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Abstract

We report on a numerical reinvestigation of the Aoki phase in lattice QCD with two flavors of

Wilson fermions where the parity-flavor symmetry is spontaneously broken. For this purpose an

explicitly symmetry-breaking source term hψ̄iγ5τ
3ψ was added to the fermion action. The order

parameter 〈ψ̄iγ5τ
3ψ〉 was computed with the Hybrid Monte Carlo algorithm at several values of

(β, κ, h) on lattices of sizes 44 to 124 and extrapolated to h = 0. The existence of a parity-flavor

breaking phase can be confirmed at β = 4.0 and 4.3, while we do not find parity-flavor breaking

at β = 4.6 and 5.0.
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I. INTRODUCTION

Spontaneous breaking of chiral symmetry is one of the main non-perturbative phenomena

of QCD explaining many features of the hadronic world, in particular of hadrons containing

u-, d- and/or s-quarks. QCD allows to interpret the light octet mesons as Goldstone bosons.

The four-dimensional (Euclidean) lattice discretization of QCD provides a unique ab-initio

non-perturbative approach. However, in this approach chiral symmetry has to be treated

with special care. At present, on the lattice this symmetry is best realized by satisfying

the Ginsparg-Wilson relation [1] for the lattice Dirac operator, e.g. employing the so-called

overlap operator [2, 3], or using the five-dimensional domain wall fermion ansatz [4–6]. In

both cases the Wilson-Dirac operator (with a bare mass parameter am0 ∈ (−2, 0)) serves as

an input for the fermionic part of the lattice discretized action.

For the Wilson-Dirac operator (which breaks chiral invariance explicitly) S. Aoki [7] has

shown that in a certain range of the hopping parameter κ (or the bare mass m0) there

is a phase in which parity and flavor symmetry are spontaneously broken simultaneously.

In agreement with literature we call it the Aoki phase. When κ approaches the border

lines of this phase all pion masses tend to zero because one is approaching a second order

phase transition. In the whole Aoki phase the charged pion states are expected to remain

massless (in case of Nf = 2 flavors) since they appear to be the Goldstone bosons related to

parity-flavor breaking. The general phase structure as proposed by Aoki is shown in Fig. 1.

It has been questioned whether the Aoki phase exists also in the continuum (in the sense

of extending to β = ∞) or, alternatively, ends somewhere at finite β. Previous investigations

of this problem did not yield a unique answer [8–13]. In this paper we present results of a

more thorough numerical analysis of this question. As it has been discussed recently [14],

the answer is of relevance for the locality behavior and the restoration of chiral invariance

in quenched and full QCD with Ginsparg-Wilson and domain wall fermions. Accordingly,

the region of the Aoki phase has to be avoided in such computations in order not to spoil

physical reliability.

Our investigation was carried out for full lattice QCD with Nf = 2 flavors of unimproved

Wilson fermions using the standard plaquette gauge action. It includes a careful extrapo-

lation of 〈ψ̄iγ5τ
3ψ〉 to vanishing external field. It shows that the Aoki phase is unlikely to

extend beyond β = 4.6 (which confirms early conclusions in Ref. [8]).
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FIG. 1: The phase diagram proposed by Aoki et al. in the (g2,m0)-plane (left hand side) and in

the (β, κ)-plane (right hand side). The shaded region labeled B denotes the phase where flavor

and parity are spontaneously broken. Both symmetries are conserved in regions labeled A.

The outline of our paper is as follows. In Section II we discuss the proposed phase

structure in greater detail. Section III provides details of our numerical simulations. In

Section IV we present our numerical results. Section V contains the discussion and our

conclusions.

II. THE PROPOSED PHASE STRUCTURE

Aoki et al. [9] have conjectured that for lattice QCD with Nf = 2 Wilson fermions there

exists a parity-flavor breaking phase which is separated from an unbroken phase (or from

unbroken phases) by second order phase transition lines. The proposed phase structure

in the (g2, m0)-plane is shown on the left hand side of Fig. 1. As can be seen from this

figure, two of those critical lines run from strong coupling to the weak coupling limit, while

further critical lines are confined to the weak coupling region. At zero coupling, pairs of

these transition lines join at points referring to the different fermion doublers. Aoki [15]

has further claimed that along the critical lines the pion triplet is massless. The neutral

pion becomes massless only on the critical lines, due to the presence of a second order phase

transition, while the charged pions turn massless on the critical lines and remain massless

inside the Aoki phase signaling that flavor symmetry is broken.

