

ARNAUD PÊCHER ${ }^{1}$
Annegret Wagler

A construction for non-rank facets of stable set polytopes of webs

[^0]
A construction for non-rank facets of stable set polytopes of webs

Arnaud Pêcher ${ }^{\dagger} \quad$ Annegret Wagler ${ }^{\ddagger}$

November 4, 2003

Abstract

Graphs with circular symmetry, called webs, are relevant w.r.t. describing the stable set polytopes of two larger graph classes, quasi-line graphs [9, 14] and claw-free graphs [8, 9]. Providing a decent linear description of the stable set polytopes of claw-free graphs is a long-standing problem [10]. However, even the problem of finding all facets of stable set polytopes of webs is open. So far, it is only known that stable set polytopes of webs with clique number ≤ 3 have rank facets only $[6,18]$ while there are examples with clique number ≥ 4 having non-rank facets [11, 12, 14, 16].

In this paper, we provide a construction for non-rank facets of stable set polytopes of webs. This construction is the main tool to obtain in a companion paper [17], for several fixed values of ω including all odd values at least 5 , that there are only finitely many webs with clique number ω whose stable set polytopes admit rank facets only.

Keywords: web, rank-perfect graph, stable set polytope, (non-)rank facet

1 Introduction

Graphs with circular symmetry of their maximum cliques and stable sets are called webs: a web W_{n}^{k} is a graph with vertices $1, \ldots, n$ where $i j$ is an edge if i and j differ by at most $k(\bmod n)$ and $i \neq j$. The webs W_{9}^{k} on nine vertices are depicted in Figure 1. Notice that webs are also called circulant graphs C_{n}^{k} in [4] and that similar graphs $W(n, k)$ were introduced in [18].

Webs and line graphs belong to the classes of quasi-line graphs and claw-free graphs and are relevant w.r.t. describing the stable set polytopes of those larger graph classes $[8,9,14]$. The stable set polytope $\operatorname{STAB}(G)$ of G is defi ned as the convex hull of the incidence vectors of all stable sets of the graph G. In order

[^1]

Figure 1
to describe $\operatorname{STAB}(G)$ by means of facet-defi ning inequalities, the "trivial" facets $x_{i} \geq 0$ for all vertices i of G and the clique constraints

$$
\sum_{i \in Q} x_{i} \leq 1
$$

for all cliques $Q \subseteq G$ are necessary. These two types of facets suffi ce to describe $\operatorname{STAB}(G)$ for perfect graphs G only [3]. A natural way to generalize clique constraints is to investigate rank constraints, that are $0 / 1$-constraints of the form

$$
\sum_{i \in G^{\prime}} x_{i} \leq \alpha\left(G^{\prime}\right)
$$

associated with arbitrary induced subgraphs $G^{\prime} \subseteq G$ where $\alpha\left(G^{\prime}\right)$ denotes the cardinality of a maximum stable set in G^{\prime} (note $\alpha\left(G^{\prime}\right)=1$ holds iff G^{\prime} is a clique). A graph is rank-perfect if all non-trivial facets of its stable set polytope are rank constraints. The class of rank-perfect graphs contains all perfect graphs [3], odd holes and odd antiholes [15], line graphs [7], and the complements of webs [20].

A characterization of the rank facets in stable set polytopes of claw-free graphs was given by Galluccio \& Sassano [8]. They showed that all rank facets can be constructed by means of standard operations from rank constraints associated with cliques, partitionable webs, or line graphs of 2-connected, critical hypomatchable graphs. However, we are still far from having a complete description for the stable set polytopes of webs and, therefore, of quasi-line and claw-free graphs, too. Finding a decent linear description of the stable set polytopes of claw-free graphs is a long-standing problem (Grötschel, Lov’asz, and Schrijver [10]). Claw-free graphs are not rank-perfect: Giles \& Trotter [9], Oriolo [14], and Liebling et al. [12] found non-rank facets which occur even in the stable set polytopes of quasi-line graphs. These non-rank facets rely on combinations of joined webs.

Several further authors studied the stable set polytopes of webs. The webs W_{n}^{1} with clique number 2 are either perfect or odd holes and, therefore, rank-perfect due to $[3,15]$. (Notice that the clique number, i.e. the size of a maximum clique, of a web W_{n}^{k} is $k+1$.) Dahl [6] showed that the webs W_{n}^{2} with clique number 3 are rank-perfect as well. On the other hand, Kind [11] found (by means of the PORTA
software ${ }^{1}$) examples of webs with clique number >4 which are not rank-perfect, e.g., $W_{31}^{4}, W_{25}^{5}, W_{29}^{6}, W_{33}^{7}, W_{28}^{8}, W_{31}^{9}$. Oriolo [14], Liebling et al. [12], and Pêcher \& Wagler [16] presented further examples of such webs.

