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Abstract

Urban transportation systems are subject to a high level of variation and fluctuation in

demand over the day. When this variation and fluctuation are observed in both time and

space, it is crucial to develop line plans that are responsive to demand. A multi-period

line planning approach that considers a changing demand during the planning horizon is

proposed. If such systems are also subject to limitations of resources, a dynamic transfer

of resources from one line to another throughout the planning horizon should also be

considered. A mathematical modelling framework is developed to solve the line planning

problem with transfer of resources during a finite length planning horizon of multiple

periods. We analyze whether or not multi-period solutions outperform single period

solutions in terms of feasibility and relevant costs. The importance of demand variation

on multi-period solutions is investigated. We evaluate the impact of resource transfer

constraints on the effectiveness of solutions. We also study the effect of line type designs

and question the choice of period lengths along with the problem parameters that are

significant for and sensitive to the optimality of solutions.

Keywords: line planning; multi-period planning; public transportation; urban transporta-

tion; mathematical programming; integer programming

1 Introduction

Along with the rapid growth in demand for urban transportation systems, researchers

introduce various mathematical models for planning purposes. Public transportation

∗Corresponding Author. guvencs@sabanciuniv.edu
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planning is composed of five distinct stages including network design for infrastructure, line

planning, timetabling, vehicle scheduling (rolling stock planning), and crew scheduling [9].

The line planning problem (LPP) is a long-established problem in the context of

public transportation systems (see Schöbel [20] for a survey). LPP is solved on a public

transportation network (PTN) which is composed of several stations and direct connections

between stations. A line is a designated service by a vehicle on a path on the PTN. The

line services are provided to transport passengers who demand to travel between a pair of

stations (an origin and a destination). Based on a given PTN and a travel demand, the

LPP seeks to find a set of lines together with their frequencies.

Demand for transportation is the sine qua non of the line planning problem; simply

put, there is no necessity for transport services when there is no demand. The common

models for line planning consider a finite length planning horizon, e.g., a day, a certain part

of the day, an hour. Accordingly, the demand during that planning horizon is considered

irrespective of its timing; the problem is to find the line services and their frequencies to

satisfy the demand in a steady state manner during the planning horizon. In other words, a

static demand rate is assumed for the complete planning horizon. A comprehensive review

on the line planning problem by Schöbel [20] concludes by questioning the appropriateness

of using the same line plan all over the day. One could easily unfold this question to assess

the degree of fluctuation and variation in demand that requires the use of a nonsteady

handling. Borndörfer et al. [5] note that the demand of the Istanbul Metrobüs system is

extremely unsteady and asymmetric. They show that traditional line planning models are

not convincing for these public transportation networks and discuss the lack of a modelling

approach which adapts to the demand fluctuation during the planning horizon.

For a decision-making problem, when the problem environment or an aspect of the

problem is not necessarily steady in time, multi-period planning and optimization arises

as a remedy in the operations research literature. The use of multi-period modelling

approaches has extended from production-and-inventory planning to unit commitment

problems in electricity generation and from forestry planning to problems of routing and

scheduling over time as thoroughly reviewed by Schrage [23]. In a multi-period planning

problem, the finite-length planning horizon is dissected into (usually equal-length) periods

as opposed to considering the planning horizon as a single-period during which parameters

are stable and the problem environment is steady. Depending on the type and context of

the problem, the planning horizon may be a day or tens of years while the period length

may vary from minutes to a year (or a couple of years).

While a multi-period planning approach is a remedy for the non-steady aspects of the

problem, it convolutes the problem by bringing in essential inter-period constraints that

couple the underlying single-period problems with each other. If such constraints did not

exist, the problem would be decomposable and each single-period problem would be solved

separately. For example, the inventory balance constraints in a multi-period production

planning problem relate the ending inventory level of one period to the beginning inventory
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level of the next period. A multi-period facility location problem has to account for the

existence of facilities throughout the periods according to closing and opening decisions.

In a similar but more complicated fashion, daily unit commitment problems of electricity

generators are ruled by the start-up and shot-down decisions as operations associated with

either of these decisions may require a couple of hours to take effect during the day. As

such, the interperiod constraints may be necessary to ensure the availability of resources

throughout the periods and their allocation among the many activities and operations

associated with the process. The best-known example to this would be simultaneous

multi-period workforce and production planning problems.

In response to shortcomings of the sequential planning approach with the five stages of

urban transportation system planning, various attempts, both exact and heuristic, have

been made to integrate, in particular, two subsequent stages of the intermediate three (line

planning, timetabling, and vehicle scheduling). Schöbel [21] is the first study to discuss

an integration of these three stages by providing a general framework for integration and

also summarizes the studies on integration of two subsequent stages in the literature. It is

widely accepted that sequential planning leads to suboptimal solutions. As a matter of

fact, not considering the availability of resources at later stages of planning in the earlier

stages may even lead to infeasible solutions due to insufficiency of resources. This would

be even more critical when line plans are not bounded by the (vehicle) fleet resources and

optimal timetables cannot be realized due to insufficient vehicles ([8]).

Recognizing the connection between inter-period resource constraints in multi-period

planning and integration of line planning with planning of resources associated with later

stages of planning, we take on both challenges in the context of the line planning problem

in urban transportation systems by

• proposing a multi-period planning approach in response to high levels of fluctuation

and variation in demand, and

• integrating the multi-period strategic-level line planning decision with resource con-

straints that ensure the availability and allocation of operational resources throughout

the periods.

In the case of line planning problems, an explicit consideration of changing demand in a

multi-period setting is attempted for the first time. In the sequential planning approach,

resources are considered in the last two stages. The consideration of resource availabilities

in multi-period version of the problems in the first three stages calls for an integrated

solution of these problems, which is a major open challenge in this area of research.

We lay the foundations of a multi-period line planning approach by introducing a

multi-period line planning model in the form of an integer linear programming problem

formulation. We extend this formulation with a consideration of resource allocation and

resource transfer constraints in a multi-period setting and exemplify it with rotations

of vehicles among lines. We present computational results to exhibit the value of and
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understand conditions that call for a multi-period approach in line planning. We also

investigate the sensitivity of system characteristics and pose the period length determination

as an inherent optimization problem.