From the numerical point of view it is natural to draw the phase diagram in the

(β, κ)-plane . Using the well known relations κ = 1/(2m0 + 8) and β = 6/g2, the pro-
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posed phase structure is mapped to this plane as shown on the right hand side of Fig. 1.

Therein the symmetry m0 ↔ −(m0+8) is hidden in the reflection κ↔ −κ which is not made

explicit for simplicity. The critical line κc(β) which runs from β = 0 to infinity is nothing but

the chiral limit line of lattice QCD. Thus the scenario proposed by Aoki et al. might explain

why all pions are massless along this line despite the fact that Wilson fermions explicitly

break chiral symmetry.

In principle, the Aoki phase could be expected to exist for all values of β. In the strong

coupling region the existence of such a phase was verified by performing numerical simula-

tions of QCD with Wilson fermions as summarized in [9] and reconsidered in [10]. For this

purpose a so-called twisted mass term hψ̄iγ5τ
3ψ was added to the action which explicitly

breaks parity-flavor symmetry. Without an external field h coupling to ψ̄iγ5τ
3ψ, the pa-

rameter 〈ψ̄iγ5τ
3ψ〉 would always be zero on a finite lattice. 〈ψ̄iγ5τ

3ψ〉 has to be measured

for varying lattice size V and non-vanishing h-values. The order parameter 〈ψ̄iγ5τ
3ψ〉h=0 is

then obtained by taking the double limit in the following order

〈ψ̄iγ5τ
3ψ〉h=0 = lim

h→0
lim

V →∞

〈ψ̄iγ5τ
3ψ〉 . (1)

In the literature one finds numerical results from quenched [11] and unquenched [10, 12]

simulations at finite h which support the existence of a parity-flavor breaking phase, at least

for β ≤ 4.0. However, extrapolations in order to carry out the double limit (1) had not been

performed.

Going to larger values of β there are contradictory statements about the existence of such

a broken phase. Bitar [8] has come to the conclusion that there is no Aoki phase for β ≥ 5.0.

However, results from quenched simulations [11] suggest that the finger structure anticipated

by Aoki exists. In an analytical analysis by Sharpe and Singleton [13] it was pointed out

that in the weak-coupling regime a parity-flavor breaking phase might exist, though possibly

only in a narrow region. However, the authors argued that this is only one of two possible

options. The other option would exclude the existence of the Aoki phase. Which option is

chosen in reality could not be predicted. Thus, one has to resort to numerical simulations to

clarify whether there is a strip of parity-flavor breaking phase in lattice QCD with Wilson

fermions extending to infinite β or not.

4



III. SIMULATION DETAILS

We have simulated lattice QCD with two flavors of (unimproved) Wilson fermions with

(the Φ-version of) the Hybrid Monte Carlo algorithm [16, 17] where an even/odd decompo-

sition [18] has been employed. An explicitly symmetry breaking source term was added to

the Wilson fermion matrix MW , i.e. the two flavor fermion matrix was given by

M(h) = MW + hiγ5τ
3. (2)

The simulations were performed on lattices ranging from 44 to 124 at β-values 4.0, 4.3, 4.6,

and 5.0, with κ and h in the intervals 0.15 ≤ κ ≤ 0.28 and 0.003 ≤ h ≤ 0.04, respectively.

In our study we measured 〈ψ̄iγ5τ
3ψ〉 as a function of κ at finite h. The parameter

〈ψ̄iγ5τ
3ψ〉, which is proportional to the trace of M−1(h), was averaged over 100–1000 gauge

field configurations (see Table II) separated by trajectories of length 1. The trace was

measured with a stochastic estimator [19].

For illustration, results for 〈ψ̄iγ5τ
3ψ〉 from a 64 lattice at β = 4.0 are shown in Fig. 2. The

location of the peak determines the region where subsequent simulations on larger lattices

and smaller h were performed. In Fig. 2 the peak is around κ = 0.22. It becomes sharper

as h decreases. We have increased the lattices until measurements agreed within errors such

that we can treat our largest lattices as infinitely large. The extrapolation to vanishing h is

described in the following section.

