimization
https://www.fico.com/de/products/fico-xpress-optimization
https://doi.org/10.1007/s12532-019-00159-1
https://doi.org/10.1007/s12532-019-00159-1

M. Guignard and K. Spielberg. Logical reduction methods in zero-one pro-
gramming—minimal preferred variables. Operations Research, 29(1):49–74,
1981.

S. Heinz and J. C. Beck. Reconsidering mixed integer programming and MIP-
based hybrids for scheduling. In International Conference on Integration of
Artificial Intelligence (AI) and Operations Research (OR) Techniques in Con-
straint Programming, pages 211–227. Springer, 2012.

G. Hendel. IPET interactive performance evaluation tools. https://github.
com/GregorCH/ipet, 2019.

B. Hiller, T. Koch, L. Schewe, R. Schwarz, and J. Schweiger. A system to
evaluate gas network capacities: Concepts and implementation. European
Journal of Operational Research, 270(3):797 – 808, 2018.

K. Iwama. Complexity of finding short resolution proofs. In I. Prívara and
P. Ružička, editors, Mathematical Foundations of Computer Science 1997,
pages 309–318, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg. ISBN
978-3-540-69547-9.

Y. Jiang, T. Richards, and B. Richards. No-good backmarking with min-conflict
repair in constraint satisfaction and optimization. In PPCP, volume 94, pages
2–4. Citeseer, 1994.

F. Kılınç Karzan, G. L. Nemhauser, and M. W. P. Savelsbergh. Information-
based branching schemes for binary linear mixed-integer programs. Mathe-
matical Programming Computation, 1(4):249–293, 2009.

A. H. Land and A. G. Doig. An automatic method of solving discrete program-
ming problems. Econometrica, 28(3):497–520, 1960.

H. Lee, J. M. Pinto, I. E. Grossmann, and S. Park. Mixed-integer linear pro-
gramming model for refinery short-term scheduling of crude oil unloading
with inventory management. Industrial & Engineering Chemistry Research,
35(5):1630–1641, 1996.

A. Lodi and A. Tramontani. Performance variability in mixed-integer program-
ming. In Theory Driven by Influential Applications, pages 1–12. INFORMS,
2013.

H. Marchand and L. A. Wolsey. Aggregation and mixed integer rounding to
solve MIPs. Operations research, 49(3):363–371, 2001.

J. P. Marques-Silva and K. Sakallah. GRASP: A search algorithm for proposi-
tional satisfiability. Computers, IEEE Transactions on, 48(5):506–521, 1999.

M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:
Engineering an efficient sat solver. In Proceedings of the 38th annual Design
Automation Conference, pages 530–535. ACM, 2001.

31

https://github.com/GregorCH/ipet
https://github.com/GregorCH/ipet

G. L. Nemhauser and L. A. Wolsey. Integer programming and combinatorial op-
timization. Wiley, Chichester. GL Nemhauser, MWP Savelsbergh, GS Sigis-
mondi (1992). Constraint Classification for Mixed Integer Programming For-
mulations. COAL Bulletin, 20:8–12, 1988.

G. L. Nemhauser and L. A. Wolsey. A recursive procedure to generate all cuts
for 0–1 mixed integer programs. Mathematical Programming, 46(1-3):379–390,
1990.

I. Pólik. (re)using dual information in MILP. In INFORMS Computing Society
conference, Richmond, VA, 2015a.

I. Pólik. Some more ways to use dual information in MILP. In International
Symposium on Mathematical Programming, Pittsburgh, PA, 2015b.

T. Sandholm and R. Shields. Nogood learning for mixed integer programming.
In Workshop on Hybrid Methods and Branching Rules in Combinatorial Op-
timization, Montréal, 2006.

M. W. Savelsbergh. Preprocessing and probing techniques for mixed integer
programming problems. ORSA Journal on Computing, 6(4):445–454, 1994.

S. Schade, T. Schlechte, and J. Witzig. Structure-based decomposition for
pattern-detection for railway timetables. In Operations Research Proceedings
2017, pages 715 – 721, 2018. doi: 10.1007/978-3-319-89920-6_95.

R. M. Stallman and G. J. Sussman. Forward reasoning and dependency-directed
backtracking in a system for computer-aided circuit analysis. Artificial intel-
ligence, 9(2):135–196, 1977.

J. Witzig and A. Gleixner. Conflict-driven heuristics for mixed integer program-
ming. 2019.

J. Witzig, T. Berthold, and S. Heinz. Experiments with conflict analysis in
mixed integer programming. In International Conference on AI and OR Tech-
niques in Constraint Programming for Combinatorial Optimization Problems,
pages 211–220. Springer, 2017.

J. Witzig, T. Berthold, and S. Heinz. A status report on conflict analysis in
mixed integer nonlinear programming. In L.-M. Rousseau and K. Stergiou,
editors, International Conference on Integration of Constraint Programming,
Artificial Intelligence, and Operations Research, pages 84–94, Cham, 2019.
Springer, Springer International Publishing. ISBN 978-3-030-19212-9.

F. You and I. E. Grossmann. Mixed-integer nonlinear programming models
and algorithms for large-scale supply chain design with stochastic inventory
management. Industrial & Engineering Chemistry Research, 47(20):7802–
7817, 2008.

32

L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik. Efficient conflict
driven learning in a boolean satisfiability solver. In Proceedings of the 2001
IEEE/ACM international conference on Computer-aided design, pages 279–
285. IEEE Press, 2001.

33

	Introduction
	Infeasibility Analysis for MIP
	Infeasibility due to Domain Propagation
	Infeasibility due to an Infeasible LP Relaxation
	An Excursion to Duality Theory
	Analysis of Infeasible LPs

	Three Enhancements for Dual Proof Analysis
	Presolving and Strengthening
	Nonzero Cancellation
	Updating Procedure

	Mixed-Integer Rounding
	c-MIR Inequalities
	Applying c-MIR to Dual Proofs

	Filtering

	Computational Study
	General Overview
	Presolving and Strengthening Techniques
	Mixed Integer Rounding
	Filtering

	Conclusion and Outlook

