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Abstract

Graphs with circular symmetry, called webs, are relevant w.r.t. describing
the stable set polytopes of two larger graph classes, quasi-line graphs [9,
14] and claw-free graphs [8, 9]. Providing a decent linear description of
the stable set polytopes of claw-free graphs is a long-standing problem [10].
However, even the problem of finding all facets of stable set polytopes of
webs is open. So far, it is only known that stable set polytopes of webs with
clique number ≤ 3 have rank facets only [6, 18] while there are examples
with clique number ≥ 4 having non-rank facets [11, 12, 14, 16].

In this paper, we provide a construction for non-rank facets of stable set
polytopes of webs. This construction is the main tool to obtain in a compan-
ion paper [17], for several fixed values of ω including all odd values at least
5, that there are only finitely many webs with clique number ω whose stable
set polytopes admit rank facets only.

Keywords: web, rank-perfect graph, stable set polytope, (non-)rank facet

1 Introduction

Graphs with circular symmetry of their maximum cliques and stable sets are called
webs: a web W k

n is a graph with vertices 1, . . . , n where ij is an edge if i and j
differ by at most k (mod n) and i 6= j. The webs W k

9 on nine vertices are depicted
in Figure 1. Notice that webs are also called circulant graphs C k

n in [4] and that
similar graphs W (n, k) were introduced in [18].

Webs and line graphs belong to the classes of quasi-line graphs and claw-free
graphs and are relevant w.r.t. describing the stable set polytopes of those larger
graph classes [8, 9, 14]. The stable set polytope STAB(G) of G is defined as the
convex hull of the incidence vectors of all stable sets of the graph G. In order
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to describe STAB(G) by means of facet-defining inequalities, the “trivial” facets
xi ≥ 0 for all vertices i of G and the clique constraints

∑

i∈Q

xi ≤ 1

for all cliques Q ⊆ G are necessary. These two types of facets suffice to describe
STAB(G) for perfect graphs G only [3]. A natural way to generalize clique con-
straints is to investigate rank constraints, that are 0/1-constraints of the form

∑

i∈G′

xi ≤ α(G′)

associated with arbitrary induced subgraphs G′ ⊆ G where α(G′) denotes the
cardinality of a maximum stable set in G′ (note α(G′) = 1 holds iff G′ is a clique).
A graph is rank-perfect if all non-trivial facets of its stable set polytope are rank
constraints. The class of rank-perfect graphs contains all perfect graphs [3], odd
holes and odd antiholes [15], line graphs [7], and the complements of webs [20].

A characterization of the rank facets in stable set polytopes of claw-free graphs
was given by Galluccio & Sassano [8]. They showed that all rank facets can be
constructed by means of standard operations from rank constraints associated with
cliques, partitionable webs, or line graphs of 2-connected, critical hypomatchable
graphs. However, we are still far from having a complete description for the stable
set polytopes of webs and, therefore, of quasi-line and claw-free graphs, too. Find-
ing a decent linear description of the stable set polytopes of claw-free graphs is a
long-standing problem (Grötschel, Lov ász, and Schrijver [10]). Claw-free graphs
are not rank-perfect: Giles & Trotter [9], Oriolo [14], and Liebling et al. [12] found
non-rank facets which occur even in the stable set polytopes of quasi-line graphs.
These non-rank facets rely on combinations of joined webs.

Several further authors studied the stable set polytopes of webs. The webs W 1
n

with clique number 2 are either perfect or odd holes and, therefore, rank-perfect
due to [3, 15]. (Notice that the clique number, i.e. the size of a maximum clique, of
a web W k

n is k + 1.) Dahl [6] showed that the webs W 2
n with clique number 3 are

rank-perfect as well. On the other hand, Kind [11] found (by means of the PORTA
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software1) examples of webs with clique number > 4 which are not rank-perfect,
e.g., W 4

31, W 5
25, W 6

29, W 7
33, W 8

28, W 9
31. Oriolo [14], Liebling et al. [12], and Pêcher

& Wagler [16] presented further examples of such webs.
The main contribution of this paper (Theorem 1) is a construction that en-

ables us to obtain, from certain non-rank-perfect webs W k
n , an infinite sequence of

non-rank-perfect webs W k
n+(k+1),W

k
n+2(k+1),W

k
n+3(k+1), ... with the same clique

number. To be more precise, we introduce the notion of proper weak non-rank
facets. A facet a

T
x ≤ cα(G′) of STAB(G) is a weak rank facet w.r.t. G′ ⊆ G, if

ai = c for every vertex i of G′ and if G′ is rank facet-producing (i.e.
∑

i∈V (G′) xi ≤

α(G′) defines a facet of STAB(G′)). A weak rank facet is proper if G′ is not a
clique and non-rank if it cannot be scaled to have 0/1-coefficients only (i.e. it is not
a rank constraint).

Theorem 1 If STAB(W k
n ) has a proper weak non-rank facet then STAB(W k

n+k+1)
has a proper weak non-rank facet.

