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Abstract

We call an edge e of a perfect graph G critical if G− e is imperfect
and call e anticritical if G + e is imperfect. The present paper surveys
several questions in this context.

We ask in which perfect graphs critical and anticritical edges occur
and how to detect such edges. The main result by Hougardy & Wa-
gler [32] shows that a graph does not admit any critical edge if and
only if it is Meyniel.

The goal is to order the edges resp. non-edges of certain perfect
graphs s.t. deleting resp. adding all edges in this order yields a se-
quence of perfect graphs only. Results of Hayward [15] and Spinrad
& Sritharan [27] show the existence of such edge orders for weakly
triangulated graphs; the line-perfect graphs are precisely these graphs
where all edge orders are perfect [33].

Such edge orders cannot exist for every subclass of perfect graphs
that contains critically resp. anticritically perfect graphs where deleting
resp. adding an arbitrary edge yields an imperfect graph. We present
several examples and properties of such graphs, discuss constructions
and characterizations from [31, 32].

An application of the concept of critically and anticritically perfect
graphs is a result due to Hougardy & Wagler [23] showing that per-
fectness is an elusive graph property.

Keywords: Perfect graphs, critical edges, perfect edge orders, critically
perfect graphs.
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1 Introduction

1.1 Perfect graphs

Berge proposed to call a graph G = (V,E) perfect if, for each of its induced
subgraphs G′ ⊆ G, the chromatic number χ(G′) equals the clique number
ω(G′) (i.e., as many stable sets cover all nodes of G′ as a maximum clique
of G′ has nodes).

Berge [2] conjectured two characterizations of perfect graphs. His first
conjecture was that a graph G is perfect iff the clique covering number
χ(G′) equals the stability number α(G′) for all G′ ⊆ G (i.e., as many cliques
cover all nodes of G′ as a maximum stable set of G′ has nodes). Since
complementation transforms stable sets into cliques and colorings into clique
coverings, this is equivalent to saying that a graph G is perfect if and only if
its complement G is perfect. This was proved by Lovász [24] and is nowadays
known as the Perfect Graph Theorem.

The second conjecture, called Strong Perfect Graph Conjecture, concerns
a characterization via forbidden subgraphs. Berge observed that chordless
odd cycles C2k+1 with k ≥ 2, termed odd holes, and their complements
C2k+1, called odd antiholes, are imperfect. Clearly, each graph containing
an odd hole or an odd antihole as an induced subgraph is imperfect as well.
Berge conjectured in [2] that a graph is perfect if and only if it contains
neither odd holes nor odd antiholes as induced subgraphs; such graphs are
called Berge by a suggestion of Chvátal and Sbihi.
Imperfect graphs with the property that removing any of its nodes yields a
perfect graph are called minimally imperfect. Using this term, the Strong
Perfect Graph Conjecture reads that odd holes and odd antiholes are the
only minimally imperfect graphs. Considerable effort has been spent over
the years to verify or falsify the Strong Perfect Graph Conjecture. For
example, many structural properties of minimally imperfect graphs have
been discovered and the conjecture has been proved for many classes of
Berge graphs.

A common way to show the perfectness of a class C uses structural re-
sults proving that all graphs in C have a basic form or there are certain
structural faults which cannot occur in minimally imperfect graphs. For
example, triangulated graphs (having no hole Ck for k ≥ 4) are perfect due
to Berge [1] since every subgraph is either a clique or contains a clique cut-
set. Meyniel graphs where every odd cycle of length ≥ 5 has at least two
chords belong to a basic class or else contain a so-called amalgam by Burlet
& Fonlupt [7]. BIP∗ is a hereditary class constructed from bipartite graphs
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(having chromatic number ≤ 2) with the help of star-cutsets in the graph
and in the complement due to Chvátal [8]. C4-free Berge graphs are either
bipartite or line graphs of bipartite graphs or else have star-cutsets or 2-joins
by Conforti, Cornuéjols & Vuŝković [11]. The line graph L(F ) is obtained
by taking the edges of a graph F as nodes of the line graph and by joining
two nodes of L(F ) if the corresponding edges of F are incident.

In May 2002, Chudnovsky, Robertson, Seymour & Thomas announced a
proof of the Strong Perfect Graph Conjecture with the help of the following
decomposition theorem [10]: Every Berge graph G either belongs to five
basic classes (G or G is bipartite or the line graph of a bipartite graph, or
G is a double split graph) or has one of four structural faults (G or G has
a 2-join, G has an M-join, or G has a balanced skew partition). Recently,
Chudnovsky showed in her thesis [9] that M-joins can be dropped. Since odd
holes are the only minimally imperfect graphs containing 2-joins by [12] and
a minimum counterexample to the Strong Perfect Graph Conjecture has no
balanced skew partition due to [10], this decomposition theorem implies the
Strong Perfect Graph Theorem: every Berge graph is perfect.

1.2 A graph evolution process

The motivation to investigate critical and anticritical edges w.r.t. perfect-
ness comes from the following graph evolution process. Imagine you have an
arbitrary perfect graph and you consecutively delete one edge after the other
until the empty graph is reached, or you consecutively add edges until the
graph is complete. So you create a sequence of graphs starting and ending
up with a perfect graph. But, if you choose the edges to be deleted or added
randomly, most graphs of your sequence will be imperfect. The aim is to
avoid the occurrence of imperfect graphs in our sequence.

First, one could try to delete or add one edge keeping perfectness in each
step:

Problem 1.1 Given a certain perfect graph, is there a rule how to choose
an edge to be deleted or added in order to preserve perfectness?

Let G be a perfect graph. We call an edge e critical if G− e is imperfect
and call e anticritical if G + e is imperfect. Note that a critical edge of
G is anticritical in the complementary graph G: due to the Perfect Graph
Theorem [24]. Section 2 presents some rules to detect whether an edge is
critical or anticritical. Problem 1.1 could be easier to solve if the graph
in question belongs to a certain subclass of perfect graphs. In particular,
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certain perfect graphs may not possess any critical or anticritical edge, in
this case we could choose an arbitrary edge keeping perfectness.

Problem 1.2 In which perfect graphs do critical (anticritical) edges occur
at all?

The answer leads to a new characterization of Meyniel graphs and their
complements. Removing any edge from a Meyniel graph preserves perfect-
ness by Hertz [17]. Hougardy & Wagler showed that a graph is Meyniel if
and only if it does not admit any critical edge (see [32] for the proof). This
implies that every perfect graph G has at least one critical (resp. anticritical)
edge if and only if G (resp. G) is not Meyniel.