In Section 2, we provide a review of the LPP and its integration with other planning

stages. Mathematical models for multi period line planning with resource allocation

and transfers are presented in Section 3. In Section 4, we provide a comprehensive

computational study of a multi-period line planning model for the case of the Istanbul

Metrobüs system and exemplify resource transfer constraints with rotation of vehicles.

2 Literature Review

The LPP has been studied extensively in the literature with a variety of approaches.

Schöbel [20] classifies the LPP models as passenger-oriented and cost-oriented according

to their modeling approaches:

• In the passenger-oriented approach, lines along with frequencies maximize the number

of direct travelers or minimize the traveling time. Bussieck et al. [7] introduce a

first model to maximize the direct travels subject to a frequency constraint. For

minimizing the traveling time, Schöbel and Scholl [22] present a mathematical model

including restrictions on the budget. For a more detailed overview of line planning

passenger-oriented mathematical models, see [20, 17, 11].

• In the cost-oriented approach, lines are selected to minimize the total cost which is

composed of operational and fixed costs. Claessens et al. [10], with a cost minimizing

objective function, consider passenger demand in the constraints along with line

frequencies to find the optimal lines and frequencies. Later, Goossens et al. [13],

following the cost-oriented approach, develop a model called multi-line planning

problem which considers various halt patterns.

Following the modelling approach in Goossens et al.[13], new mathematical models

have been extended for the LPP. Torres et al. [24] present a cost-oriented model on a tree

network and implement it on the PTN in Quito. They minimize the total cost subject to

capacity constraints and upper bounds on the line frequencies. Torres et al. [24] consider

only closed lines which turned the Quito Trolébus system into a polynomially solvable

case. In contrast, Borndörfer et al. [4] suggest that closed lines and open lines may lead to

savings around 50% in total cost. Borndörfer et al. [5] consider an integer programming

model for the Metrobüs in Istanbul which has a line topology as Trolébus in Quito.

In the 2000s, the movement towards the integration of several planning phases has

accelerated in the LPP literature [18, 19]. Since the infrastructure of the PTN, as the

subject of the first stage planning (network design), is fixed once implemented, line planning

has received more attention in terms of integration efforts as this stage bears potential

to improve service and reduce costs simultaneously when considered together with the
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later stages of planning. Since timetabling comes next, it is the immediate stage to be

integrated with line planning.

Kaspi et al. [16] integrate line planning and timetabling to minimize the operational

costs and user inconvenience. Burggraeve et al. [6] present a heuristic approach where

line planning and timetabling are coupled with each other iteratively. Yan and Goverde

[25] also discuss an integration of line planning and timetabling with a more demand

responsive approach where they introduce “multi-periodic” timetables to refer to irregular

services running on the same section of a railway with different stop patterns and even

different cycle times. In essence, “multi-periodic” timetables offer neither periodic nor

aperiodic services in the traditional sense. Schöbel and Scholl [22] develop a novel modelling

approach to integrate line planning with passenger routes. In the same vein, Borndörfer

and Karbstein [2] discuss an alternative approach that distinguishes direct travels and

routes including transfers by means of certain inequalities.

Distinct with its approach, Schöbel [21] integrates the three planning phases: line

planning, timetabling and vehicle scheduling; a mathematical formulation of an integrated

model is presented. In addition, the shortcomings of a sequential process and the reasons

for not leading to a desirable transportation system in practice is discussed in detail.

Accordingly, in the sequential approach, a feasible solution of the previous planning stage

is considered as an input of the next stage. In case one of the planning stages is not

necessarily solved to optimality, the planner has to solve the previous stage to find a better

input.

For integration of the last two planning stages of vehicle and crew scheduling, Borndörfer

et al. [3], Freling et al. [12] and Haase et al. [14] present exact approaches to optimally

integrate and solve the vehicle scheduling and crew schheduling. The integration between

these two stages may be considered as accomplished mostly although later works study

various different aspects of both stages in an integrated manner.

According to Schrage [23], Holt et al. [15] is the first study to report a multi-period

planning approach; their motivation is the fluctuation in demand orders in a manufacturing

environment. Holt et al.[15] determine production quantities and also workforce levels for

each month in a multi-year planning horizon. In the context of line planning problems,

demand is obviously the most dynamic component of the problem environment. Demand

information is usually accompanied with temporal information. In practice, however, the

traditional LPPs do not necessarily recognize the fluctuation in demand and demand

patterns. A single-period line planning solution supposes a simplified base demand which

may be the maximum or the average demand observed in an hour during a day. However,

there are some shortcomings of these simplifying approaches:

• Considering the maximum demand for an O-D pair, undertaking a worst-case ap-

proach, may lead to unnecessary costs and low utilization of the system during the

times of the day when demand is really low.
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• With average demand, one is highly likely to find solutions with unnecessary high

frequencies for periods with low demand. Moreover, it is possible that the demand

of some O-D pairs during some periods may not be satisfied due to insufficient

frequencies.

Despite these well known shortcomings, traditional approaches rely on using static single-

period approaches as the problem is already challenging from a computational point of

view; LPPs are NP-Hard in general.

Our main motivation is to propose a multi-period line planning approach; to the best

of our knowledge, this is a first in the corresponding literature. While our work has not

been initiated with the purpose of integrating any of the planning stages, consideration

of resource availabilities and allocation of resources to processes comes naturally and

inherently with a multi-period planning. In the case of line planning problems, whether it

is rolling stock or personnel, resources may be rotated from one line to another from the

earlier periods to the later ones. The challenge is not only to determine how to allocate

resources throughout periods and among lines, but also to account for unavailabilities

during transfers and rotation of resources. As a matter of fact, our multi-period line

planning modelling approach is novel for not only taking care of a nonsteady travel demand

but also provides a new understanding of integration by considering the feasibility of

operational plans with respect to resource availabilities at the strategic level line planning

stage.

3 Mathematical Models

We develop mathematical models in the form of integer programming problems to formulate

a multi-period line planning problem (MPLPP) which is then enriched by resource transfer

and allocation constraints. Our starting point is a new LPP formulation that considers

travel demand during a continuous-time planning horizon. This idealized continuous-time

problem formulation provides a foundation to derive a multi-period line planning problem

formulation through discretization of time.