Therefore, if W k
n has a proper weak non-rank facet then all webs W k

n+λ(k+1)
(λ ≥ 0) are not rank-perfect, too. Hence Theorem 1 implies the following corol-
lary:

Corollary 2 If there are k + 1 webs W k
n0

, . . . ,W k
nk

such that
• STAB(W k

ni
) has a proper weak non-rank facet

• ni = i (mod k + 1)
then all webs W k

n with n ≥ max{n0, . . . , nk} − k are not rank-perfect.

That means in particular: if we are able to provide such a set of k + 1 webs
for a certain value of k, then there exist only finitely many rank-perfect webs Wk

n .
For k = 3, this follows from [16] where an infinite sequence of not rank-perfect
webs with clique number 4 is presented, namely W 3

33, W 3
42, W 3

51, W 3
60, ... Hence,

by Corollary 2, all webs W 3
n with n > 56 are not rank-perfect and there exist only

finitely many rank-perfect webs W3
n . Similar results for all even values k ≥ 4 are

given in the companion paper [17]. Applying Corollary 2 implies:

Theorem 3 [17] For each odd ω ≥ 5, there are only finitely many rank-perfect
webs with clique number ω, hence, almost all of them are not rank-perfect.

The paper is organized as follows: Section 2 is devoted to definitions and some
general results which are frequently used in the sequel. The proof of Theorem 1 is
given in Section 3 and we briefly discuss open problems in Section 4.

1By PORTA it is possible to generate all facets of the convex hull of a given set of integer points,
see http://www.zib.de
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2 Definitions and general results

Let G = (V,E) be a graph. If V ′ is any subset of the vertex set V , we denote by
G[V ′] the subgraph of G induced by V ′.

Recall that a web W k
n is a graph with vertices 1, . . . , n where ij is an edge if i

and j differ by at most k (mod n) and i 6= j. Webs are natural generalizations of
odd holes and odd antiholes, that are chordless odd cycles of length ≥ 5 and their
complements. Perfect graphs are precisely the graphs without odd holes and odd
antiholes as induced subgraphs [2].

The clique number of a web W k
n is k + 1 and the stability number is b n

k+1c.
Unless stated otherwise, arithmetics are always performed modulo the number of
vertices of the web involved in the computation. Let 1 ≤ a, b ≤ n be two vertices
of a web W k

n . We denote by [a, b] the set of vertices {a, a + 1, a + 2, . . . , b}, and
by Qa the maximum clique [a, a + k].

The following lemma, similar to Corollary 3.2 in [18], is frequently used in the
sequel. For any finite set X , we denote its cardinality by |X|.

Lemma 4 Consider a web W with clique number ω and a set V ′ of vertices of W .
Then V ′ induces a subweb W ′ of W with clique number ω′

(i) if |Qi ∩ V ′| = ω′ for all i ∈ V ′;

(ii) only if |Qi ∩ V ′| = ω′ for all i ∈ V ′ and |Qi ∩ V ′| ≥ ω′ − 1 for all i /∈ V ′.

Proof. The If-part is an immediate consequence of the proof of Theorem 3.1
in [18]. For the Only if-part, consider first i ∈ V′. Obviously |Qi ∩ V ′| ≤
ω′ as Qi ∩ V ′ is a clique of W ′. If j /∈ Qi−ω−1 ∪ Qi then j is not a neigh-
bor of i in W ′. Therefore the 2ω′ − 2 neighbors of i in W ′ are exactly the set
((Qi−ω−1 ∪ Qi) ∩ V ′) − {i}. Thus, |Qi ∩ V ′| = ω′. Now, consider i /∈ V ′. Let i′

be the element of V ′ such that [i′ + 1, i]∩V ′ = ∅. Since Qi′ ∩ V ′ ⊆ {i′} ∪Qi, we
have |Qi ∩ V ′| ≥ ω′ − 1. 2

Webs and line graphs belong to the classes of quasi-line graphs (the neighbor-
hood of any vertex can be partitioned into two cliques) and claw-free graphs (the
neighborhood of any vertex does not contain a stable set of size 3). The line graph
L(H) of a graph H is obtained by taking the edges of H as vertices of L(H) and
connecting two vertices in L(H) iff the corresponding edges of H are incident.
Webs and line graphs are relevant w.r.t. describing the stable set polytopes of those
larger graph classes [8, 9, 14].