In Section 2 we list how to specify critical and anticritical edges for
certain classes of perfect graphs, e.g., for line graphs of bipartite graphs,
for strongly perfect graphs whose subgraphs admit a stable set meeting all
maximal cliques, and for strict quasi parity graphs whose non-complete sub-
graphs have an even pair x, y (all induced paths between x and y have even
length).

In Section 3, we treat the following problem:

Problem 1.3 For any given perfect graph, is there an order of all the edges
to be deleted (added) so that we get a sequence of perfect graphs ending up
with a stable set (clique)?

It turns out that it does not suffice to identify non-critical or non-
anticritical edges: we can certainly remove an arbitrary edge from a Meyniel
graph keeping perfectness but, at present, we do not know anything about
critical edges of the resulting graph. Thus we have to look for edges the
deletion or addition of which preserves membership within the correspond-
ing subclass of perfect graphs. This is easy for bipartite and triangulated
graphs. Results of Hayward [15] and Spinrad & Sritharan [27] show the ex-
istence of such edge orders for weakly triangulated graphs that have neither
holes Ck nor antiholes Ck with k ≥ 5.
It is clear that no such edge orders exist for classes of perfect graphs contain-
ing a graph with only critical or anticritical edges. Perfect graphs s.t. delet-
ing (adding) and arbitrary edge yields an imperfect graph have been termed
critically (anticritically) perfect. The question is:

Problem 1.4 Are there critically or anticritically perfect graphs?
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Section 4.1 shows that such graphs exist indeed and provides some prop-
erties. In particular, the critically and anticritically perfect line graphs have
been characterized in [31, 32]. With the help of this characterization, it is
easy to obtain critically perfect line graphs belonging to the classes of, e.g.,
quasi parity graphs where G′ or G

′

owns an even pair for each subgraph G′

and locally perfect graphs whose subgraphs can be colored using ω(N(x)) in
the neighborhood N(x) of every node x. Furthermore, anticritically perfect
line graphs can be found in the classes of, e.g., strongly perfect, strict quasi
parity, or planar Berge graphs. (See Section 4.3 for more examples.)
Section 4.2 presents further techniques of constructing critically and an-
ticritically perfect graphs by, e.g., substitution, clique identification, and
composition from not necessarily critical or anticritical components.

A typical question to ask is:

Problem 1.5 Characterize the class of all critically or anticritically perfect
graphs!

A study of this problem revealed that the classes of critically and anti-
critically perfect graphs can neither be characterized by means of forbidden
subgraphs nor by composition techniques that construct all such graphs from
some basic classes. (Note that all critically or anticritically perfect graphs
known so far are either line graphs of certain bipartite graphs, complements
of line graphs of certain bipartite graphs, or can be constructed from such
graphs.) Moreover, the two classes are incomparable to almost all subclasses
of perfect graphs.

Section 5 is devoted to an application of the concept of critically and
anticritically perfect graphs: a result due to Hougardy & Wagler [23] shows
that perfectness is an elusive graph property. A graph property is called
elusive (or evasive) if, for every number of nodes, the best possible algorithm
for testing this property has to read, in the worst case, all entries of the
adjacency matrix of the given graph. This is equivalent to the following task:
start with an empty graph and build a graph by consecutively adding edges
(in random order) s.t. no imperfect induced subgraph appears before the last
node pair has been probed but that the last step can create both a perfect
or an imperfect graph. This is obviously possible if the constructed graph is
bicritically perfect, i.e., if it is critically and anticritically perfect. Hougardy
& Wagler constructed bicritically perfect line graphs for all large numbers
of nodes and applied a slightly different concept and a parity argument to
solve the small cases (where no bicritically perfect graphs exist).
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2 Critical and Anticritical Edges

In this section we present few observations which will be frequently used later
to detect critical or anticritical edges (Problem 1.1). The question which
perfect graphs contain critical edges at all (Problem 1.2) will be answered
by characterizing the perfect graphs without any critical edge.

For every critical (anticritical) edge e of a perfect graph G there is nec-
essarily at least one subgraph Ge ⊆ G such that Ge−e (Ge +e) is minimally
imperfect, i.e., an odd hole or odd antihole by the Strong Perfect Graph
Theorem.
If Ge − e ⊆ G − e is an odd hole, then Ge is obviously isomorphic to an
odd cycle of length ≥ 5 which admits precisely one short chord, namely e

(the case Ge − e = C7 is depicted in Figure 1(a) with e = xy). In the
complementary graph G, e is clearly an anticritical edge and Ge + e an odd
antihole (see Figure 1(b)).
If Ge − e ⊆ G − e is an odd antihole, then Ge is the complement P 2k+1 of
an induced path with k ≥ 2 (the case Ge − e = C7 is depicted in Figure 1(c)
with e = xy). In the complement G, e is an anticritical edge, Ge + e an odd
hole, and Ge an induced path P2k+1 (see Figure 1(d)).

(a) (d)(b) (c)

x y

x y

yx yx

Figure 1: The cases |Ge| = 7 with critical or anticritical edge e = xy.

In order to decide whether an edge is critical or anticritical in G, several
structural properties of minimally imperfect graphs turned out to be useful.
It is, e.g., well-known that no minimally imperfect graph has a compara-
ble pair (two nodes x, y s.t. all neighbors of x except possibly y belong to
the neighborhood of y). Furthermore, minimally imperfect graphs do not
contain twins (antitwins) (two nodes x, y s.t. all remaining nodes of the
graph are adjacent to both or to none of x and y (to either x or y)) due
to Lovász [24] (Olariu [25]). A result of Berge [2] shows that, for every
minimally imperfect graph, there is no simplicial node having a clique as
neighborhood.
The above observations on critical edges together with these results imply:
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Lemma 2.1 [32] If e = xy is a critical edge of a perfect graph G, then

(i) e belongs to a triangle and an even hole,

(ii) x and y do not form twins, antitwins, or a comparable pair,

(iii) neither x nor y is simplicial.

If two nodes x and y form twins, antitwins, or a comparable pair in
G, they do so in the complementary graph G, too. In addition, two non-
adjacent nodes x and y must not form a 2-pair (all induced paths connecting
x and y have length two) if xy is supposed to be an anticritical edge.

Lemma 2.2 [32] If e = xy is an anticritical edge of a perfect graph G, then

(i) x and y belong to a stable set of size 3 and to an even antihole,

(ii) x and y do not form twins, antitwins, a comparable pair, or a 2-pair,

(iii) neither x nor y is simplicial in G.

