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Abstract

We propose a partially functional autoregressive model with exogenous variables
(pFAR) to describe the dynamic evolution of the serially correlated functional data.
It provides a unified framework to model both the temporal dependence on multiple
lagged functional covariates and the causal relation with ultrahigh-dimensional exoge-
nous scalar covariates. Estimation is conducted under a two-layer sparsity assump-
tion, where only a few groups and elements are supposed to be active, yet without
knowing their number and location in advance. We establish asymptotic properties
of the estimator and investigate its finite sample performance along with simulation
studies. We demonstrate the application of pFAR with the high-resolution natural
gas flows in Germany, where the pFAR model provides insightful interpretation as
well as good out-of-sample forecast accuracy.
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1 Introduction

Functional data or quasi-functional data are available in various fields ranging from medicine

to economics and finance. They usually exhibit a serial dependence across time and some-

times are collected together with high-dimensional scalar data. There has been a growing

demand on a powerful statistical modeling to utilize this rich information contained in

the large scale of mixed-type data to describe and predict the dynamic evolution of the

dependent data in an unified framework.

A number of models have been proposed to study the dependence of functional data,

such as functional linear models (Ramosay and Dalzell 1991; Yao et al. 2005; Matsui and

Konishi 2011; Kong, Staicu and Maity 2016), generalized functional linear models (Müller

and Stadtmüller 2005; Gertheiss et al. 2013), functional additive models (Müller and Yao

2008; Müller et al. 2013; Fan et al. 2015) and historical functional linear models (Malfait and

Ramsay 2003; Harezlak et al. 2007; Brockhaus et al. 2017), where response can be either

functional or scalar and covariates only contain functional variables. As for the mixed-

type covariates, i.e., with both functional and scalar variables, the functional partially

quantile regression model (Lu et al. 2014), the generalized functional linear model where

the response is in the exponential family (Crainiceanu et al. 2009; Goldsmith et al. 2011)

and the partially functional linear model (Kong, Xue, Yao and Zhang 2016) have been

proposed, where the response variables are assumed to be IID.

In practice, functional data collected over time naturally involves serial dependence.

Bosq (1991) pioneered the functional autoregressive (FAR) model and developed the func-

tional Yule-Walker estimator, see also Besse et al. (2000). Bosq (2000) extended the work

to the autoregressive process of order p in Hilbert space using cross-covariance operators,

which triggered a vivid development of the FAR model, such as the FARX model with

exogenous functional covariates (Damon and Guillas 2002; Chen et al. 2018), the convolu-
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tional FAR model (Liu et al. 2016), the adaptive FAR model (Chen and Li 2017) and the

varying coefficient FAR model (Xu et al. 2017).

Our interest is to incorporate all the available covariates, both functional and scalar,

in a unified modeling framework to explore both the serial dependence and the casual

relationship between a functional response and the large-dimensional functional and scalar

covariates, which is named partially Functional AutoRegressive (pFAR) model. Direct

estimation of pFAR easily leads to overfitting due to the curse of dimensionality, making

out-of-sample prediction inaccurate. More importantly, an overparametrized model is hard

to deliver a clear and insightful interpretation to the essential dependence of data. For

example, the demand and supply of natural gas, a key energy resource for Germany and

many other countries, are potentially influenced by a huge number of factors, e.g., its

own past values recorded as daily curves, the cycles of working routines, the temperatures

in different locations of the gas transmission network, the market prices and the supply of

renewable energy resources. A high-precision modeling is required for an efficient operation

of the gas transmission network, where the knowledge of who are the active covariates is

valuable.

Regularized estimation provides a remedy. Instead of assuming all the covariates are

relevant, it is to detect key variables that are essentially driving the dynamics of the response

variable. Tibshirani (1996) proposed the least absolute shrinkage and selection operator

(LASSO) for variable selection under sparse regularity; see also the adaptive LASSO (Zou

2006), the smoothly clipped absolute deviation (SCAD) (Fan and Li 2001) and the least

angle regression selection (LARS) (Efron et al. 2004). Grouping structures often arise in

problems with large-scale variables where a number of variables naturally forms a group

with predetermined characteristics. The group LASSO and group LARS (Yuan and Lin

2006) as well as the group SCAD (Wang, Chen and Li 2007; Huang et al. 2012) select active

groups under sparse regularity selections, which, however, do not yield sparsity within a
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group. The sparse group LASSO (Simon et al. 2013) and the multivariate sparse group

LASSO (Li et al. 2015) detect both the active groups and the active elements within the

selected group simultaneously.

In our study, the sparse group LASSO penalty is adopted to detect the active lagged

functional and scalar variables. A forward-looking criterion is developed to achieve variable

selection at both the group and elementary levels. We establish the asymptotic consistency

and sparsity for the pFAR estimator. The finite-sample performance is investigated along

with simulations, which shows that both the active elements and groups are accurately

selected with robust performance. Moreover, we implement the pFAR model to analyze

and predict the day-ahead natural gas flow curves of various types of nodes in the high-

pressure gas pipeline network in Germany. The pFAR model detects the essential and

interpretable factors from seven lagged gas curves and 85 scalar covariates. It performs

good forecasting accuracy in an extensive empirical experiment.

This paper makes contributions in four aspects: 1) Develop a regularized partially

functional autoregressive model with mixed type of covariates. Our work differs from

Kong, Xue, Yao and Zhang (2016), who considered a partial functional linear model with

mixed-type covariates where the scalar response is assumed to be IID and did not study

the group structure among exogenous covariates. The pFAR model, on the other hand,

has a functional response with serial dependence, and the lagged functional covariates are

allowed to be autocorrelated. Our model also adopts certain group structures for scalar

covariates. 2) Consider the serial dependence and the impact of large-dimensional mixed-

type covariates. Liu et al. (2016), Chen and Li (2017) and Xu et al. (2017) considered the

functional autoregressive models with functional response and functional covariates, where

the focus is on the estimation of serial dependence and the estimation of constant or time-

varying operators. 3) Establish the asymptotic properties of the pFAR estimator. Damon

and Guillas (2002) and Chen et al. (2018) proposed the functional autoregressive models
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with multiple functional exogenous variables. In our case, given the large-dimensional

exogenous scalar variables, we impose regularized estimation under a two-layer sparsity,

with asymptotic consistency and sparsity. 4) Provide a powerful interpretation and accurate

out-of-sample forecast for the dynamic high-resolution gas flows in Germany.

The rest of the paper is organized as follows. Section 2 details the partial FAR model

and the associated regularization and penalty procedures. The asymptotic theories are

developed in Section 3. Section 4 investigates the finite-sample performance with Monte

Carlo experiments. Section 5 applies the proposed model to the high-resolution gas flow

data in Germany. Section 6 summarizes our findings.

2 Regularized pFAR model

In this section, we present the regularized partially Functional AutoRegressive (pFAR)

model and the corresponding penalized estimation procedure. In the pFAR framework,

the response is the dependent functional variable and the covariates are mixed with large-

dimensional scalar variables and lagged values of the functional variable.

