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Abstract

The correlation of the inner architecture of bone and its func-
tional loading was already stated by Wolff in 1892. Our objective is to
demonstrate this interdependence in the case of the human mandible.
For this purpose, stress/strain profiles occurring at a human lateral
bite are simulated. Additionally, by a combination of computer graph-
ics modules, a three—dimensional volumetric visualization of bone min-
eral density can be given.

Qualitative correspondences of the density profile of the jaw to the
simulated stress/strain profiles are pointed out. In the long run, this
might enable the use of the simulation for diagnosis and prognosis.
The solution of the underlying partial differential equations describing
linear elastic material behaviour is provided by an adaptive finite ele-
ment method. Estimates of the discretization errors, local grid refine-
ment, and multilevel techniques guarantee the reliability and efficiency
of the method.

1 Introduction

“Every change in the form and function of bones, or of their function alone, is
followed by certain definite changes in their internal architecture and equally
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definite secondary alteration in their external conformation, in accordance
with mathematical laws.”

These are the original terms of the famous Wolft’s law about the interde-
pendence between the inner architecture of bone and its functional loading
which was already stated in 1892 [22].

On the one hand, modern simulation techniques, mostly using finite element
methods, enable reliable and efficient computation of stress and strain profiles
and thus a detailed analysis of the loading situation [7].

On the other hand, recent visualization approaches of the authors deliver
a macroscopic volumetric profile of the inner structure due to the optical
density accessible via the Hounsfield values coming from ct-data [12].

In this article, we combine these two approaches in a pilot study concern-
ing the human mandible. Muscular activity is one of the most important
physiological loads bone is exposed to. The masticatory muscles are one of
the strongest in the human body. We want to study whether we can point
out a correlation of stress/strain profile due to these muscles and the inner
structure of the mandible.

In a sense, this study contributes also to a vice versa validation of both, the
simulation model and the density visualization techniques presented in [12].

2 Materials and Methods

2.1 Segmentation and surface reconstruction

We choose the partially edentulous mandible of the female visible human [2]
as first test example, because of the extensive information on soft tissue by
the anatomical images additional to ct— and mri—data and its very elaborate
documentation in the literature.

A segmentation of the concerned tissues is a prerequisite for the simulation
and for the visualization of the inner structure. This includes the mandible
with cortical shell and cancellous core separated, the teeth, the eight masti-
catory muscles (four on each side), and two simplified temporo mandibular
joint capsules. For description of the anatomical details, see Figure 1.

The segmentation of muscular tissue only on behalf of ct—data is quite te-
dious and thus less reliable. Therefore, the first step is a superposition of
the ct—data and the anatomical images [11]. Using the semiautomatic tools
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Figure 1: The anatomy of the mandible and the masticatory system [8].

provided by the visualization toolbox AMIRA 3.0 [20], it is possible to per-
form the necessary hard and soft tissue segmentation. Based on this input,
the AMIRA built-in algorithm for generation of non-manifold surfaces gives
a quite satisfactory reconstruction of the individual geometry. For the theo-
retical background, we refer to [16, 18, 19].

The complete model is shown in Figure 2. The cortical shell of the mandible,
its inside spongy bone, the teeth, the masticatory system (musculi masseter,
temporalis, pterygoidei mediales, pterygoidei laterales), and the two simpli-
fied temporo mandibular joint (tmj) capsules are separate geometric entities.
For a detailed view of the muscles and the capsules, see Figure 4.

The jaw bone, the teeth, and the temporo mandibular joint capsules are
modeled in our finite element simulation by a tetrahedral grid whereas the
muscle forces are considered as boundary conditions. The grid generated
for the mandibular surface (Figure 2) contains about 300,000 points which
is too much for an efficient numerical treatment as described in the next
section. Therefore, further preprocessing has to be performed. By successive
grid coarsening, smoothing, and interactive improvement a surface mesh of



Figure 2: Surface reconstruction.

sufficient quality for volumetric mesh generation can be achieved. See [7, 18,
19] for details.

2.2 Numerical background: adaptive finite elements

In our study of the human mandible, the governing physical laws are the
three-dimensional equations of linear elasticity:

—uV - (Vu+ (Vu)') = AV(V-u) = 0 (1)

completed by boundary values. u denotes the displacement vector. A and u
are the Lamé constants which fulfill the relations

— E _ Ev
M= 5010y A= 0)(1—20)

with Young modulus £ and Poisson number v.