We can use these lemmas in order to investigate Problem 1.2: In which
perfect graphs do critical or anticritical edges occur at all? More precisely,
are there classes of perfect graphs so that no graph in this class has a critical
or anticritical edge? E.g., Lemma 2.1(i) says that every critical edge is
contained in a triangle and in an even hole. Hence neither bipartite nor
triangulated graphs contain any critical edge. Moreover, the existence of
an odd cycle of length ≥ 5 in the union of the triangle and the even hole
implies that line-perfect graphs cannot admit critical edges, too (since they
contain no odd cycles of length ≥ 5). The main result is a characterization
of perfect graphs without any critical edge by Hougardy & Wagler (see [32]
for the proof).

Theorem 2.3 A perfect graph does not admit any critical edge if and only
if it is Meyniel.

This theorem was originally proved with the help of a result due to
Hertz [17] which implies that removing any edge from a Meyniel graph
yields a perfect graph. Due to the Strong Perfect Graph Theorem, this is
now obvious since every subgraph Ge ⊆ G such that Ge − e is minimally
imperfect is isomorphic either to an odd cycle of length ≥ 5 with precisely
one chord e or to P 2k+1, k ≥ 2 which contains P 5.

We immediately obtain two corollaries from the above theorem:

Corollary 2.4 A perfect graph G does not admit any anticritical edge if
and only if G is Meyniel.
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Corollary 2.5 A perfect graph G does neither admit critical nor anticritical
edges if and only if G and G are Meyniel.

It is worth noting that Corollary 2.5 can be used to prove that the
C5, P5, P 5-free graphs are precisely the graphs G where both G and G are
Meyniel [18].

The above results show further that critical resp. anticritical edges exist
in all perfect graphs G such that G resp. G is not Meyniel. The next
lemma presents examples of perfect graphs where deleting a critical resp.
adding an anticritical edge creates only a certain type of minimally imperfect
subgraphs. These facts are easily obtained by combining the knowledge on
forbidden subgraphs in the respective graph classes with Lemma 2.1 and
Lemma 2.2 (see [32] for more examples).

Lemma 2.6 Let G be a perfect graph, e ∈ E(G) a critical edge of G, and
e′ 6∈ E(G) an anticritical edge of G.

(i) If G is diamond-free or K4-free, then G − e has odd holes as only
minimally imperfect subgraphs.

(ii) If G is strict quasi parity or strongly perfect, then G+ e′ has odd holes
as only minimally imperfect subgraphs.

(iii) If G is weakly triangulated or bull-free, then G − e has odd antiholes
and G + e′ odd holes as only minimally imperfect subgraphs.

(iv) If G is murky (i.e., C5, P6, P 6-free), then G − e and G + e′ have the
C5 as only minimally imperfect subgraph.

Note that a diamond is a graph obtained from a K4 by deleting one edge
and a bull is a graph with five nodes a, b, c, d, e and edges ab, bc, bd, cd, de.

An even stronger result holds for perfect line graphs L(F ). It provides
a constructive way to characterize critical and anticritical edges e in L(F )
and the minimally imperfect subgraphs in the resulting graphs L(F )−e and
L(F ) + e. For that, we define two structures in the underlying graph F .
Note that L(F )is perfect if and only if F is line-perfect by Trotter [29].

We say that two incident edges x and y form an H-pair in F if there is
an edge z incident to the common node of x and y and if there is a (not
necessarily induced) even cycle C containing x and y but only one endnode
of z (see Figure 2(a)). L(C) is an even hole and the node in L(F ) corre-
sponding to z has precisely two neighbors on L(C), namely x and y (see
Figure 2(b)). Two non-incident edges x and y are called an A-pair if they
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are the endedges of a (not necessarily induced) odd path P with length at
least five (see Figure 2(c)). L(P ) is an even, chordless path of length at least
four with endnodes x and y (see Figure 2(d)).

(a) (b)

zC P

(c) (d)

z

x

y

x

y

x

y

x

y

L L

Figure 2: Definition of H-pairs and A-pairs.

It is straightforward that deleting resp. adding the edge xy in L(C ∪ z)
resp. L(P ) yields an odd hole. In [31, 32] it is established that xy is a critical
(anticritical) edge in L(F ) only if x and y form an H-pair (A-pair) in F .

Theorem 2.7 [31, 32] Consider the line graph G = (V,E) of a line-perfect
graph F .

(i) An edge xy ∈ E is critical iff x and y form an H-pair in F .

(ii) An edge xy 6∈ E is anticritical iff x and y form an A-pair in F .

It is easy to see that L(F )−xy and L(F )+xy do not contain odd antiholes
of length ≥ 7. The difficulty in the original proof of Theorem 2.7 was to
exclude the occurrence of minimally imperfect Berge graphs in L(F )−xy and
L(F ) + xy which is now obvious due to the Strong Perfect Graph Theorem.
A consequence of Theorem 2.7 is:

Corollary 2.8 If G is a perfect line graph, then G− e and G + e′ have odd
holes as only minimally imperfect subgraphs for all edges e and non-edges e ′

of G.

3 Perfect and Co-Perfect Edge Orders

In this section, we turn to Problem 1.3: is it possible, for graphs in a certain
class C of perfect graphs, to successively delete or add edges keeping per-
fectness until a stable set or a clique is reached. The existence of such edge
orders for all graphs in C would provide a constructive method to generate
the graphs in C by consecutively deleting or adding edges.
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Let G = (V,E) be a perfect graph. We call a numbering (e1, . . . , em) of
its edge set E a perfect edge order if, for G = G0, all graphs Gi := Gi−1 − ei

are perfect for 1 ≤ i ≤ m. Clearly, ei has to be a non-critical edge of Gi−1

for 1 ≤ i ≤ m, and Gm is a stable set. Analogously, we say that a perfect
graph G admits a co-perfect edge order iff its complement G has a perfect
edge order. Here we simply use the numbering of the edges of G for the
non-edges of G and get finally a clique.

Note that it does not suffice to identify non-critical or non-anticritical
edges in the perfect graphs in question. E.g., we can certainly delete an
arbitrary edge of a Meyniel graph keeping perfectness by [17], but we may
obtain a non-Meyniel graph and do not know anything about its non-critical
edges. We cannot provide perfect edge orders for Meyniel graphs, although
the graphs in this class are even characterized to contain no critical edge
due to Theorem 2.3. Thus we mainly have to look for edges such that their
deletion or addition preserves the membership to the corresponding subclass
of perfect graphs.