The main contribution of this paper (Theorem 1) is a construction that enables us to obtain, from certain non-rank-perfect webs W_{n}^{k}, an infi nite sequence of non-rank-perfect webs $W_{n+(k+1)}^{k}, W_{n+2(k+1)}^{k}, W_{n+3(k+1)}^{k}, \ldots$ with the same clique number. To be more precise, we introduce the notion of proper weak non-rank facets. A facet $\mathbf{a}^{T} \mathbf{x} \leq c \alpha\left(G^{\prime}\right)$ of $\operatorname{STAB}(G)$ is a weak rank facet w.r.t. $G^{\prime} \subseteq G$, if $a_{i}=c$ for every vertex i of G^{\prime} and if G^{\prime} is rank facet-producing (i.e. $\sum_{i \in V\left(G^{\prime}\right)} x_{i} \leq$ $\alpha\left(G^{\prime}\right)$ defi nes a facet of $\operatorname{STAB}(G)$). A weak rank facet is proper if G^{\prime} is not a clique and non-rank if it cannot be scaled to have $0 / 1$-coeffi cients only (i.e. it is not a rank constraint).

Theorem 1 If $\operatorname{STAB}\left(W_{n}^{k}\right)$ has a proper weak non-rank facet then $\operatorname{STAB}\left(W_{n+k+1}^{k}\right)$ has a proper weak non-rank facet.

Therefore, if W_{n}^{k} has a proper weak non-rank facet then all webs $W_{n+\lambda(k+1)}^{k}$ $(\lambda \geq 0)$ are not rank-perfect, too. Hence Theorem 1 implies the following corollary:

Corollary 2 If there are $k+1$ webs $W_{n_{0}}^{k}, \ldots, W_{n_{k}}^{k}$ such that

- $\operatorname{STAB}\left(W_{n_{i}}^{k}\right)$ has a proper weak non-rank facet
- $n_{i}=i(\bmod k+1)$
then all webs W_{n}^{k} with $n \geq \max \left\{n_{0}, \ldots, n_{k}\right\}-k$ are not rank-perfect.
That means in particular: if we are able to provide such a set of $k+1$ webs for a certain value of k, then there exist only fi nitely many rank-perfect webs W_{n}^{k}. For $k=3$, this follows from [16] where an infi nite sequence of not rank-perfect webs with clique number 4 is presented, namely $W_{33}^{3}, W_{42}^{3}, W_{51}^{3}, W_{60}^{3}, \ldots$ Hence, by Corollary 2 , all webs W_{n}^{3} with $n>56$ are not rank-perfect and there exist only fi nitely many rank-perfect webs W_{n}^{3}. Similar results for all even values $k \geq 4$ are given in the companion paper [17]. Applying Corollary 2 implies:

Theorem 3 [17] For each odd $\omega \geq$ 5, there are only finitely many rank-perfect webs with clique number ω, hence, almost all of them are not rank-perfect.

The paper is organized as follows: Section 2 is devoted to defi nitions and some general results which are frequently used in the sequel. The proof of Theorem 1 is given in Section 3 and we briefly discuss open problems in Section 4.

[^2]
2 Definitions and general results

Let $G=(V, E)$ be a graph. If V^{\prime} is any subset of the vertex set V, we denote by $G\left[V^{\prime}\right]$ the subgraph of G induced by V^{\prime}.

Recall that a web W_{n}^{k} is a graph with vertices $1, \ldots, n$ where $i j$ is an edge if i and j differ by at most $k(\bmod n)$ and $i \neq j$. Webs are natural generalizations of odd holes and odd antiholes, that are chordless odd cycles of length ≥ 5 and their complements. Perfect graphs are precisely the graphs without odd holes and odd antiholes as induced subgraphs [2].

The clique number of a web W_{n}^{k} is $k+1$ and the stability number is $\left\lfloor\frac{n}{k+1}\right\rfloor$. Unless stated otherwise, arithmetics are always performed modulo the number of vertices of the web involved in the computation. Let $1 \leq a, b \leq n$ be two vertices of a web W_{n}^{k}. We denote by $[a, b]$ the set of vertices $\{a, a+1, a+2, \ldots, b\}$, and by Q_{a} the maximum clique $[a, a+k]$.