3.1 A continuous-time LPP

A LPP includes

• a directed PTN = (V,E) where V is the set of stations and E is the set of direct

transport links/connections between stations;

• a predefined set of lines L while a line l ∈ L is a simple path on PTN and defined

by a sequence of stations;

• a planning horizon [0, τ ] where De(t) ∈ N is the number of passengers to travel on

edge e ∈ E until time t ∈ [0, τ ].
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A line (service) is said to serve all the transport links (corresponding to edges in E) between

consecutive stations on the path from its starting station to the terminal station and covers

part of the demand over those edges.

A feasible solution for a LPP involves a subset of lines in L and passenger capacities of

services on lines such that the total service capacity of all lines serving an edge is sufficient

to cover the edge’s travel demand. For an edge e ∈ E, let Le ⊆ L be the set of lines that

cover its demand. In the scope of a cost-oriented optimized line plan, two types of costs are

considered: a fixed cost associated with the usage of a line service, cfl , and a variable cost

rate associated with the service capacity in time, csl , usually proportional to the length of

a line l ∈ L. ul for each line l ∈ L denotes an upper bound on the service capacity due to

physical limitations or safety regulations.

If we define

• Vl(t) to represent the passenger capacity of services provided on line l ∈ L until time

t ∈ [0, τ ], and

• γ(Vl, τ) =





1, if ∃t ∈ [0, τ ] : Vl(t) 6= 0,

0, otherwise,

a continuous-time line planning problem can be formulated as

minimize
∑

l∈L

[
cfl γ(Vl, τ) + csl

∫ τ

0
Vl(t)dt

]
(1)

subject to
∑

l∈Le

[Vl(t)− Vl(s)] ≥ De(t)−De(s) ∀e ∈ E,∀s, t ∈ [0, τ ], s < t, (2)

0 ≤ Vl(t) ≤ ul ∀l ∈ L,∀t ∈ [0, τ ]. (3)

The objective function (1) minimizes the total cost of line usage due to fixed costs and

variable costs. Constraint (2) ensures that travel demand on an edge is satisfied at any

time during the planning horizon while constraint (3) puts an upper bound on the service

capacity of a line.

3.2 Discrete-time LPP

In order to formulate a more practical problem and develop the corresponding model, time

discretization is a viable choice. In this respect, the planning horizon [0, τ ] is divided into

periods of a predetermined length ∆t. If T = dτ/∆te, then T = {t1, t2, t3, . . . , tT }, where

discrete time period ti ∈ T corresponds to [∆t(i− 1),∆ti] ∈ [0, τ ] and tT ∈ T corresponds

to [∆t(T − 1), τ ] ∈ [0, τ ]. Accordingly,

dtie = De(ti)−De(ti−1), ∀ti ∈ T, (4)
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denotes the travel demand on edge e ∈ E in time period ti ∈ T and

vtil = Vl(ti)− Vl(ti−1), ∀ti ∈ T, (5)

denotes the service capacity on line l ∈ L in time period ti ∈ T . Consequently, for an edge

e ∈ E, ∑

l∈Le

vtil ≥ dtie , ∀ti ∈ T (6)

becomes the feasibility condition for each edge e ∈ E as discrete-time version of expression

(2) ensuring that the demand in each discrete time period is covered by the capacity of the

associated line services.

In an integer programming problem formulation for a discrete-time MPLPP, yl ∈ {0, 1}
is a binary variable that takes value 1 if line l ∈ L is selected and vtl is a non-negative

integer variable that denotes the service capacity provided on line l in period t ∈ T , as

defined earlier. The resulting integer programming problem formulation for MPLPP is

minimize Cfy + Csvt (7)

subject to 1ev
t ≥ dte ∀e ∈ E,∀t ∈ T, (8)

Ay −Bvt ≤ 0 ∀ t ∈ T, (9)

vt ≤ u ∀ t ∈ T, (10)

y ∈ ZL2 = {0, 1}L (11)

vt ∈ NL ∀t ∈ T. (12)

where 1e ∈ {0, 1}L and [1e]l = 1 if l ∈ Le. The objective function (7) minimizes the

total cost which is composed of the variable cost and the fixed cost while the variable

cost is multiplied by the level of service in each period. Constraints (8) in a closed

form of expression (6) make sure that travel demand is satisfied in all periods. Coupling

constraints (9) ensure that service is provided only on selected lines. Constraints (10) are

upper-bounding the service capacity. Constraints (11) and (12) are domain constraints for

all decision variables.

We may observe that if T = dτ/∆te = 1, i.e., T = {t1}, the above formulation solves

a SPLPP; therefore, MPLPP generalizes SPLPP. We also note that MPLPP shall be

decomposed with respect to time constraints if only the line selection variables, yl, were

also defined separately for each period.

3.3 Multi-period LPP with resource transfers

As mentioned earlier, a multi-period planning approach comes inherently with resource

constraints and their allocation throughout periods. In this respect, we study a generalized

version of MPLPP as MPLPP-RT where RT stands for resource transfers.
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Figure 1: Resource transition between periods and lines

In order to integrate the assignment and allocation of resources to the MPLPP model,

we may consider a single type of resource for the sake of simplicity. As the resource units

are to be allocated among the lines throughout the periods, a network flow representation

(based on the discretized planning horizon) for which the commodity corresponds to resource

units is considered. In this network representation, G = (N,A) with N denoting the set of

nodes and A denoting the set of arcs, as demonstrated by a schematic representation in

Figure 1,

• node (l, i) ∈ N represents line l ∈ L during the period ti ∈ T ,

• a source node represents the state of resources at the beginning of the planning

horizon and is identified (0, 0) ∈ N ,

• a sink node represents the state of resources at the end of the planning horizon and

is identified as (0,T + 1), and

• an arc from node (l, i) to node (k, j) represents the flow of resource units from line l

at the end of period ti to line k at the beginning of a subsequent period tj , i.e., j > i,

where line “0” represents the unused resource units.

If w
titj
lk denotes the flow from node (l, i) to node (k, j) representing the number of

resource units to be transferred from line l at period ti to line k at period tj when j > i

and r denotes the amount of available resource units, a closed form of network flow balance

constraints is expressed as

Gw = b = (bn)





r, n = (0, 0)

−r, n = (0,T + 1)

0, otherwise

(13)
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where each row corresponds to a node n = (l, i) ∈ N .