If we introduce the stress tensor o := (0;;) and the strain tensor € := (¢;;) =
(Vu+ (Vu)T) /2, 1 < 4,5 < 3, we get for isotropic materials
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with the matrix of elastic coefficients

( 1—v v v 0 0 0
v 1—-v v 0 0 0
E v v 1—v 0 0 0
C = (1—2v)
(1+v)(1 - 2v) 0 0 0 5 0 0
0 0 0 0o I 9
\ 0o o o 0o 0 )
Equation 1 is equivalent to
dive = 0 (3)

We are using linear finite element methods with tetrahedral meshes for the
numerical solution of these stationary partial differential equations. Tetra-
hedral meshes allow us to get a faithful representation of the complicated
tissue boundaries. The generation of such grids is a difficult task, often a
lot of manual support is necessary. Our mandible grids are provided by the
visualization software AMIRA, see [20] and for the theoretical background
[16, 18, 19, 17].

Typically, for a given application, we try to obtain a result via an efficient
reliable simulation. Therefore, our finite element algorithms are based on
adaptive mesh refinement [5, 4, 13], i.e., the finite element grid is automat-
ically improved in regions where the numerical solution does not have the
required accuracy. Adaptive techniques are driven by error estimators, which
yield an estimate of the local discretization error in the calculated variables
(here the displacement vector). This kind of a posteriori error estimation is
based on hierarchical space extensions, i.e., by local comparison of the linear



finite element solution with local quantities computed as approximate resid-
uals on small subdomains employing quadratic finite elements. Thus the user
is released from constructing problem-specific discretizations.

Adaptive techniques are playing an increasingly important role in the area
of computational science. Numerical and modelling errors can be clearly
distinguished with the effect that reliability of the modelling process can be
assessed. Compared to methods using only uniform refinement, successful
adaptive methods lead to substantial savings in computational work for a
given error tolerance.

Efficient implementation of adaptive mesh refinement requires particular at-
tention to the supporting data structures and algorithm complexity [6]. The
described algorithms are implemented in the FEM—code KASKADE ([5], [4],

[1]).

Using KASKADE the equations 1 or 3 have to be transformed into the shape

-V - (DVu) =0 (4)
with
(/\+2u00 0 A0 00 A \
0 w0 p 0 0 000
0 0 g 000 w0 0
0 pu O g 0 0 000
D= A0 0 0 A+2u 0 00 A
00 0 0 0 u 0 u 0
00 p 000 p 0 0
000 00 p 0 p 0
\ A0 0 0 A O 00 A+2u/ )

This adaptive finite element code provides automatic grid refinement during
the calculation in order to compute solutions with high accuracy. The linear
algebraic systems inherent in the finite element method is solved by the con-
jugate gradient method [9] combined with an incomplete LU-decomposition
as preconditioner. This iterative procedure is started with the solution of
the previous level as an initial guess. Adaptive grid refinement and pre-
conditioned solution on each level of refinement establishes what we call a
multilevel solver.



After successful FEM-calculation, the results are transferred to AMIRA for
visualization.

Figure 3: Initial grid (left) and adaptive mesh (right) after two steps of refine-
ment.(TMJ capsules are not drawn.)

step | Points | x-Deformation y-Deformation z-Deformation
0| 36802 | -4.86e-5 - 2.3%-5 | -6.08e-5 - 1.34e-5 | -6.64e-6 - 6.43e-5
1| 74696 | -5.29e-5 - 2.52e-5 | -6.31e-5 - 1.41e-5 | -6.92e-6 - 6.73e-5
2 | 138890 | -5.29e-5 - 2.56e-5 | -6.34e-5 - 1.43e-5 | -7.04e-6 - 6.77e-5
3 | 311206 | -5.36e-5 - 2.59e-5 | -6.38e-5 - 1.43e-5 | -7.08e-6 - 6.82e-5
4 | 708879 | -5.58e-5 - 2.61e-5 | -6.48e-5 - 1.45e-5 | -7.13e-6 - 6.93e-5

Table 1: Minima/maxima of displacement components during adaptive re-
finement.