The following lemma, similar to Corollary 3.2 in [18], is frequently used in the sequel. For any fi nite set X, we denote its cardinality by $|X|$.

Lemma 4 Consider a web W with clique number ω and a set V^{\prime} of vertices of W. Then V^{\prime} induces a subweb W^{\prime} of W with clique number ω^{\prime}
(i) if $\left|Q_{i} \cap V^{\prime}\right|=\omega^{\prime}$ for all $i \in V^{\prime}$;
(ii) only if $\left|Q_{i} \cap V^{\prime}\right|=\omega^{\prime}$ for all $i \in V^{\prime}$ and $\left|Q_{i} \cap V^{\prime}\right| \geq \omega^{\prime}-1$ for all $i \notin V^{\prime}$.

Proof. The If-part is an immediate consequence of the proof of Theorem 3.1 in [18]. For the Only if-part, consider first $i \in V^{\prime}$. Obviously $\left|Q_{i} \cap V^{\prime}\right| \leq$ ω^{\prime} as $Q_{i} \cap V^{\prime}$ is a clique of W^{\prime}. If $j \notin Q_{i-\omega-1} \cup Q_{i}$ then j is not a neighbor of i in W^{\prime}. Therefore the $2 \omega^{\prime}-2$ neighbors of i in W^{\prime} are exactly the set $\left(\left(Q_{i-\omega-1} \cup Q_{i}\right) \cap V^{\prime}\right)-\{i\}$. Thus, $\left|Q_{i} \cap V^{\prime}\right|=\omega^{\prime}$. Now, consider $i \notin V^{\prime}$. Let i^{\prime} be the element of V^{\prime} such that $\left[i^{\prime}+1, i\right] \cap V^{\prime}=\emptyset$. Since $Q_{i^{\prime}} \cap V^{\prime} \subseteq\left\{i^{\prime}\right\} \cup Q_{i}$, we have $\left|Q_{i} \cap V^{\prime}\right| \geq \omega^{\prime}-1$.

Webs and line graphs belong to the classes of quasi-line graphs (the neighborhood of any vertex can be partitioned into two cliques) and claw-free graphs (the neighborhood of any vertex does not contain a stable set of size 3). The line graph $L(H)$ of a graph H is obtained by taking the edges of H as vertices of $L(H)$ and connecting two vertices in $L(H)$ iff the corresponding edges of H are incident. Webs and line graphs are relevant w.r.t. describing the stable set polytopes of those larger graph classes [8, 9, 14].

Recall that the stable set polytope $\operatorname{STAB}(G)$ is the convex hull of the incidence vectors $\chi^{\mathbf{S}}$ of all stable sets S of G. We denote by \mathbf{a}^{T} the transposed row vector of any column vector \mathbf{a}. An inequality $\mathbf{a}^{T} \mathbf{x} \leq b$ is said to be valid for $\operatorname{STAB}(G)$, if $\mathbf{a}^{T} \chi^{\mathbf{S}} \leq b$ holds for all stable sets S of G. A root of a valid inequality $\mathbf{a}^{T} \mathbf{x} \leq b$ is a stable set S such that $\mathbf{a}^{T} \chi^{\mathbf{S}}=b$. A valid inequality $\mathbf{a}^{T} \mathbf{x} \leq b$ for $\operatorname{STAB}(G)$ is a facet if and only if it has $|V(G)|$ roots with affi nely independent incidence vectors (note that they have to be linearly independent if $b>0$).

Let $G=(V, E)$ be a graph, F be a family of (at least three inclusion-wise) maximal cliques of $G, p \leq|F|$ be an integer, and defi ne two sets as follows:

$$
\begin{aligned}
I(F, p) & =\{i \in V:|\{Q \in F: i \in Q\}| \geq p\} \\
O(F, p) & =\{i \in V:|\{Q \in F: i \in Q\}|=p-1\}
\end{aligned}
$$

Oriolo [14] showed that the clique family inequality

$$
\begin{equation*}
(p-r) \sum_{i \in I(F, p)} x_{i}+(p-r-1) \sum_{i \in O(F, p)} x_{i} \leq(p-r)\left\lfloor\frac{|F|}{p}\right\rfloor \tag{1}
\end{equation*}
$$

is valid for the stable set polytope of every graph G where $r=|F| \bmod p$. A conjecture due to Ben Rebea says that the stable set polytopes of quasi-line graphs have clique family inequalities as only non-trivial facets, see [14].

All matrices in this paper have rational coeffi cients (in fact integer coeffi cients). If M is any square matrix, then $|M|$ stands for the determinant of M.