The resource requirement of a line l ∈ L is represented by vtil in formulation (7)-(12).

While (13) ensures the feasibility of flow, constraint

Fw = v (14)

somehow couples the network flow variables with the service capacity of line plans ensuring

that levels of resources required by the lines to provide the associated service capacity are

sufficient.

In this respect, an integer programming problem formulation for MPLPP-RT becomes

minimize Cfy + Csvt (15)

subject to vt ≥ dte ∀e ∈ E,∀t ∈ T, (16)

Ay −Bvt ≤ 0 ∀ t ∈ T, (17)

vt ≤ u ∀ t ∈ T, (18)

Fw = v (19)

Gw = b (20)

y ∈ ZL2 (21)

vt ∈ NL ∀t ∈ T, (22)

wst ∈ NL×L ∀s, t ∈ T, s < t, (23)

where b corresponds to the right-hand-side of (13).

3.4 Multi-period LPP with vehicle rotations

For the purpose of computations, we exemplify the system-wide resource with the rolling

stock, i.e., vehicles, which can be considered as the most critical among such resources.

Indeed, an integration of the LPP with usage of vehicles over time and allocation among

lines is a realistic setting, if not the most crucial, in urban transportation systems. Therefore,

we define a special case of MPLPP-RT as MPLPP with vehicle rotations (MPLPP-VR).

The vehicle allocation decision shall be directly associated with the service variable vtl .

For the sake of simplicity, let us assume that vtl denotes the number of services provided

on line l in period t and further suppose that a vehicle is assigned to a line for each service

and is used only once during a period t. Accordingly, we define the following parameters:

• if the passenger capacity of a vehicle is K passengers, the passenger capacity of a line

service l in period t is Kvtl ;
• an upper-bounding service capacity constraints shall be associated with safety regu-

lations and limits the number of services on a line in a period with W;

• there are at most U vehicles in the system that can be used simultaneously; and
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• the transfer time (in number of discrete time periods) from line l to line k is ρlk.

Then, an integer programming formulation for MPLPP-VR as a special case of (15)-(22) is

minimize
∑

l∈L
cfl yl +

∑

l∈L

∑

t∈T
csl v

t
l (24)

subject to
∑

l∈Le

Kvtl ≥ dte ∀e ∈ E,∀t ∈ T, (25)

Wyl − vtl ≥ 0 ∀l ∈ L,∀t ∈ T, (26)
∑

k∈L0
t−ρkl≥0

wt−ρkl,tkl = vtl ∀l ∈ L,∀t ∈ T, (27)

∑

k∈L0
t−ρkl≥0

wt−ρkl,tkl −
∑

k∈L0
t+ρkl≤T

wt,t+ρlklk = 0 ∀l ∈ L0,∀t ∈ T, (28)

∑

l∈L0

∑

t∈T
w0t
l0l = U , (29)

∑

l∈L0

∑

t∈T
w
t|T |+1
ll0

= U , (30)

yl ∈ {0, 1} ∀l ∈ L, (31)

vtl ∈ N ∀l ∈ L,∀t ∈ T, (32)

wstlk ∈ N ∀l, k ∈ L0, ∀s ∈ {0} ∪ T,
∀t ∈ T ∪ {T + 1}, s < t. (33)

where L0 = L ∪ {0}. In comparison to the closed form MPLPP-RT formulation, the set of

constraints of MPLPP-VR can be described as follows:

• constraint (16) is replaced by (25),

• (26) is an explicit form of (17) and (18),

• constraint (27) establishes the direct relationship between w and v as in constraint

(19) ensuring that sufficient numbers of vehicles, i.e., resource units, are assigned to

a line in each period,

• constraints (28)-(30) are the flow balance constraints of the resource network repre-

sentation as in (20).

In our computational study, we employ the MPLPP-VR formulation.

4 Computational Results

The aim of our computations is to demonstrate how the solutions change with the use of a

multi-period planning approach and understand which parameters of the problem have

significant impact. For this purpose, we consider the case of the Istanbul Metrobüs system
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that experiences a high level of fluctuation in demand both temporally and spatially. The

since network topology of the Metrobüs system being a simple line strips off inherent

computational difficulties in LPPs and allows us to focus on multiperiodicity aspects.

4.1 Features of the problem instance

The Metrobüs is a bus rapid transit system that provides a backbone for the public

transportation system of Istanbul with connections to underground rail, bus, and light rail.

It has 44 stations from Beylikduzu on the far-west of the European land of Istanbul and

Sogutlucesme on the Asian land; the map in Figure 2 shows the geographical positioning

of the system.

Figure 2: Istanbul map showing the Metrobüs system

BRT systems are known and popular for providing fast service. According to Basso

et al. [1], 170 cities around the world have BRT systems covering 376 corridors and a

distance of 5,046 km. It is also well-known that such systems usually suffer from excess

demand as in the Istanbul case. Currently, the Metrobüs system works with 9 closed lines

(34, 34T, 34BZ, 34U, 34Z, 34C, 34A, 34AS, 34G) as shown in Figure 3. The shaded area

between Zincirlikuyu and Bogazici Koprusu shows the inland water Bosphorus while the

other one between Ayvansaray and Halicioglu is the Golden Horn, a primary inlet of the

Bosphorus, which hosts the ancient harbor of Istanbul. Table 1 presents basic information

on lines including starting and ending stations along with the length of each line.

Figure 3: Network map of Metrobüs system with terminals and lines.
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Table 1: Information on the lines used in Metrobüs system.