2.1 The pFAR model

Let {Yt(τ)}nt=1 denote a series of n random curves taking values in a continuous domain

τ ∈ [0, 1] in the Hilbert spaceH. Its p lagged curves are denoted as Yt−1(τ), . . . , Yt−p(τ). Use

{zt`, ` = 1, . . . , d}nt=1 to denote d exogenous scalar covariates. Without loss of generality,

we assume the functional variables Yt(τ) and the scalar variables zt` for ` = 1, . . . , d are

normalized to have zero mean. The partially functional autoregressive model is defined as:

Yt(τ) =

p∑
j=1

∫ 1

0

βj(τ − s)Yt−j(s)ds+
d∑
`=1

γ`(τ)zt−1,` + εt(τ) (1)
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where the serial dependence of the functional response on its own lagged values is measured

by {βj(·) : j = 1, . . . , p} which are square-integral regression parameter functions inH. The

coefficient function of the scalar covariate γ`(τ) is defined in H, and εt(τ) is a strong H-

white noise with zero mean and finite second moment E‖εt(τ)‖2 < ∞. The norm ‖ · ‖ is

induced from the inner product < · > of H. We further assume that the serial dependence

controlled by {β1(·), . . . , βp(·)} and the cross-dependence indicated by {γ1(·), . . . , γd(·)}

exhibit certain sparsity. In particular, there are certain group structures among the large

number of exogenous variables and only a small number of them are nonzero. However,

the number of active groups and active elements are unknown. Bosq (2000) pioneered

a Hilbertian autoregressive model of order p, named ARH(p), on functional space where

the serial dependence is controlled by the bounded linear AR operators from H to H. In

the pFAR model, the autoregressive term is a special generalization of the ARH(p) model

with the AR operators being specified as the regression functions {βj(·) : j = 1, . . . , p}.

The incorporation of the high-dimensional exogenous variables also differentiates the pFAR

model from the ARH(p), as pFAR captures both the serial dependence in the functional

time series and the causal relationship of the exogenous factors.

2.2 Fourier expansion and sieves

The functional data is defined in an infinite parameter space. To enable estimation with

finite sample, one idea is to decompose the infinite-dimensional process to finite parame-

ter space with information loss controlled, such as B-splines expansion (Liu et al. 2016),

functional eigenbasis expansion (Kong, Xue, Yao and Zhang 2016) and Fourier expansion

(Chen and Li 2017). Without loss of generality, we consider the Fourier basis expansion

motivated by the data’s periodicity characteristics and computational tractability. We rep-

resent the functional terms, both functional response and functional coefficients, using the

trigonometric basis functions: Φ0 = I[0,1], Φ2k(τ) =
√

2cos2πkτ and Φ2k−1(τ) =
√

2sin2πkτ
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in L2([0, 1]),

Yt(τ) = at,0 +
∞∑
k=1

[bt,kΦ2k−1(τ) + at,kΦ2k(τ)], βj(τ) = uj,0 +
∞∑
k=1

[vj,kΦ2k−1(τ) + uj,kΦ2k(τ)],

γ`(τ) = h`,0 +
∞∑
k=1

[f`,kΦ2k−1(τ) + h`,kΦ2k(τ)], εt(τ) = ηt,0 +
∞∑
k=1

[ωt,kΦ2k−1(τ) + ηt,kΦ2k(τ)],

where at,0, at,k, bt,k are the Fourier coefficients for Yt(τ); uj,0, uj,k, vj,k are for βj(τ); h`,0,

h`,k, f`,k are for γ`(τ), and ηt,0, ηt,k, ωt,k are for the innovation εt(τ).

Now the functional variables and functional coefficients are characterized by the dis-

crete Fourier coefficients. There are, however, infinite Fourier coefficients represented by

at,0, at,k, bt,k even for the observed functional data Yt(τ), as k = 1, . . . ,∞. Estimating infi-

nite coefficients with a finite number of samples is computationally infeasible. Grenander

(1981) proposed constructing a sequence of subspaces {Θs}, called sieves, which are the

subspaces of the original infinite-dimensional space Θ. The sieves need to be compact and

nondecreasing with Θs ⊆ Θs+1 ⊆ · · · ,⊆ Θ, and the union of the subspaces
⋃

Θs is dense in

Θ. See Grenander (1981) and Chen (2007) for more theoretical details and implementations

of sieve.

Let {Θsn} denote the finite-dimensional linear space of the trigonometric polynomials

on [0, 1] of degree sn or less, that is

Θsn =

{
K(τ) ∈ L2|K(τ) = θ01[0,1] +

sn∑
k=1

θkΦ2k(τ) +
sn∑
k=1

ϑkΦ2k−1(τ),

sn∑
k=1

k2θ2k + k2ϑ2
k ≤ csn, θ0, θk, ϑk ∈ R, τ ∈ [0, 1]

}
,

(2)

where {θ0, θk, ϑk} are the coefficients of Fourier expansion for functional terms, i.e. Yt(τ),

βj(τ), γ`(τ), and εt(τ). And c is a positive constant that makes the constraint satisfied
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without sacrifice of the growth rate of sn. Here sn is a hyperparameter for sieve. It controls

the smoothing degree and balances bias and variance of the approximation projected on the

sieve space. We have sn →∞ as n→∞, that is the number of parameters increases with

the sample size. Define the number of basis/the dimensionality of Θsn as S = 2 ∗ sn + 1.

Denote the approximation of functional terms as Yt,sn(τ), βj,sn(τ), γ`,sn(τ), and εt,sn(τ)

in the sieve space respectively. We carry the approximation of the functional terms over

{Θsn} into the pFAR model. With the orthogonality property of the complete Fourier

basis, we obtain a relationship of the Fourier coefficients that follows a discrete ARX(p)

process:

at,0 =

p∑
j=1

uj,0at−j,0 +
d∑
`=1

h`,0zt,` + ηt,0

at,k =
1√
2

p∑
j=1

(uj,kat−j,k − vj,kbt−j,k) +
d∑
`=1

h`,kzt,` + ηt,k, k = 1, . . . , sn

bt,k =
1√
2

p∑
j=1

(uj,kbt−j,k + vj,kat−j,k) +
d∑
`=1

f`,kzt,` + ωt,k, k = 1, . . . , sn

(3)

By projecting the functional terms into {Θsn}, the estimation of βj(τ) and γl(τ) can be

solved over the finite sieve space.

Let yt = (at,0, bt,1, at,1, . . . , bt,sn , at,sn)′ ∈ RS be the Fourier coefficients of Yt,sn(τ), and

zt = (zt,`, . . . , zt,d)
′ ∈ Rd be the covariates vector, and let et = (ηt,0, ωt,1, ηt,1, . . . , ηt,sn)′ ∈

RS be the Fourier coefficients of εt,sn(τ) at time t. The pFAR model under {Θsn} is

represented as:

yt =

p∑
j=1

yt−jβj + zt−1γ + et,

where βj is a matrix in RS×S and γ is a matrix in Rd×S. Here, βj represents the un-
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known Fourier coefficients of the AR operator βj,sn(τ), and γ corresponds to the unknown

Fourier coefficients of γ`,sn(τ) for ` = 1, . . . , d. For notational simplicity, we use xt =

(y′t−1, · · · ,y′t−p, z′t−1) to denote all the explanatory variables, and B = [β1, . . . ,βp, γ]′ ∈

RP×S to denote the unknown Fourier coefficient matrices of the regression parameter func-

tions. The pFAR model in matrix form will be further simplified as Y = XB + E where

Y = (yp+1, . . . ,yn)′ ∈ R(n−p)×S, X = (xp+1, . . . ,xn)′ ∈ R(n−p)×S and E = (ep+1, . . . , en)′ ∈

R(n−p)×S.

