
Takustr. 7
14195 Berlin

Germany
Zuse Institute Berlin

SEBASTIAN GÖTSCHEL1, ANTON SCHIELA, MARTIN
WEISER2

Kaskade 7 – a Flexible Finite Element
Toolbox

1 0000-0003-0287-2120
2 0000-0002-1071-0044

ZIB Report 19-48 (September 2019)

https://orcid.org/0000-0003-0287-2120
https://orcid.org/0000-0002-1071-0044

Zuse Institute Berlin
Takustr. 7
14195 Berlin
Germany

Telephone: +49 30-84185-0
Telefax: +49 30-84185-125

E-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

bibliothek@zib.de
http://www.zib.de

Kaskade 7 – a Flexible Finite Element Toolbox

Sebastian Götschel∗, Anton Schiela†, Martin Weiser∗

September 9, 2019

Abstract

Kaskade 7 is a finite element toolbox for the solution of stationary
or transient systems of partial differential equations, aimed at supporting
application-oriented research in numerical analysis and scientific comput-
ing. The library is written in C++ and is based on the Dune interface.
The code is independent of spatial dimension and works with different
grid managers. An important feature is the mix-and-match approach to
discretizing systems of PDEs with different ansatz and test spaces for all
variables.

We describe the mathematical concepts behind the library as well as
its structure, illustrating its use at several examples on the way.
Keywords: finite elements, generic programming, partial differential
equations
MSC 2010: 65N30, 65M60, 65Y99, 68U20

1 Introduction

Application-oriented research in numerical analysis and scientific computing re-
lies on the availability of research codes that on one hand are able to address
a broad range of problems from academic examples for illustration purposes to
complex PDE models arising from concrete applications in natural, engineer-
ing, and life sciences, and is on the other hand flexible enough to allow for the
easy realization of solution algorithms and discretization schemes that have not
been on the horizon at the time when the code structure has been designed.
This purpose has been served for the last three decades by the Kaskade finite
element codes developed at the Zuse Institute Berlin, dating back to (1).

Kaskade 7 (2), started in 2006, is the latest incarnation of these codes,
which all share the same mathematical spirit (3) but differ vastly in functionality
and software design aspects. It is a C++ library based on the Distributed
and Unified Numerics Environment (Dune) (4–7), and has been used for many
diverse research projects ranging from development of numerical methods to
real-life problems in various application fields (8–30). Code and documentation
snapshots are freely available for noncommercial use at http://www.zib.de/

projects/kaskade7-finite-element-toolbox.
In this paper, we describe the main ideas and components of the Kaskade 7

toolbox in Sec. 2, illustrating data structures and toolbox usage at short code

∗Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany, {goetschel | weiser}@zib.de
†Universität Bayreuth, 95440 Bayreuth, Germany, anton.schiela@uni-bayreuth.de

1

http://www.zib.de/projects/kaskade7-finite-element-toolbox
http://www.zib.de/projects/kaskade7-finite-element-toolbox

2

examples. Sec. 3 presents a few more specific components that, while contained
in Kaskade 7, do not belong to the toolbox core, and serve as examples of
how the code can be extended in different directions. The paper is not intended
to be a complete overview, since many software aspects of finite elements are
shared by most codes, and widely known. Instead, we focus on those aspects
that are nonstandard, or particularly useful, or necessary for understanding the
toolbox structure.

2 Toolbox Design

The requirements imposed on a scientific research code are manifold, and to
some extent conflicting. In the following section, we therefore discuss the dif-
ferent design goals and their impact on code structure briefly, and prioritize
them, which motivates the design decisions made for Kaskade 7. After that,
we will describe the resulting library user interface and core structures in more
detail. For more details, we refer to the tutorial examples illustrating the basic
usage and building blocks of Kaskade 7 applications, and to the comparatively
good – for a research code – and extensive class documentation generated via
Doxygen.

2.1 Design goals

The targeted problems are mainly heterogeneous systems of elliptic and parabolic
equations with second order differential operators in two or three space di-
mensions, including optimal control and inverse problems. The code addresses
medium-sized problems and is not intended to solve extremely large scale prob-
lems.

Flexibility At the heart of algorithmic research in scientific computing is the
continuous improvement of algorithms as well as the development of new ap-
proaches. Supporting the inclusion of new algorithmic components is therefore
mandatory. This is best achieved by providing a library of loosely coupled com-
ponents that interact through clear, sufficiently general, and preferably simple
interfaces. One example are the Dune libraries, which allow the use of very
different grid managers, each with its own trade-offs on functionality and effi-
ciency, through a single interface. In contrast, software frameworks tend to be
rigid, making the implementation of algorithmic structures that are not explic-
itly supported rather difficult.

Consequently, Kaskade 7 is structured as a library, where suitable compo-
nents – grid managers, FE discretizations, solvers, preconditioners, I/O – can be
selected as needed and combined in many ways. Since the main program is com-
pletely in the realm of the library user, any part of the library can be selected
or left out, or replaced by tailored components, and combined with application
codes in many ways not envisaged during the design of Kaskade 7.

A more specific aspect of flexibility is the support for discretization of het-
erogeneous PDE systems with different finite element spaces for the different
variables, scalar or vectorial. Examples are flow problems, mixed finite elements
for solid mechanics, or optimal control problems. For the former, Taylor-Hood

3

elements are not provided as such, but can be immediately realized as a P2-P1
discretization of the Stokes or Navier-Stokes system.

An early design decision, driven by the requirement of flexibility in algorith-
mic development, has been to not support distributed memory systems. Instead,
shared memory parallelism on multi-core compute servers is used, allowing for a
smooth transition from an easily understandable and debuggable sequential pro-
gramming model to an efficient multithreaded program, which exploits NUMA
systems, mixed precision, and SIMD instructions where beneficial (22).

Correctness and generality Kaskade 7 aims at supporting correctness by
employing modern C++ 17 features, in particular templates, for detection of
programming errors at compile time. This is achieved by providing as much
structural information about the problem as possible or practical to the com-
piler. For example, the vectorial dimension of variables in a PDE system is en-
coded in the type system. The structure of coefficient vectors in the 2D Stokes
system, i.e. ([(u0x, u0y), (u1x, u1y), . . .], [p0, p1, . . .]), is not only convention but
also known to and enforced by the compiler, which can prevent several kinds
of wrong access to coefficients. Similarly, static information about symmetry of
stiffness and mass matrices, or their block sparsity pattern in systems of PDEs,
can be exploited for detecting errors at compile time.

The useage of C++ templates has the additional benefit of code genericity
– the original motivation for templates. Many algorithms in Kaskade 7, from
assembly of matrices and right hand sides to solvers and I/O routines, are faced
with structurally heterogeneous problems that need to be treated uniformly. An
algorithm able to cover both a scalar Poisson problem and the 2D Stokes system
without exploiting their special structure will also cope with a mixed formulation
of 3D solid mechanics. This – to some extent enforced – genericity is not only
beneficial for functionality, but also for correctness. In fact, not only will an
implementation debugged on a Stokes example most likely work correctly for
Poisson and solid mechanics problems as well, but the need for thinking in more
general problem structures often leads to implementations that are well thought-
out in the first place. The common experience, formulated very pointedly, is,
that once the code compiles, it is semantically correct.