Line Starting station Ending station Length (in meters)

34 12.Avcilar Kampus 37.Zincirlikuyu 29900

34A 26.Cevizlibag 44.Sogutlucesme 22600

34C 1.Beylikduzu Sondurak 26.Cevizlibag 28600

34G 1.Beylikduzu Sondurak 44.Sogutlucesme 51200

34U 37.Zincirlikuyu 42.Uzuncayir 9400

34T 12.Avcilar Kampus 28.Bayrampasa 19200

34Z 37.Zincirlikuyu 44.Sogutlucesme 11300

34AS 12.Avcilar Kampus 44.Sogutlucesme 41200

34BZ 1.Beylikduzu Sondurak 37.Zincirlikuyu 39900

Demand data for all O-D (station) pairs covering a planning horizon of one day is

provided for periods of 1-hour length from 6 am to midnight (corresponding to 18 time

periods). It is known that the number of passengers who travel on the network changes

drastically depending on the time of the day and day of the week. We have three different

daily demand data: an average weekday (denoted as Weekday hereafter), Saturday, and

Sunday. Each daily data exhibits a high level of variation and asymmetry in time. In order

to show the load on the network, we first convert O-D demand into edge demand, and

show it both spatially and temporally. Figure 4 displays two charts showing the amount of

edge demand in both forward (from west to east) and backward direction. The peak and

the off-peak periods are easily observed: between 7 am to 9 am traffic demand is high in

the direction from east to west and 5 pm to 8 pm from west to east.

(a) Forward (from west to east) direction (b) Backward (from east to west) direction

Figure 4: Average weekday demand in Metrobüs system

In our models, the objective function includes a fixed cost for selecting a line and a

variable cost for operating it. We suppose that fixed costs are mostly related to the cost of

terminal stations. At a terminal station, additional space is needed for concourse or vehicle

transfers, and terminals are usually facilitated with extra equipment. We assume that

when a line is selected, the fixed cost should be charged once for the complete planning
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horizon. We also suppose that variable cost is proportional to the line length. In the

computations, we consider a unit cost of 1 as the rate per 1 meter of a line while we

consider a cost of 180 as the fixed cost per line (by considering haphazardly 10 times of

the unit operational cost per meter of a vehicle trip and multiplying it with the number of

periods (18) in the planning horizon).

4.2 Baseline computational results

We consider the Metrobüs system with a planning horizon of one day. Since the demand

data is provided for 1-hour periods; the planning horizon is divided into 18 periods of

1-hour length since the planning horizon considers the day from 6 am to midnight.

In the demand data, the largest demand figure is 2158.8 in the Weekday data set while

it is 688 and 390, respectively, for Saturday and Sunday. Besides, the average demands are

18.03, 15.14, and 11.05 respectively, for Weekday, Saturday and Sunday. For the baseline

computations, parameters of the systems are set as follows: the capacity of a vehicle is 250

passengers (K = 250) with 200 vehicles in the fleet (U = 200) and a maximum number of

36 vehicles to be assigned to a line (W = 36). The set of candidate lines among which the

lines to be operated are selected is limited to the existing 9 lines.

All computational experiments are carried out on a computer with Intel Core(TM)i5-

6200 CPU v2 2.30 GHz CPU and 4 GB RAM, using Gurobi Optimizer 7.5.2 as the integer

programming solver with Python 3.6.2. All reported solutions are optimal.

4.2.1 Single-period approach vs. multi-period approach

To begin with, we should test the value of a dynamic multi-period planning approach

against a static single-period approach. For this comparison, we solve a 1-day problem

with the MPLPP formulation for once. Alternatively, we solve the problem of each 1-hour

period separately with the SPLPP formulation and combine the solutions of 18 periods to

make up a 1-day solution. While combining, we recalculate the fixed cost component by

charging the fixed cost for each line only once in case a line is selected in more than one

period.

Table 2 shows the results for the three daily instances (Weekday, Saturday, and Sunday)

in terms of five solution metrics:

• Total cost is the sum of the fixed costs and operating costs; it is directly the value of

the optimal objective function of MPLPP while it is recalculated for SPLPP to avoid

multiple charges of the fixed cost for the same line.

• Total frequency is the total number of services/trips to run during the planning

horizon.

• Distinct lines corresponds to the number of lines selected for the complete planning

horizon.
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• Line usage shows the sum of the number of times each line is used in 18 periods.

• Distance traveled shows the total distance traversed by all vehicles on all lines.

According to the results in Table 2, the total cost of the multi-period approach is

significantly lower than that of the single-period approach in all three instances although

total frequency and line usage are always higher with MPLPP. With MPLPP, line usage is

almost always 18 (number of periods) times distinct lines as every selected line is used in all

periods. Single-period solutions need to travel longer distances and operate more lines to

satisfy the same demand. This is, indeed, the underlying reason for the sub-optimality of

combined single-period solutions when compared to multi-period solutions. In addition, we

also observe that most of the services are run on lines with shorter lengths in multi-period

approach.

Table 2: A comparison between SPLPP and MPLPP (K = 250, U = 200, W = 36)

Weekday Saturday Sunday

SPLPP MPLPP SPLPP MPLPP SPLPP MPLPP

Total cost 64,058.80 61,334.60 51,731.40 48,807.00 37,636.80 35,377.80
Total frequency 875 1,070 635 822 457 569
Distinct lines 7 5 6 5 6 5
Line usage 49 90 43 90 38 90
Distance traveled 62798.80 60434.60 50651.40 47907.00 36556.80 34477.80

To complete our comparison, we expand this setting for various values of the system

parameters. The baseline computations presented in Table 2 are repeated for K = 250,

U = 200 and W = 36. Figure 5 shows the total cost for settings where K ∈ [160, 200]

and U ∈ [160, 200] for W = 30 and W = 45. Apparently for every possible setting with a

feasible solution, SPLLP solutions are costlier than MPLPP solutions. At the same time,

we observe that the total cost is higher when resources are more limited, i.e., when the

vehicle capacity is small and the number of available vehicles is low. We therefore postulate

that MPLPP provides substantially better solutions in terms of cost when compared to

combined solutions of SPLPP. In both charts with different W values, the results are the

same.

4.2.2 Size of the line set

In our computational experiments, the set of candidate lines is limited to the existing lines.

However, this set can be expanded by enumerating all possible lines based on the current

terminal stations used by the existing lines. This would make 45 lines, adding 36 to the

existing 9 lines. This will affect the size of the problem and the solution time of the solver.

The results for MPLPP showing the solution time along with other metrics are in Table 3.

We observe that an increase in the size of the set of candidate lines from 9 to 45

has a limited effect on the total cost (around 1% for Weekday data) while it yields a

significant inflation in computational effort (around 1000 times of the original solution
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(a) W = 30 (b) W = 45

Figure 5: Total cost with SPLPP and MPLPP for combinations of K and U .