2.1 Rank-minimal facets of webs

Following Galluccio \& Sassano [8], an inequality $\sum_{i \in V} x_{i} \leq \alpha(G)$ associated with a graph G with vertex set V and the graph G itself are called rank-minimal if and only if G is a clique or satisfi es

1. $\sum_{i \in V} x_{i} \leq \alpha(G)$ defi nes a facet of $\operatorname{STAB}(G)$, i.e. G is rank facet-producing;
2. for each $V^{\prime} \subset V$, the inequality $\sum_{i \in V^{\prime}} x_{i} \leq \alpha(G)$ does not defin ne a facet of $\operatorname{STAB}\left(G\left[V^{\prime}\right]\right)$.
All rank-minimal claw-free graphs were described in [8]. In order to state the theorem, we need the following notations.

A graph G is said to be partitionable if there exist two integers p and q such that G has $p q+1$ vertices and for every vertex v of G, the induced subgraph $G \backslash\{v\}$ admits a partition into p cliques of cardinality q as well as a partition into q stable sets of cardinality p. The webs $W_{\alpha \omega+1}^{\omega-1}$ with $\alpha, \omega>1$ are examples of partitionable graphs, including all odd holes $W_{2 \alpha+1}^{1}$ and all odd antiholes $W_{2 \omega+1}^{\omega-1}$.

A graph H is called hypomatchable if it does not admit a perfect matching but $H-v$ does for all vertices $v \in V(H)$ (a matching is perfect if it meets all vertices of the graph). A hypomatchable graph H is called critical if $H-e$ is not hypomatchable anymore for all edges $e \in E(H)$.

Theorem 5 [8] Every rank-minimal claw-free graph is

- a clique,
- a partitionable web, or
- the line graph of a 2-connected, critical hypomatchable graph.

We are interested in the question which rank-minimal graphs may occur as induced subgraphs of webs (recall: every web is in particular claw-free). It turns out that we essentially can exclude the third alternative of Theorem 5 due to the next lemma:

Lemma 6 Let H be a 2-connected, critical hypomatchable graph. If its line graph $L(H)$ is an induced subgraph of a web, then $L(H)$ is a triangle or an odd hole.

Proof. Consider a 2-connected, critical hypomatchable graph H. Since H is 2connected, H has at least 3 vertices. Since H is critical hypomatchable, H must not admit parallel edges, i.e., H is simple.

If $|H|=3$, then H as well as $L(H)$ is a triangle. Hence assume $|H| \geq 5$ in the sequel (note: every hypomatchable graph has an odd number of vertices). We show that H as well as $L(H)$ is an odd hole if $L(H)$ is an induced subgraph of a web.

Due to Lov'asz [13], a graph H is hypomatchable if and only if there is a sequence $H_{0}, H_{1}, \ldots, H_{k}=H$ of graphs such that H_{0} is a chordless odd cycle and for $1 \leq i \leq k, H_{i}$ is obtained from H_{i-1} by adding a chordless odd path E_{i} that joins two (not necessarily distinct) vertices of H_{i-1} and has all internal vertices outside H_{i-1}. The odd paths $E_{i}=H_{i}-H_{i-1}$ are called ears for $1 \leq i \leq k$ and the sequence $H_{0}, H_{1}, \ldots, H_{k}=H$ an ear decomposition of H.

If a hypomatchable graph H is 2-connected and has at least 5 vertices, then H admits an ear decomposition $H_{0}, H_{1}, \ldots, H_{k}=H$ s.t. every H_{i} is 2-connected for $0 \leq i \leq k$ by Cornu'ejols \& Pulleyblank [5] and H is an odd hole (i.e. $\left|H_{0}\right| \geq 5$) by [19]. Moreover, in [19] is shown that we can always reorder the ears $E_{1}, \ldots E_{k}$ of a given decomposition s.t. the decomposition starts with all ears of length ≥ 3 and ends up with all ears of length one. Thus, every 2-connected hypomatchable graph H with $|V(H)| \geq 5$ has a proper ear decomposition $H_{0}, H_{1}, \ldots, H_{k}=H$ where H_{0} has length ≥ 5, each H_{i} is 2-connected, and, if $k>0$, there is an index j s.t. E_{1}, \ldots, E_{j} have length ≥ 3 and E_{j+1}, \ldots, E_{k} have length one.