We assume that the Fourier coefficients of the innovation function, denoted as ηt,0,

ηt,k, ωt,k, are IID with zero mean, that is ηt,0 ∼ IID(0, σ2
0), ηt,k ∼ IID(0, σ2

ηk), and ωt,k ∼

IID(0, σ2
ωk) for k = 1, . . . , sn. To estimate the Fourier coefficients B, we consider the least-

square (LS) loss under sieve Θsn :

L(β,γ|Dn) =
n∑

t=p+1

‖yt −
p∑
j=1

yt−jβj − zt−1γ‖22

=
n∑

t=p+1

S∑
i=1

{yti − xtB.i}2

where Dn = {(Yt(τ), zt) : t = 1, . . . , n} are observations, and B.i denotes the i-th column of

B. Although an LS estimator can be obtained with fixed sn, direct estimation when d and

sn are large is inefficient and lacks interpretability. It is therefore necessary to regularize

the LS estimation by selecting and estimating the nonzero coefficients in β1, · · · ,βp and γ.

Next, we represent how to perform regularization and sparse estimation under two-layer

sparsity applying to both the groups and the elements within an active group.

2.3 Estimation via sparse regularization

We need to estimate the regression parameter functions and detect the essential dependence

in the model. To enable estimation in the large-dimensional case, we assume sparsity in
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the Fourier coefficients matrix B. In other words, not every covariate is associated with the

response. Moreover, it is useful to impose the group structures on the lagged functional

and large-dimensional scalar covariates to understand the impact of a certain category. For

example, for the gas data to be analyzed in Section 5, the covariates are naturally grouped

to several categories by domain knowledge, i.e., prices, renewable energies and temperature.

Similarly, we consider each lagged functional covariate as a group. As such, there are three

kinds of sparsity:

• Group sparsity: all elements in the group are zeros;

• Element sparsity: some elements in the group are zeros;

• Null sparsity: none of the elements is zero.

Specifically, each lagged functional covariate Yt−j(τ) is considered as one group for j =

1, . . . , p. Thus βj is considered as a group. The d scalar variables zt = (zt,1, . . . , zt,d)

are separated to m predetermined groups, representing, e.g., price, renewable energy and

temperature. As such, the total number of groups is m+p. Among them, only some groups

are active, while the rest are sparse with all elements being zero. Within the active group,

there are some active elements, while the others are zero, leading to the element sparsity.

If all the elements are nonzero, there is no sparsity, indicating that all the covariates are

significant.

Let G = {1, 2, . . . ,m+p} denote the group index set. Let G denote the group structure

set of the functional and scalar covariates on B, that is {g : Bg ∈ G} for {g ∈ G}. We use

the sparse group lasso penalty (Friedman et al. 2010; Li et al. 2015) to achieve the group

and individual variable selection. The regularized pFAR model is estimated by optimizing

the penalized least squares function under the two-layer sparsity:
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min
B

{
1

2N
‖Y−

∑
g∈G

X(g)Bg‖2F + λ
∑
g∈G

ηg‖Bg‖2 + α
∑
i,j

|Bi,j|
)}

(4)

where ‖ · ‖F is the Frobenius norm, B is the P × S parameter matrix, N = n − p and

P = pS + d. X(g) refers to the submatrix of X with the columns corresponding to the

covariates in group g. Bg denotes the coefficient submatrix of group g, and Bi,j denotes

the (i, j)-th element of B. Specifically, the L2 penalty term aims to shrink the coefficients

of inactive groups to zero and the L1 penalty term forces inactive entries within an active

group to zero. ηg is positive weight for group g to balance size difference among groups. A

default choice is usually the square root of the group size, see Huang et al. (2012) and Simon

et al. (2013). The tuning parameter λ ≥ 0 is for groups. When λ = 0, the penalty reduces

to lasso; When λ increases, the degree of group sparsity increases and the group sparsity

becomes more important. There is another tuning parameter α ≥ 0 for the individual

variables. When α = 0, the penalty becomes group lasso; when α increases, the element

sparsity involves larger weight and becomes more important.

Let B̂ be the local minimizer of (4), we derive the estimation formula of the Fourier

coefficients for βg,sn(τ) in B, i.e. β̂g when other elements of B are fixed. Assume βg belongs

to group g ∈ G for g = 1, . . . , p. Denote the tuning parameter λg := ληg. Then all Fourier

coefficients in group g will be zero, i.e. β̂g = 0 if

(〈Ug0
N
〉α)2 +

∑
gk:k=1,··· ,sn

{(〈 Ugk√
2N
〉√2α)2 + (〈 Vgk√

2N
〉√2α)2} ≤ λ2g.

Otherwise, ûj0 satisfies:

ûg0 =
〈Ug0〉Nα∥∥x1+(g−1)S
∥∥2
2

+Nλg/
∥∥∥B̂g

∥∥∥
2

,
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and for k > 0, ûjk and v̂jk respectively satisfy:

ûgk =
〈Ugk〉2Nα∥∥x2k+(g−1)S

∥∥2
2

+
∥∥x2k+1+(g−1)S

∥∥2
2

+ 2Nλg/
∥∥∥B̂g

∥∥∥
2

v̂gk =
〈Vgk〉2Nλ

−
∥∥x2k+(g−1)S

∥∥2
2

+
∥∥x2k+1+(g−1)S

∥∥2
2

+ 2Nλg/
∥∥∥B̂g

∥∥∥
2

where Ug0 = xT1+(g−1)S(Y − XB̂(−g0)).1, and B̂(−g0) denotes the estimated matrix B̂ with

the element ûg0 being replaced by zero. Similarly, Ugk = xT2k+(g−1)S(Y − XB̂
(1)

(−gk)).2k +

xT2k+1+(g−1)S(Y −XB̂
(1)

(−gk)).2k+1 where B̂
(1)

(−gk) denote the estimated matrix B̂ with the el-

ements ûgk being replaced by zeros. The subscript .2k refers to the 2k-th column of the

matrix. Vgk = xT2k+1+(g−1)S(Y − XB̂
(2)

(−gk)).2k − xT2k+(g−1)S(Y − XB̂
(2)

(−g)).2k+1 where B̂
(2)

(−gk)

denotes the estimated matrix B̂ with the element v̂gk being replaced by zeros. And 〈·〉

denotes the soft thresholding operator defined by 〈z〉λ = sign(z)max{0, |z| − λ} for real

values z and λ.