Table 3: Comparison with respect to size of the candidate line set (K = 250, U = 200, W = 36)

Weekday Saturday Sunday

9 lines 45 lines 9 lines 45 lines 9 lines 45 lines

Total cost 61,334.60 61004 48,807.00 48417.00 35,377.80 35124.60
Total frequency 1,070 1037 822 628 569 531
Distinct lines 5 6 5 5 5 5
Line usage 90 108 90 89 90 89
Distance traveled 60434.60 59924.0 47907.00 47517.6 34477.80 34224.6
Solution time 3.56 5753.48 7.40 5068.34 5.21 5060.20

time). Accordingly, it is reasonable to conduct the analysis with the current set of lines for

the sake of computational effort. On the other hand, even this limited experiment shows

that computational complexity is a potential issue for further research on multi-period

planning approach.

4.2.3 Level of variation in demand

In order to understand how sensitive the multi-period approach is to fluctuations in demand,

we shall investigate the changes in optimal cost in response to changes in the level of

the variation in demand. Based on a reference O-D demand data, new demand data are

generated by either increasing or decreasing the variation with respect to time.

For a given O-D pair, the average demand over all periods is calculated first. Then, for

any period with a demand above the average, the demand is increased by a fraction of the

difference from the average while it is decreased by the same fraction of the difference from

the average for periods with a demand below the average. With this modification, a demand

data with more fluctuation and variation in time is generated for a given modification

fraction. When the opposite is done, i.e., an increase for a period below the average and a

decrease for a period above the average, a demand data with less variation is obtained.

We use 25% and 50% as modification fractions, and obtain four new data set by changing

the variation in both directions.

Table 4 shows two variation-related statistics for all three daily instances. Range,
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denoted by δ, shows the difference between maximum demand and minimum demand

among all demand figures (over all O-D pairs and periods). Both range and standard

deviation, denoted by σ, decrease (increase) as the variation of demand decreases (increases).

It should also be noted that with this modification, neither total demand over all O-D

pairs nor total demand for a particular O-D pair changes. The modification alters only

the distribution of passengers in time for a given O-D pair.

Table 4: Statistics of demand data for different levels of variation.

Weekday Saturday Sunday

Modification fraction δ σ δ σ δ σ

50% (decrease) 1079.40 23.27 344.00 14.94 195.00 10.77
25% (decrease) 1619.10 34.92 516.00 21.74 292.50 16.16
- (reference) 2158.80 46.56 688.00 28.99 390.00 21.55
25% (increase) 2698.50 58.19 860.00 36.23 487.50 26.94
50% (increase) 3238.20 69.83 1032.00 43.48 585.00 32.32

For all five demand data sets of all three daily instances, the change in optimal total

cost is demonstrated in Figure 6. It is easily and clearly observed that the optimal objective

function value increases when the level of demand variation increases. It should again be

noted that for a given daily instance, the total demand for each O-D pair is the same for

all five demand data sets. Therefore, the cost of an optimal line plan is clearly sensitive

to the temporal variation/distribution in demand for a given total demand over a fixed

length planning horizon. These results manifest the need and significance of multi-period

approaches in the scope of line planning problems in response to high levels of demand

variation and fluctuation. In addition, we also observe that the effect of variation is more

evident when the total demand is higher as for the Weekday instance.

While investigating the effect of demand variation, we shall also avoid the potential

bias due to system parameters such as vehicle capacity, fleet size, and the limit on the

number of assigned vehicles to a line.

4.3 Vehicle rotations

It is not trivial to analyze the effect of considering vehicle transfers on either optimal

solutions or feasibility. In the case of our baseline setting (K = 250, U = 200, W = 36),

the solutions for all three daily problems are the same in MPLPP and MPLPP-VR models

with respect to the total cost even when vehicle transfer constraints are considered properly

as in the formulation for MPLPP-VR. In other words, the optimal solution for MPLPP is

feasible for the MPLPP-VR version of the problem for the baseline setting. It is clear that

the assumption of vehicle transfers in more than one period may not alter the solution

and the cost when the system has ample capacity. To highlight the potential effects of

considering the actual time needed to transfer vehicles, we solve problems with more

limited resources when compared to the baseline setting.
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Figure 6: Optimal total cost values for demand data with different levels of variation for all daily instances.

In addition to the data used in MPLPP, MPLPP-VR also requires transfer times for

vehicles. In order to calculate the time required for vehicle transfers, i.e., ρkl for a pair

of lines l and k, we consider the trip time of a vehicle on a line and the travel time of a

vehicle from the terminal station of a line to the starting station of the other:

• The trip time of a vehicle is calculated by considering preparation time and station

time in addition to the actual driving time. The preparation time is concerned with

additional set-up and terminating operations, respectively, before and after each trip.

Station time is the duration a vehicle spends at a station stop; the difference between

arrival and departure time at each station is called station time. For the sake of

simplicity, we suppose that all stations have the same station time. The driving

speed of a vehicle is constant for the planning horizon.

• The sum of the trip time and travel time from the ending station of a line to the

starting station of the other makes up the transfer time. Then, the transfer time

is divided by the length of the period to calculate the transfer time in number of

periods. For a pair of lines l and k, the transfer time from l to k is, then, denoted as

ρlk. For instance, if the actual travel time is 100 minutes and the period length is 60

minutes, then ρlk = 2 since it would take longer than one period but shorter than

two periods for a vehicle to transfer from l to k. By definition, for a pair of lines l

and k, ρlk ≥ 1.

Table 5 shows the comparison between MPLPP and MPLPP-VR with K = 220,

U = 100, W = 36. The results for Weekday demand show that the total cost of MPLPP-
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VR is greater than that of MPLPP. This result demonstrates that all vehicles may not

necessarily be available in all periods when transfers are considered. Even with the new

parameter set, MPLPP and MPLPP-VR provide the same solutions for Saturday and

Sunday. In order to observe the effect of MPLPP-VR with Saturday and Sunday demands,

we further change the vehicle capacity, fleet size, and the maximum number of vehicles to

be assigned to a line. Table 6 shows the results. The effect of vehicle transfer constraints

is observed with Saturday demand as the total cost increases in the MPLPP-VR due to

unavailability of transfers of vehicles from one period to the subsequent ones. With this

new setting (K = 160 and U = 80), the Weekday solution is infeasible while the solutions

of MPLPP and MPLPP-VR are still the same for Sunday due to ample resources in the

system. The effect of vehicle transfer constraints are observable for Sunday demand only

when the system resources are even more limited as K = 120 and U = 70 as seen in Table 6

again.