IV. EXTRAPOLATING TO VANISHING EXTERNAL FIELD

In Fig. 3 an analysis of 〈ψ̄iγ5τ
3ψ〉 data is shown for β = 4.0 and 4.3. As can be seen

from the upper and lower left plot the interesting region is around κ = 0.22 and κ = 0.21,

respectively. At these (β, κ)-pairs further simulations were performed in order to control

finite-size effects. Data from these simulations are shown in the center plots of Fig. 3. No

finite size effects are visible in the plots except for data from the 44 lattice at β = 4.0. Hence,

the measurements of 〈ψ̄iγ5τ
3ψ〉 from the largest lattice at each h can be considered to lie

within errors on the infinite volume envelope.

The question arises how to fit these data properly. Motivated from the mean field equation

h = A0σ
3 + A1 ·(κ− κc) σ with σ ≡ 〈ψ̄iγ5τ

3ψ〉 (3)
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FIG. 2: Results for 〈ψ̄iγ5τ
3ψ〉 as a function of κ and h at β = 4.0 on a 64 lattice.

we use the ansatz

σ(h) = A+BhC + . . . . (4)

It is instructive to look at so-called Fisher plots [20, 21] (see the right hand side of Fig. 3).

From equation (3) one expects data for κ ≤ κc to lie on straight lines ending at the origin

or at the abscissa, while within the broken phase they should lie on straight lines ending at

the ordinate. As can be seen from the Fisher plots obtained the data do not lie on straight

lines and therefore do not behave mean-field like.

Using (4) with the mean field value C = 1/3 results in unstable fitting functions, but

taking C as a free parameter instead, the ansatz describes the data well. In fact, the

parameter of interest, A, is robust against the introduction of linear and quadratic correction

terms (see Table I). Furthermore, the fit parameters B and C agree within errors for both

values of β, even when introducing corrections. We conclude that the order parameter

〈ψ̄iγ5τ
3ψ〉h=0 is non-zero at (β, κ) = (4.0, 0.22) and (4.3, 0.21).

Measurements for 〈ψ̄iγ5τ
3ψ〉 at β = 4.6 are shown in the upper row of Fig. 4. Looking

at the upper left plot of the figure one sees that 〈ψ̄iγ5τ
3ψ〉 still has a peak at finite h. The

peak becomes narrower and its position is shifted from κ = 0.1986 to κ = 0.1981 as the
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FIG. 3: In the left column data for 〈ψ̄iγ5τ
3ψ〉 from a 64 lattice are shown as a function of κ at

several values of h (the lines are spline interpolations to guide the eye). The extrapolation to h = 0

in the infinite volume limit is shown in the center column of this figure. The right column shows

the Fisher plots with the corresponding fitting function. The upper row shows results for β = 4.0,

the lower one for β = 4.3.
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fit A B C D E χ2/ndf

β = 4.0 κ = 0.22

1 0.068(4) 1.07(9) 0.67(3) 0 0 0.80

2a 0.067(3) 1 0.66(2) 0.1(1) 0 0.83

2b 0.067(3) 1.03(11) 2/3 0.1(3) 0 0.81

3a 0.066(3) 1 0.65(1) 0 1(1) 0.98

3b 0.067(2) 1.05(4) 2/3 0 0.1(17) 0.84

β = 4.3 κ = 0.21

1 0.034(1) 0.99(3) 0.65(1) 0 0 0.08

2a 0.034(1) 1 0.65(1) -0.02(4) 0 0.08

2b 0.035(1) 1.11(4) 2/3 -0.2(1) 0 0.09

3a 0.035(1) 1 0.65(1) 0 -0.2(6) 0.08

3b 0.036(1) 1.06(1) 2/3 0 -1.2(9) 0.13

β = 4.6 κ = 0.1981

1a 0 1 0.63(1) 0 0 3.21

1b 0.001(2) 1 0.63(6) 0 0 4.82

1c 0 0.97(3) 0.62(9) 0 0 3.62

2a 0 1 0.63(1) -0.05(5) 0 3.36

2b 0.0005(8) 1 0.63 -0.03(3) 0 3.87

3a 0 1 0.63(1) 0 -1(1) 2.41

3b 0.0003(4) 1 0.63 0 -0.9(7) 2.79

TABLE I: The parameters of the ansatz σ(h) = A + BhC + Dh + Eh2 fitted to the data for

〈ψ̄iγ5τ
3ψ〉 at β = 4.0, 4.3 and 4.6 with no, linear, or quadratic corrections (labeled as 1, 2 or 3).