In general, we have to look for critical (anticritical) graphs with respect
to the subclass C of perfect graphs under consideration: that are graphs
which lose the studied property by deleting (adding) an arbitrary edge. If
we can ensure that no (anti)critical graph with respect to C exists, then we
know there is a (co-)perfect edge order for all graphs in C: every graph G

in C admits at least one edge e such that G− e (G + e) still belongs to C. It
is “only” left to find that edge e.

Looking for graph classes without critical graphs, we first observe that
there are no critical graphs with respect to every monotone class (preserved
under deleting edges). The simplest example is the class of bipartite graphs.
Obviously, deleting an arbitrary edge of a bipartite graph yields a bipartite
graph again. Hence, bipartite graphs obviously admit perfect edge orders
and, in particular, every edge order is perfect.

A superclass of bipartite graphs consists of all line-perfect graphs which
clearly admit perfect edge orders, too. (Recall that line-perfect graphs do
not admit odd cycles of length ≥ 5.) Moreover, it is easy to see that they
are precisely the perfect graphs such that every edge order is perfect.

Theorem 3.1 [32, 33] A graph is line-perfect iff all edge orders are perfect.

Note that bipartite and line-perfect graphs are Meyniel graphs. A further
class of Meyniel graphs for which we know a perfect edge order consists of
all triangulated graphs. For those graphs, we have a well-known structural
result due to Dirac [13]: a graph is triangulated iff every subgraph has a
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simplicial node x. Deleting an arbitrary edge incident to x yields a graph
which is obviously still triangulated. As a consequence, we obtain a perfect
edge order for triangulated graphs:

Theorem 3.2 [32, 33] Every triangulated graph G admits a perfect edge
order (e1, . . . , em) with G = G0, Gi = Gi−1 − ei, and ei incident to a
simplicial node of Gi−1 for 1 ≤ i ≤ m.

Clearly, the complements of bipartite, line-perfect, and triangulated graphs
admit the corresponding co-perfect edge orders.

For one class of perfect (but non-Meyniel) graphs, both a perfect and
a co-perfect edge order are known, namely, for weakly triangulated graphs.
Every non-complete subgraph of a weakly triangulated graph G has a 2-pair
x, y due to Hayward, Hoàng & Maffray [16]. The graph G + xy is not only
perfect by Lemma 2.2 but still weakly triangulated by a result of Spinrad &
Sritharan [27]. Consequently, we obtain a co-perfect edge order for weakly
triangulated graphs by consecutively adding edges between 2-pairs (called
2-pair non-edge order in [27]).

Theorem 3.3 [27] Every weakly triangulated graph G admits a co-perfect
edge order (e1, . . . , em) with G = G0, Gi = Gi−1 + ei such that the endnodes
of ei form a 2-pair in Gi−1 for 1 ≤ i ≤ m = |E(G)|.

The class of weakly triangulated graphs is closed under complementation.
This yields particularly a perfect edge order for every weakly triangulated
graph: Hayward proved in [15] that the following perfect edge order of a
weakly triangulated graph G corresponds to the 2-pair non-edge order for
G given by Spinrad & Sritharan [27].

Theorem 3.4 [15] Weakly triangulated graphs G admit perfect edge orders
(e1, . . . , em) with G = G0, Gi = Gi−1−ei such that ei is not the middle edge
of any P4 in Gi for 1 ≤ i ≤ m = |E(G)|.

Weakly triangulated graphs are defined as a common generalization of
triangulated graphs and their complements. Hence, the above theorems
provide also a co-perfect edge order for triangulated graphs and a perfect
edge order for their complements. In addition, the 2-pair non-edge order for
weakly triangulated graphs enables us to establish a co-perfect edge order
for bipartite graphs G: either there are non-adjacent nodes a, b in different
color classes of G and G + ab is still bipartite, or G is as complete bipartite
graph weakly triangulated.
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At present, perfect or co-perfect edge orders are not known to the author
for other subclasses of perfect graphs. However, there are some classes C of
perfect graphs that cannot have such edge orders. If C contains a critically
(anticritically) perfect graph G then G is, in particular, critical (anticritical)
with respect to C and there is no perfect (co-perfect) edge order for the
graphs in C. In the next section, we present examples of critically and
anticritically perfect graphs showing, e.g., that there are neither perfect
nor co-perfect edge orders for line graphs of bipartite graphs, planar Berge
graphs, and K4-free Berge graphs (see Section 4.3 for more examples).

4 Critically and Anticritically Perfect Graphs

Section 4.1 affirmatively answers the question whether there exist critically
and anticritically perfect graphs at all (Problem 1.4). We present properties
and some examples. Section 4.2 provides different ways to construct such
graphs. The main result is the characterization of critically and anticritically
perfect line graphs. Furthermore, some techniques of constructing critically
and anticritically perfect graphs from not necessarily critical or anticritical
components are presented. We discuss two consequences for treating Prob-
lem 1.5: The classes of critically and anticritically perfect graphs can neither
be characterized by forbidden subgraphs nor in a constructive way, e.g., by
taking critically perfect line graphs or complements of line graphs as basic
components. Moreover, the two classes are incomparable to almost all sub-
classes of perfect graphs. Section 4.3 therefore discusses the intersection of
critically and anticritically perfect graphs with some well-known subclasses
of perfect graphs.

4.1 Existence and properties

This subsection solves the problem whether there exist critically and anti-
critically perfect graphs at all: the answer is in the affirmative. In order to
figure out whether a graph is critical or anticritical, the following immediate
consequences of Lemma 2.1 and Lemma 2.2 are helpful.

Lemma 4.1 If G is a critically perfect graph, then

(i) every edge belongs to a triangle and an even hole,

(ii) two adjacent nodes never form twins, antitwins, or a comparable pair,

(iii) no node is simplicial.
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Lemma 4.2 If G is an anticritically perfect graph, then

(i) every non-edge belongs to a stable set of size 3 and to an even antihole,

(ii) two non-adjacent nodes never form twins, antitwins, a comparable
pair, or a 2-pair,

(iii) no node is simplicial in G.

Further properties of critically and anticritically perfect graphs have been
found in [32], e.g., bounds on the following graph parameters. Additionally,
we have a restriction on the connectivity of anticritically perfect graphs.

Lemma 4.3 [32] Let G be critically perfect and n = |G|.

(i) G has minimum degree 4 ≤ δ(G) and maximum degree ∆(G) ≤ n− 3.

(ii) G has clique number 3 ≤ ω(G) ≤ n − 5 and stability number 3 ≤
α(G) ≤ n − 6.