Consider a 2-connected hypomatchable graph H with $|V(H)| \geq 5$ and a proper ear decomposition $H_{0}, H_{1}, \ldots, H_{k}=H$ of H. We show in the next two claims: the decomposition of H has neither ears of length 1 nor of length ≥ 3 if H is critical and $L(H)$ is an induced subgraph of a web.

Claim 1. If $H_{0}, H_{1}, \ldots, H_{k}=H$ contains an ear of length 1 , then H is not critical hypomatchable.

In that case, the last ear E_{k} of the proper ear decomposition $H_{0}, H_{1}, \ldots, H_{k}=H$ of H is a single edge. Removing the edge E_{k} from $H_{k}=H$ yields the hypomatchable graph H_{k-1} with the same vertex set. Thus, H is not critical hypomatchable. \diamond

Claim 2. If $H_{0}, H_{1}, \ldots, H_{k}=H$ contains an ear of length ≥ 3, then H is not critical hypomatchable or $L(H)$ is not an induced subgraph of a web.

In that case, the fi rst ear E_{1} of the proper ear decomposition $H_{0}, H_{1}, \ldots, H_{k}=H$ of H is a path of length ≥ 3. If the endvertices u_{1} and v_{1} of E_{1} are adjacent in H_{0} (see Fig. 2(a)), then H admits a proper ear decomposition $H_{0}^{\prime}, H_{1}^{\prime}, \ldots, H_{k}^{\prime}=H$
with $H_{0}^{\prime}=H_{0} \cup E_{1}-\left\{u_{1} v_{1}\right\}$ and $E_{2}, \ldots, E_{k},\left\{u_{1} v_{1}\right\}$ as ear sequence (i.e. $H_{i}^{\prime}=$ $H_{i-1}^{\prime} \cup E_{i+1}$ for $1 \leq i \leq k-1$ and $\left.H_{k}^{\prime}=H_{k-1}^{\prime} \cup\left\{u_{1} v_{1}\right\}\right)$. Thus, H admits an ear of length 1 and is not critical hypomatchable by Claim 1.

(a)

(b)

(c)

(d)

Figure 2
If the endvertices u_{1} and v_{1} of E_{1} are non-adjacent in H_{0} (see Fig. 2(b)), then there are 3 open-disjoint paths P_{0}, P_{1}, E_{1} between u_{1} and v_{1} in $H_{1}: P_{0}$ with even length ≥ 2 and P_{1}, E_{1} with odd length ≥ 3. Consider in H_{1} the edges $i, i^{\prime}, j, j^{\prime}, l, l^{\prime}$ as shown in Fig. 2(b). Then the edges $i^{\prime}, j^{\prime}, l^{\prime}$ are pairwise disjoint (note: u_{1} may be an endvertex of i^{\prime} but neither of j^{\prime} nor of l^{\prime} because of the parity of the paths).

Assume $L\left(H_{1}\right)$ is an induced subgraph of a web W_{n}^{k}. We have to fi ind a respective order of the vertices $i, i^{\prime}, j, j^{\prime}, l, l^{\prime}$ in W_{n}^{k} (recall that the line operator transforms edges of H into vertices of $L(H)$, see Fig. 2(c)). Moreover, recall that the neighborhood of every vertex x, denoted by $N(x)$, of a web W_{n}^{k} splits into two cliques $N^{-}(x)=\{x-k, \ldots, x-1\}$ and $N^{+}(x)=\{x+1, \ldots, x+k\}$ (where all indices are taken modulo n).

Consider $N(i)$ in W_{n}^{k} : we have $i^{\prime}, j, l \in N(i)$ where $j l$ is an edge but neither $i^{\prime} j$ nor $i^{\prime} l$ (see Fig. 2(c)). W.1.o.g. let $i^{\prime} \in N^{-}(i)$. Then $j, l \in N^{+}(i)$ follows since both $N^{-}(i)$ and $N^{+}(i)$ are cliques. Furthermore, let $j<l$ (the case $l<j$ goes analogously due to $i j, i l \in E$ but $i j^{\prime}, i l^{\prime} \notin E$), i.e., assume $i+1 \leq j<l \leq i+k$ (see Fig. 2(d)).

Now, consider the vertex j^{\prime}. We have $j^{\prime} \in N(j)$ but $j^{\prime} \notin N(i)$ (see Fig. 2(c)). This implies $j^{\prime} \in N^{+}(j)$ (since $N^{-}(j) \subseteq N(i)$ by $j \in N^{+}(i)$), i.e., we obtain $j^{\prime} \in\{j+1, \ldots, j+k\}$. But $i+1 \leq j<l \leq i+k$ implies $N^{+}(j) \subseteq N(l)$, hence $j^{\prime} \in N(l)$ in contradiction to j^{\prime} and l non-adjacent (see Fig. 2(c)). Thus, $L\left(H_{1}\right)$ cannot be an induced subgraph of a web W_{n}^{k}.

