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An as-invariant-as-possible GL+(3)-based
Statistical Shape Model

Felix Ambellan[0000−0001−9415−0859], Stefan Zachow[0000−0001−7964−3049], and
Christoph von Tycowicz[0000−0002−1447−4069]

Therapy Planning Group, Zuse Institute Berlin, Berlin, Germany
{ambellan, zachow, vontycowicz}@zib.de

Abstract. We describe a novel nonlinear statistical shape model based
on differential coordinates viewed as elements of GL+(3). We adopt an as-
invariant-as possible framework comprising a bi-invariant Lie group mean
and a tangent principal component analysis based on a unique GL+(3)-
left-invariant, O(3)-right-invariant metric. Contrary to earlier work that
equips the coordinates with a specifically constructed group structure,
our method employs the inherent geometric structure of the group-valued
data and therefore features an improved statistical power in identifying
shape differences. We demonstrate this in experiments on two anatomical
datasets including comparison to the standard Euclidean as well as recent
state-of-the-art nonlinear approaches to statistical shape modeling.

Keywords: Statistical shape analysis · Tangent principal component
analysis · Lie groups · Classification · Manifold valued statistics

1 Introduction

Changes in the shape of anatomies are often early indicators of specific diseases.
For example, musculoskeletal disorders affecting large proportions of the adult
population such as Osteoarthritis (OA) [17] are associated with morphological
changes. The overall socio-economic burden [6] associated with these diseases
provides a strong impetus to develop novel computational approaches for the
support of treatment and prevention strategies. Statistical models of shape have
been established as one of the most successful methods for understanding the
geometric variability of anatomical structures [1]. Given a set of samples from
an object class under study, statistical shape models estimate the distribution of
the underlying population in terms of a mean shape and a hierarchy of principle
modes encoding the variation of the samples around that mean. Moreover, rep-
resenting the samples within the basis of principle modes provides a concise and
highly discriminative description that is susceptible for analysis and inference
algorithms. In particular, descriptors based on statistical shape modeling have
proven effective for predicting the onset and progression of OA [5, 20, 22, 23].

While linear approaches like the point distribution model (PDM) [7] are still
the most widely used in applied morphometrics, they fail to fully capture the
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inherent nonlinearity in biological shape variation [8]. Many exciting ideas to ac-
count for this nonlinerity have been presented ranging from the large deformation
framework [19] based on diffeomorphisms of the ambient space to modeling the
variability of surfaces employing concepts from shell theory [25, 4, 14]. However,
due to the inherent complexity of the involved nonlinear estimation problems
the practical applicability especially in time-critical applications is limited. To
address this challenge, one line of work encodes shapes using differential coor-
dinates that provide a local description of the geometry rather than absolute
positions [13, 10, 12, 24, 3]. In particular, statistical shape models based on dif-
ferential coordinates have recently been successfully employed for classification
of radiographic OA significantly outperforming the linear PDM [24, 3]. Typically
differential coordinates are derived from the (deformation) gradient of the map
that encodes the shape relative to a reference and, hence, naturally belong to
the group of orientation preserving linear transformations GL+(3). However, to
the best of our knowledge, previous work does not account for the rich geometric
structure inherent to GL+(3). On the one hand, approaches like [27] based on the
Riemannian framework are not stable according to group operations (composi-
tion and inversion) due to the lack of bi-invariant metrics for GL+(3). Anyhow,
consistency with group operations is desirable as it provides invariance w.r.t.
changes of reference and data coordinate systems and, thus, prevents bias due
to arbitrary choices thereof. On the other hand, equipping GL+(3) with an al-
ternative group structure as done for the differential coordinates model (DCM)
in [24] provides bi-invariance but ignores its original, canonical structure. Fur-
thermore, while Woods [26] proposes a similar approach for image deformation,
he employs a surface representation that is not group-valued.

In this work, we derive a novel statistical shape model based on linear differ-
ential coordinates that is as-invariant-as-possible and, hence, promises increased
consistency and reduced bias. To this end, we adapt the notion of bi-invariant
mean as proposed in [21] employing an affine connection structure on GL+(3).
Furthermore, we perform second-order statistics based on a family of Rieman-
nian metrics providing the most possible invariance, viz. GL+(3)-left-invariance
and O(3)-right-invariance. We evaluate the performance of the derived model in
terms of shape-based classification of pathological malformations of the human
knee demonstrating superior accuracy over state-of-the-art [24, 3] approaches.