Recall that the stable set polytope STAB(G) is the convex hull of the incidence
vectors χS of all stable sets S of G. We denote by a

T the transposed row vector of
any column vector a. An inequality a

T
x ≤ b is said to be valid for STAB(G), if

a
T χS ≤ b holds for all stable sets S of G. A root of a valid inequality a

T
x ≤ b is

a stable set S such that a
T χS = b. A valid inequality a

T
x ≤ b for STAB(G) is a

facet if and only if it has |V (G)| roots with affinely independent incidence vectors
(note that they have to be linearly independent if b > 0).
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Let G = (V,E) be a graph, F be a family of (at least three inclusion-wise)
maximal cliques of G, p ≤ |F | be an integer, and define two sets as follows:

I(F, p) = {i ∈ V : |{Q ∈ F : i ∈ Q}| ≥ p}
O(F, p) = {i ∈ V : |{Q ∈ F : i ∈ Q}| = p − 1}

Oriolo [14] showed that the clique family inequality

(p − r)
∑

i∈I(F,p)

xi + (p − r − 1)
∑

i∈O(F,p)

xi ≤ (p − r)b
|F |

p
c (1)

is valid for the stable set polytope of every graph G where r = |F | mod p. A
conjecture due to Ben Rebea says that the stable set polytopes of quasi-line graphs
have clique family inequalities as only non-trivial facets, see [14].

All matrices in this paper have rational coefficients (in fact integer coefficients).
If M is any square matrix, then |M | stands for the determinant of M .

2.1 Rank-minimal facets of webs

Following Galluccio & Sassano [8], an inequality
∑

i∈V xi ≤ α(G) associated
with a graph G with vertex set V and the graph G itself are called rank-minimal if
and only if G is a clique or satisfies

1.
∑

i∈V xi ≤ α(G) defines a facet of STAB(G), i.e. G is rank facet-producing;

2. for each V ′ ⊂ V , the inequality
∑

i∈V ′ xi ≤ α(G) does not define a facet of
STAB(G[V ′]).

All rank-minimal claw-free graphs were described in [8]. In order to state the
theorem, we need the following notations.

A graph G is said to be partitionable if there exist two integers p and q such
that G has pq+1 vertices and for every vertex v of G, the induced subgraph G\{v}
admits a partition into p cliques of cardinality q as well as a partition into q stable
sets of cardinality p. The webs W ω−1

αω+1 with α, ω > 1 are examples of partitionable
graphs, including all odd holes W 1

2α+1 and all odd antiholes W ω−1
2ω+1.

A graph H is called hypomatchable if it does not admit a perfect matching
but H − v does for all vertices v ∈ V (H) (a matching is perfect if it meets all
vertices of the graph). A hypomatchable graph H is called critical if H − e is not
hypomatchable anymore for all edges e ∈ E(H).

Theorem 5 [8] Every rank-minimal claw-free graph is
• a clique,
• a partitionable web, or
• the line graph of a 2-connected, critical hypomatchable graph.

We are interested in the question which rank-minimal graphs may occur as induced
subgraphs of webs (recall: every web is in particular claw-free). It turns out that we
essentially can exclude the third alternative of Theorem 5 due to the next lemma:
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Lemma 6 Let H be a 2-connected, critical hypomatchable graph. If its line graph
L(H) is an induced subgraph of a web, then L(H) is a triangle or an odd hole.

Proof. Consider a 2-connected, critical hypomatchable graph H . Since H is 2-
connected, H has at least 3 vertices. Since H is critical hypomatchable, H must
not admit parallel edges, i.e., H is simple.

If |H| = 3, then H as well as L(H) is a triangle. Hence assume |H| ≥ 5 in
the sequel (note: every hypomatchable graph has an odd number of vertices). We
show that H as well as L(H) is an odd hole if L(H) is an induced subgraph of a
web.

Due to Lov ász [13], a graph H is hypomatchable if and only if there is a se-
quence H0,H1, . . . ,Hk = H of graphs such that H0 is a chordless odd cycle and
for 1 ≤ i ≤ k, Hi is obtained from Hi−1 by adding a chordless odd path Ei that
joins two (not necessarily distinct) vertices of Hi−1 and has all internal vertices
outside Hi−1. The odd paths Ei = Hi − Hi−1 are called ears for 1 ≤ i ≤ k and
the sequence H0,H1, . . . ,Hk = H an ear decomposition of H .

If a hypomatchable graph H is 2-connected and has at least 5 vertices, then H
admits an ear decomposition H0,H1, . . . ,Hk = H s.t. every Hi is 2-connected for
0 ≤ i ≤ k by Cornu éjols & Pulleyblank [5] and H0 is an odd hole (i.e. |H0| ≥ 5)
by [19]. Moreover, in [19] is shown that we can always reorder the ears E1, . . . Ek

of a given decomposition s.t. the decomposition starts with all ears of length ≥ 3
and ends up with all ears of length one. Thus, every 2-connected hypomatchable
graph H with |V (H)| ≥ 5 has a proper ear decomposition H0,H1, . . . ,Hk = H
where H0 has length ≥ 5, each Hi is 2-connected, and, if k > 0, there is an index
j s.t. E1, . . . , Ej have length ≥ 3 and Ej+1, . . . , Ek have length one.

Consider a 2-connected hypomatchable graph H with |V (H)| ≥ 5 and a proper
ear decomposition H0,H1, . . . ,Hk = H of H . We show in the next two claims:
the decomposition of H has neither ears of length 1 nor of length ≥ 3 if H is criti-
cal and L(H) is an induced subgraph of a web.