The obvious drawback of the template approach is the one shared by almost
all template-heavy libraries: the impact on compile times. To some extent, this
is mitigated by providing explicit instantiations in a pre-compiled library and
hiding the template definition in special header files, but templates depending
on problem structure still need to be recompiled frequently. Thus, build times
for the main program are relatively large.

Efficiency While providing high-performance implementations for all kinds
of problems is not the main intention, an explicit design goal was not to prevent
them. One of the main means for that is, again, C++ templates. Handing down
static information on problem structure to the computation-intense algorithmic
cores simplifies compiler optimizations such as loop unrolling, vectorization, or
dead code elimination.

Functionality One design goal has been to provide a flexible infrastructure
on top of which needed functionality can be built easily. In this way, complete-

4

DUNE GRID DUNE ISTL

DUNE COMMON

FE Functions

Assembly Adaptivity

UMFPACK
MUMPS
Pardiso

...

Amira
Paraview

Solvers

Precon-
ditioners

IO

boost

KASKADE 7

third party
libraries

Figure 1: Collaboration and dependencies of the main Kaskade 7 parts.

ness in terms of functionality is a process rather than a design. Consequently,
Kaskade 7 functionality has been constantly extended over the years as re-
quired by algorithmic and application-driven research, mostly without affect-
ing the basic structure. Today, it features a rich set of discretizations, solvers,
preconditioners, error estimators, boundary treatments, and input/output func-
tionality. The top-level structure of the Kaskade 7 modules is illustrated in
Fig. 1.

2.2 Problem formulation

For stationary problems, Kaskade 7 addresses variational functionals of the
type

min
ui∈Va,i

∫
Ω

f(x, u1, . . . , una
,∇u1, . . . ,∇una

) dx+

∫
∂Ω

g(x, u1, . . . , una
) ds (1)

for functions ui ∈ Va,i defined on a domain Ω ⊂ Rd, as well as more general
weak formulations of the type∫

Ω

(
ϕfi(x, u1,∇u1, . . . , una

,∇una
) + ϕ′f̃i(x, u1,∇u1, . . . , una

,∇una
)
)
dx

+

∫
∂Ω

ϕgi(x, u1, . . . , una) ds = 0 (2)

for all i = 1, . . . , nt and test functions ϕ ∈ Vt,i. Here, na is the number of
variables in the system, and nt the number of equations. Any of the variables
and equations can be scalar or vectorial.

The problem definition for (1) consists of providing f , g, and their first
and second directional derivatives, as a class adhering to a specific interface,
whereas the problem definition for (2) provides fi, f̃i, and gi. Both problem
types use exactly the same interface, in the sense that an implementation for a
variational functional (1) is a valid implementation for the first order necessary
conditions interpreted as weak problem (2). The numbers na of variables and
nt of equations as well as their respective dimension ma,j and mt,i are specified
as compile time constants.

A problem class defines two mandatory member classes, the DomainCache

defining f and the BoundaryCache defining g. The domain cache provides mem-

5

ber functions d0, d1, and d2 evaluating f(·), f ′(·)vi, and f ′′(·)[vi, wj], respec-
tively. The boundary cache is defined analogously. Both DomainCache and
BoundaryCache can be derived from base classes providing default implemen-
tations for simple cases. These can, of course, be overwritten by the problem
definition class. This gives greater flexibility than, e.g., requiring the user only
to specify coefficient functions for fixed types of equations, but is slightly more
involved. However, for various standard problems, helper classes for common
differential operators are provided as building blocks.

As a guiding example, we consider the problem of linear elasticity, i.e. the
variational functional

min
u∈H1(Ω)

∫
Ω

W (E) dx−
∫

Σ

z(s)u(s) ds

where u is a vector-valued displacement in 2D or 3D, and E = 1
2 (ux + uTx).

Dead load forces z acting on Σ ⊂ Ω (e.g., gravity), or the boundary Σ ⊂ ∂Ω
lead to a nontrivial displacement. The elastic energy W = λ

2 tr(E)2 + µ(E : E)
is implemented by the convenience class LameNavier, which makes use of helper
classes defining the St. Venant-Kirchhoff material law as well as the linearized
Green-Lagrange tensor E. Various other material laws, including material pa-
rameters for some commonly used materials, as well as, e.g., membrane models
for cardiac electrophysiology, are provided by Kaskade 7. The essential parts
of the problem class and the DomainCache are shown in Listing 1.

template <class VarSet>
class ElasticityFunctional: public Kaskade::FunctionalBase<VariationalFunctional>
{
public:
using Scalar = double;
static int const dim = AnsatzVars::Grid::dimension;
using ElasticEnergy = Kaskade::Elastomechanics::LameNavier<dim,Scalar>;
//...

class DomainCache
{
public:

//...
template <class Position, class Evaluators>
void evaluateAt(Position const& x, Evaluators const& evaluators)
{

energy.setLinearizationPoint(
at c<u Idx>(vars.data).derivative(at c<u Space Idx>(evaluators)));

}

Scalar d0() const
{ return energy.d0(); }

template<int row>
Vector d1 (VariationalArg<Scalar,dim> const& arg) const
{ return energy.d1(arg); }

template<int row, int col>
Matrix d2 (VariationalArg<Scalar,dim> const& argTest,

VariationalArg<Scalar,dim> const& argAnsatz) const

6

{ return energy.d2(argTest,argAnsatz); }

private:
typename AnsatzVars::VariableSet const& vars;
ElasticEnergy energy;
};
};

Listing 1: Variational functional/DomainCache for elasticity example

We prescribe three kinds of boundary conditions for this example as shown in
Listing 2: on the top face of the unit cube domain, natural boundary conditions
are set, on the bottom we apply a given normal stress, and the side faces are fixed
at their position (homogeneous Dirichlet conditions). The distinction between
boundary regions is provided by the Dune grid interface.

class BoundaryCache : public CacheBase<ElasticityFunctional,BoundaryCache>
{
public:
//...
void moveTo(FaceIterator const& face)
{
switch (face−>boundarySegmentId())
{
case 0: // top face: homogeneous Neumann, zero normal stress

alpha = 0;
beta = 0;
break;

case 1: // bottom face: inhomogeneous Neumann, given normal stress
alpha = 0;
beta = up;
break;

case 2: // side face: essential boundary conditions
alpha = 1e14; // requires large penalty for hard materials
beta = 0;

}
}

template <class Evaluators>
void evaluateAt(Dune::FieldVector<ctype,dim−1> const& x,

Evaluators const& evaluators)
{ u = component<u Idx>(vars).value(at c<u Space Idx>(evaluators)); }

Scalar d0() const
{ return alpha∗(u∗u) − beta∗u; }

template<int row>
Vector d1(VariationalArg<Scalar,dim,dim> const& argTest) const
{ return 2∗alpha∗(u∗argTest.value) − beta∗argTest.value; }

template<int row, int col>
Matrix d2(VariationalArg<Scalar,dim,dim> const &argTest,

VariationalArg<Scalar,dim,dim> const &argAnsatz) const
{ return 2∗alpha∗(argTest.value∗argAnsatz.value); }

7

private:
typename AnsatzVars::VariableSet const& vars;
Vector u, beta;
Scalar alpha;
};

Listing 2: BoundaryCache for elasticity example

Boundary conditions are in general formulated as Robin-type conditions, with
the limit case of Dirichlet conditions incorporated by a simple penalty formula-
tion or via Nitsche’s method (31).