Similarly, let b`q be the (`, q)-th element of B with ` = pS + 1, . . . , P and q = 1, . . . , S,

i.e. the coefficients of γ`,sn(τ). We show the estimation formula of b`q when all the other

elements in B are fixed. Assume that b`q belongs to a group g ∈ G, then all elements in

Bg will be zero if:

∑
{`q: b`q∈Bg}

(|S`q|/N − α)2 ≤ λ2g.
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Otherwise, b̂`q satisfies:

b̂`q =
〈S`q〉Nα

‖x`‖22 +Nλg/
∥∥∥B̂g

∥∥∥
2

,

where S`q = xTl (Y−XB̂(−l)).q and B̂(−l) denotes the estimated matrix B̂ with the `-th row

being replaced by zeros.

The tuning parameters α and λ control the sparsity of the functional and scalar covari-

ates, as well as the trade-off between forecast loss and penalty. Various criteria have been

proposed to choose the penalty parameters. For example, Rice and Silverman (1991) and

Yao et al. (2005) considered using cross-validation, Wang, Li and Tsai (2007) showed that

BIC generates a consistent selection compared with generalized cross-validation, where the

latter may lead to overfitting. Kong, Xue, Yao and Zhang (2016) combined BIC and AIC

to select the penalty and truncation parameters.

In our study, we propose a forward-looking criterion to select the tuning parameters

with the optimal out-of-sample forecast accuracy. We divide the whole sample into training,

validation and testing sets and denote the intervals as T1, T2 and T3, respectively. For

practical reason, we focus on the observations at discrete points τs ∈ [0, 1] where s =

1, · · · , L of the entire trajectories of curve Yt(τ), e.g. the 24 hourly gas flows of the daily

curve. Let {Yt(τs), s = 1, · · · , L} denote the discrete points observed in the curves at time

t. Given hyperparameter sn, we choose the tuning parameters set (α∗, λ∗) by minimizing

the root mean squared error over the validation period T2:

(α∗, λ∗) = arg min
(α,λ)

{
1

|T2|L
∑
t∈T2

L∑
s=1

√
{Yt(τs)− (Ŷt,sn(τs)|α, λ)}2

}
(5)

where |T2| is the length of interval T2. (Ŷt,sn(τs)|α, λ) is the prediction of Yt(τs) using the

past observations up to time t− 1 with a given pair (α, λ) under Θsn . The fitted dynamics
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with the optimal tuning parameters will be fixed and further utilized for the out-of-sample

prediction in period T3.

3 Asymptotic Properties

In this section, we derive the asymptotic properties of the pFAR estimator.

Let B∞0 be the true Fourier coefficients matrix of infinite expansion of the parameter

functions β(τ) and γ(τ). Denote B0,sn as the projection of B∞0 on the subspace Θsn and

B̂sn ∈ RP×S be its sieve estimator, we will show the asymptotic properties in the (P × S)-

dimensional space followed by the properties in H. For notational simplicity, we replace

B0,sn and B̂sn with B0 and B̂ respectively, and let b`q be the `q-th element of B for

` = pS + 1, · · · , P and q = 1, · · · , S. That is, b`q denotes the Fourier coefficients for scalar

covariates. For Fourier coefficients of βj,sn(τ), we keep the notation of uj0, ujk, and vjk

with j = 1, . . . , p, and k = 1, . . . , sn.

Bickel et al. (2009) proved that both the prediction and the estimation error of the

LASSO estimator are bounded if the true model is known for the multiple linear regression

model, which is known as the “oracle property”. Li et al. (2015) extended the oracle in-

equality properties to a multivariate linear regression framework with sparse group LASSO

penalty. We follow this idea and show that the oracle inequality properties also exist for

the Fourier coefficients B̂. The properties are derived with two mild conditions and one

assumption holding. The conditions require that the sieve dimensionality sn goes to in-

finity with a certain rate with n −→ ∞, and also require that the Fourier coefficients of

the response curves and the scalar covariates are subGaussian processes. The assumption

imposes certain restriction on the residual matrix δ = B̂ − B0 to suffice for the main

arguments of the pFAR estimator below. See details in the supplementary materials.

In particular, we investigate the properties of the sieve estimator B̂ under Θsn . The
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properties of the pFAR estimator β̂(τ) and γ̂(τ) in H will be derived afterwards. We

prove that the difference of the prediction loss of Fourier coefficients of the response using

the sieve estimator and theoretical estimator is bounded. We also derive the asymptotic

consistency of the sieve estimator and investigate the theoretical bound of the order of

sparsity.

Theorem 3.1. Let B0 be the true unknown Fourier coefficients matrix, consider the es-

timator B̂ in (4), assume α = 2σr{log(PS)U/N}1/2 for some constant r >
√

2, denote

ςg = ληg/α for g ∈ G. And each column of error matrix E ∈ RN×S, i.e. ek has

ek ∼ N(0, σ2
kIN×N), σ = max{σ0, σ1, . . . , σS}. Let U be the maximum diagonal element

of matrix ψ =
1

N
XTX, and φmax be the largest eigenvalue of ψ. Assume the conditions

C1, C2, and Assumption 1 hold with κ1 = χ1(π1, π2, ς) and κ2 = χ2(π1, π2, ς), then with

probability at least 1− (PS)1−r
2/2, we have the following oracle bounds:

1

N
‖X(B̂−B0)‖22 ≤ 64

σ2r2U log(PS)

N

(π1/2
1

κ1
+

(
∑

g∈J2(B0)
ς2g )1/2

κ2

)2
|B̂−B0|1 ≤ 32σr

√
Ulog(PS)

N

(π1/2
1

κ1
+

(
∑

g∈J2(B0)
ς2g )1/2

κ2

)2

And the order of sparsity, i.e. the number of selected elements is bound as

Π1(B̂) ≤ 64φmax
(π1/2

1

κ1
+

(
∑

g∈J2(B0)
ς2g )1/2

κ2

)2
Theorem 3.1 builds the asymptotic properties for the Fourier coefficients under sieve if

the true model is given. It shows that the mean squared prediction error of the Fourier

coefficients for the response curves Yt(τ) is bounded by a factor of order N%−1 for some

% ∈ (0, 1) which controls the growing rate of sn. The `1 norm of the estimation error
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of Fourier coefficients for the regression parameter functions βj(τ) and γl(τ) is bounded

by a factor of order N (%−1)/2. The order of sparsity is bounded by a constant that is

related to Assumption 1. Theorem 3.1 shows the oracle inequality properties of sieve

estimator B̂, while the properties are expressed in terms of Fourier coefficients. In fact,

with N, sn −→ ∞, we have ‖B∞0 − B0‖L1 −→ 0 because B0 is the Fourier truncation of

the true B∞0 on Θsn .

Denote β̂j(τ) = ûj0+
∑sn

k=1[v̂jkΦ2k−1(τ)+ûjkΦ2k(τ)] and γ̂l(τ) = ĥl0+
∑sn

k=1[f̂lkΦ2k−1(τ)+

ĥlkΦ2k(τ)] as the parameter estimates, where the estimated coefficients {ûj0, ûjk, v̂jk} and

{ĥj0, ĥjk, f̂jk} are from B̂. Denote the forecast as Ŷt(τ) = ât,0 +
∑sn

k=1[b̂t,kΦ2k−1(τ) +

ât,kΦ2k(τ)], where the coefficients {âj0, âjk, b̂jk} are computed based on (3). We then build

the following asymptotic properties of pFAR estimator on H.