Claim 1. If H0,H1, . . . ,Hk = H contains an ear of length 1, then H is not criti-
cal hypomatchable.

In that case, the last ear Ek of the proper ear decomposition H0,H1, . . . ,Hk = H
of H is a single edge. Removing the edge Ek from Hk = H yields the hypomatch-
able graph Hk−1 with the same vertex set. Thus, H is not critical hypomatchable.
3

Claim 2. If H0,H1, . . . ,Hk = H contains an ear of length ≥ 3, then H is not
critical hypomatchable or L(H) is not an induced subgraph of a web.

In that case, the first ear E1 of the proper ear decomposition H0,H1, . . . ,Hk = H
of H is a path of length ≥ 3. If the endvertices u1 and v1 of E1 are adjacent in H0

(see Fig. 2(a)), then H admits a proper ear decomposition H ′
0,H

′
1, . . . ,H

′
k = H
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with H ′
0 = H0 ∪E1 −{u1v1} and E2, . . . , Ek, {u1v1} as ear sequence (i.e. H ′

i =
H ′

i−1 ∪ Ei+1 for 1 ≤ i ≤ k − 1 and H ′
k = H ′

k−1 ∪ {u1v1}). Thus, H admits an
ear of length 1 and is not critical hypomatchable by Claim 1.

H0

E1

E1

P0

P1
1L(H  )

N  (i) N  (i)

1L(H  )    W

(a) (b) (d)(c)

1u v1

1u v1

i

i’

j
j’ l

l’

i

i’

jj’
l

l’

i

l

j
i’

− +

k
n

Figure 2

If the endvertices u1 and v1 of E1 are non-adjacent in H0 (see Fig. 2(b)), then
there are 3 open-disjoint paths P0, P1, E1 between u1 and v1 in H1: P0 with even
length ≥ 2 and P1, E1 with odd length ≥ 3. Consider in H1 the edges i, i′, j, j′, l, l′

as shown in Fig. 2(b). Then the edges i′, j′, l′ are pairwise disjoint (note: u1 may
be an endvertex of i′ but neither of j ′ nor of l′ because of the parity of the paths).

Assume L(H1) is an induced subgraph of a web W k
n . We have to find a re-

spective order of the vertices i, i′, j, j′, l, l′ in W k
n (recall that the line operator

transforms edges of H into vertices of L(H), see Fig. 2(c)). Moreover, recall that
the neighborhood of every vertex x, denoted by N(x), of a web W k

n splits into two
cliques N−(x) = {x − k, . . . , x − 1} and N+(x) = {x + 1, . . . , x + k} (where
all indices are taken modulo n).

Consider N(i) in W k
n : we have i′, j, l ∈ N(i) where jl is an edge but neither

i′j nor i′l (see Fig. 2(c)). W.l.o.g. let i′ ∈ N−(i). Then j, l ∈ N+(i) follows since
both N−(i) and N+(i) are cliques. Furthermore, let j < l (the case l < j goes
analogously due to ij, il ∈ E but ij ′, il′ 6∈ E), i.e., assume i + 1 ≤ j < l ≤ i + k
(see Fig. 2(d)).

Now, consider the vertex j ′. We have j ′ ∈ N(j) but j ′ 6∈ N(i) (see Fig. 2(c)).
This implies j ′ ∈ N+(j) (since N−(j) ⊆ N(i) by j ∈ N+(i)), i.e., we obtain
j′ ∈ {j + 1, . . . , j + k}. But i + 1 ≤ j < l ≤ i + k implies N+(j) ⊆ N(l), hence
j′ ∈ N(l) in contradiction to j ′ and l non-adjacent (see Fig. 2(c)). Thus, L(H1)
cannot be an induced subgraph of a web W k

n .
We conclude: if E1 connects two adjacent vertices of H0, then H is not criti-

cal, if E1 connects two non-adjacent vertices of H0, then L(H) is not an induced
subgraph of a web. 3

Hence, we have obtained that for every 2-connected, critical hypomatchable graph
H holds the following. If H has 3 vertices, then H and its line graph L(H) are
triangles. Otherwise, H admits a proper ear decomposition H0,H1, . . . ,Hk = H

7



with and index j s.t. E1, . . . , Ej have length ≥ 3 and Ej+1, . . . , Ek have length
one. By Claim 1, there is no ear of of length 1 (i.e. j = k). If the line graph of H
is an induced subgraph of a web, then there is no ear of length ≥ 3 by Claim 1 and
Claim 2 (i.e. j = 0). In conclusion, we obtain k = 0, thus H consists in the odd
hole H0 of length ≥ 5 only and L(H) is an odd hole, too. 2

Remark. Claim 1 of Lemma 6 shows: if the last ear Ek of a proper ear decom-
position H0,H1, . . . ,Hk = H of H has length one, then H is not critical hypo-
matchable. L(H) is not rank-minimal by Theorem 5 in particular. The reason
is the following: the graph Hk−1 obtained by removing the edge Ek from H is
2-connected and hypomatchable, hence L(Hk−1) is rank facet-producing by Ed-
monds & Pulleyblank [7]. Furthermore, |H|−1

2 = α(L(H)) = α(L(Hk−1)) holds
by V (H) = V (Hk−1), hence L(H) cannot be rank-minimal.