2.3 At the core: finite element function spaces

At the very heart of finite element codes is the mesh, representing a triangulation
T = {Ti | i = 1, . . . ,m} of the computational domain Ω. On T , finite element
spaces are defined. The mesh cells Ti are images of a reference cell Tref under the
smooth bijective (and usually affine) coordinate transform xT (ξ) for ξ ∈ Tref .
As the actual cell T is clear from the context, we will omit the subscript T
in the coordinate transform. Currently, the use of simplicial and quadrilateral
reference cells is supported in Kaskade 7.

Representation concept Finite element functions are stitched together from
linear combinations of shape functions φj defined on Tref . In Kaskade 7, dif-
ferent scalar and vector-valued shape function sets Φ = {φj | j = 1, . . . , nφ}
are defined. Scalar examples are the ubiquitous complete Lagrange polynomials
ΦLp ⊂ Pp of arbitrary order p ≥ 0 on barycentric Lobatto nodes ξj ∈ Tref (32),

such that φj(ξk) = δjk, or symmetric hierarchical polynomial bases ΦHp with

Pp ⊂ span
⋃p
k=0 ΦHk ⊂ Pp+1 (33) allowing the construction of hierarchical er-

ror estimators. An example of vectorial shape functions are those for edge
elements (34).

The restriction ϕi|T of finite element basis functions ϕi to a cell T are defined
in terms of the shape functions φj as

ϕi|T (x) =
∑
j

KT,ijψT (x, φj(ξ(x))), x ∈ T.

The value of vectorial basis functions often depends on the coordinate mapping
x(ξ). This dependence ψT is implemented as a special converter class for each
FE space. For scalar basis functions this is usually just the identity. Finally,
the linear combination of shape function values by KT is realized by a special
class for each defined FE space for performance reasons: In many cases, KT has
a special structure that can be exploited statically. For example, it is just the
identity for Lagrange finite elements, and a diagonal matrix with entries ±1 for
hierarchical ansatz functions.

This factorized definition of FE basis functions ϕi allows to reuse generic
shape function implementations. As an example, nonconforming elements for
biharmonic problems can immediately be defined in terms of standard Lagrange
shape functions.

Example 2.1 (Morley elements). A minimal, nonconforming discretization of
2D biharmonic problems with piecewise quadratic basis functions on triangular

8

grids can be defined by requesting continuity at grid vertices and continuity of
normal derivatives at edge midpoints (35). This yields six interpolation condi-
tions for the linear combination of shape functions. From these conditions, the
combiner matrix KT can be computed. For two reasons, KT depends on the ac-
tual cell T : derivatives are affected by the mapping from reference to actual cell,
and the normal derivatives need to be oriented, e.g., pointing towards the cell
with smaller index. Listing 3 shows the implementation of the combiner’s con-
structor, which computes KT by first creating its inverse, i.e., evaluating values
and derivatives of Lagrangian shape functions on vertices and edge midpoints,
respectively, and then inverting it. While this computation is certainly not the
most efficient, it is simple, straightforward, and a rather general blueprint for
other finite elements.

Combiner(Cell const& cell, GridView const& gv, IndexSet const& is) {
Converter psi(cell);
auto const& sfs = lagrangeShapeFunctionSet<ctype,dim,Scalar>(cell.type(),2);
auto const& Tref = Dune::ReferenceElements<ctype,dim>::simplex();

// Evaluate oriented normal derivatives ±φ′(ξ)ξ′(x)n of ansatz functions
// on all edge midpoints.
for (auto edge=gv.ibegin(cell); edge!=gv.iend(cell); ++edge) {
auto n = edge−>centerUnitOuterNormal();
int j = edge−>indexInInside(); // cell−local edge index
auto xi = Tref.position(j,1); // edge midpoint in cell−local coordinates
psi.setLocalPosition(xi);
auto sign = (edge−>neighbor() && is.index(edge−>outside()) < is.index(cell))?

−1.0: 1.0; // for orienting the normal derivative

// Compute and enter all ansatz functions’ oriented normal derivatives.
for (int i=0; i<sfs.size(); ++i) {

VariationalArg<Scalar,dim,1> dsf(0,sfs[i].evaluateDerivative(xi));
VariationalArg<Scalar,dim,1> daf = psi.global(dsf);
K[j][i] = sign ∗ (daf.derivative[0] ∗ n);
}
}

// Evaluate shape function values φ(ξ) at the vertices
// (no converter needed for values).
for (int j=0; j<3; ++j) {
auto xi = Tref.position(j,2); // vertex position in cell−local coordinates

// Compute and enter all shape function’s values.
for (int i=0; i<sfs.size(); ++i)

K[j+3][i] = sfs[i].evaluateFunction(xi);
}

K.invert();
}

Listing 3: Constructor of the Combiner class for Morley elements.

Fig. 2 shows a simulation result using Morley elements. A rectangular piece
of denim cloth is fixed on two boundaries and deforms under gravity. We use
a 2D shell model derived from the 3D material law, and a damped Newton

9

Figure 2: Cloth simulation using Morley elements. Left: a 0.2 x 0.1 m2 piece
of denim fixed on two boundaries deforming under gravity. Right: zooming
in on the top left part on a deliberately coarse grid shows the nonconforming
deformation.

method for minimization of the fourth order shell energy.

Mesh refinement FE functions are given in terms of their coefficient vectors
with respect to a basis (ϕi)i=1,...,N , with degrees of freedom associated to mesh
vertices, edges, faces, or cells depending on the FE space. Whenever the mesh
is modified, e.g., by adaptive refinement or coarsening, the basis is changed,
rendering the coefficient vectors useless. In order to keep the FE function despite
the mesh modification, the coefficient vectors need to be transferred to the
new basis – a process easy to get wrong if several FE functions of different
type are around. To keep track of them, the callback mechanism provided by
Boost.Signals2 (36) is used. First, a GridManager class assumes ownership of
the grid – one of the grid implementations with Dune interface – and provides
read-only access to it as well as methods for modifying operations. Thus, the
grid manager controls the state of the grid and can inform registered objects via
a callback about upcoming mesh modifications and their completion, see Fig. 3.