To illustrate the effects of the adaptive method we present some results from
our simulation using the elastic parameters as mentioned in Section 2.3.
Figure 3 shows the initial grid and the grid after of two steps of adaptive
refinement. At first sight this is not very impressive, because the initial
grid has already quite a fine resolution. However, we easily recognize the
refinement on the interface of tmj capsules and mandible due to extremely
different material properties. Furthermore, a detailed analysis shows that
the adaptive refinement is exactly in those regions where the accuracy of the
solution is essentially improved.



step | points OuM
0| 36802 | 1.17e+7
1| 74696 | 1.54e+7
2 | 138890 | 1.56e+7
3| 311206 | 1.61e+7
4| 708879 | 2.00e+7

Table 2: Maximum von Mises stress during adaptive refinement.

Tables 1 and 2 show the development of the minima/maxima of the dis-
placement components and the maxima of the von Mises stress during the
adaptive refinement process. The von Mises stress is defined by

OyM = LQ [(011 - 022)2 + (092 — 033)2 + (011 — ‘733)2 + 6(‘7%2 + ‘733 + ‘7%3)]1/2
step | Points | x-Deformation y-Deformation z-Deformation
0| 36802 |-3.99e-4 - 3.59e-4 | -1.18e-3 - 1.32e-4 | -8.72e-5 - 1.17e-3
1] 72719 | -4.19e-4 - 3.29¢e-4 | -1.23e-3 - 1.42e-4 | -9.24e-5 - 1.23e-3
2 | 135052 | -4.24e-4 - 3.45e-4 | -1.23e-3 - 1.43e-4 | -9.27e-5 - 1.24e-3
3 (292090 | -4.44e-4 - 3.38¢-4 | -1.24e-3 - 1.43e-4 | -9.30e-5 - 1.24e-3
4| 648464 | -4.43e-4 - 3.46e-4 | -1.24e-3 - 1.43e-4 | -9.28e-5 - 1.24e-3

Table 3: Minima/maxima of displacement components during adaptive re-
finement. £=0.1 MPa in the capsules.

We can state a clear improvement of the results during the four adaptive
refinement steps, but not yet convergence. In another calculation based on
softer tmj capsules (F = 0.1 MPa), the convergence is obvious, see Tables 3
and 4.

To get the same reliability of the results when using a method only equipped
with uniform refinement the amount of computational resources would be in
another order of magnitude, compare our former investigations in [7].

Though in a lot of mechanical computations finite elements of higher order
of convergence are preferred, we could show in our application that linear
finite elements are sufficiently accurate if they are combined with adaptive
grid control.



step | points OuM
36802 | 9.19e+7
72719 | 1.49e+8
135052 | 1.50e+8
292090 | 1.50e+8
648464 | 1.50e+8

=~ W N = O

Table 4: Maximum von Mises stress during adaptive refinement. £=0.1 MPa
in the TMJ capsules.

2.3 Structural mechanics simulation

The condyles are embedded into simplified temporo mandibular joint cap-
sules where they are freely mobile. The capsules’ bonding to the skull is
modeled by rigid attachment.

As an example, we simulate a lateral bite on the left premolar. Our focus
is the mandibular ramus. Thus we assume the “biting tooth” as nearly non
deformable by muscular forces towards a very hard item to be crunched.
Therefore, within this pilot study, we keep this tooth fixed.

As a first approximation, we keep the whole setting as simple as possible: we
choose an isotropic material law and assume piecewise homogeneity for all
involved materials. According to [7], we set as average value for the Young
modulus E = 13.3 GPa for cortical, E = 1.33 GPa for spongy bone, and E
= 16.0 GPa for the teeth. The Poisson ratio is assumed to be 0.224 for both
constituents of bone and for the teeth. Newer biomechanical research proves
that the temporomandibular joint discs are viscoelastic or even poroelastic,
see for instance [21, 3]. In our macroscopic model, at least at the moment, we
set aside this fine differentiation. In [21], the Young modulus of canine discs
is reported as between 30.9 MPa and 15.8 MPa. In order to meet at least
the order of magnitude, we choose E = 20 MPa for the temporomandibular
joint capsules. The Poisson ratio is set v = 0.3.

masseter | temporalis | pteryg.medialis | pteryg.lateralis
biting side 91 81 43 0
balancing side 60 68 29 0

Table 5: Muscular forces [N].