Since odd holes are partitionable webs, Theorem 5 and Lemma 6 imply the follow-
ing corollary:

Corollary 7 Every rank-minimal induced subgraph of a web is a clique or a par-
titionable web.

2.2 Weak rank facets of webs

Recall that a facet aT
x ≤ cα(G′) of STAB(G) is a weak rank facet w.r.t. G′ ⊆ G,

if ai = c for every vertex i of G′ and if G′ is rank facet-producing.

Lemma 8 Let a
T
x ≤ cα(G[V ′]) be a weak rank facet of the stable set polytope

of a web G. Then c = max{ai| i ∈ V (G)}.

Proof. Let α′ = α(G[V ′]). By Corollary 7, G[V ′] contains a rank-minimal sub-
graph W with α(W ) = α′, which is a clique or a partitionable web. If W is a
clique then α′ = 1 and it follows that ai ≤ c for every vertex i, due to the stable
set {i}. Hence c = max{ai| i ∈ V (G)}.

If W is a partitionable web then let ω ′ be the clique number of W . We say that
two vertices a and b of W are consecutive if [a, b] ∩W = {a, b}. Obviously, there
is a labeling {w1, . . . , w|W |} of the vertices of W such that for every 1 ≤ i ≤ |W |,
wi and wi+1 are consecutive (with arithmetics performed modulo |W |).

For every 1 ≤ i ≤ |W |, let Si = {wi+ω′+1, wi+2ω′+1, . . . , wi+(α′−1)ω′+1}
(with indices taken modulo |W |). Notice that Si is a stable set of G (due to the
labeling, if wa and wb are adjacent and a ≤ b then wa, wa+1, . . . , wb is a clique of
W ). Since |W | = α′ω′ + 1, we have that wi /∈ NG(Si) and wi+1 /∈ NG(Si). It
follows that for every u in [wi, wi+1], the set S ′

i := Si ∪ {u} is a stable set of G.
Since a

T χS′
i ≤ cα′, we get c(α′−1)+au ≤ cα′. Thus au ≤ c. Therefore, spanning

all consecutive pairs of W , we obtain c = max{ai| i ∈ V (G)} as required. 2
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2.3 A general characterization of facets

The next lemma provides a characterization when a valid inequality a
T
x ≤ b

is a facet of the stable set polytope of a general graph G. For that we need the
following notions. A pair i, j of vertices is a-critical in G if there are two roots
S1 and S2 of a

T
x ≤ b such that {i} = S1 \ S2 and {j} = S2 \ S1. A subset

V ′ of V (G) is a-connected if the graph with vertex set V ′ and edge set {ij| i, j ∈
V ′, ij a-critical in G} is connected.

Lemma 9 Let a
T
x ≤ b be a valid inequality for STAB(G) with b 6= 0. Consider

a partition V1, . . . , Vp of V (G) s.t. Vi is a-connected for every 1 ≤ i ≤ p. The
inequality a

T
x ≤ b is facet-defining if and only if there are p roots S1, . . . , Sp with

∣

∣

∣

∣

∣

∣

∣

|S1 ∩ V1| · · · |S1 ∩ Vp|
...

...
|Sp ∩ V1| · · · |Sp ∩ Vp|

∣

∣

∣

∣

∣

∣

∣

6= 0

Proof. In order to prove the If-part, let a
′T

x ≤ b′ be a facet containing the face
induced by the inequality a

T
x ≤ b.

For every 1 ≤ i ≤ p, the set Vi is a-connected and so there exist λi such
that aj = λi for all j ∈ Vi. Since for every stable set S, a

TχS = b implies that
a
′T χS = b′, Vi is a

′-connected. Therefore there exist λ′
i such that a′j = λ′

i for all
j ∈ Vi. Hence we have for every 1 ≤ i ≤ p,

λ1|Si ∩ V1| + . . . + λp|Si ∩ Vp| = b
λ′

1|Si ∩ V1| + . . . + λ′
p|Si ∩ Vp| = b′

Since
∣

∣

∣

∣

∣

∣

∣

|S1 ∩ V1| · · · |S1 ∩ Vp|
...

...
|Sp ∩ V1| · · · |Sp ∩ Vp|

∣

∣

∣

∣

∣

∣

∣

6= 0

holds we get λ′
i = b′

b
λi for every 1 ≤ i ≤ b. Thus a

T
x ≤ b is facet-defining.