2 Differential Coordinates

In this section, we provide a concise introduction to linear differential coordi-
nates and refer the reader to [24] for further details. We consider shapes to be
instances of a class of anatomical objects that are topologically consistent, s.t.
they can be represented as a left-acting deformation φ of a common reference
S̄. We further, assume that S̄ is discretized as a simplicial surface mesh with
k vertices and m triangles. In order to perform analysis on local geometric de-
tails rather than absolute coordinates of a shape S = φ(S̄), we can employ a
differential representation given by the deformation gradient ∇φ, i.e. the 3 × 3
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matrix of partial derivatives of φ. Let φ be orientation-preserving and affine on
each triangle T̄i ∈ S̄, then the derivatives are constant on each triangle with
∇φ|T̄i ≡ Di ∈ GL+(3). Note, that the deformation of a triangle fully specifies

an affine map of IR3 if we assume that triangle normals are mapped onto each
other (cf. Kirchhoff–Love kinematic assumptions). Accordingly, a representation
of a shape S in linear differential coordinates is given by ξ = (D1, . . . , Dm)T .

A key feature of this representation is that the inverse problem of mapping
differential coordinates back to a deformation φ leads to the well-known Poisson
equation

∆φ = ∇ · ξ, (1)

where ∆ ∈ IRk×k and ∇· ∈ IRk×3m denote the discrete Laplacian and divergence
operator, respectively. Note, as (1) is a linear differential equation it can be solved
very efficiently. Furthermore, the solutions are unique up to translations of each
connected component of S̄.

3 Geometric Statistics in GL+(3)

In order to derive information of our geometric data we perform element-wise
geometric statistics on it. Let {ξj = (Dj

1, . . . , D
j
m)T }nj=1 be the set of all input

shapes represented in differential coordinates. The essential components to set up
a statistical shape model are a mean value and a tangent Principal Component
Analysis (tPCA) [9] to analyze the input as deviations thereof.

3.1 Bi-invariant Mean

Since GL+(3) does not admit a bi-invariant metric there can not exist a bi-
invariant Riemannian mean. Nevertheless, due to the Lie group structure there
exists a naturally bi-invariant candidate for the mean in terms of the group
exponential barycenter called bi-invariant mean. We follow hereby the work of
Pennec and Arsigny [21] who delivered a comprehensive characterization and
analysis on this topic. The bi-invariant mean Mi is defined through:

n∑
j=1

log
(
Dj
i ·M

−1
i

)
= 0, (2)

where log denotes the group logarithm. To solve for the unknown Mi we apply
an iterative fixed point scheme:

Mk+1
i = exp

 n∑
j=1

log
(
Dj
i · (M

k
i )−1

) ·Mk
i , (3)

where exp denotes the group exponential.
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The local existence and uniqueness of the bi-invariant mean have been proven
for data with small enough dispersion, i.e. if the data lies within a sufficiently
small normal convex neighborhood of some point of the Lie group. Furthermore,
the algorithm given by Eq. (3) always converges to Mi at least with linear speed
provided that the initialization is chosen sufficiently close to the data.

From Eq. (3) we see that the group logarithm and exponential of GL+(3) are
essential operations required to determine the mean shape as well as for the sta-
tistical analysis in its tangent space (Sec. 3.2). However, it should be emphasized
that there does not exist a real logarithm for every element in GL+(3). We can
classify such elements by investigating the underlying eigenvalue structure. Let
D be an arbitrary element in GL+(3). It is known that there always exists a real
Jordan-Decomposition [11] D = V ·E ·V −1 s.t. E belongs (modulo permutation)
to one of the following three types:

A:

λ1 0 0
0 λ2 0
0 0 λ3

 , where λi ∈ R+,

B:

−λ1 0 0
0 −λ2 0
0 0 λ3

 , where λi ∈ R+, λ1 6= λ2,

C:

λ1 µ 0
−µ λ1 0
0 0 λ2

 , where λ1 + iµ ∈ C \ {0}, λ2 ∈ R+.