As reported in Section 2.1, the four respectively eight common masticatory
muscles were included in the simulation. These are the musculi masseter,
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Figure 4: Surface reconstruction of the masticatory muscles and their direc-
tion vectors (1: Musc. masseter, 2: Musc. temporalis, 2a: pars anterior,
2b: pars posterior, 3: Musc. pterygoidei mediales, 4: Musc. pterygoidei
laterales); mandible: visualization of the density by volume rendering.

the musculi temporales, the musculi pterygoidei mediales, and pterygoidei
laterales, see Figure 1 or Figure 4. For muscular forces, we refer to the
data given in [15] which base on electromyographic measurements, see Table
5. The direction vectors applied in our simulation were extracted from the
surface reconstruction, see Figure 4. In this preliminary study, we confined
ourselves to constant direction vectors for each muscle.
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2.4 Comparison of the simulation results and the inner
structure of the jaw bone

Based on Hounsfield values coming from the ct-data a three dimensional
volumetric visualization of bone mineral density can be given, for details see
[12].

The first step is transparent rendering of the organ under consideration with-
out colour. Therein, regions of different density were also transparently ren-
dered, but coloured according to their optical density. This allows to study
regions of atrophied bone in their spatial context. Usually, we follow the
physical colour scale which means that red stands for high density whereas
dark blue indicates the lowest level. The steps are dark blue (lowest level) —
light blue — green — yellow — orange — red (highest level). See Figure 6 or 7
for examples.

As a preliminary but less significant step, volume rendering using an adapted
colour map can be applied, see for instance Figure 4 or 5.

The correlation of Hounsfield—values and bone mineral density is an actual
topic of biomedical research, see for instance ct—osteoabsorptiometry in [14].
The appropriate visualizations are mostly two dimensional and refer to one
or more cross sections of the ct—data.

Within this setting, a qualitative comparison of the density profile and the
stress/strain distribution caused by selected load cases is possible. Regions
of elevated stress respective strain level should be compared with regions of
elevated tissue density and vice versa. Especially, correlations of weakened
regions of reduced density and elevated compression (negative strain) are to
be studied.

3 Results

As pointed out in the last section, we want to detect qualitative correspon-
dences of the inner structure of the jaw to the loading situation due to the
masticatory movement. This means for example that we can state higher
density where the simulation indicates increased loading.

One step further, we have to face the question which one of the multitude
of postprocessing variables, e.g., von Mises equivalent stress or hydrostatic
pressure, is to be evaluated in order to obtain significant results. In our
framework, we start with two classical ones which are volumetric strain and

11



von Mises equivalent stress, also with regard to our still isotropic material
law.

Very generally, concerning the simulation results, we discern three regions
of different stress/strain levels: the region around the teeth, the mandibular
ramus, and the mandibular condyles. The region near the ”biting tooth”
exhibits for both postprocessing variables the highest values whereas at the
condyles the lowest values occur.

3.1 Inner architecture versus volumetric strain

In contrast to von Mises equivalent stress, volumetric strain is a signed post-
processing variable. By this, we can differ compression with negative sign
and dilatation with positive sign.

P 0.00015
I -7.5e-005
-0.0003

Figure 5: Volumetric strain for a lateral bite(left); skull, capsules, mandible:
visualization of the density by volume rendering (right).

masseter

Figure 5 shows at the left hand side the strain profile occurring at a lateral
bite according to the simulation concept described in Section 2. To the right,
a visualization of the density of the mandible is given by means of volume
rendering with an adapted colour scale.

The first remarkable feature is the dominant compression at the alveolar
process besides the biting tooth. This corresponds to reduced density there,
see Figure 5.

Next, we can state high dilatation at the mandibular notch, following the
oblique line and the lower part of the coronoid process roughly correlated
to elevated density in this region. At the condyles, low strain level is in
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qualitative agreement with low density. The same is true for the middle part
of the mandibular ramus. For the anatomical terms, see Figure 1.

3.2 Inner structure versus von Mises equivalent stress

Density (blue-yellow-red) Simulation

Figure 6: Von Mises equivalent stress versus inner structure, density visual-
ization account to [12].