Now let us turn to the Only if-part. Since ∅ is not a root of the facet a
T
x ≤ b,

there exist n roots S1, . . . Sn whose incidence vectors are linearly independent.
Let M be the matrix with the incidence vectors of S1, . . . , Sn as rows. Let vi

be an element of Vi for 1 ≤ i ≤ p. We add to the v1-th column of M the other
columns related to the other elements of V1; we add to the v2-th column of M the
other columns related to the other elements of V2 etc. This yields

∣

∣

∣

∣

∣

∣

∣

. |S1 ∩ V1| . |S1 ∩ Vp|

.
... .

...
. |Sn ∩ V1| . |Sn ∩ Vp|

∣

∣

∣

∣

∣

∣

∣

6= 0
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and, thus, the (n, p)-matrix






|S1 ∩ V1| · · · |S1 ∩ Vp|
...

...
|Sn ∩ V1| · · · |Sn ∩ Vp|







has p linearly independent rows as required. 2

Notice that Lemma 9 generalizes a well-known result of Chv átal [3] on critical
edges which, in fact, inspirated Lemma 9. An edge of a graph is critical if its
deletion increases the stability number.

Theorem 10 [3] Let G = (V,E) be a graph and E∗ be the set of its critical edges.
If G∗ = (V,E∗) is connected then G is rank facet-producing.

3 The main result

In this section, we prove the following result, which is a more precise formulation
of Theorem 1.

Theorem 11 Let a
T
x ≤ cα1 be a proper weak rank facet of STAB(W k

n ). Then
STAB(W k

n+k+1) has the proper weak rank facet

∑

1≤i≤n

aixi +
∑

n<i≤n+k+1

c xi ≤ c (α1 + 1) (2)

Example. Consider the non-rank-perfect web with the least number of vertices,
namely W 5

25. Its stable set polytope admits the following non-rank facet:

(2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2)T
x ≤ 6

Let V1 be the set of vertices corresponding to the coefficients with value 2 (i.e.
to the black vertices in Fig. 3(a)). Notice that G[V1] is isomorphic to the partition-
able web W 2

10 which is in particular rank facet-producing. Hence the above facet is
a proper weak rank facet with c = 2, α(G[V ′]) = 3 and Theorem 11 implies that

(2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2)T
x ≤ 8

is a proper weak-rank facet of STAB(W 5
31) (the vertices with coefficient 2 cor-

respond to the black vertices in Fig. 3(b)). We can, therefore, iteratively apply
Theorem 11 and obtain a sequence of non-rank-perfect webs: W 5

25, W 5
31, W 5

37, ...

Proof of Theorem 11. By definition, the vertex set of Wk
n is {1, . . . , n} and the

vertex set of W k
n+k+1 is {1, . . . , n + k + 1}. Hence we may use this convention to

identify a vertex of W k
n with the corresponding one of W k

n+k+1. Denote by G1 the

10



(a) (b)

Figure 3

web W k
n and by G2 the web W k

n+k+1. Let ω = k +1 be the clique number of both
G1 and G2 and, for every 1 ≤ i ≤ n (resp. 1 ≤ i ≤ n + ω), let Q1

i = [i, i + k]
(resp. Q2

i = [i, i + k]) be the maximum clique of G1 (resp. G2) starting in i.
Since a

T
x ≤ cα1 is a proper weak rank facet of STAB(G1), there exists a

subset V1 of vertices of G1 such that α1 = α(G1[V1]) and G1[V1] is rank facet-
producing. Moreover, G1[V1] has a partitionable web with vertex set W1, stability
number α1, and clique number ω1 ≥ 2 as induced subgraph by Corollary7.

Notice that Q1
n−k is the maximum clique {n−k, . . . , n} of G1. Let w1, . . . , wh

be the elements in increasing order of W1 in Q1
n−k. We have h = ω1 or ω1 − 1, by

Lemma 4. For every 1 ≤ i ≤ h, let qi be the element wi + ω of Q2
n+1 and define

W2 =

{

W1 ∪ {q1, . . . , qω1
} if h = ω1

W1 ∪ {n + 1} ∪ {q1, . . . , qω1−1} if h = ω1 − 1

Let V2 = V1∪Q2
n+1 = V1∪{n+1, . . . , n+k+1}. Let v be the (n+ω)-column vec-

tor (a1, . . . , an, c, . . . , c) and y be the (n+ω)-column vector {a1, . . . , an, 0, . . . , 0).

Claim 1 Inequality (2) is valid for STAB(W k
n+k+1).

Let S be any stable set of G2. Let l be the vertex of S such that [l+1, n]∩S = ∅
and let t be the vertex of S such that [n + 1, t − 1] ∩ S = ∅. Notice that S \ {t}

is a stable set of G1. Hence we have v
T χS = (y + cχQ2

n+1)T χS ≤ cα1 + xt ≤
c(α1 + 1) as xt ≤ c if t /∈ Q2

n+1 by Lemma 8, and xt = c if t ∈ Q2
n+1. 3

Claim 2 The set of vertices W2 induces a partitionable web with stability number
α1 + 1 and clique number ω1.