Finite element spaces register themselves at the grid manager. On mesh
modification, they store sufficient information about the old grid state to com-
pile a basis change matrix on completion of the mesh modification. This basis
change is forwarded to all objects registered at the space via a second callback.
Finite element functions register themselves at their spaces, and apply the basis
transform to their coefficient vectors. This automatic transfer of finite element
functions to refined or coarsened meshes has proven to be extremely convenient,
and eliminates a substantial source of bugs.

Mesh refinement is usually controlled by error estimators. Kaskade 7 pro-
vides hierarchical (1) and embedded error estimators, as well as gradient aver-
aging and an error estimator in the flavor of Bank and Weiser (37). Moreover,
various refinement criteria are provided to specify which cells to mark for re-
finement. The embedded error estimator is particularly easy to use. Having
computed an approximate solution sol, the FE function is projected onto the

10

GridManager

mark();
refine();
Grid const& grid();

Grid
FEFunctionSpace A

FEFunctionSpace B

Function A1

Function A2

Function B1

Figure 3: Callback collaboration diagram for mesh refinement and coarsening.

the polynomial ansatz subspace of one order lower to get an error approxima-
tion. The hierarchic projection is defined by the shape function sets on each
cell accessible through the variableSet.

auto err = sol;
projectHierarchically(variableSet,err);
err −= sol;

With this and a refinement criterion, the EmbeddedErrorEstimator class handles
the refinement, e.g.,

EmbeddedErrorEstimator<VariableSetDescription> estimator(gridManager,varSetDesc);
FixedFractionCriterion marker(0.1);
estimator.setTolerances(tol).setCriterion(marker);
bool accurateEnough = estimator.estimate(err,sol);

The flexibility of Kaskade 7 allows to quickly implement own error estimators,
e.g., for goal-oriented error estimation in optimal control problems (25).

2.4 Assembly

One of the main tasks in FE computation is the assembly of right hand sides
and stiffness matrices for variational problems and weak formulations of PDE
systems as formulated in (1) and (2). The assembler creates a right hand side
as a heterogeneous container of coefficient vectors, i.e. of type

boost::fusion::vector<Dune::BlockVector<Dune::FieldVector<double,mt1>>,
...,
Dune::BlockVector<Dune::FieldVector<double,mtnt>>>.

11

Figure 4: Strong scaling of stiffness matrix assembly for the Poisson problem on
a unit cube, computed on a 8-socket compute server with AMD Opteron 8384.
For ansatz order p ≥ 4, the parallel efficiency reaches reasonable 85% even when
all 32 cores are used.

Here, mt1. . . mtnt are the equations’ dimensionsmt,1, . . .mt,nt
. The Boost.Fusion

meta programming library (36) allows to translate the static information pro-
vided to the assembler into the right hand side container type in a completely
generic way.

Stiffness matrices for systems of PDEs are na×nt block matrices with sparse
blocks Aij , where the block entries are mt,i ×ma,j matrices. Of course, not all
blocks are present, e.g., there is no p-p block in the Stokes system, and the whole
block matrix may be symmetric, e.g., in optimization problems. Thus, stiffness
matrices are represented in Kaskade 7 as heterogeneous lists of actually present
blocks, omitting those that are just transposed copies of other blocks due to
symmetry. As an example, the type of the Stokes stiffness matrix is essentially

boost::fusion::vector<NumaBCRSMatrix<Dune::FieldMatrix<double,dim,dim>>,
NumaBCRSMatrix<Dune::FieldMatrix<double,1,dim>>>.

Again, this list of sparse matrices can be extracted generically from the compile-
time information about the PDE system provided by the library user. The
NumaBCRSMatrix<Entry> type is a compressed sparse row storage with poten-
tially matrix-valued entries of type Entry, which distributes its rows in blocks
over the available NUMA memory banks. The grid cells are split in ranges of
roughly equal size, and each range is worked on by one thread. Local stiffness
matrices are computed and stored in thread-local buffers that fit into the sec-
ond level caches. When filled, the buffers’ contents are scattered to the global
stiffness matrix, using individual locking of several matrix row blocks.

With this approach, the assembly of stiffness matrices scales reasonably well,
see Fig. 4. The simple constant-coefficient Poisson problem has a particularly
low arithmetic density, in particular for low finite element ansatz order. With
growing order, the number of quadrature points treated locally increases, and

12

with it the arithmetic intensity. Consequently, higher orders lead to better
scalability.

2.5 Solvers

The tools described above enable to formulate given infinite dimensional prob-
lem of the form (1) and (2) as a finite dimensional problems in Rn. If the
problem is linear, then after assembly, linear solvers can be applied. Otherwise,
nonlinear solution algorithms (e.g., Newton’s method) have to be used, which
typically turn the nonlinear problem into a sequence of linearized problems, each
of which has to be assembled and solved.

For the solution of the resulting linear systems, Kaskade 7 contains wrap-
pers for some well-known direct solvers (MUMPS1, UMFPACK2, SUPERLU3)
adhering to the Dune interface:

class InverseLinearOperator : public Dune::LinearSolver<Domain,Range>;

For larger problems, Kaskade 7 not only allows to use iterative solvers and
preconditioners as provided by Dune (CG, BiCGStab, MINRES, GMRES),
but provides own functionality for the solution of linear systems. This includes
solvers like an Uzawa solver for saddle point systems and preconditioned conju-
gate gradients (PCG) Pcg with several termination criteria, but also precondi-
tioners. There, both stationary iterations (e.g., JacobiPreconditioner) and multi-
grid methods for arbitrary finite element order on simplicial grids are available.
There are general multiplicative V-cycles and additive multigrid methods, as
well as several convenience functions for defining concrete preconditioners by
specifying particular ingredients like smoothers and coarse grid preconditioners.
Solving the elasticity example from above using PCG with a BPX preconditioner
(named after Bramble, Pasciak, and Xu (38)) is shown in Listing 4. There, after
defining some data types, the linear operator formed by the assembled stiffness
matrix A is wrapped as a symmetric linear operator sa with a dual pairing dp.
Using an absolute energy error termination criterion, the system with given
right-hand side rhs is then solved and the solution stored in the variable u.
Statistics about the solution, like number of iterations and convergence rate,
are returned in the variable res.

using X = Dune::BlockVector<Dune::FieldVector<double,dim>>;
using Matrix = NumaBCRSMatrix<Dune::FieldMatrix<double,dim,dim>>;
using LinOp = Dune::MatrixAdapter<Matrix,X,X>;
SymmetricLinearOperatorWrapper<X,X> sa(LinOp(A),dp);
PCGEnergyErrorTerminationCriterion<double> term(atol,maxit);
std::unique ptr<SymmetricPreconditioner<X,X>> mg;
mg = moveUnique(makeBPX(Amat,gridManager));
Dune::InverseOperatorResult res;
Pcg<X,X> pcg(sa,∗mg,term);
pcg.apply(u,component<0>(rhs),res);

Listing 4: PCG with BPX preconditioner.