We conclude: if E_{1} connects two adjacent vertices of H_{0}, then H is not critical, if E_{1} connects two non-adjacent vertices of H_{0}, then $L(H)$ is not an induced subgraph of a web. \diamond

Hence, we have obtained that for every 2-connected, critical hypomatchable graph H holds the following. If H has 3 vertices, then H and its line graph $L(H)$ are triangles. Otherwise, H admits a proper ear decomposition $H_{0}, H_{1}, \ldots, H_{k}=H$
with and index j s.t. E_{1}, \ldots, E_{j} have length ≥ 3 and E_{j+1}, \ldots, E_{k} have length one. By Claim 1, there is no ear of of length 1 (i.e. $j=k$). If the line graph of H is an induced subgraph of a web, then there is no ear of length ≥ 3 by Claim 1 and Claim 2 (i.e. $j=0$). In conclusion, we obtain $k=0$, thus H consists in the odd hole H_{0} of length ≥ 5 only and $L(H)$ is an odd hole, too.

Remark. Claim 1 of Lemma 6 shows: if the last ear E_{k} of a proper ear decomposition $H_{0}, H_{1}, \ldots, H_{k}=H$ of H has length one, then H is not critical hypomatchable. $L(H)$ is not rank-minimal by Theorem 5 in particular. The reason is the following: the graph H_{k-1} obtained by removing the edge E_{k} from H is 2-connected and hypomatchable, hence $L\left(H_{k-1}\right)$ is rank facet-producing by Edmonds \& Pulleyblank [7]. Furthermore, $\frac{|H|-1}{2}=\alpha(L(H))=\alpha\left(L\left(H_{k-1}\right)\right)$ holds by $V(H)=V\left(H_{k-1}\right)$, hence $L(H)$ cannot be rank-minimal.

Since odd holes are partitionable webs, Theorem 5 and Lemma 6 imply the following corollary:

Corollary 7 Every rank-minimal induced subgraph of a web is a clique or a partitionable web.

2.2 Weak rank facets of webs

Recall that a facet $\mathbf{a}^{T} \mathbf{x} \leq c \alpha\left(G^{\prime}\right)$ of $\operatorname{STAB}(G)$ is a weak rank facet w.r.t. $G^{\prime} \subseteq G$, if $a_{i}=c$ for every vertex i of G^{\prime} and if G^{\prime} is rank facet-producing.

Lemma 8 Let $\mathbf{a}^{T} \mathbf{x} \leq c \alpha\left(G\left[V^{\prime}\right]\right)$ be a weak rank facet of the stable set polytope of a web G. Then $c=\max \left\{a_{i} \mid i \in V(G)\right\}$.

Proof. Let $\alpha^{\prime}=\alpha\left(G\left[V^{\prime}\right]\right)$. By Corollary 7, $G\left[V^{\prime}\right]$ contains a rank-minimal subgraph W with $\alpha(W)=\alpha^{\prime}$, which is a clique or a partitionable web. If W is a clique then $\alpha^{\prime}=1$ and it follows that $a_{i} \leq c$ for every vertex i, due to the stable set $\{i\}$. Hence $c=\max \left\{a_{i} \mid i \in V(G)\right\}$.

If W is a partitionable web then let ω^{\prime} be the clique number of W. We say that two vertices a and b of W are consecutive if $[a, b] \cap W=\{a, b\}$. Obviously, there is a labeling $\left\{w_{1}, \ldots, w_{|W|}\right\}$ of the vertices of W such that for every $1 \leq i \leq|W|$, w_{i} and w_{i+1} are consecutive (with arithmetics performed modulo $|W|$).