Theorem 3.2. Let βj(τ) and γ`(τ) be the true parameter functions. Under the conditions

of Theorem 3.1, we have

1
N

∑
t‖Ŷt(τ)− Yt(τ)‖22

p→ 0,

‖β̂j(τ)− βj(τ)‖1
p→ 0, j = 1, . . . , p,

‖γ̂`(τ)− γ`(τ)‖1
p→ 0 ` = 1, . . . , d.

Theorem 3.2 establishes the oracle inequality properties under H. It shows that the

`1 norm of the estimation error for the regression parameter functions βj(τ) and γl(τ)

convergences to zero in probability. The mean square prediction loss of the pFAR estimator

also convergences to zero in probability as if the true model is given.
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4 Simulation Studies

We assess the finite-sample performance of pFAR in series of simulation studies. Our

interests are to investigate the accuracy of the regularized least squares estimator and to

check the ability of detecting the active functional and scalar covariates.

Our simulation study considers two scenarios: a moderate case with four lagged func-

tional covariates and 20 exogenous scalar covariates; and a high-dimensional case with four

lagged functional covariates and 200 scalar covariates. In both scenarios, there are group

sparsity and element sparsity. The forecast accuracy is measured for both in-sample and

out-of-sample. The detection of covariates is evaluated using false zero and false nonzero

for sparsity in element and group.

4.1 Set up

The data are generated from the partially functional autoregressive model

Yt(τ) =

p∑
j=1

∫ 1

0

βj(τ − s)Yt−j(τ)ds+
d∑
`=1

γ`(τ)zt−1,` + εt(τ),

where p = 4 functional data and d = 20 or 200 scalar covariates. We impose group

sparsity on the functional covariates with j = 1, 2, meaning only the first two lags are

active and β3(τ) = β4(τ) = 0. The scalar covariates are categorized into four groups.

We let ` = 1, · · · , 8 be active, while the remaining γl(τ) = 0 for ` = 9, · · · , d. In the

moderate case with d = 20, we split the scalar covariates with equal group size of [5, 5, 5, 5]

respectively, indicating that the first two groups are active and there is also element sparsity

in the second group with γ9 = γ10 = 0. In the high-dimensional case with d = 200, the

group size of scalar varies as [20, 20, 80, 80] respectively, which means only one group is
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active and there is also element sparsity in the group.

The scalar covariates are generated from a multivariate normal distribution N(0,Σ)

with Σ(j,k) = 0.5|j−k| for any (j, k)-pair at each group. For the serial dependence, the

functional parameter βj is obtained from the Fourier expansion with basis Φ0, Φ2k(τ) and

Φ2k−1(τ) with k ≤ 2 and τ ∈ [0, 1]. In other words, we set sn = 2. Moreover, the Fourier

coefficients for βj are randomly generated from uniform distribution with uj0 ∼ U [0, 1],

ujk ∼ U [−
√

2,
√

2] and vjk ∼ U [−0.1, 0.1]. For the functional coefficients γl, the Fourier

coefficients hl0, flk and hlk are generated from uniform distribution U [−
√

2,
√

2]. For the

innovation, we have ηt,0 ∼ N(0, σ2
0), ηt,k ∼ N(0, σ2

ηk), and ωt,k ∼ N(0, σ2
ωk) with σ2

0, σk and

σ2
ωk being a random uniform [0,

√
3/3] to control the signal to noise ratio.

For each scenario, we simulate 100 series of n = 800 functional observations. We set

T1 = [1, 600] as training, T2 = [601, 700] as validation and T3 = [701, 800] as testing

to perform in-sample estimation, tuning parameter selection and out-of-sample prediction

respectively.

4.2 Evaluation

We calculate the mean squared error (MSE) for the estimates of βj(τ) and γ`(τ) over T1

as:

MSEβ =

p∑
j=1

E(‖ β̂j(τ)− βj(τ) ‖22), and MSEγ =
d∑
l=1

E(‖ γ̂`(τ)− γl(τ) ‖22),

where β̂j(τ) and γ̂`(τ) are constructed through the Fourier basis and the estimated Fourier

coefficients. ‖ · ‖22 is the `2 norm in H. The accuracy of course relies on the choice of

sn. To evaluate the impact of the sieve hyperparameter, we consider a range of sn ∈

{0, 1, 2, 3, 4, 5, 10}, which covers the true value sn = 2.
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For a practical comparison, we use the discrete observations extracted from the con-

tinuous data, denoted as Yt(τi) to be taken at L = 50 equally spaced time sequence with

{τi ∈ [0, 1] : i = 1, · · · , L}. We compute the prediction accuracy of the estimated/forecast

functional response: the in-sample MSE (inMSE) over T1 and the one-step-ahead out-of-

sample Mean Squared Forecast Error (outMSFE) over T3 by

inMSE =
1

|T1|L
∑
t∈T1

L∑
i=1

{Yt(τi)− Ŷt,sn(τi)}2, outMSFE =
1

|T3|L
∑
t∈T3

L∑
i=1

{Yt(τi)− Ŷt,sn(τi)}2,

where the prediction Ŷt,sn depends on α∗ and λ∗, the tuning parameters selected as de-

scribed in Section 2.3. For notational simplification, the hyperparameters are omitted in

the notation.

To assess sparsity detection, we compute the rate of false zero (FZ) and false nonzero

(FN). The false zero means a key covariate has failed to be detected in the analysis. In

other words, an active variable is wrongly estimated to be zero. The false nonzero, on

the other hand, means to impose spurious importance on the irrelevant covariate, wrongly

identifying it as nonzero active. We discuss sparsity detection in the functional covariates,

denoted as FZf and FNf ; scalar covariates as FZs and FNs; and groups as gFZ and gFNs:

FZf =

∑p
j=1 I(β̂j(τ) = 0|βj(τ) 6= 0)∑p

j=1 I(βj(τ) 6= 0)
, FNf =

∑p
j=1 I(β̂j(τ) 6= 0|βj(τ) = 0)∑p

j=1 I(βj(τ) = 0)
,

FZs =

∑d
`=1 I(γ̂`(τ) = 0|γ`(τ) 6= 0)∑d

`=1 I(γ`(τ) 6= 0)
, FNs =

∑d
`=1 I(γ̂`(τ) 6= 0|γ`(τ) = 0)∑d

`=1 I(γ`(τ) = 0)
,

gFZ =

∑8
g=1 I(B̂g = 0|Bg 6= 0)∑8

g=1 I(Bg 6= 0)
, gFN =

∑8
g=1 I(B̂g 6= 0|Bg = 0)∑8

g=1 I(Bg = 0)
,

where Bg denotes the Fourier coefficients in group g, and B̂g is the estimate. I(·) is the

indicator function. All the metrics take values between 0 and 1. The lower the value of the
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metric, the better detection of the active elements/groups and sparsity structure.

4.3 Results

Table 1 summarizes the element sparsity, the group sparsity and the estimation accuracy

in the two scenarios: d20 g4 m and d200 g4 h. The tuning parameters (α∗, λ∗) are selected

via optimizing the forecast accuracy over the validation set T2 via Eq. (5). Moreover, we

report the performance with respect to the hyperparameter sn ranging from 0 to 10.