Von Mises equivalent stress is one of the most common and most distin-
guished postprocessing variables to characterize elastic material behaviour,
especially if the tissue is isotropic. Because at this stage of the project we
refrained from anisotropic simulation, von Mises equivalent stress should be
dedicated to the comparison with the density profiles, see Figure 6.

We can state correspondences of stress to density at both rami (working and
balancing side), at the condyles, and at the mandibular notch, medial and
lateral. Contrary to volumetric strain, see Section 3.1, the high density at
the posterior part of the ramus is in good agreement with the increased stress
values. But we get disagreement at the coronoid process.

The dorsal view of the density visualization shows elevated values below
the incisors indicated by yellow colour. Our simulated lateral bite caused
increased stress according to the appropriate “biting tooth” deferred to the
left. This shift may indicate that the person in her lifetime may have used
the incisors more than the premolar where our lateral bite is situated.
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A short annotation again concerning the dorsal view of the inner structure
should be added. The regions with high density at the bottom side of the
alveolar process may be correlated to the traction of the musculi mylohyoidei
and geniohyoidei which were not included to the simulation.

3.3 The pars posterior of the musculus temporalis

According to Figure 5, the high positive strain values at the anterior part of
the coronoid process correspond to elevated densitiy values there. The high
strain values follow the mandibular notch up to the condyle. According to
our hypothesis, we also expect high density values there. But, at the posterior
part of the coronoid process, we can state a small spot of reduced density.
Within our framework, this should correlate with elevated compression.

Simulation

density profile

Figure 7: Correspondence of reduced density to elevated compression at the
posterior part of the coronoid process. (Anatomical dissection: Anatomische
Anstalt, Univ. Munich, photograph: C. Kober)

For the simulations presented in the previous sections, the direction vector
of the musculus temporalis was chosen according to its anterior part. Mo-
tivated by the observations cited above, we change this direction vector to
the posterior part of the musculus temporalis. Thereafter, the simulation
results, the strain profile as well as the von Mises equivalent stress, show the
expected qualitative agreement, see Figure 7.
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4 Discussion and outlook

We detected various qualitative correspondences of the mandible’s density
profile to the simulated stress/strain profiles but also, in some cases, dis-
agreement. The latter may be caused by wrong assumptions or inadmissible
simplifications concerning our simulation model. A significant example has
already been identified by the simulations given in the Sections 3.1 and 3.3:
constant direction vectors especially for the musculus temporalis lead to in-
complete results at the posterior part of the coronoid process. Further, the
boundary conditions at the “biting tooth” should be taken into account. Its
fixation is not realistic in the sense that very small displacements there can
be measured during biting. Finally, the assumption of an isotropic material
law and the homogeneity of cortical and cancellous bone should be cited as
severe simplifications of the model. By these lines, the areas of further in-
vestigation are clear: a more realistic design of the direction vectors of the
muscles, improved boundary conditions at the tooth, and anisotropic and
fully inhomogeneous simulation. See [10] for first results.

The relevant load cases to our project are standard situations occurring often
and thus influencing the inner structure of bone. It is very likely, that human
individuals do not exhibit only one biting habit but a variety of those. We
cannot expect to capture the whole spectrum practised by our test person
considering only one biting situation. Therefore, an important part of our
future work will be dedicated to additional biting scenarios as for instance
teeth clenching.

Finally, there is a third point, we want to discuss in this context. Geometry
reconstruction, see Section 2.1, was quite refined and adapted to the test
person’s individuality. But, even the material law, besides the separation
of cortical and cancellous bone, does not exhibit any individual feature of
the patient. Muscle directions were individually averaged over the whole
muscle attachment. Muscle forces were set according to quite sophisticated
electromyographic measurements [15], but nevertheless without any relation
to the test person. Summing up, we compare a quite general simulation
setting with the definitely individual density profile.

But in spite of these limitations, many significant qualitative correspondences
of the density profile to the stress/strain profiles could be stated. This mo-
tivates the question whether there is general “jaw like” loading situation
independent of individual features.

In the long run, these observations may enable the use of the simulation for
diagnosis and prognosis. An important step will be the application to data

15



sets of real patients.
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