As the logarithm is compatible with a change of basis it is enough to consider
only matrices of the above form. Both cases A and C admit a real logarithm,
contrasting case B that does not allow for its existence. This raises the question
what deformation gradients could feature such an eigenvalue configuration and
whether it is likely to appear. If we take a closer look at case B we see that
it encodes an anisotropic scale with two negative weights. Since the respective
deformation is orientation preserving it must invert two edges of a triangle and
change their lengths in a non-uniform fashion. This seems to be a rather unlikely
deformation, if we consider data to be aligned and without artifacts such as local
overfolds. In particular, the two real word datasets we performed our experiments
on (Sec. 4) did not admit any element in any input shape that came across with
a deformation gradient of this structure. Neither during calculation of the mean
nor during analysis.

However, in order to do statistics in GL+(3) that are robust to such extreme
cases we require an alternative strategy. To this end, we propose to perform a
pseudo logarithm operation. Let D be an element of GL+(3) with no logarithm.
We define its pseudo logarithm plog employing polar decomposition as follows:

plog(D) = plog(RU) := log(R) + log(U)

In case a real log(D) exists this formula can be seen as first order (commutator
free) approximation in terms of the Baker–Campbell–Hausdorff formula and for
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commutating R,U this formula would be even exact. This can additionally be in-
terpreted as a fallback to the product structure of the DCM [24]. Contrary to the
logarithm, the matrix exponential always exists and can efficiently be calculated
using the scaling-and-squaring method together with Padé approximations [15].

3.2 Tangent Principal Component Analysis

In the previous section we were able to circumvent the absence of a bi-invariant
metric but this is no longer possible if we want to perform higher-order analysis
using tPCA. While there is no bi-GL+(3)-invariant metric, we are interested
in metrics that yield at least invariance under orthogonal transformations, i.e.
metrics that are invariant with respect to a change of coordinates obtained by
rotating or mirroring the data. Indeed, there exists exactly one family of metrics
that is GL+(3)-left-invariant and O(3)-right-invariant and uniquely determined
up to three positive real constants [18]. We define the metric as usual via the
inner product on the respective Lie algebra.

Let X,Y ∈ gl(3) = IR3×3 and µ, ν, κ ∈ IR+:

〈X,Y 〉µ,ν,κ := µ 〈dev symX,dev symY 〉+ ν 〈skewX, skew Y 〉+
κ

3
tr(X) tr(Y ),

where we have used the following notation:

〈·, ·〉 = 〈·, ·〉2 = tr (XTY ) (standard inner product),

symX =
1

2
(X +XT ) (symmetric part of X),

skewX =
1

2
(X −XT ) (skew-symmetric part of X),

devX = X − trX

3
I3 (deviator of X).

If we consider X as infinitesimal transformation the above terms admit cer-
tain geometric interpretations: skewX represents the rotational part and symX
the distortion part. While the trace tr quantifies volume changes, the deviator
dev represents the trace-free part and, hence, dev symX describes the shearing
(volume-preserving distortion) part of X. Furthermore, the above inner product
features two interesting properties:

〈X,Y 〉1,1,1 = 〈X,Y 〉 for all X,Y ∈ gl(3),

〈X,Y 〉µ,ν,κ = 0 X ∈ so(3), Y symmetric.

Hence, this family of metrics can be seen as natural generalization of the standard
metric arising from the standard inner product for matrices. Let us assume
to have n input shapes with m triangles each, then we perform tPCA in the
tagent space TM (GL+(3))m at the differential coordinates of the mean shape
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M = (M1, . . . ,Mm). The (p+ 1)-th mode of variation is hereby given as:

vp+1 = arg max
gMµ,ν,κ(v,v)=1

n∑
i=1

p∑
l=1

gMµ,ν,κ(vl, log (Di))
2

+ gMµ,ν,κ(v, log (Di))
2
, (4)

where Di = (D1
i , . . . , D

m
i ), log is applied component-wise and gMµ,ν,κ =

∑
gM

j

µ,ν,κ

is the metric emerging from 〈·, ·〉µ,ν,κ.

4 Experiments and Results

The following experiments are performed utilizing (rounded) metric parameters
µ = 0.1, ν = 29.42, κ = 1.3 that have been found conducting hyper parameter
optimization (HPO) w.r.t. best performance in our classification experiment.
HPO was carried out within the Scikit-Optimize1 python framework performing
a sequential optimization using decision trees (forest minimize) on the cubical
domain [0.05, 1000]3.