The pFAR model produces a powerful and stable detection of the active elements and

groups, with FZ being always zero except one case in d200 g4 h with sn = 0. It indicates

a successful identification of all the key features, and independent from the choice of sn.

Meanwhile, FNs is, in general, small and varies little for the choice of sn. Even for the high-

dimensional case d200 g4 h, which consists of a large amount of inactive scalar covariates,

it is around 1 ∼ 2%, indicating an accurate detection of element sparsity. It does, however,

tend to overselect group sparsity and individual functional sparsity. FNf fluctuates around

50%. A further inspection shows that the over-selection is caused by choosing the lagged

functional covariate Yt−3(τ) though with small coefficients, which is possibly due to the

propagation of the serial dependence. This further affects the group selection accuracy, with

the functional covariate considered as group, leading to an error rate of around 22% ∼ 31%.

Although the choice of sn displays little influence on sparsity detection, it leads to different

estimation and prediction accuracy. There is a sharp decrease in the MSE and MSFE

when reaching to the true value sn = 2, and keeps promising and stable afterwards. This

suggests that the forward-looking criterion is appropriate for the hyperparameter choosing

and a larger value of sn has no harm.

In conclusion, the pFAR model is able to accurately select the active covariates and

groups with both moderate and a large dimensional scalar covariates. The sparsity detec-

tion is stable with varying sn. It produces accurate estimation and prediction performance

20



when the hyperparameter selection is larger or equal to the true value of sn.

Element sparsity Group sparsity Coefficients Prediction
(α∗, λ∗) sn FZf FNZf FZs FNs groupFZ groupFN MSEβ MSEγ inMSE outMSFE
d20 g4 m
(0.025, 0.004) 0 0 0.17 0 0.02 0 0.09 4.25 18.80 8.74 (0.35) 8.73 (0.78)
(0.025, 0.004) 1 0 0.51 0 0.02 0 0.26 2.03 9.43 5.70 (0.28) 5.71 (0.66)
(0.025, 0.004) 2 0 0.51 0 0.03 0 0.26 0.00 0.13 1.14 (0.01) 1.12 (0.01)
(0.021, 0.004) 3 0 0.47 0 0.05 0 0.24 0.00 0.11 1.14 (0.01) 1.12 (0.01)
(0.021, 0.003) 4 0 0.46 0 0.05 0 0.23 0.00 0.12 1.14 (0.01) 1.12 (0.01)
(0.020, 0.003) 5 0 0.46 0 0.05 0 0.23 0.00 0.10 1.14 (0.01) 1.12 (0.01)
(0.020, 0.003) 10 0 0.44 0 0.06 0 0.22 0.00 0.12 1.14 (0.01) 1.13 (0.01)
d200 g4 h
(0.028, 0.007) 0 0 0.19 0.01 0.02 0 0.25 2.72 15.49 11.71 (0.86) 11.85 (2.05)
(0.025, 0.004) 1 0 0.56 0 0.01 0 0.32 0.94 8.54 9.30 (1.00) 9.32 (2.32)
(0.025, 0.004) 2 0 0.66 0 0.01 0 0.35 0.00 0.11 1.24 (0.01) 1.22 (0.02)
(0.025, 0.004) 3 0 0.61 0 0.01 0 0.31 0.00 0.12 1.24 (0.01) 1.22 (0.02)
(0.025, 0.004) 4 0 0.56 0 0.01 0 0.29 0.00 0.12 1.24 (0.01) 1.22 (0.02)
(0.025, 0.004) 5 0 0.53 0 0.01 0 0.22 0.00 0.12 1.24 (0.01) 1.22 (0.02)
(0.025, 0.004) 10 0 0.45 0 0.01 0 0.23 0.00 0.15 1.25 (0.01) 1.22 (0.02)

Table 1: Performance comparison for two scenarios with p = 4 functional covariates, d = 20 (mod-
erate d20 g4 m) and d = 200 (high-dimensional d200 g4 h) scalar covariates. The average value
of the sparsity detection rate, estimation accuracy and the performance accuracy are reported
for different choice of sn. The standard errors of the in-sample and out-of-sample accuracy are
reported in parentheses. The tuning parameters (α∗, λ∗) are selected via optimizing the forecast
accuracy over the validation set T2.

5 Real Data Analysis

We consider the natural gas flows of two years denoted as 1 October Y1 to 30 September

Y3 in the German high-pressure natural gas transmission network. Details are omitted

due to a non-disclosure agreement. The gas flows record both demand and supply with

hourly time resolution for 24 hours, seven days a week. There are three types of nodes

(locations), which exhibit different characteristics. Municipal energy suppliers (labeled M)

serve residential and small commercial constituents. Power plants/industry (P) represent

electricity generation and factory production nodes. Border Points (B) are large nodes with

natural gas imported and exported via Germany. The question is who are the essential
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driving factors for the daily gas flow curves and whether we can accurately predict the

day-ahead gas flows of different types.

As an illustration, we take two nodes of each type and perform the dynamic analysis

of the different functional series data. On each day, the high-resolution data are converted

to daily flow curves by smoothing over the 24 hourly gas flows over each day. Figure 1

displays the flow curves of the six nodes. To provide an interpretable comparison among

different types, the gas flows are normalized for each node to have zero mean and unit

variance. There is stronger weekly seasonality in nodes M driven by the working routines

of households. Spikes are observed in nodes P due to emergent demand on electricity

generation using gas. Nodes B are generally stable and less sensitive to seasonal shift.

Though differing in trends and seasonality, there is always significant serial dependence

across all the nodes. The sample autocorrelations and cross-correlations, showing significant

values, are included in the supplementary material.

Figure 1: Daily gas flow curves at six representative nodes from 1 October Y1 to 30 September
Y3.
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Figure 2: Exogenous scalar variables: four prices, i.e., NCG, GASPOOL, TTF and Zeebruegge;
three renewable energies, i.e., solar, wind-onshore and wind-offshore and average temperature of
four zones from 1 October Y1 to 30 September Y3.

We are also provided a large number of exogenous variables, namely 85 environmental

and economic variables, including four market price values, i.e., NCG, GASPOOL, TTF

and Zeebruegge, in different networks, three renewable energy variables, i.e., solar, wind-

onshore and wind-offshore, and daily temperatures in 78 locations. The 78 locations are

further split into four geographic zones and each zone is considered as a group. Since

the variables vary in scale, the maximum price value of TTF, for example, is 2.90 and

the maximum value of wind-on-shore is 30, 158, the exogenous scalars are also normalized.

Figure 2 presents the normalized observations of the 85 scalar covariates, which shows the

similar dynamic features within a group.