Table 5: A comparison between MPLPP and MPLPP-VR for all demand sets (K = 220, U = 100, W = 36)

Weekday Saturday Sunday

MPLPP MPLPP-VR MPLPP MPLPP-VR MPLPP MPLPP-VR

Total cost 69790.60 70571.00 55296.80 55296.80 39790.60 39790.60
Total frequency 1103 969 937 1066 643 643
Distinct lines 6 6 5 5 5 5
Line usage 97 93 90 89 90 90
Distance traveled 68710.60 69491.00 54396.80 54396.80 38890.60 38890.60
Solution time 3.92 6.52 4.56 7.83 5.22 9.17

Table 6: A comparison between MPLPP and MPLPP-VR for Saturday and Sunday demand sets (W = 32)

Saturday (K = 160, U = 80) Sunday (K = 120, U = 70)

MPLPP MPLPP-VR MPLPP MPLPP-VR

Total cost 75835 76316.2 72155.80 72573.60
Total frequency 1203 1090 1067 990
Distinct lines 6 6 6 6
Line usage 91 91 99 97
Distance traveled 74755 75236.2 71075.80 71493.60
Solution time 4.21 7.28 3.31 7.26

4.4 Line types: Closed vs. open

The concept of open lines and closed lines are well-known in public transportation planning.

Line type selection may be a key design issue in line planning. In the more common

version, i.e., with closed lines, the service is provided in both directions on the path from

the starting station to the ending station; for each service executed in one of the directions,

a service is executed in the other direction. In essence, the service frequencies are the same

in both directions, and mostly vehicles go back and forth on the same path. In an open
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line, the service is provided only from the starting station to the ending station. A closed

line corresponds to two open lines which operate on the same path in opposite directions

with identical frequencies. In a line plan with closed lines only, the vehicles travel in both

directions; consequently, some of the services are executed only for the sake of delivering

the opposite direction rather than covering demand. Therefore, the traveled distance as

well as the associated costs may increase unnecessarily. On the other hand, operating open

lines may require more vehicle transfers and increase travel time for transfers resulting in

a potentially more difficult-to-operate line plan. In this respect, it may be worthwhile to

analyze the effect of allowable line types when the time needed to transfer vehicles between

pairs of lines is an issue in the mathematical model.

We again assume that the resource related system parameters are sufficiently tight to

observe the effect of transfers on MPLPP-VR solutions and set K = 220, U = 200, W = 36.

Table 7 reports the comparison among the two line types on all three daily instances.

While solutions with “Closed Lines” correspond to the settings in the original baseline

experiments, solutions with “Open Lines” consider the option of providing the service

in only one of the directions of the original lines or running with different frequencies in

opposite directions. From the cost perspective, we find out that the cost is larger when

only closed lines are considered. It should also be noted that solution time is clearly larger

when open lines are considered as the number of lines in the candidate set is twice as much.

Table 7: A comparison between line types for all demand sets (K = 220, U = 200, W = 36)

Weekdays Saturdays Sundays

Type of line Open Lines Closed Lines Open Lines Closed Lines Open Lines Closed Lines

Total cost 55992.50 69253.40 48376.30 55296.80 37123.90 39790.60
Total frequency 2070 1197 1664 937 1132 643
Distinc lines 11 5 9 5 8 5
Line usage 180 90 161 90 141 90
Distance traveled 54012.50 68353.40 46756.30 54396.80 35683.90 38890.60
Solution time 18.70 6.05 22.46 9.86 25.41 8.66

In the case of the Istanbul Metrobüs, the demand is highly asymmetric in both time and

space; this bears a huge advantage when open lines are allowed along with a multi-period

planning approach. We observe this clearly in the results. Even when more lines are

operated (leading to an increase in fixed costs), the optimal cost goes down by almost 20%

for the Weekday which has the highest demand. This also shows that the time needed to

transfer the vehicles among the starting stations of various lines may be easily compensated

even when the resources are tight enough and operating open lines help to decrease the

operational costs substantially.
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4.5 Choice of period length

The period length in a multi-period problem is related to the temporal dimension of the

O-D demand data; it specifies the time unit of the decision variables to determine the

frequency of lines (through the number of vehicles of assigned to a line service). The length

of the period also reveals the degree of discretization of time. And, since time is indeed a

continuous phenomenon, it also determines the degree of approximation. In general, the

degree of approximation is higher when time is discretized in larger units. Correspondingly,

shorter period length is expected to lead to more accurate and less approximate solutions

in practice. Although some degree of discretization is quite necessary so that the problems

can be formulated in a discrete space and solutions shall be interpreted easily, its effect

on the solution of the problem in terms of resource usage may not be as trivial as the

accuracy. In this respect, we aim to investigate how both the accuracy and effectiveness of

the solution change when alternative period lengths are used.

For the original Metrobüs demand data, the period length is one hour, i.e., 60 minutes.

We now consider three scenarios for the length of the period: 60 minutes, 30 minutes and

15 minutes. The original demand data is transferred to shorter periods by allocating the

demand of a longer period to a set of shorter ones by interpolating and smoothing out

the demand according to the demand amount in previous and subsequent periods of the

original longer period version. The transfer matrix for vehicle rotation is also updated for

alternative period lengths.

Tables 8 - 10 report the results with MPLPP-VR formulation. Looking at the solution

metrics closely, we observe that the total cost for the Weekday (see Table 8) first decreases

when the period length goes from 60 to 30 minutes; but, then it increases again when the

period length goes from 30 to 15 minutes. With the same parameter setting (K = 220,

U = 100), however, for Saturday and Sunday, the total cost increases as the period length

is shortened. We again check the results when system resources are tighter at a level for

which the Weekday solution is already infeasible. Table 9 shows solutions for Saturday.