1http://mumps.enseeiht.fr/
2http://faculty.cse.tamu.edu/davis/suitesparse.html
3https://portal.nersc.gov/project/sparse/superlu/

http://mumps.enseeiht.fr/
http://faculty.cse.tamu.edu/davis/suitesparse.html
https://portal.nersc.gov/project/sparse/superlu/

13

More advanced methods are available as well, like overlapping Schwarz smoothers
with low/mixed precision storage of matrix entries (22), and can be constructed
in an equally easy fashion using the makePBPX helper function.

Solvers for nonlinear problems can build upon this functionality in several
ways. Simple algorithms, like a local Newton method can be implemented in an
ad-hoc fashion. For more sophisticated methods, which combine, e.g., globaliza-
tion, inexact linear solvers, and adaptivity, it is helpful to access Kaskade 7 func-
tionality via an abstract interface. For example, a composite step method (16)
for the solution of nonlinear optimal control problems has been implemented
within the C++-library Spacy4 that provides such an interface.

2.6 I/O

Several grid types provided by the Dune interface can be used in Kaskade 7.
Simplicial and cartesian cell types in 1D, 2D and 3D are supported, e.g., tri-
angles, tetrahedra, quadrilaterals and hexahedra. Grid generation for simple
shapes like L-shaped domains or Platonic solids is available for testing purposes,
while more interesting grids can be imported from several grid file formats, e.g.,
from .poly files generated by Triangle (39) in 2D, VTK files (40), or from
Hypermesh files exported by Amira (41). Moreover, the Dune Grid Format
(DGF) allows importing meshes in various other formats, like Gmsh (42).

Visualization of solutions is supported by output to VTK files, in conform-
ing or nonconforming mode depending on the FE function’s continuity (see
Fig. 2), for further postprocessing in ParaView (43), as well as in the Amira
file format. Additionally, mesh and solution can be written to files for later
visualization using Gnuplot. Basic checkpoint/restart capabilities especially
for time-dependent problems are given by the option to read VTK files and
extract meshes and FE functions in order to continue computations from such
a snapshot.

2.7 Instationary problems

Kaskade 7 provides two possibilities to handle time-dependent problems of the
formB(u)u̇ = f(u): an extrapolated linearly implicit Euler method (LIMEX) (44),
i.e., a method of time layers approach (Rothe’s method), and spectral deferred
corrections (SDC) (45) with a method of lines discretization. For the former,
given an evolution equation Equation eq, the corresponding integration loop in-
cluding estimation of the time discretization error is shown in Listing 5.

Limex<Equation> limex(gridManager,eq,variableSet);
for (steps=0; !done && steps<maxSteps; ++steps) {
do {

dx = limex.step(x,dt,extrapolOrder,tolX);
errors = limex.estimateError(/∗...∗/);
// ... (choose optimal time step size)
} while(error > tolT);
x += dx ;
}

Listing 5: LIMEX time integration loop

4https://spacy-dev.github.io/Spacy/

https://spacy-dev.github.io/Spacy/

14

For step computation, the stationary elliptic problem resulting from the linearly
implicit Euler method have to be provided. This is done with help of the
class SemiImplicitEulerStep, and requires only an additional method b2 in the
DomainCache for the evaluation of B. SDC methods are further discussed in
Sec. 3.

3 Specific Extensions

In this section, we discuss some non-core functionalities provided in Kaskade 7,
which are specific for application domains or particular types of PDE problems.
Besides illustrating the range of problems to which Kaskade 7 has been applied,
they serve as examples of how the toolbox core has been extended.

3.1 Spectral deferred correction methods for time inte-
gration

Spectral deferred correction methods (SDC) (45) are fixed point iteration meth-
ods to solve ODE collocation systems. Each iteration, or sweep, consists of
stepping through collocation nodes by a low-order scheme, yielding a high-order
method. To be more precise, consider the reaction-diffusion system

Bu̇ = Au+Bf(u)

coming from a method of lines finite element discretization of the underlying
PDE, with mass matrix B and stiffness matrix A. With collocation time dis-
cretization on a time grid t0, . . . , tM , abbreviating u(ti) = ui, and applying a
suitable quadrature rule, this system is transformed to

B(ui+1 − ui) =

M∑
j=0

Sij(Auj +Bf(uj)). (3)

Kaskade 7 provides time grids for collocation (Lobatto, Gauss, and Radau
points) derived from a common abstract base class SDCTimeGrid, together with
Lagrange or Hermite polynomial interpolation, quadrature, and differentiation.
As time-global coupling makes system (3) hard so solve, the quadrature coeffi-
cients S are approximated by a triangular matrix Ŝ, e.g., using an Euler time
stepping scheme or the LU factorization trick (46). Functions performing a
single SDC sweep as well as helper methods computing optimized integration
matrices are contained in Kaskade 7.

SDC integrators have been applied, e.g., to the electrical excitation of myo-
cardial tissue, described by the monodomain equations (47):

Cχu̇ = div(σ∇u)− Iion(u,w)

ẇ = f(u,w).

This reaction-diffusion equation for the transmembrane voltage u, coupled to
pointwise ODEs for the action of various ion channels, describes the propagation
of activation and deactivation fronts traveling through the tissue. Activation
initiates creation of tensile stress leading to contraction of the heart. Since
the stretch induced by the contraction affects the behavior of stretch-activated

15

Figure 5: Left: Testcase for adaptive simulation of cardiac electrical excitation
coupled to mechanical contraction. Stretch-activated ion channels affect the
excitation front speed. Right: Comparison of effective support of different SDC
sweeps for the same time step of expanding activation front.

ion channels, the front speed depends weakly on the mechanics. In situations
where this effect cannot be neglected, electrophysiology and mechanics need
to be solved jointly. Here, the SDC iteration can be nicely interleaved with
mechano-electrical coupling as well as with mesh refinement, see Fig. 5, left,
and (30).

In moving front systems like the monodomain equations, the converging
SDC iteration leads not only to geometrically decreasing corrections, but also
the effective spatial support of the corrections is shrinking, see Fig. 5, right.
Restricting the computation of SDC sweeps to their effective support reduces
the computational effort for SDC iterations significantly and realizes a certain
kind of multirate integration.

Spectral deferred correction methods are also the basic ingredient of the
Parallel-in-Time method PFASST (48), which has been used in Kaskade 7 to
investigate the impact of MPI communication on hybrid Parareal methods (9).

3.2 Optimal control of nonlinear problems

The Kaskade 7 toolbox has been used in a couple of projects concerned with
optimal control of nonlinear PDEs. These are minimization problems of the
following general form:

min J(y, u) s.t. A(y)−Bu = 0, (4)

where J is a given objective functional, A(y) − Bu = 0 a nonlinear PDE with
state y and control u. Typically, A is a nonlinear differential operator and
the operator B models the influence of the control. Introducing a Lagrange
parameter p a Lagrangian function L(y, u, p) := J(y, u) + 〈p,A(y)−Bu〉 can be

16

Figure 6: Left: Optimal temperature distribution, 43◦C isothermal surface.
Middle and Right: adaptively refined grid. Critical regions, where upper tem-
perature bound is close, are refined.

defined, and KKT-conditions can (at least formally) be derived:

Jy(y, u) +A′(y)∗p = 0

Ju(y, u)−B∗p = 0

A(y)−Bu = 0.