We divide the sample into three phases with 365 days from 1 October Y1 to 30 Septem-

ber Y2 as the training (labeled T1), 183 days from 1 October Y2 to 31 March Y3 as vali-

dation (T2), and 182 days dated on 1 April Y3 to 30 September Y3 as forecasting period

(T3). We find sn = 1 and larger values deliver similar results. Thus, we fix sn = 1 moti-

vated by our limited experience in the simulation study. The tuning parameters (α∗, λ∗)

are selected and fixed as before over T2. At each forecast origin, forecasting is conducted

by the updated model with available data using selected covariates. Specifically, we obtain
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the h-day-ahead forecasts for each hour τs using iterative approach:

Ŷt+h(τs) =
∑
j∈J

∫ 1

0

β̂j(τs − u)Yt−j+1(u)du+
∑
`∈D

γ̂`(τs)zt,`, s = 1, . . . , 24,

where J ⊂ {1, · · · , 7} and D ⊂ {1, · · · , 85} represent the sets of selected functional and

scalar covariates respectively. We consider h=1, 7 and 14, which covers 1-day, 1-week and

2-weeks-ahead forecasts.

5.1 Essential factors

In general, the fitted model shows that gas flows of municipal energy suppliers are more in-

fluenced by weekly seasonality, price and temperature, while flows in power plants/industry

and border nodes are driven by serial dependence. Table 2 reports the estimated Fourier

coefficients for the lagged curves (autocorrelation) and those for prices and renewable en-

ergy. Here only the first Fourier coefficients are provided, as the rest, in most cases, are

small. The complete results can be found in the supplementary material. We classify the

dependence into three categories: “weak” when the absolute coefficient falls in interval

(0,0.05), “semi-strong” if it is in [0.05, 0.1], and “strong” otherwise. It shows that the

serial dependence of gas flows is dominated by the lag-1 gas flow curves, and this is stable

for various type of nodes. As expected, there is a stronger weekly dependence for nodes M,

with lag 7 in general larger than for nodes of type P and B. Surprisingly, the price effects

are weak. Renewable energy has more effect on nodes M than P and B. For instance, solar

has a semi-strong and negative effect at M-1, while it either disappears or becomes weak

for P and B.

Figure 3 visualizes the effects of temperature associated with geographical zones. In

the heatmap, columns represent gas nodes and rows are locations of temperature. The

estimated first Fourier coefficients are colored in blue (red) if negative (positive). In general,
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nodes M are more sensitive to temperature than P and B. Specifically, M nodes are almost

independent to temperature in zone-2 and related to other zones, while the effects are

generally weak and mixed, although M nodes are closer to zone-3. It indicates that, given

the other functional and exogenous variables impact, the temperature effects are mixed

among locations, and the closer positions are not necessary to have stronger effects for M

nodes. Nodes P and B are almost independent from the variation in temperature, which

is understandable given their functions.

covariates M-1 M-2 P-1 P-2 B-1 B-2
lag 1 0.78 0.52 0.74 0.80 0.43 0.76
lag 2 -0.07 -0.07 - - - -
lag 3 - 0.03 0.03 - - -
lag 4 - 0.06 - - - -
lag 5 0.05 0.05 - 0.03 0.07 0.02
lag 6 - 0.06 - - - 0.10
lag 7 0.07 0.02 0.03 0.03 - 0.02
NCG 0.03 0.02 - 0.01 - -
GASPOOL 0.02 0.04 - - - -
TTF 0.01 0.01 - - -0.03 -
Zeebruegge 0.02 0.03 - 0.01 -0.03 0.01
Solar -0.05 -0.02 - -0.03 - -
Wind-onshore 0.01 0.09 - - - -0.01
Wind-offshore 0.01 0.04 - - - -0.01

Table 2: The first estimated Fourier coefficients of parameter functions corresponding to the
lagged gas flows, price variables and energy variables for three types of gas nodes, where the
symbol “-” represents 0.

5.2 Forecast

5.2.1 Evaluation

We measure forecast accuracy in terms of level and direction as well as the out-of-sample

goodness-of-fit. For the feasibility of comparison, we convert back to the original gas

flow data when computing the forecast accuracy. Specifically, we compute the daily mean
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Figure 3: Heatmap of estimated effects (the first estimated Fourier coefficients) of temperature
on gas where the rows are gas nodes and columns are zones with blue (red) indicating negative
(positive) effects.

absolute percentage error (MAPE), the mean sign correctness proportion (MSCP) and the

out-of-sample R2 (OoR2) for h-step-ahead forecast as:

MAPEh =
1

24 · |T3|

24∑
s=1

∑
t∈T3

∣∣∣∣∣Yt+h(τs)− Ŷt+h(τs)Yt+h(τs)

∣∣∣∣∣ ,
MSCPh =

1

24 · |T3|

24∑
s=1

∑
t∈T3

I[(Yt+h(τs)− Yt+h(τs−1))(Ŷt+h(τs)− Ŷt+h(τs−1)) > 0],

OoR2
h = 1−

∑24
s=1

∑
t∈T3(Yt+h(τs)− Ŷt+h(τs))

2∑24
s=1

∑
t∈T3(Yt+h(τs)− Ȳt+h(τs))2

,

where |T3| = 182 is the forecast period length. Ȳt+h(τs) is the historical average of the

hourly flows up to time t, and we set Yt(τ0) = Yt−1(τ24).

We also consider several alternative models as comparison. The AR type models in-

clude AR(1), AR(7) and ARX, which estimate and forecast the gas flows at each hour

independently. The ARX model incorporates all the exogenous variables and LASSO is

implemented for variable selection. The FAR type models, including FAR(1) and FAR(7),
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consider the serial- and cross-dependence of the high-resolution gas flow data, but without

taking exogenous covariates into account. See supplementary materials for the models’

specific formula.

For comparison, we use the pFAR model as benchmark, and compute the relative MAPE

of an alternative model i by:

rMAPEh =
MAPEh(model i)

MAPEh(pFAR)
− 1,

where a positive (negative) rMAPEh represents better (worse) performance of pFAR than

the alternative model i, and the amount produces the percentage change against the bench-

mark. The significance of accuracy difference between pFAR model and the alternative is

measured by the Diebold and Mariano (DM) test (Diebold and Mariano 2002). Let eh1t

and eh2t denote the h-day-ahead forecast error of the two models respectively, yt is the

observed response at time t, and dht = |eh1t/yt| − |eh2t/yt| denotes the absolute percentage

loss-differential. The DM test statistic is defined:

DMh =
1
n

∑n
t=1 d

h
t√

(σ̂0 + 2
∑h−1

k=1 σ̂k)/n
,

where σ̂0 is the sample standard deviation and σ̂k is the autocovariance at lag k of the loss

differential series dht with k ≥ 1. The null hypothesis is H0 : DMh = 0 which means there

is no significant difference between two h-step-ahead forecasts.

5.2.2 Result

Figure 4 displays the 1-day-ahead forecasts of the hourly gas flows over T3 from 1 April Y3

to 30 September Y3. Although the dynamics of gas flows differ for node type, the pFAR

model is able to successfully capture the evolution of gas flows with different features, and

27



produce a powerful and stable performance. Table 3 details MSCP, OoR2 and MAPE of

the pFAR model, as well as rMAPE of the alternative models for 1−, 7− and 14−day-

ahead forecasting horizon. The best forecast model is marked in bold. Asterisk highlights

statistically significant outperformance of pFAR at 10% level based on the DM test.
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Figure 4: The hourly gas flow observations (dashed lines in blue) and 1-step-ahead forecast (solid
lines in red) at six nodes from 1:00 hour at 1 April Y3 to 24:00 hour at 30 September Y3. The
data are normalized to display.

pFAR produces good forecast accuracy with MAPE in a range of 0.043 (P-2) and 0.165

(M-2) for 1-day-ahead forecast. The accuracy naturally decreases with the forecasting

horizon h. The out-of-sample R2 is promising for nodes M, with above 88.7% and 91.50%

for one-day-ahead forecast, and 70.75% and 80.47% for 2-weeks ahead. The direction

prediction is reasonable and stable terms of in MSCP. For example, the pFAR predicts the

moving direction of gas flows well with MSCP being between 71.18% and 74.06% for 1- to

14- day-ahead forecast at nodes M, and larger than 50% for nodes P and B.