(iii) G is 2-connected.

With the help of some easily detectable properties from the previous
lemmas, Hougardy [19] provided the complete answer to Problem 1.4 for
graphs on ≤ 11 nodes by enumeration.

Theorem 4.4 [19] None of the perfect graphs on fewer than 9 nodes is
critical. There are 3 critically perfect graphs on 9 nodes, one of them is
bicritical. There are 10 resp. 52 critically perfect graphs on 10 resp. 11
nodes, none of them is bicritical.

Clearly, Theorem 4.4 remains true if “critically perfect” is replaced by
“anticritically perfect”. Figure 3 shows the three critically perfect graphs
on nine nodes. The first graph is self-complementary and, therefore, also
anticritical. The other two graphs are not anticritical, but their comple-
ments are. Note that these three graphs already show that the bounds in
Lemma 4.3 are sharp. None of the critically perfect graphs with 10 and 11
nodes is anticritical (see next subsection for an explanation).

4.2 Constructions and consequences for possible characteri-

zations

This subsection provides further examples of critically and anticritically per-
fect graphs. On the one hand, we characterize critically and anticritically
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Figure 3: The three smallest critically perfect graphs.

perfect line graphs with the help of Theorem 2.7 and discuss some conse-
quences. On the other hand, we present some operations preserving critical
and anticritical perfectness from [32]. Both techniques enable us to eas-
ily construct critically and anticritically perfect graphs. Finally, we discuss
two consequences for possible characterizations of critically and anticriti-
cally perfect graphs.

Due to Theorem 2.7, critical (anticritical) edges of perfect line graphs
L(F ) correspond to H-pairs (A-pairs) in the underlying graphs F . Conse-
quently, if L(F ) is supposed to be critically (anticritically) perfect, every
pair of incident (non-incident) edges in F must form an H-pair (A-pair).
We define a graph with at least two incident (non-incident) edges to be an
H-graph (A-graph) if each pair of incident (non-incident) edges forms an
H-pair (A-pair). Theorem 2.7 implies that F has to be a line-perfect H-
graph (A-graph) if L(F ) is critically (anticritically) perfect. In [31, 32] it
was shown that F must be bipartite in both cases.

Theorem 4.5 [31, 32] Let G be the line graph of some graph F .

(i) G is critically perfect if and only if F is a bipartite H-graph.

(ii) G is anticritically perfect if and only if F is a bipartite A-graph.

Finding examples of critically (anticritically) perfect line graphs means,
therefore, to look for bipartite H-graphs (A-graphs). The three smallest
critically perfect graphs are the complements of the line graphs of the three
bipartite A-graphs presented in Figure 4. A1 is also an H-graph, hence
L(A1) is bicritical (it is in fact self-complementary).

All anticritically perfect graphs on 10 and 11 nodes are line graphs of
bipartite A-graphs (which arise from A1, A2, and A3 by duplicating existing
or adding new edges and are no H-graphs). Note that duplicating edges
preserves the property of being an A-graph (since no new pair of non-incident
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AA1 A2 3

Figure 4: The three smallest bipartite A-graphs.

edges occurs) while it does not preserve the property of being an H-graph
since parallel edges are incident but never form an H-pair. This follows also
from Lemma 2.1 since the corresponding nodes in the line graphs form twins.

A1 is the only bipartite H-graph with 3 nodes in each color class. If there
are 4 nodes in one color class, then an H-graph has at least 12 edges since
it has minimum degree 3 by definition. Hence, the second smallest H-graph
admits 12 edges.

The following sufficient condition for a bipartite graph F to be an H-
graph and an A-graph is established in [32].

Lemma 4.6 [32] Every simple, 3-connected, bipartite graph is an H-graph
as well as an A-graph.

This provides an easy tool to construct bicritically perfect graphs. For
example, every complete bipartite graph Ka,b with a, b ≥ 3 is 3-connected,
hence L(Ka,b) is bicritically perfect. Further examples of bipartite H-graphs
and A-graphs can be found in [32].

Once examples of critically and anticritically perfect graphs are known
the next natural step is to wonder whether further examples can be con-
structed using perfectness preserving graph transformations.

It is obvious that the disjoint union preserves critical perfectness while
the complete join preserves anticritical perfectness. Further transformations
where studied in [32], e.g., clique identification, substitution, composition
(also called 1-join), resp. amalgamation which are known to preserve per-
fectness by Berge [1], Lovász [24], Bixby [4], resp. Burlet & Fonlupt [7].

Let Q1 ⊆ G1 and Q2 ⊆ G2 be cliques with |Q1| = |Q2|. Then clique
identification means to choose a bijection φ : Q1 → Q2 and to identify every
v ∈ Q1 with φ(v) ∈ Q2. The substitution of a node v of G1 by a graph G2

joins every neighbor of v in G1 with every node in G2 and removes v. Let
v1 be a node of G1 and v2 of G2. Then composition of G1 and G2 w.r.t. v1

15



and v2 means to add an edge between every neighbor of v1 in G1 and of v2

in G2 and to delete v1, v2. The amalgamation is a common generalization
of clique identification and composition [7].

The results from [32] show that clique identification preserves critical per-
fectness but not anticritical perfectness (since anticritically perfect graphs
have to be 2-connected by Lemma 4.3(iii)). Substituting nodes of critically
(anticritically) perfect graphs by stable sets (cliques) or critically (anticrit-
ically) perfect graphs yields again critically (anticritically) perfect graphs.
The composition preserves critical perfectness while the more general amal-
gamation cannot be applied to critically perfect graphs. Both transforma-
tions do not preserve anticritical perfectness (see [32] for more details).

It is worth noting that all the known examples of critically and anticrit-
ically perfect graphs are either line graphs of bipartite graphs, complements
of line graphs of bipartite graphs, or can be obtained with the help of the
transformations studied in [32]. However, the hope that all critically and
anticritically perfect graphs can be obtained by composing some basic line
graphs turned out to be wrong (although the studied transformations yield
graphs with special skew partitions). The reason is that the results in [32]
even establish the possibility to construct critically perfect graphs with the
help of non-critical components by, e.g., clique identification.

Lemma 4.7 [32] Let G arise by identifying perfect graphs G1 and G2 in
a clique Q. An edge xy of G is critical if and only if one of the following
conditions is satisfied:

(i) xy is a critical edge of G1 or G2,

(ii) x, y ∈ Q, there is an even hole through x and y in G1, and G2 − Q

contains a common neighbor of x and y (or vice versa).