(5)

This is a system of operator equations, which can be rewritten in the form (2).
Discretization of this system and its linearization can be performed in Kaskade 7
after suitable finite element spaces for y, u, and p have been chosen. A function
space oriented SQP-method for the solution of such problems has been proposed
in (16) and applied to various nonlinear optimal control problems. This method
behaves like a Newton method locally, but its globalization scheme encourages
functional descent and this yields more robust convergence behaviour towards
local minimizers of (4) than a damped Newton method, applied to (5), which
does not distinguish local minimizers from other stationary points.

As a specific application we discuss a hyperthermia treatment planning prob-
lem (8). In deep regional hyperthermia a tumor is heated by a microwave
applicator. The corresponding planning problem is to find optimal antenna pa-
rameters which result in maximal heating of the tumor, while not exceeding a
specified maximal temperature in healthy tissue. In this context the control u
are the antenna parameters and the state y is the temperature distribution inside
the tissue. The PDE constraint consists of a combination of the time-harmonic
Maxwell equation for the microwave antenna fields, coupled to a nonlinear heat
equation. The required upper bounds on the temperature are tackled by an
interior point path-following approach (21; 49) that also includes adaptive grid
refinement, that is specifically tailored to state constrained problems, see Fig. 6.

3.3 Contact problems

A recent addition to Kaskade 7 is the treatment of frictionless multi-body
contact problems. The usual linearized nonpenetration constraint

nT (u(x)− u(x′)) ≤ g(x)

for the displacement u along the outer normal n at x with potential contact part-
ner x′ and gap g is discretized by a segment-to-segment approach with an arbi-

17

Figure 7: Contact between corpse and mattress for investigating the impact of
corpse positioning and contact area on cooling.

W

α

polygonal

smooth
 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Figure 8: Two concentric annuli of total diameter 8, coarsely discretized as reg-
ular polygons, rotating against each other. Left: Coarse FE discretization with
32 vertices around the perimeter. The contact boundary vertices are located on
two circles with 10−4 difference in radius. The inner annulus is rotated by half
an edge length. Right: Deformation energy W with gap function computed on
polygonal boundary (top) and on G1-continuous interpolation (bottom) versus
rotation angle α. The lower energy line is below 10−17.

trary number of samples per boundary face. Contact partners are found by ray-
volume intersection queries in a spatial search tree provided by Boost.Geometry.
This overconstrained contact formulation leads to quadratic programs of the
form

min
x

1

2
xTAx+ cTx s.t. Bx ≤ b

to be solved. As a contact solver, a nonlinear multigrid method with primal
grid hierarchy as outlined in Sec. 2.5 is used in combination with overlapping
block-QP solvers for smoothing on every level.

One application is in estimating the time of death in forensic medicine. The
contact area between corpse and support (Fig. 7) affects the heat transfer into
the environment, and therefore the cooling of the corpse. This in turn has an
impact on rectal temperature readings and the estimated time since death (26).

Surface-to-surface discretizations are prone to contact locking (Fig. 8), for
which the computation of gap functions based on G1-continuous surface interpo-
lation on quadrilaterals has been proposed as remedy (50). Kaskade 7 provides
a G1-continuous interpolation on triangles (51), and extends this smoothly into
the volume. Feature edges can be specified or be detected automatically by
angle thresholding and allow to include sharp curves separating smooth surface

18

Figure 9: A stretched octahedron refined towards an oloid-like shape with G1-
continuous surface except for the two feature curves. Four feature edges and
normals at the four endpoints of the feature curves have been specified.

patches, see Fig. 9 for an illustrative example. As shown in Fig. 8, right, the
boundary smoothing removes surface locking completely.

3.4 Lossy compression of finite element functions

For sufficient accuracy, PDE systems often need to be discretized with a huge
number of spatial degrees of freedom. Large scale PDE simulations thus involve
tremendous amounts of data that need to be stored or transmitted to other
compute nodes, such that communication bandwidth and storage space need
to be considered to obtain fast and efficient methods. To deal with these chal-
lenges, Kaskade 7 contains methods for lossy compression of finite element
solutions with low computational overhead. It makes use of the grid hierarchy
coming from uniform or adaptive mesh refinement and is based on transforming
the finite element solution from the nodal basis to the hierarchical basis (52),
or other wavelet bases, together with error-controlled quantization of the coeffi-
cients (12; 29). A priori error estimates for compression factors (29) show that
asymptotically 2.96 bits/value (in 2D, compression factor 21.6 compared to dou-
ble precision, slightly higher compression factor in 3D) are sufficient to achieve a
reconstruction error equal to L∞-interpolation error bounds for functions with
sufficient regularity. Using these tools in Kaskade 7 is straightforward:

LossyStorage<Grid, CoefficientVector> lossyStorage(coarseLevel);
lossyStorage.setup(gridManager.grid());

sets up the compression routines, e.g., computes, if required, prolongation ma-
trices between grid levels, starting from coarseLevel. Afterwards,

lossyStorage.encode(gridManager.grid(), coeffVector, compressedData, quantTol);

19

compresses data given in coeffVector to an output byte stream compressedData us-
ing quantization tolerance quantTol. Reconstruction is done calling the method
lossyStorage.decode with similar arguments. Working directly on the coefficient
vector coeffVector with its type given by the template parameter CoefficientVector

uncouples compression from the Kaskade 7 data structures for finite element
functions and allows its use in combination with other Dune-based FE dis-
cretization modules, e.g., dune-PDELab5.

Figure 10: Reconstructed 3D solution 15.3 ms after excitation. Left: trans-
membrane voltage (compression factor 15.4, relative L∞-error 10−4). Right:
adaptive computational grid (403,192 vertices).

Figure 10 shows a snapshot of a 3D simulation of cardio-electrophysiology,
with transmembrane voltage v and gating variable w governed by the Rogers-
McCulloch variant of the monodomain equations (53), with the heart geome-
try from (54). A local, short excitation pulse of 1 ms leads to a depolariza-
tion wave traveling through the domain, requiring local adaptivity in time and
space for efficient simulation. In this snapshot, the mesh consists of 2 251 410
elements/403 192 vertices on 5 levels. Encoding of the 806 384 degrees of free-
dom took 4.9s, much less then the computation time required for the time step.
We achieved a compression factor of 15.4 for a relative L∞-error of order 10−4

in the transmembrane voltage v and 10−2 in the gating variable w.

4 Conclusions and Outlook

Kaskade 7 is a versatile, efficient, and, most of all, flexible finite element
library, meeting the needs of algorithmic research in numerical solution of PDEs
and related problems. Its structure has proven to be flexible enough to meet
virtually all requirements that showed up over the last 15 years, even if not
anticipated in the design phase. The downside of the provided flexibility is a
steeper learning curve than required for frameworks targeting higher abstraction
levels.