For every $1 \leq i \leq|W|$, let $S_{i}=\left\{w_{i+\omega^{\prime}+1}, w_{i+2 \omega^{\prime}+1}, \ldots, w_{i+\left(\alpha^{\prime}-1\right) \omega^{\prime}+1}\right\}$ (with indices taken modulo $|W|$). Notice that S_{i} is a stable set of G (due to the labeling, if w_{a} and w_{b} are adjacent and $a \leq b$ then $w_{a}, w_{a+1}, \ldots, w_{b}$ is a clique of $W)$. Since $|W|=\alpha^{\prime} \omega^{\prime}+1$, we have that $w_{i} \notin N_{G}\left(S_{i}\right)$ and $w_{i+1} \notin N_{G}\left(S_{i}\right)$. It follows that for every u in $\left[w_{i}, w_{i+1}\right]$, the set $S_{i}^{\prime}:=S_{i} \cup\{u\}$ is a stable set of G. Since $\mathbf{a}^{T} \chi^{\mathbf{S}_{\mathbf{i}}^{\prime}} \leq c \alpha^{\prime}$, we get $c\left(\alpha^{\prime}-1\right)+a_{u} \leq c \alpha^{\prime}$. Thus $a_{u} \leq c$. Therefore, spanning all consecutive pairs of W, we obtain $c=\max \left\{a_{i} \mid i \in V(G)\right\}$ as required.

2.3 A general characterization of facets

The next lemma provides a characterization when a valid inequality $\mathbf{a}^{T} \mathbf{x} \leq b$ is a facet of the stable set polytope of a general graph G. For that we need the following notions. A pair i, j of vertices is a-critical in G if there are two roots S_{1} and S_{2} of $\mathbf{a}^{T} \mathbf{x} \leq b$ such that $\{i\}=S_{1} \backslash S_{2}$ and $\{j\}=S_{2} \backslash S_{1}$. A subset V^{\prime} of $V(G)$ is a-connected if the graph with vertex set V^{\prime} and edge set $\{i j \mid i, j \in$ $V^{\prime}, i j$ a-critical in $\left.G\right\}$ is connected.

Lemma 9 Let $\mathbf{a}^{T} \mathbf{x} \leq b$ be a valid inequality for $\operatorname{STAB}(G)$ with $b \neq 0$. Consider a partition V_{1}, \ldots, V_{p} of $V(G)$ s.t. V_{i} is \mathbf{a}-connected for every $1 \leq i \leq p$. The inequality $\mathbf{a}^{T} \mathbf{x} \leq b$ is facet-defining if and only if there are p roots S_{1}, \ldots, S_{p} with

$$
\left|\begin{array}{ccc}
\left|S_{1} \cap V_{1}\right| & \cdots & \left|S_{1} \cap V_{p}\right| \\
\vdots & & \vdots \\
\left|S_{p} \cap V_{1}\right| & \cdots & \left|S_{p} \cap V_{p}\right|
\end{array}\right| \neq 0
$$

Proof. In order to prove the If-part, let $\mathbf{a}^{T} \mathbf{x} \leq b^{\prime}$ be a facet containing the face induced by the inequality $\mathbf{a}^{T} \mathbf{x} \leq b$.

For every $1 \leq i \leq p$, the set V_{i} is a-connected and so there exist λ_{i} such that $a_{j}=\lambda_{i}$ for all $j \in V_{i}$. Since for every stable set $S, \mathbf{a}^{T} \chi^{\mathbf{S}}=b$ implies that $\mathbf{a}^{\prime T} \chi^{\mathbf{S}}=b^{\prime}, V_{i}$ is \mathbf{a}^{\prime}-connected. Therefore there exist λ_{i}^{\prime} such that $a_{j}^{\prime}=\lambda_{i}^{\prime}$ for all $j \in V_{i}$. Hence we have for every $1 \leq i \leq p$,

$$
\begin{aligned}
& \lambda_{1}\left|S_{i} \cap V_{1}\right|+\ldots+\lambda_{p}\left|S_{i} \cap V_{p}\right|=b \\
& \lambda_{1}^{\prime}\left|S_{i} \cap V_{1}\right|+\ldots+\lambda_{p}^{\prime}\left|S_{i} \cap V_{p}\right|=b
\end{aligned}
$$

Since

$$
\left|\begin{array}{ccc}
\left|S_{1} \cap V_{1}\right| & \cdots & \left|S_{1} \cap V_{p}\right| \\
\vdots & & \vdots \\
\left|S_{p} \cap V_{1}\right| & \cdots & \left|S_{p} \cap V_{p}\right|
\end{array}\right| \neq 0
$$

holds we get $\lambda_{i}^{\prime}=\frac{b^{\prime}}{b} \lambda_{i}$ for every $1 \leq i \leq b$. Thus $\mathbf{a}^{T} \mathbf{x} \leq b$ is facet-defi ning.
Now let us turn to the Only if-part. Since \emptyset is not a root of the facet $\mathbf{a}^{T} \mathbf{x} \leq b$, there exist n roots $S_{1}, \ldots S_{n}$ whose incidence vectors are linearly independent.