Data We employ two datasets:
(i) Distal femora (see Fig. 2) from the Osteoarthritis Initiative (OAI) for

58 severely diseased and 58 healthy subjects that were also used for evaluation
in [24, 3] and are publicly available as segmentations2 [2]. For a detailed list of
the exact subjects that are included in the experiment as well as their disease
state we refer to the supplemental material of [3]. We used the surface meshes
as provided by the authors (in particular the correspondences) and we refer to
[24] for further details on the creation of the dataset.

(ii) Skeletal human hand (see Fig. 3) taken from the publicly available data3

of [16] that is based on data of the Large Geometric Models Archive from the
Georgia Institute of Technology.

Knee Osteoarthritis Classification OA is i.a. characterized by changes of
the shape of bones composing the knee. With this experiment we want to investi-
gate the proposed GL+(3) model’s sensitivity w.r.t. pathological shape changes
and thus its ability to classify knee OA for the OAI dataset of distal femora.
To achieve this, we utilize a simple support vector machine (SVM) with linear
kernel directly on the 115-dimensional space of shape weights. These weights
are the vectors of coefficients w.r.t. the principal modes for each shape. The
weights serve as input features to the SVM. The classifier is trained on a bal-
anced set (healthy/diseased) of feature vectors for different shares of randomly
chosen data varying from 10% to 90% whereas the testing is performed on the
respective complement. Since we have some randomness in our experimental de-
sign we carry out the experiment 10000 times for each partition and consider
the mean accuracy and the standard deviation. We compare our method to the
PDM [7] as well as to the in a way related DCM [24] and the recent fundamental

1 https://scikit-optimize.github.io
2 https://doi.org/10.12752/4.ATEZ.1.0
3 http://graphics.stanford.edu/∼ niloy/research/shape space/shape space sig 07.html
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Fig. 1. OA classification experiment for the proposed GL+(3) model, PDM [7] and the
recent FCM [3] (left) and the related DCM [24] (right). The accuracy of the GL+(3)
model ranges from 91.6% (at 10% training) to 96.3% (at 90% training).

coordinate model (FCM) [3], which both achieved highly accurate classification
results. To this end, we employ the above outlined classifier setup using the
respective model specific shape weights.

Figure 1 shows the results in terms of average accuracy and standard devia-
tion. The accuracy of the GL+(3) model ranges from 91.6% (at 10% training) to
96.3% (at 90% training). Note that solely the proposed GL+(3) method achieves
an accuracy of over 91% in case of sparse (10%) training data.

Qualitative Evaluation We perform two qualitative experiments.
(i) A comparison of the mean shape of the OAI dataset as determined by

the DCM as well as the proposed GL+(3) model. To achieve this we align both
shapes and calculate the surface distance between them. Both mean shapes are
highly similar as can be seen in Fig. 2.

(ii) An analysis of the skeletal hand dataset. We calculate the mean shape
of the two input poses, perform tPCA and (visually) investigate the resulting
trajectory connecting the two input shapes through the mean w.r.t. plausibility.
As shown in Fig. 3 the principal mode shows natural nonlinear deformation
characteristics.

5 Conclusion and Future Work

In this work, we presented a novel nonlinear statistical shape model based on
GL+(3). The model utilized the bi-invariant Lie group mean and a tangent prin-
cipal component analysis employing a GL+(3)-left-invariant, O(3)-right-invariant
metric in GL+(3). It can thus be considered as as-invariant-as-possible w.r.t. the
canonical GL+(3) structure of the deformation gradient. We have shown that
the proposed model possess a high descriptiveness w.r.t. natural biological differ-
ences in shape. In order to determine the parameters of the metric we applied a
hyper parameter optimization targeting classification accuracy. In particular, we
conducted experiments on OA classification achieving results that are superior
to those of the state-of-the-art models [24, 3].
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Fig. 2. Deviations of mean distal femur shape as calculated with the proposed GL+(3)
model and the DCM [24]. Absolute values of the surface distance are plotted color-
coded on the DCM mean shape.

We consider it valuable and interesting to also investigate the purely Rie-
mannian perspective associated with the above metric and compare it to our
present work. Although geodesics can be evaluated in closed form for a given
direction and the existence of a shortest geodesic connecting two arbitrary points
is theoretically guaranteed, no closed form solution to determine the direction
of one (and not necessarily the shortest) connecting geodesic is known [18].
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Fig. 3. Trajectory as calculated with the proposed GL+(3) model connecting the input
shapes (left, right) via the exponential mean (center) showing natural deformation
characteristics.
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