The toolbox is continuously improved and extended. Present directions for
extension, following current research and computing trends, are green comput-
ing by using reduced precision and lossy data compression, time-parallel and

5https://dune-project.org/modules/dune-pdelab/

https://dune-project.org/modules/dune-pdelab/

20

space-time discretizations, and domain specific languages for supporting mod-
ern architectures.

Acknowledgment

Implementing a flexible FE toolbox is a major effort, and requires to involve
several people. We are grateful for contributions by B. Erdmann, L. Lubkoll,
M. Moldenhauer, R. Roitzsch, J. Schneck, L. Weimann, and F. Wende, as well
as several master students and interns. To a significant fraction, Kaskade 7
has been developed within several third-party funded research projects. We
acknowledge support in particular from DFG, BMBF, and ECMath, recent
projects involved being DFG WE 2937/9-1, ECMath CH9, as well as BMBF
01IH16005D.

References

[1] P. Deuflhard, P. Leinen, H. Yserentant, Concepts of an adaptive hierarchi-
cal finite element code, IMPACT Comput. Sci. Engrg. 1 (1989) 3–35.

[2] S. Götschel, M. Weiser, A. Schiela, Solving optimal control problems
with the Kaskade 7 finite element toolbox, in: A. Dedner, B. Flemisch,
R. Klöfkorn (Eds.), Advances in DUNE, Springer, 2012, pp. 101–112.

[3] P. Deuflhard, M. Weiser, Adaptive numerical solution of PDEs, de Gruyter,
2012.

[4] M. Blatt, P. Bastian, The iterative solver template library, in: B. Kagström,
E. Elmroth, J. Dongarra, J. Wasniewski (Eds.), Applied Parallel Comput-
ing – State of the Art in Scientific Computing, Springer, Berlin/Heidelberg,
2007, pp. 666–675.

[5] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, M. Ohlberger,
O. Sander, A generic grid interface for parallel and adaptive scientific com-
puting. Part I: Abstract framework, Computing 82 (2–3) (2008) 103–119.

[6] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, R. Kornhuber,
M. Ohlberger, O. Sander, A generic grid interface for parallel and adaptive
scientific computing. Part II: Implementation and tests in DUNE, Com-
puting 82 (2–3) (2008) 121–138.

[7] M. Blatt, A. Burchardt, A. Dedner, C. Engwer, J. Fahlke, B. Flemisch,
C. Gersbacher, C. Gräser, F. Gruber, C. Grüninger, D. Kempf, R. Klöfkorn,
T. Malkmus, S. Müthing, M. Nolte, M. Piatkowski, O. Sander, The Dis-
tributed and Unified Numerics Environment, Version 2.4, Arch. Numer.
Softw. 4 (100) (2016) 13–29. doi:10.11588/ans.2016.100.26526.
URL http://dx.doi.org/10.11588/ans.2016.100.26526

[8] P. Deuflhard, A. Schiela, M. Weiser, Mathematical cancer therapy planning
in deep regional hyperthermia, Acta Numer. 2 (2012) 307–378.

[9] L. Fischer, S. Götschel, M. Weiser, Lossy data compression reduces commu-
nication time in hybrid time-parallel integrators, Comput. Vis. Sci. 19 (1)
(2018) 19–30.

http://dx.doi.org/10.11588/ans.2016.100.26526
http://dx.doi.org/10.11588/ans.2016.100.26526
http://dx.doi.org/10.11588/ans.2016.100.26526
http://dx.doi.org/10.11588/ans.2016.100.26526

21

[10] S. Götschel, N. Chamakuri, K. Kunisch, M. Weiser, Lossy compression in
optimal control of cardiac defibrillation, J. Sci. Comp. 60 (1) (2014) 35–59.

[11] S. Götschel, C. von Tycowicz, K. Polthier, M. Weiser, Reducing mem-
ory requirements in scientific computing and optimal control, in: Multiple
Shooting and Time Domain Decomposition Methods, Springer, 2015, pp.
263–287.

[12] S. Götschel, M. Weiser, Lossy compression for PDE-constrained optimiza-
tion: Adaptive error control, Comput. Optim. Appl. 62 (2015) 131–155.
doi:10.1007/s10589-014-9712-6.

[13] S. Götschel, C. von Tycowicz, K. Polthier, M. Weiser, Reducing memory
requirements in scientific computing and optimal control, in: T. Carraro,
M. Geiger, S. Körkel, R. Rannacher (Eds.), Multiple Shooting and Time
Domain Decomposition Methods, Springer, 2015, pp. 263–287.

[14] L. Grüne, M. Schaller, A. Schiela, Sensitivity analysis of optimal control
for a class of parabolic PDEs motivated by model predictive control, SIAM
J. Control Opt. 57 (4) (2019) 2753–2774. doi:10.1137/18M1223083.

[15] L. Lubkoll, A. Schiela, M. Weiser, An optimal control problem in polycon-
vex hyperelasticity, SIAM J. Control Optim. 52 (3) (2014) 1403–1422.

[16] L. Lubkoll, A. Schiela, M. Weiser, An affine covariant composite step
method for optimization with PDEs as equality constraints, Optim. Meth.
Softw. 32 (5) (2017) 1132–1161.

[17] J. Müller, S. Götschel, C. Maierhofer, M. Weiser, Determining the mate-
rial parameters for the reconstruction of defects in carbon fiber reinforced
polymers from data measured by flash thermography, in: AIP Conference
Proceedings, 2017, p. 100006.

[18] G. Müller, A. Schiela, On the control of time discretized dynamic contact
problems, Comput. Optim. Appl. 68 (2) (2017) 243–287. doi:10.1007/

s10589-017-9918-5.

[19] S. Schenkl, H. Muggenthaler, M. Hubig, B. Erdmann, M. Weiser, S. Za-
chow, A. Heinrich, F. Güttler, U. Teichgräber, G. Mall, Automatic CT-
based finite element model generation for temperature-based death time
estimation: feasibility study and sensitivity analysis, Int. J. Legal Med.
131 (3) (2017) 699–712.

[20] O. Schenk, A. Wächter, M. Weiser, Inertia revealing preconditioning for
large-scale nonconvex constrained optimization, SIAM J. Sci. Comput.
31 (2) (2008) 939–960.

[21] A. Schiela, M. Weiser, Barrier methods for a control problem from hy-
perthermia treatment planning, in: M. Diehl, F. Glineur, E. Jarlebring,
W. Michiels (Eds.), Recent Advances in Optimization and its Applications
in Engineering, Springer, 2010, pp. 419–428.

[22] J. Schneck, M. Weiser, F. Wende, Impact of mixed precision and storage
layout on additive Schwarz smoothers, Report 18-62, Zuse Institute Berlin
(2018).

http://dx.doi.org/10.1007/s10589-014-9712-6
http://dx.doi.org/10.1137/18M1223083
http://dx.doi.org/10.1007/s10589-017-9918-5
http://dx.doi.org/10.1007/s10589-017-9918-5

22

[23] M. Weiser, Pointwise nonlinear scaling for reaction-diffusion equations,
Appl. Num. Math. 59 (8) (2009) 1858–1869.