Then G inherits all critical edges from G1 and G2 by (i). This provides
the opportunity to construct, for each perfect graph F , a critically perfect
graph G with F ⊆ G as follows. Cover all non-critical edges of F by cliques
Q1, . . . , Qk. Choose critically perfect graphs G1, . . . , Gk containing cliques
Qi of suitable size and identify F with all graphs Gi in Qi. The arising
graph G is perfect, contains F as subgraph, and has only critical edges
by Lemma 4.7(i). Analogously, we obtain, for each perfect graph F , an
anticritically perfect graph G with F ⊆ G. Thus we have:

Theorem 4.8 [32] Every perfect graph may occur as a subgraph of a criti-
cally or an anticritically perfect graph.
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This theorem has a strong consequence. Namely, if we want to charac-
terize critically or anticritically perfect graphs by means of forbidden sub-
graphs, we have to exclude all imperfect subgraphs (as in the case of general
perfect graphs). To distinguish between general perfect and critically or an-
ticritically perfect graphs further subgraphs need to be excluded. But this
is not possible by Theorem 4.8. We obtain as immediate consequence:

Corollary 4.9 Critically and anticritically perfect graphs cannot be char-
acterized by means of forbidden subgraphs.

The above construction shows already that there is no way to compose
critically or anticritically perfect graphs from some basic (line) graphs, since
every perfect graph may be involved. Even more, Lemma 4.7(ii) provides
the opportunity to create new critical edges via clique identification: xy ∈ Q

may be a critical edge of G but neither of G1 nor G2. I.e., it is possible to
create critically perfect graphs from two perfect but non-critical components.

(a) (b)

Figure 5

Figure 5(a) shows a bipartite graph F and Figure 5(b) two copies of the
complement of its line graph. L(F ) admits precisely one non-critical edge,
joining the grey nodes in the picture. Identifying the two copies of this graph
in the grey nodes yields a critically perfect graph due to Lemma 4.7(ii) (the
hole and the triangle are emphasized by bold lines in the picture). This
implies:

Corollary 4.10 Critically and anticritically perfect graphs cannot be char-
acterized by decomposition, i.e., by a procedure that decomposes such graphs
along certain structural faults into basic components.
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4.3 Intersection with subclasses of perfect graphs

This subsection asks in which subclasses of perfect graphs critically and
anticritically perfect graphs occur at all. As an immediate consequence of
Theorem 4.8, the class of all (anti)critically perfect graphs is not contained
in any subclass of perfect graphs for which one perfect forbidden subgraph
F exists. Conversely, if F is a minimal forbidden subgraph of a class, then
every proper subgraph F ′ ⊂ F belongs to that class. If F ′ is sufficiently small
(e.g., if F ′ has fewer than nine nodes), it cannot be (anti)critically perfect
due to Theorem 4.4. We conclude that no subclass of perfect graphs with
a perfect forbidden subgraph is contained in the class of all (anti)critically
perfect graphs. This implies:

Corollary 4.11 There is no inclusion relation between the class of criti-
cally (anticritically) perfect graphs and any subclass of perfect graphs with a
perfect forbidden subgraph.

For most classes of perfect graphs there exists a perfect graph F which
is minimal forbidden for all graphs in this class. We study, therefore, the in-
tersection of critically and anticritically perfect graphs with other subclasses
of perfect graphs (see [21] for definitions and inclusion relations).

It is obvious that no Meyniel graph is critically perfect graph by The-
orem 2.3. The existence of a (co-)perfect edge order clearly implies that
there is no (anti)critically perfect graph in such a class. Hence the results
in [15] and [27] show that weakly triangulated graphs are neither critically
nor anticritically perfect. The same is true for so-called clique separable
graphs by [32]. No similar result has been established for the graphs in
BIP∗, bull-free Berge graphs, strict quasi parity graphs, and strongly per-
fect graphs but in none of these classes are critically perfect graphs known.
Note that absorbantly perfect graphs are characterized in [14] to possess
either a strong stable set (that meets all maximal cliques of the graph) or a
comparable pair of adjacent nodes. Hence the class of absorbantly perfect
graphs cannot contain any critically perfect graph that is not strongly perfect
due to Lemma 2.2. No anticritically perfect graphs are known belonging to
BIP∗ and the class of bull-free Berge graphs. The bicritically perfect graph
L(A1) admits an embedding in the plane, is alternately colorable, locally
perfect, and belongs to the classes of F -free Berge graphs where F is a claw,
a diamond, or a K4. The anticritical graph L(A3) is strongly perfect and
perfectly contractile. L(A3) and its critically perfect complement L(A3) are
preperfect and quasi parity. (See [32] for more results.)
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5 Perfectness is an Elusive Graph Property

A graph property P is called elusive (or also evasive) if every algorithm
for testing this property has to read in the worst case all

(

n
2

)

entries of the
adjacency matrix of a given graph. This is equivalent to considering the
following two-players game. Player A wants to know whether an unknown
simple graph on a given node set has the graph property P in question by
asking Player B one by one, whether a certain pair of nodes is an edge. At
each stage Player A makes full use of the information of edges and non-
edges he has up to that point in order to decide whether the graph has
property P or not. Player A wants to minimize the number of his queries,
Player B wants to force him to ask as many queries as possible. The number
of questions needed for the decision if both players play optimally from
their point of view is the recognition complexity c(P ) of the studied graph
property. The property is said to be elusive for graphs on n nodes if there
is a strategy enabling Player B to force Player A to test every node pair
before coming to a decision, i.e., if c(P ) =

(

n
2

)

. The property is said to be
elusive if such a strategy exists for all non-trivial cases (all n such that there
are graphs on n nodes with and without the studied property P ).

Several graph properties are known to be elusive, e.g., having a clique of a
certain size or a coloring with a certain number of color classes (Bollobás [5])
and being planar for graphs on ≥ 5 nodes (Best et al. [3]), see [6, 28] for
more examples. An application of the concept of critically and anticritically
perfect graphs is the following result by Hougardy & Wagler [23]:

Theorem 5.1 [23] Perfectness is an elusive graph property.

From the Strong Perfect Graph Theorem we know that identifying one
induced odd hole or odd antihole would enable Player A to make the final
decision: the graph in question is not perfect. Consequently, Player B has
to answer in such a way that no induced odd hole or odd antihole appears
until Player A asks the last question but that the last answer can create
such an induced subgraph.

The odd hole of length five is the smallest imperfect graph. Hence, the
cases with n ≤ 4 nodes are trivial: Player A knows without asking any
question that the studied graph is perfect. In order to prove Theorem 5.1 a
strategy for all non-trivial cases n ≥ 5 is required.