Moreover, pFAR significantly outperforms all the alternative models and horizons in

terms of rMAPE for nodes M, and the relative performance further improves when h
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increases. According to rMAPE, pFAR improves 11.2% and 18.4% against ARX, 15.5%

and 34.5% against AR(1) for the two M nodes at one-day-ahead forecast, the improvement

rates become 13.8% and 21.3% against ARX and 26.0% and 35.3% against AR(1) when

h=14. This is due to the poor accuracy generated by the alternative. We observe similar

outperformance for nodes of type B, but with less improvement. The results are however

mixed for nodes of type P. For instance, at h = 1 and 7, pFAR shows better accuracy

than the AR type models with a significant improvement between 0.9% ∼ 43.7%, and

outperforms FAR models with improvement up to 7.2%, while there is a reduction of

1.6% ∼ 3.8% in P-1 for 2-week-ahead forecast compared with all the alternative models.

Moreover, it attracts attention of the poor performance in P-1, where OoR2 is relatively

low, varying from 32.28% to 0.21% among three forecast horizons and MAPE performance

is also poor for h=14. A further inspection shows that the spikes in P-1 cause overfitting.

Specifically, it turns out that all the prices, renewable energies and some temperatures are

selected as active covariates for h=14, which is in contrast to the case for h = 1. Although

over-selection makes for a nice in-sample estimation, it usually leads to poor out-of-sample

accuracy.

In summary, pFAR in general delivers good and stable out-of-sample forecast accuracy

across different types of nodes with various features and forecast horizons. The general fore-

casting excellence benefits from the consideration of cross-dependence of multiple stochastic

processes, and the detection and incorporation of essential functional and scalar covariates

together.

6 Conclusion

We propose a partially functional autoregressive model (pFAR) to investigate the dynamics

of the functional response, depending on the lagged functional covariates and the causal

29



Model M-1 M-2 P-1 P-2 B-1 B-2
h=1

rMAPE

AR(1) +15.5%∗ +34.5%∗ +10.6%∗ +31.3%∗ +5.4%∗ +8.8%∗

AR(7) +7.8%∗ +5.4%∗ +9.7%∗ +21.2%∗ +0.6%∗ +4.0%∗

ARX +11.2%∗ +18.4%∗ +10.3%∗ +33.4%∗ +7.0%∗ +8.8%∗

FAR(1) +6.1%∗ +12.7%∗ 0 0 +2.4%∗ +1.5%∗

FAR(7) +1.4% +1.6%∗ +0.4%∗ +2.4%∗ -1.1%∗ -1.5%∗

MAPE 0.088 0.165 0.103 0.043 0.093 0.127
OoR2 pFAR 91.50% 88.71% 32.28% 90.03% 49.70% 75.78%
MSCP 74.06% 72.08% 51.40% 53.41% 52.85% 53.57%
h=7

rMAPE

AR(1) +13.3%∗ +33.6%∗ +0.9%∗ +43.7%∗ +7.6%∗ +16.7%∗

AR(7) +9.2%∗ +9.6%∗ +1.6%∗ +17.1%∗ +4.1%∗ +11.6%∗

ARX +7.3%∗ +22.0%∗ +1.2%∗ +38.4%∗ +6.0%∗ +9.7%∗

FAR(1) +8.0%∗ +13.3%∗ 0 +20.4%∗ +7.2%∗ +12.3%∗

FAR(7) +8.4%∗ +7.6%∗ +0.6%∗ +7.2%∗ +3.7% +9.0%∗

MAPE 0.152 0.228 0.128 0.064 0.138 0.172
OoR2 pFAR 73.61% 80.59% 5.98% 86.87% 16.29% 61.05%
MSCP 73.43% 71.83% 52.19% 51.98% 50.40% 53.57%
h=14

rMAPE

AR(1) +26.0%∗ +35.3%∗ -3.4% +29.3%∗ +6.7%∗ +16.5%∗

AR(7) +20.5%∗ +16.8%∗ -2.4% -1.6% +7.0%∗ +15.0%∗

ARX +13.8%∗ +21.3%∗ −3.0%∗ +21.4%∗ +6.6%∗ +6.6%∗

FAR(1) +23.8%∗ +21.7%∗ -3.8%∗ +14.2%∗ +6.5%∗ +11.4%∗

FAR(7) +21.0%∗ +16.7%∗ -3.4% -4.6% +6.9%∗ +11.2%∗

MAPE 0.169 0.247 0.140 0.081 0.136 0.206
OoR2 pFAR 70.75% 80.47% 0.21% 83.03% 12.86% 43.48%
MSCP 72.92% 71.18% 52.26% 52.98% 51.91% 53.05%

Table 3: Forecast accuracy: Out-of-sample R2, MSCP, MAPE of the pFAR model and the relative
MAPE of the alternative models for 1−, 7− and 14−day-ahead forecasts of gas flows. The
best performing model is marked in bold. The asterisk represents significant forecast accuracy
difference compared to the pFAR model according to the DW test. The positive (negative) value of
rMAPE represents better (worse) performance of pFAR, and the amount produces the percentage
change of alternative against pFAR.

relation with the high-dimensional exogenous scalar covariates. Under a two-layer sparsity

imposed to group and individual covariates, a regularized least square estimation is derived

to detect the essential lagged functional and scalar variables, and achieves variable selection

at both the group and elementary levels. A forward-looking criterion is proposed to tune the

penalty parameters. Furthermore, we develop the asymptotic oracle inequality properties

for the pFAR estimator and investigate its finite sample performance under both moderate

and high-dimensional scenarios. The pFAR model has found to be able to select the
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active covariates and groups accurately, and to provide good estimation and prediction

performance.

We applied the pFAR model to analyze the natural gas flows in the high-pressure gas

pipeline network in Germany. We found the lag-1 daily gas flow curve dominates the serial

dependence. The municipal energy suppliers nodes are more sensitive to the weekly sea-

sonality, price, renewable energy and temperature, while the power plants/industry nodes

and the border nodes are mainly driven by the serial dependence. Moreover, the pFAR de-

livers good and stable out-of-sample forecast accuracy, with superior relative performance

than alternative models across different samples and forecast horizons, by taking the cross-

dependence in the functional time series and the causal dependence driven by mixed type

exogenous covariates into consideration.

SUPPLEMENTARY MATERIAL

The supplementary materials to this paper contain a set of supplemental figures and

tables, the derivation procedures of parameter estimation and mathematical proofs of the-

orems.
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