[24] M. Weiser, Optimization and identification in regional hyperthermia, Int.
J. Appl. Electromagn. and Mech. 30 (2009) 265–275.

[25] M. Weiser, On goal-oriented adaptivity for elliptic optimal control prob-
lems, Optim. Meth. Softw. 28 (13) (2013) 969–992.

[26] M. Weiser, B. Erdmann, S. Schenkl, H. Muggenthaler, M. Hubig, G. Mall,
S. Zachow, Uncertainty in temperature-based determination of time of
death, Heat Mass Transf. 54 (9) (2018) 2815–2826.

[27] M. Weiser, Y. Freytag, B. Erdmann, M. Hubig, G. Mall, Optimal design of
experiments for estimating the time of death in forensic medicine, Inverse
Probl. 34 (12) (2018) 125005. doi:10.1088/1361-6420/aae7a5.

[28] M. Weiser, T. Gänzler, A. Schiela, Control reduced primal interior point
methods, Comput. Optim. Appl. 41 (1) (2008) 127–145.

[29] M. Weiser, S. Götschel, State trajectory compression for optimal control
with parabolic PDEs, SIAM J. Sci. Comp. 34 (1) (2012) A161–A184.

[30] M. Weiser, S. Scacchi, Spectral deferred correction methods for adaptive
electro-mechanical coupling in cardiac simulation, in: Progress in Industrial
Mathematics at ECMI 2014, Springer, 2017, pp. 321–328.

[31] J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen
bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen
sind, Abh. Math. Univ. Hamburg 36 (1971) 9–15.

[32] M. Blyth, C. Pozrikidis, A Lobatto interpolation grid over the triangle,
IMA J. Appl. Math. (2005) 1–17.

[33] G. Zumbusch, Symmetric hierarchical polynomials and the adaptive h-p-
version, in: A. Ilin, L. Scott (Eds.), Proc. of the Third Int. Conf. on Spectral
and High Order Methods, Houston Journal of Mathematics, 1996, pp. 529–
540.

[34] J.-C. Nédélec, Mixed finite elements in R3, Numer. Math. 35 (3) (1980)
315–341.

[35] L. Morley, The triangular equilibrium element in the solution of plate bend-
ing problems, Aero. Quart. 19 (2) (1968) 149–169.

[36] B. Schäling, The Boost C++ Libraries, 2nd Edition, XML Press, 2014.

[37] R. E. Bank, A. Weiser, Some a posteriori error estimators for elliptic partial
differential equations, Math. Comput. 44 (170) (1985) 283–301.
URL http://www.jstor.org/stable/2007953

[38] J. Bramble, J. Pasciak, J. Xu, Parallel multilevel preconditioners, Math.
Comp. 55 (1990) 1–22.

http://dx.doi.org/10.1088/1361-6420/aae7a5
http://www.jstor.org/stable/2007953
http://www.jstor.org/stable/2007953
http://www.jstor.org/stable/2007953

23

[39] J. Shewchuk, Triangle: Engineering a 2D quality mesh generator and Delau-
nay triangulator, in: M. Lin, D. Manocha (Eds.), Applied Computational
Geometry: Towards Geometric Engineering, Vol. 1148 of Lecture Notes in
Computer Science, Springer, 1996, pp. 203–222.

[40] L. Avila et al., The VTK User’s Guide, 11th Edition, Kitware, 2010.

[41] D. Stalling, M. Westerhoff, H.-C. Hege, Amira: A highly interactive system
for visual data analysis, in: C. Hansen, C. Johnson (Eds.), The Visualiza-
tion Handbook, Elsevier, 2005, pp. 749–767.

[42] C. Geuzaine, J.-F. Remacle, Gmsh: A 3-D finite element mesh generator
with built-in pre- and post-processing facilities, Int. J. Numer. Meth. Eng.
79 (11) (2009) 1309–1331. doi:10.1002/nme.2579.

[43] U. Ayachit, The ParaView Guide: A Parallel Visualization Application,
2015.

[44] P. Deuflhard, U. Nowak, Extrapolation integrators for quasilinear implicit
ODEs, in: P. Deuflhard, B. Engquist (Eds.), Large Scale Scientific Com-
puting, Birkhäuser, Boston, 1987, pp. 37–50.

[45] A. Dutt, L. Greengard, V. Rokhlin, Spectral deferred correction methods
for ordinary differential equations, BIT Numer. Math. 40 (2) (2000) 241–
266.

[46] M. Weiser, Faster SDC convergence on non-equidistant grids by DIRK
sweeps, BIT Numer. Math. 55 (4) (2015) 1219–1241.

[47] P. Colli Franzone, L. Pavarino, S. Scacchi, Mathematical Cardiac Electro-
physiology, Springer, 2014.

[48] M. Emmett, M. Minion, Toward an efficient parallel in time method for
partial differential equations, Comm. Appl. Math. Comp. Sci. 7 (1) (2012)
105–132.

[49] A. Schiela, A. Günther, An interior point algorithm with inexact step com-
putation in function space for state constrained optimal control, Numer.
Math. 119 (2) (2011) 373–407.

[50] M. Puso, T. Laursen, A 3D contact smoothing method using Gregory
patches, Int. J. Numer. Meth. Eng. 54 (2002) 1161–1194. doi:10.1002/

nme.466.

[51] B. Hamann, G. Farin, G. Nielson, A parametric triangular patch based
on generalized conics, in: G. Farin (Ed.), NURBS for Curve and Surface
Design, SIAM, 1991, pp. 75–85.

[52] H. Yserentant, On the Multi-Level Splitting of Finite Element spaces, Nu-
mer. Math. 49 (1986) 379–412.

[53] J. M. Rogers, A. D. McCulloch, A collocation-Galerkin finite element model
of cardiac action potential propagation, IEEE Trans. Biomed. Eng. 41
(1994) 743–757.

http://dx.doi.org/10.1002/nme.2579
http://dx.doi.org/10.1002/nme.466
http://dx.doi.org/10.1002/nme.466

24

[54] D. A. Hooks, M. L. Trew, Construction and validation of a plunge electrode
array for three-dimensional determination of conductivity in the heart.,
IEEE Trans. Biomed. Eng. 55 (2 Pt 1) (2008) 626–635. doi:10.1109/

TBME.2007.903705.

http://dx.doi.org/10.1109/TBME.2007.903705
http://dx.doi.org/10.1109/TBME.2007.903705

	Introduction
	Toolbox Design
	Design goals
	Problem formulation
	At the core: finite element function spaces
	Assembly
	Solvers
	I/O
	Instationary problems

	Specific Extensions
	Spectral deferred correction methods for time integration
	Optimal control of nonlinear problems
	Contact problems
	Lossy compression of finite element functions

	Conclusions and Outlook