The odd hole C5 is the only imperfect graph on five nodes (note: the C5

is self-complementary, hence also the odd antihole on five nodes). Thus, one
cannot reach another imperfect graph from the C5 by deleting or adding one
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edge. This provides a simple strategy for Player B in the smallest non-trivial
case: answer all queries but the last as in the C5.

Proposition 5.2 [23] Perfectness is elusive for graphs on five nodes.

The case n = 5 is, however, the only case where precisely one imperfect
graph exists. But the main idea for proving Theorem 5.1 is to try precisely
the opposite way: Find perfect graphs such that you cannot reach another
perfect graph by deleting or adding one edge. Hence, we look for bicritically
perfect graphs which are, by definition, both critically and anticritically
perfect: the deletion and addition of an arbitrary edge yields an imperfect
graph. If there exists a bicritically perfect graph Gn on n nodes, then Player
B has only to answer all but the last query “ij ∈ E?” of Player A as in
Gn. I.e., Player B has only to apply the following strategy for graphs on n

nodes.

Strategy 1 Let Gn be a bicritically perfect graph on n nodes.
For queries 1 to

(

n
2

)

− 1:
Answer “ij ∈ E?” with YES if ij ∈ E(Gn), NO otherwise.

Then no induced imperfect subgraph appears during the first
(

n
2

)

− 1
questions, and the answer to the last query “ij ∈ E?” yields the decision.
In order to prove Theorem 5.1, the task is, therefore: Find, for as many n

as possible, a bicritically perfect graph Gn on n nodes.
Hougardy & Wagler constructed in [23] with the help of Theorem 4.5 and
Lemma 4.6 bicritically perfect line graph Gn for each n ≥ 12 as follows.
Consider the graphs F3k = (A ∪ B,E1 ∪ E2) with

A

B

E1

E2

= {1, 3, . . . , 2k − 1}
= {2, 4, . . . , 2k}
= {ii + 1 : 1 ≤ i ≤ 2k}
= {ii + 3 : i ∈ A}

for each k ≥ 3 (all indices are taken modulo 2k). The three smallest exam-
ples of graphs F3k for k ∈ {3, 4, 5} are shown in Figure 6 (note A1 = F9).
F3k is an even cycle (A ∪ B,E1) on its 2k nodes with k chords E2 outgoing
from a node in A with odd index and ending in a node in B with even index.
Thus, the graphs F3k are bipartite and simple by construction. In [23] it is
shown that they are 3-connected. Hence, Lemma 4.6 ensures that the line
graphs of F3k are bicritically perfect for k ≥ 3.
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9F F12 F15

Figure 6: The graphs F3k with k = 3, 4, 5.

The gaps with n = 3k + 1, 3k + 2 can be closed using the following
immediate consequence of Lemma 4.6: If F = (A ∪ B,E) is a simple, 3-
connected, bipartite graph and ab 6∈ E with a ∈ A, b ∈ B, then F + ab is a
simple bipartite A- and H-graph. This yields the studied bipartite A- and
H-graphs Fn for n = 3k+1 and n = 3k+2 if k ≥ 4 (but not for the complete
bipartite graph F9). Hence, Strategy 1 can be applied in almost all cases:

Lemma 5.3 [23] Perfectness is elusive for graphs on n = 9 and n ≥ 12
nodes.

However, Theorem 4.4 shows that there are no bicritically perfect graphs
Gn with n ≤ 8 and n = 10, 11 nodes. The cases n = 10, 11 are treated in
[23] with the help of a slightly different concept. Let us call a graph G

almost bicritically perfect if G is anticritically perfect and all edges but one
are critical. We modify Strategy 1 for almost bicritically perfect graphs as
follows:

Strategy 2 Let Gn be an almost bicritically perfect graph on n nodes and
let uv be its only non-critical edge.
Query 1:

Answer “ij ∈ E?” with YES. Number the nodes of Gn s.t. i = u, j = v.
For queries 2 to

(

n
2

)

− 1:
Answer “ij ∈ E?” with YES if ij ∈ E(Gn), NO otherwise.

Then no imperfect subgraph appears during the first
(

n
2

)

−1 queries, and
the answer to the last question yields the decision again.

Almost bicritically perfect graphs G10 and G11 are constructed in [23] as
the line graphs of the bipartite A-graphs F10 and F11 depicted in Figure 7
which both admit precisely one non-H-pair. This implies:
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F10 F11

Figure 7: The graphs F10 and F11.

Lemma 5.4 [23] Perfectness is elusive for graphs on n = 10, 11 nodes.

The remaining cases 6 ≤ n ≤ 8 are solved in [23] with the help of a
parity argument due to Rivest and Vuillemin [26]: if a graph property P is
not elusive for graphs on n nodes then the number G(P, n, even) of labeled
graphs on n nodes with property P having an even number of edges equals
the number G(P, n, odd) of labeled graphs on n nodes with property P that
have an odd number of edges. In particular, G(P, n, even)6= G(P, n, odd)
implies that P is elusive for graphs on n nodes.
In [23] is shown that G(P, n, even) and G(P, n, odd) differ for perfect graphs
on eight nodes. An extension of this argument has been used for n = 6, 7:
If perfectness is not elusive for graphs on n nodes then it is also not elusive
for the graphs containing one fixed edge.

Lemma 5.5 [23] Perfectness is elusive for graphs on 6 ≤ n ≤ 8 nodes.

Proposition 5.2, Lemma 5.3, Lemma 5.4, and Lemma 5.5 finally imply
Theorem 5.1: Perfectness is an elusive graph property.
Note that the Strong Perfect Graph Theorem has neither been used to prove
Theorem 5.1 nor would this deep result be useful to simplify the proof.

6 Concluding Remarks

The previous sections provide an overview on the investigation of critical
and anticritical edges w.r.t. perfectness. We summarize the main results
and conclude with some remarks and open problems.

Section 2 lists several rules from [32] how to detect critical and anticritical
edges in perfect graphs (Problem 1.1) and presents a new characterization
of Meyniel graphs (Theorem 2.3) in order to answer which perfect graphs
admit critical or anticritical edges at all (Problem 1.2).
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Section 3 studies perfect and co-perfect edge orders (Problem 1.3). We
pointed out that one has to look for edges whose deletion or addition pre-
serves the membership in the corresponding subclass of perfect graphs in
order to find such edge orders for all graphs in this subclass. That way,
perfect edge orders are obtained for bipartite, line-perfect, and triangulated
graphs [32, 33]. The existence of perfect and co-perfect edge orders for
weakly triangulated graphs was established by Hayward [15] and Spinrad &
Sritharan [27].