Let 1 ≤ v1 ≤ v2 ≤ . . . ≤ vn′ ≤ n be the vertices of W1 in increasing order.
We discuss the two cases h = ω1 and h = ω1 − 1.

11



If h = ω1 then let v be any vertex of W2. If v is a vertex qi of {q1, . . . , qω1
}

then the set of vertices Q2
v meets W2 exactly in the ω1 vertices {qi, . . . , qω1

} ∪
{v1, . . . , vi−1}, since W1 induces a web of G1 with clique number ω1 by Lemma 4
(see Fig. 4). If v is a vertex wi of {w1, . . . , wω1

} then the set of vertices Q2
v meets

W2 precisely in the ω1 vertices {wi, . . . , wω1
} ∪ {q1, . . . , qi−1}. If v is a vertex of

W1 \ {w1, . . . , wω1
}, we obviously have |Qv ∩W2| = ω1 since W1 induces a web

of G1 with clique number ω1 due to Lemma 4.

w1 w2 wω1

1n + 1n − k

q1 q2

Figure 4: construction of W2, case h = ω1 (vertices of W2 are drawn in black)

If h = ω1 − 1 then notice that w1 6= n − k (otherwise Lemma 4 would imply
h = ω1). Hence n + 1 /∈ {q1, . . . , qh}. Let v be any vertex of W2. If v is a
vertex qi of {q1, . . . , qh} then the set of vertices Q2

v meets W2 exactly in the ω1

vertices {qi, . . . , qh} ∪ {v1, v2, . . . , vi−1, vi}, since W1 induces a web of G1 with
clique number ω1 by Lemma 4 (see Fig. 5). If v is a vertex wi of {w1, . . . , wh}
then the set of vertices Qv meets W2 precisely in the ω1 vertices {wi, . . . , wh, n +
1} ∪ {q1, . . . , qi−1}, as wh < n + 1 < q1. If v = n + 1 then the set of vertices
Qv meets W2 exactly in the ω1 vertices {n + 1, q1, . . . , qh}. If v is a vertex of
W1 \ {w1, . . . , wh}, we obviously have |Qv ∩ W2| = ω1 since W1 induces a web
of G1 with clique number ω1 due to Lemma 4.

w1 w2 wω1−1

n − k 1n + 1

q1 q2

Figure 5: construction of W2, case h = ω1 − 1 (vertices of W2 are drawn in black)

Hence in both cases, W2 induces a web with clique number ω1 (Lemma 4),
with |W | + ω1 = (α1 + 1)ω1 + 1 vertices. Thus W2 induces a partitionable web
with stability number α1 + 1. 3

Claim 3 The vertex set V2 = W2 ∪ Q2
n+1 is v-connected.

We first show that W2 is v-connected. Since a
T
x ≤ cα1 is a weak rank facet

of STAB(G1), we have by definition ai = c for every i ∈ W1. Hence for every

12



i ∈ W2 follows vi = c. Since W2 is a partitionable web of stability number α1 +1
by Claim 2, this implies that W2 is v-connected.

Let w1 < w2 < . . . < wω1
be the elements of W2 in Q2

n+1 (by definition of
W2 there are exactly ω1 of them). Let S be a maximum stable set of W2 disjoint
from Q2

1 (S exists because W2∩Q2
1 is a subset of a maximum clique of W2, and for

every maximum clique Q of a partitionable graph, there exists a unique maximum
stable set avoiding Q by [1]). Let s be the element of S with maximal index. Then
for every wω1

≤ q ≤ n+ω, the set (S\{s})∪{q}) is obviously a root of inequality
(2). Hence W 2 ∪ [wω1

, n + ω] is v-connected. Likewise, the set W 2 ∪ [n + 1, w1]
is v-connected.

For every 1 ≤ i < ω1, there exists a maximum stable set of W2 disjoint from
Q2

wi+1
. Let s be the element of S with maximal index which is less or equal than

wi. Then for every wi ≤ q ≤ wi+1, the set (S \ {s}) ∪ {q} is a root of inequality
(2). Hence W 2 ∪ [wi, wi+1] is v-connected and V2 is v-connected as well. 3

Let p = n − |W1| and {1, . . . , n} \ W1 = {y1, . . . , yp}. Due to Lemma 9,
there are p roots S1, . . . , Sp of a

T
x ≤ cα1 such that the incidence vectors of their

restriction to {1, . . . , n}\W1 = ({1, . . . , n}∪Qn})\V2 are linearly independent,
that is

∣

∣

∣

∣

∣

∣

∣

|S1 ∩ {y1}| · · · |S1 ∩ {yp}|
...

...
|Sk′ ∩ {y1}| · · · |Sk′ ∩ {yp}|}

∣

∣

∣

∣

∣

∣

∣

6= 0

Claim 4 For every 1 ≤ i ≤ p, there exists a vertex qi of G2 such that S ′
i = Si∪{qi}

is a root of inequality (2).