At each h the result from the largest lattice was used in the fit (for details see Table II). The data

at h = 0.003 were discarded, because these are from a 64 lattice. Also the result at β = 4.6 and

h = 0.005 was not taken into account due to low statistics. Fixed parameters are presented by

their value without giving an error. In each case the first fit (bold numbers) was used in Figs. 3

and 4, respectively.

h
β κ

0.005 0.01 0.02 0.03 0.04

4.0 0.2200 84 250 104 146 64 1000 – – 64 1000

4.3 0.2100 84 300 84 500 84 250 64 500 – –

4.6 0.1981 – – 104 170 104 250 104 200 – –

TABLE II: Statistics used for the final analysis (extrapolation) at selected κ-values for β = 4.0,

4.3 and 4.6. For the respective values of h given in the first row in the second column we report

the number of trajectories produced for each lattice size. A similar statistic was used for scanning

at neighboring κ-values.
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fit β Aβ B C Dβ χ2/ndf

4.0 0.063(2) 0

1 4.3 0.032(2) 1.0(1) 0.64(2) 0 3.4

4.6 0.004(2) 0

4.0 0.065(2) -0.8(3)

2 4.3 0.034(2) 1.5(2) 0.71(2) -0.8(3) 2.4

4.6 0.004(2) -0.7(3)

TABLE III: The parameters of the ansatz σ(h) = Aβ +BhC +Dβh fitted to the data in Table II

for 〈ψ̄iγ5τ
3ψ〉 at β = 4.0, 4.3 and 4.6 with no (fit 1) and linear (fit 2) corrections. The parameter

B and C are common to all data, while for each β there is a separate value for Aβ and Dβ,

respectively. Fixed parameters are presented by their value without giving an error.

lattice size is increased from 64 to 104. Taking the results from the 104 lattice at κ = 0.1981,

a fit using (4) can be performed. However, due to low statistics the point at h = 0.005 was

discarded and therefore some fit parameters had to be fixed. Using the fit results from the

two lower values of β, the parameter A, B and C were alternately fixed to reasonable values.

The extrapolation is consistent with a vanishing order parameter (see Table I). The same

result is obtained by inspection of the Fisher plot in Fig. 4 where the data seem to lie on

a line ending on the abscissa. This means that the order parameter 〈ψ̄iγ5τ
3ψ〉h=0 vanishes

at β = 4.6.

In addition, the parameters B and C agree within errors for all three values of β as can

be seen from Table I. Therefore, we also fitted the data globally using ansatz (4) where B

and C are common to all data, while the parameters Aβ and Dβ are different for each β. In

Table III the fit results are shown. In agreement with the results presented above, the order

parameter 〈ψ̄iγ5τ
3ψ〉h=0 is found to be finite at β = 4.0 and β = 4.3, while it vanishes at

β = 4.6. Furthermore, their values are robust against the introduction of a correction term

linear in h, while B and C are sensitive.

At β = 5.0 a vanishing order parameter becomes manifest. As can be seen from the

lower row of Fig. 4 there is still a peak. However, the plot of 〈ψ̄iγ5τ
3ψ〉 at κ = 0.18, the

extrapolation to h = 0 by the fit as well as the Fisher plot do not support a finite value of

〈ψ̄iγ5τ
3ψ〉h=0 at β = 5.0.
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FIG. 4: In the left column data for 〈ψ̄iγ5τ
3ψ〉 from lattices of various sizes are shown as a function

of κ at h = 0.005 fixed (the lines are drawn to guide the eye). The extrapolation to h = 0 in the

infinite volume limit is shown in the center column. In the right column the corresponding Fisher

plots are shown. The upper row contains data at β = 4.6 from lattices of sizes 64, 84 and 104. The

lower row shows measurements for β = 5.0 from lattices of sizes 104 and 124.
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V. DISCUSSION

In this study we have investigated how far a parity-flavor breaking phase in lattice QCD

with two flavors of dynamical Wilson fermions at zero temperature extends in β. An explic-

itly symmetry breaking term, the twisted mass term hψ̄iγ5τ
3ψ, was added to the Wilson

fermion matrix. The phase diagram was explored in the rectangle 4.0 ≤ β ≤ 5.0 and

0.15 ≤ κ ≤ 0.28.