We observed further that no perfect edge order is known for Meyniel
graphs although the graphs in this class do not admit any critical edge. The
reason is that deleting an edge from a Meyniel graph does not necessarily
yield a Meyniel graph again. In order to prove or disprove the existence of
perfect edge orders for Meyniel graphs, one has to solve:

Problem 6.1 Show that every Meyniel graph G has an edge e s.t. G− e is
still Meyniel or find a critical Meyniel graph.

Problem 6.1 may be solved with the help of a stronger result:

Problem 6.2 Show that there is an edge e for all graphs in BIP∗ s.t. G− e

still belongs to BIP∗.

The decomposition of graphs G in BIP∗ along star-cutsets in G and
G yields finally bipartite components. Removing any edge e from such a
bipartite component creates again a graph in BIP∗, provided one can ensure
that e is not contained in any of the star-cutsets. An answer to Problem 6.2
would imply perfect edge orders for all graphs in BIP∗, hence also for all
Meyniel, perfectly orderable, and alternately orientable graphs.
Clearly, the existence of perfect resp. co-perfect edge orders for a subclass
C of perfect graphs excludes the existence of critically and anticritically
perfect graphs in C, and vice versa. Hence, neither critical nor anticritical
perfect graphs are weakly triangulated due to Hayward [15] and Spinrad
& Sritharan [27]. Section 4 answers affirmatively whether critically and
anticritically perfect graphs exist at all (Problem 1.4) by presenting examples
from [32]. In particular, certain bicritically perfect graphs show that there
are neither perfect nor co-perfect edge orders for, e.g., line graphs of bipartite
graphs (hence for alternately colorable, claw-free, and diamond-free Berge
graphs), locally perfect, quasi parity, preperfect, and planar Berge graphs.
Moreover, there are classes of perfect graphs for which it is neither known to
admit (co-)perfect edge orders nor to contain (anti)critically perfect graphs,
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e.g., for BIP∗ and bull-free Berge graphs. Neither perfect edge orders nor
critically perfect graphs are known in the classes of strict quasi parity and
strongly perfect graphs. Further investigations are needed here.

Section 4.2 shows that two popular ways to characterize subclasses of
perfect graphs fail for critically and anticritically perfect graphs: the char-
acterization via forbidden subgraphs and the decomposition with the help
of certain structural faults into graphs of a basic form. No other character-
ization has been found so far, hence Problem 1.5 is still unsolved.

It is, moreover, worth to mention that anticritically resp. bicritically
perfect graphs play a role for constructing minimally even pair-free and
minimally non-preperfect graphs.

Even pairs play an important role in conjunction with perfectness and
many classical families of perfect graphs were proven to be strict quasi par-
ity during the last 20 years. However, there are perfect graphs with no even
pair, e.g., all the line graphs of 3-connected bipartite graphs [20]. Hougardy
conjectured in [20] that the minimally even pair-free graphs (i.e., the mini-
mally non-strict quasi parity graphs) are either odd holes, antiholes of length
at least seven, or line graphs of bipartite graphs.
Hougardy proved his conjecture for all graphs on less than 17 nodes by enu-
meration. Besides odd holes and antiholes of length at least seven, his list
contains only line graphs L(F ) where F is either the K2,3, a bipartite A-
graph, or a graph obtained from another bipartite graph F ′ with minimally
even pair-free line graph by a simple operation (insert a C4 on an edge of
F ′).
The latter operation creates bipartite graphs F such that L(F ) admits an
even pair. The odd holes, odd antiholes, and anticritically perfect graphs
among the above minimally even pair-free graphs are, therefore, precisely the
minimally non-quasi parity graphs on less than 17 nodes. It is interesting to
prove Hougardy’s conjecture and to investigate the relation of anticritically
perfect and minimally even pair-free graphs in general.

Hammer & Maffray introduced in [14] the class of preperfect graphs (by
relaxing the concept of comparable pairs). They presented an infinite se-
quence of perfect but minimally non-preperfect graphs and asked for further
examples. A different sequence of such graphs was found (but not published)
by Hougardy, Maffray & Sebö [22]. All these graphs are line graphs of special
bipartite graphs. Motivated by this observation, minimally non-preperfect
graphs with small maximum degree have been investigated by Tuza & Wa-
gler [30]. In fact, a graph of maximum degree 4 is minimally non-preperfect
if and only if it is either an odd hole, the C7, or the line graph of a 3-regular,
3-connected bipartite graph [30]. Note that no other perfect but minimally
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non-preperfect graphs are known yet, hence all of them are bicritically per-
fect.

Finally, Chudnovsky introduces in her thesis [9] a concept related to
critical and anticritical edges. She defines a trigraph T = (V,E ∪ N ∪ S) to
have node set V where the set of node pairs is partitioned into three disjoint
sets: the set E of strong edges, the set N of strong non-edges, and the set S

of switchable pairs which may become edges or non-edges. In this notation,
T is a graph if S = ∅. A realization of a trigraph T = (V,E ∪N ∪ S) is any
graph G = (V,E∪S ′) for some S ′ ⊆ S. A trigraph is perfect (resp. imperfect)
if every of its realizations is perfect (resp. imperfect). That means: one has
to ensure for a perfect trigraph that the node pairs in S cannot form critical
or anticritical edges.
Note that trigraphs describe the intermediate stages in the two-players game
defining elusiveness: we have node pairs known to be edges or non-edges
and node pairs which are undecided yet. Providing a strategy for Player B

means, therefore, to avoid the occurrence of perfect and imperfect trigraphs
with S 6= ∅ otherwise Player A would be able to decide “is perfect” or “is
imperfect” without probing the remaining node pairs in S.
Recall that Hougardy & Wagler [23] proved elusiveness for perfect graphs
on 6,7, and 8 nodes with the help of a parity argument due to Rivest and
Vuillemin [26] but not by giving an explicit strategy for these cases. In fact,
such an explicit strategy is known for graphs on 6 nodes but not on 7 and
8 nodes. The knowledge of all the perfect and imperfect trigraphs on 7 and
8 nodes with S maximal may help to find such strategies for the cases on 7
and 8 nodes.
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to: A. Bondy and V. Chvátal, eds., Special issue in honor of Claude
Berge.

[22] S. Hougardy, F. Maffray, and A. Sebö, private communication (1997).
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