For every 1 ≤ i ≤ p, let li (resp. ti) be the element of Si with minimal
(resp. maximal) index. Let qi = ti + ω. Obviously, qi is not a neighbor of ti
in G2. If qi is a neighbor of li in G2 then qi + ω − 1 − (n + ω) ≥ li. Thus
ti +ω− 1−n ≥ li, which implies that ti is a neighbor of li in G1: a contradiction.

Hence S′
i = Si∪{qi} is a stable set of G2. Since qi is a vertex of the maximum

clique Qn, it follows that S ′
i is a root of inequality (2), as required. 3

Since G2[W2] has stability number α1 + 1 (Claim 2), there is a stable set S ′
0 of

G2[V2] which is a root of inequality (2).
For every 0 ≤ i ≤ p and 1 ≤ j ≤ p, let δi,j = 1 if yj ∈ S′

i, 0 otherwise. By
Claim 1 and 4, inequality (2) is a valid inequality with p+1 v-critical components
V2, {y1}, . . . , {yp}, and p + 1 roots S ′

0, S
′
1, . . . , S

′
p such that

∣

∣

∣

∣

∣

∣

∣

∣

∣

|S′
0 ∩ V2| δ0,1 · · · δ0,p

|S′
1 ∩ V2| δ1,1 · · · δ1,p

...
...

...
|S′

p ∩ V2| δp,1 · · · δp,p

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

α1 + 1 0 · · · 0
|S′

1 ∩ V2| |S1 ∩ {y1}| · · · |S1 ∩ {yp}|
...

...
...

|S′
p ∩ V2| |Sp ∩ {y1}| · · · |Sp ∩ {yp}|

∣

∣

∣

∣

∣

∣

∣

∣

∣

6= 0

13



Lemma 9 implies that inequality (2) defines a facet of STAB(G2). To finish the
proof, it remains to show that it is a proper weak rank facet.

Claim 5 The set V2 is rank facet-producing and α(G2[V2]) = α1 + 1.

We have α(G2[V2]) ≤ α(G2[V1]) + α(Qn) ≤ α1 + 1 which further implies
α(G2[V2]) =α(G2[W2]). Let v be any vertex of V2 \ W2. By the definition of V2,
v is an element of Q2

n+1. Therefore |N(v) ∩ W2| ≥ ω1 as |W2 ∩ Q2
n+1| = ω1, by

the definition of W2. Let δ be the element of W2 with maximal index.
If v < δ then (δ − ω) ∈ N(v). As δ − ω is an element of W2 by the definition

of W2, we get |N(v) ∩ W2| ≥ ω1 + 1. If v ≥ δ then v has at least one neighbor in
Q2

v ∩W 2, as |Q2
v ∩W 2| ≥ ω1 − 1 ≥ 1 (Lemma 4). Hence |N(v)∩W2| ≥ ω1 +1.

Thus, in both cases, |N(v) ∩ W2| ≥ ω1 + 1. Hence α(N(x) ∩ W2) = 2 and
therefore, G2[V2] is rank facet-producing by Galluccio & Sassano [8] (recall that
W 2 is a partitionable web by Claim 2 and is, therefore, rank-minimal). 2

An immediate consequence of Theorem 11 is the main result: if STAB(W k
n )

has a proper weak non-rank facet then STAB(W k
n+k+1) has a proper weak non-

rank facet (Theorem 1).

4 Concluding remarks and open problems

The presented construction for non-rank facets of stable set polytopes of webs
shows that we obtain, from every single proper weak non-rank facet in STAB(W k

n ),
an infinite sequence STAB(Wk

n ), STAB(W k
n+(k+1)), STAB(W k

n+2(k+1)), . . . of
not rank-perfect webs (Theorem 1).

If there is a set of webs W k
n0

, . . . ,W k
nk

such that STAB(W k
ni

) has a proper
weak non-rank facet and ni = i (mod k + 1) then applying this construction
implies that there exist only finitely many rank-perfect webs with clique number
k + 1 (Corollary 2). Such sets of non-rank-perfect webs are presented in [16, 17]
for k = 3 and all even values k ≥ 4; the case of all odd values k ≥ 5 is open. We
conjecture that such sets exist for the remaining cases as well:

Conjecture 12 For every ω ≥ 4, there are only finitely many rank-perfect webs
with clique number ω.

According to Ben Rebea’s Conjecture [14], the stable set polytopes of quasi-
line graphs (and therefore of webs) have clique family inequalities as only non-
trivial facets. This would particularly mean that all facets admit at most two non-
zero coefficients. Notice that our construction of non-rank facets does not increase
the number of non-zero coefficients. In particular, the non-rank facets presented in
[16, 17] have coefficients equal to 2 and 1 only. On the other hand, Liebling et al.
[12] found an infinite sequence of not rank-perfect webs where the non-rank facets
admit coefficients a and a + 1 for every a ≥ 1. Hence we are still far from having
a complete description of the stable set polytopes of webs.
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