We have presented Hybrid Monte Carlo results for the order parameter 〈ψ̄iγ5τ
3ψ〉. The

existence of a parity-flavor breaking phase could be confirmed at (β, κ) = (4.0, 0.22) and

(4.3, 0.21), where 〈ψ̄iγ5τ
3ψ〉, measured at finite h, extrapolates to a finite value at h = 0 in

the infinite volume limit. No parity-flavor breaking was found at β = 4.6 and β = 5.0. This

suggests a phase structure as shown in Fig. 5. Two squares in Fig. 5 mark points where

we were able to confirm the Aoki phase. Two stars mark points where 〈ψ̄iγ5τ
3ψ〉 has a

peak at finite h, but where our extrapolation to h = 0 is consistent with a vanishing order

parameter. Consequently these stars are labeled vestigial.

According to these results, the Aoki phase for T = 0 seems to end close to β = 4.6 and

κ = 0.1981. Rough estimates for the upper κ
(u)
c and lower κ

(l)
c bound of the Aoki phase are

β = 4.0 : 0.215 ' κ(l)
c < 0.220 0.220 < κ(u)

c < 0.225

β = 4.3 : 0.205 < κ(l)
c < 0.210 0.210 < κ(u)

c < 0.215 .

The pair (β, κ) = (4.0, 0.215) seems to be quite close to the lower boundary. We conclude

this from the behavior of 〈ψ̄iγ5τ
3ψ〉 in conjunction with the behavior of the pion norm

[22] (which also has been measured during our simulations). At this (β, κ)-pair 〈ψ̄iγ5τ
3ψ〉

extrapolates to zero at h = 0, whereas the pion norm seems to diverge as h → 0. Such

behavior is expected close to critical lines κc(β).

Referring to the discussion of the anticipated phase diagram in Section II, the results

presented here do not indicate a parity-flavor breaking phase at β ≥ 4.6 which was originally

claimed to exist at all β (see Fig. 1). This is suggested not only by the extrapolation of

〈ψ̄iγ5τ
3ψ〉 to h = 0 in section IV, which yields 〈ψ̄iγ5τ

3ψ〉h=0 = 0 at β = 4.6 and β = 5.0,

but also by the observation that the peak of 〈ψ̄iγ5τ
3ψ〉 decreases in height and width as

β increases. The parity-flavor breaking phase seems to be pinched off near β = 4.6 as

illustrated in Fig. 5. From the numerical point of view we agree with Bitar [8], who has
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breaking phase. The point (β, κ)=(4.0, 0.215) seems to lie very close to the border of the broken

phase.

found no evidence of such a broken phase for β ≥ 5.0.

On the other hand, although 〈ψ̄iγ5τ
3ψ〉 decreases, a non-vanishing value at h = 0 in

the infinite volume limit is not excluded. A decreasing width could have been expected

from the phase structure in Fig. 1. The fact that the peak becomes narrower implies that a

high resolution scan in κ is required at larger values of β. In addition, lattices much larger

than 124 would be needed. With this in mind it is comprehensible that the results presented

in Ref. [8] could not indicate a broken phase for β ≥ 5.0 just because of the small lattice

sizes used (64, 84 and 104). While we find no numerical evidence for the existence of the

Aoki phase for β ≥ 4.6 one cannot exclude that the phase might be found with methods to

be invented similar to reweighting.

A further interesting observation we made is that the data behave differently when ap-

proaching the parity-flavor breaking phase at fixed β from κ > κ
(u)
c compared with the

12



approach from κ < κ
(l)
c . First, the peaks of 〈ψ̄iγ5τ

3ψ〉 as a function of κ are asymmetric.

Second, an autocorrelation analysis of 〈ψ̄iγ5τ
3ψ〉 shows that measurements to the right of

the peak (above of the Aoki phase) are significantly stronger correlated than at all smaller

κ-values.

In view of the fact that the region above the Aoki phase is the region of interest for

the insertion of the Wilson-Dirac operator into the overlap form [3] of the massless fermion

operator a still more extensive investigation of this area might be worthwhile to do.
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