Changing the period length form 60 to 30 minutes leads to a decrease in the total cost

with K = 160 and U = 80; cost increases when the period length goes further down to 15

minutes. When K = 120 and U = 70, the total cost for Sunday (see Table 10) follows the

same trend as that for Weekday with K = 160 and U = 100 and Saturday with K = 160

and U = 80. As a matter of fact, we make the following observations:

• It is probable that shortening the period length may decrease the total cost and

provide even a better solution while increasing the accuracy.

• While shorter period lengths contribute to accuracy of the solutions by satisfying the

demand in a timely manner since frequencies are arranged for shorter time periods,

it may lead to inefficient use of resources due to discrete nature of resource capacities

and shorter periods (leading to an increase in the number of periods) can lead to

more slack in resource capacities.
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Table 8: Comparison among alternative period lengths with Weekday demand (K = 220, U = 100)

Period length (minutes) 60 30 15

W 36 18 9
Total cost 70,571.00 70,386.40 71,916.00
Total frequency 969 1,210 1,230
Distinct lines 6 5 5
Line usage 93 180 359
Distance traveled 69,491.00 69,486.40 71,016.00
Solution time 7.36 22.83 77.63

Table 9: Comparison among alternative period lengths with Saturday demand

(K = 220, U = 100) (K = 160, U = 80)

Period length (minutes) 60 30 15 60 30 15

W 36 18 9 32 16 8
Total cost 55296.80 56239.00 58134.00 76316.20 76196.40 78245.60
Total frequency 1066 1085 1,122 1090 1289 1321
Distinct lines 5 5 5 6 5 5
Line usage 89 179 359 91 179 356
Distance traveled 54396.80 55339.00 57234.00 75236.20 75296.40 77345.60
Solution time 8.50 26.58 78.68 9.74 18.96 72.08

Table 10: Comparison among alternative period lengths with Sunday demand

(K = 220, U = 100) (K = 120, U = 70)

Period length (minutes) 60 30 15 60 30 15

W 36 18 9 32 16 8
Total cost 39790.60 40809.80 42521.00 72573.60 72567.80 74210.60
Total frequency 643 654 672 990 1375 1404
Distinct lines 5 5 5 6 5 5
Line usage 90 176 337 97 180 360
Distance traveled 38890.60 39909.80 41621.00 71493.60 71667.80 73311.00
Solution time 10.36 38.74 121.24 7.80 21.19 108.01

The overall effect manifests itself as a trade-off between accuracy and effectiveness. It

turns out that the length of the period may be an intricate choice to make. Owing to

the trade-off between the accuracy and the effectiveness of the solution clearly makes this

choice a subject of optimization, not to forget the dimension regarding the computational

effort.

The effect of period length is not only observed as an increase or a decrease in the

total cost. It may also alter the feasibility of the problem setting. In Table 11, we show

the results with a different set of system parameters where K = 150 and U = 100 for the

Weekday demand data set. When the period length is 60 minutes, the problem does not

even have a feasible solution while the solutions for shorter period lengths are feasible.

We also observe that the solution time for the solver also increases significantly when

the period length is shortened.
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Table 11: Effect of length of period on the solution for Weekday instance with K = 150 and U = 100

Period length (minutes)

60 30 15

W 36 18 9
Total cost

inf

102430.60 104287.60
Total frequency 1699 1709
Distinct lines 7 7
Line usage 197 381
Distance traveled 101170.60 103027.60
Solution time 17.94 68.29

5 Discussion and conclusion

We present a multi-period planning approach for the well-known line planning problem;

our approach is motivated by the drawbacks of traditional static line planning approaches

for not being able to consider the dynamism of the demand. In practice, the traditional

approaches may still work for systems with moderate demand load and where target service

levels are already achieved with more than sufficient resources. For such systems, it is

usually trivial to identify peak loads with respect to time and space and mostly as well as

directions on the network. However, for overly-crowded systems for which many examples

can be found as BRTs in different cities, unwanted passenger waiting times at stations

resulting in longer travel times and lower service levels shall be handled if the changes in

travel demand in time are considered explicitly. The new approach proposes consideration

of longer planning horizons which are divided into periods of manageable length in terms

of planning and coordination of both services and resources throughout the periods in the

planning horizon.

We characterize the demand as a function of time, first; this helps us develop a

continuous-time line planning problem for the first time in the literature. Then, for

practical purposes, we develop an integer programming problem formulation for the multi-

period line planning problem through discretization of the continuous planning horizon.

In our computational study, we first work with this problem and show that

• both optimal solutions and resulting costs (represented by the objective functions)

are improved significantly when a multi-period approach is employed as an alternative

to combined solutions of traditional single-period line plan solutions;

• higher variation in demand benefits even more from a multi-period approach as higher

fluctuations of demand in time leads to higher system costs even when the total

demand does not change.

As a matter of fact, we are able to experimentally show that a multi-period approach shall

outperform a traditional single-period approach under various circumstances. We also

observe that the computational challenges of well-known line planning problem formulations

are trivially inherited by the multi-period approach.
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As easily and clearly observed from many examples in the literature and practice,

decision-making and optimization with multi-period planning approaches naturally involve

resource planning. Indeed, planning of resources is mostly what couples the time periods

in a typical problem formulation. In this respect, we develop a generalization of the first

multi-period planning problem formulation by integrating resource allocation and transfer

constraints. Computations with this problem show that solutions may change significantly

when resource constraints are involved and tight. Therefore, it shall be necessary to

employ an approach where resource transfers are also included in order to obtain realistic

and implementable solutions. We also observe that, the choice of line types as either

open or closed is likely to contribute to solutions when multi-period planning approaches

are employed. Especially, when the travel demand is highly asymmetric in space and

experiences fluctuations in time, the flexibility with open lines contribute to the effect of a

multi-period planning approach.

Last but not the least, our computations show that choosing the period length may be

an intricate decision that is justified by a trade-of between accuracy of the solutions and

efficiency of resource planning. It requires further analysis and understanding both the

problem characteristics and the particular system on-hand as the parameters may play a

significant role in the magnitude of this trade-off.
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[20] A. Schöbel. Line planning in public transportation: models and methods. OR

Spectrum, 34(3):491–510, 2012.
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