Let M be the matrix with the incidence vectors of S_{1}, \ldots, S_{n} as rows. Let v_{i} be an element of V_{i} for $1 \leq i \leq p$. We add to the v_{1}-th column of M the other columns related to the other elements of V_{1}; we add to the v_{2}-th column of M the other columns related to the other elements of V_{2} etc. This yields

$$
\left|\begin{array}{ccc}
\cdot & \left|S_{1} \cap V_{1}\right| & \cdot \\
\cdot & \left|S_{1} \cap V_{p}\right| \\
\cdot & \vdots & \cdot \\
\cdot & \left|S_{n} \cap V_{1}\right| & \cdot \\
\hline & \left|S_{n} \cap V_{p}\right|
\end{array}\right| \neq 0
$$

and, thus, the (n, p)-matrix

$$
\left(\begin{array}{ccc}
\left|S_{1} \cap V_{1}\right| & \cdots & \left|S_{1} \cap V_{p}\right| \\
\vdots & & \vdots \\
\left|S_{n} \cap V_{1}\right| & \cdots & \left|S_{n} \cap V_{p}\right|
\end{array}\right)
$$

has p linearly independent rows as required.
Notice that Lemma 9 generalizes a well-known result of Chv'atal [3] on critical edges which, in fact, inspirated Lemma 9. An edge of a graph is critical if its deletion increases the stability number.

Theorem 10 [3] Let $G=(V, E)$ be a graph and E^{*} be the set of its critical edges. If $G^{*}=\left(V, E^{*}\right)$ is connected then G is rank facet-producing.

3 The main result

In this section, we prove the following result, which is a more precise formulation of Theorem 1.

Theorem 11 Let $\mathbf{a}^{T} \mathbf{x} \leq c \alpha_{1}$ be a proper weak rank facet of $\operatorname{STAB}\left(W_{n}^{k}\right)$. Then $\operatorname{STAB}\left(W_{n+k+1}^{k}\right)$ has the proper weak rank facet

$$
\begin{equation*}
\sum_{1 \leq i \leq n} a_{i} x_{i}+\sum_{n<i \leq n+k+1} c x_{i} \leq c\left(\alpha_{1}+1\right) \tag{2}
\end{equation*}
$$

Example. Consider the non-rank-perfect web with the least number of vertices, namely W_{25}^{5}. Its stable set polytope admits the following non-rank facet:

$$
(2,1,1,1,2,2,1,1,1,2,2,1,1,1,2,2,1,1,1,2,2,1,1,1,2)^{T} \mathbf{x} \leq 6
$$

Let V_{1} be the set of vertices corresponding to the coeffi cients with value 2 (i.e. to the black vertices in Fig. 3(a)). Notice that $G\left[V_{1}\right]$ is isomorphic to the partitionable web W_{10}^{2} which is in particular rank facet-producing. Hence the above facet is a proper weak rank facet with $c=2, \alpha\left(G\left[V^{\prime}\right]\right)=3$ and Theorem 11 implies that

$$
(2,1,1,1,2,2,1,1,1,2,2,1,1,1,2,2,1,1,1,2,2,1,1,1,2,2,2,2,2,2,2)^{T} \mathbf{x} \leq 8
$$

is a proper weak-rank facet of $\operatorname{STAB}\left(W_{31}^{5}\right)$ (the vertices with coefficient 2 correspond to the black vertices in Fig. 3(b)). We can, therefore, iteratively apply Theorem 11 and obtain a sequence of non-rank-perfect webs: $W_{25}^{5}, W_{31}^{5}, W_{37}^{5}, \ldots$

Proof of Theorem 11. By defi nition, the vertex set of W_{n}^{k} is $\{1, \ldots, n\}$ and the vertex set of W_{n+k+1}^{k} is $\{1, \ldots, n+k+1\}$. Hence we may use this convention to identify a vertex of W_{n}^{k} with the corresponding one of W_{n+k+1}^{k}. Denote by G^{1} the

Figure 3
web W_{n}^{k} and by G^{2} the web W_{n+k+1}^{k}. Let $\omega=k+1$ be the clique number of both G^{1} and G^{2} and, for every $1 \leq i \leq n$ (resp. $1 \leq i \leq n+\omega$), let $Q_{i}^{1}=[i, i+k]$ (resp. $Q_{i}^{2}=[i, i+k]$) be the maximum clique of G^{1} (resp. G^{2}) starting in i.

Since $\mathbf{a}^{T} \mathbf{x} \leq c \alpha_{1}$ is a proper weak rank facet of $\operatorname{STAB}\left(G^{1}\right)$, there exists a subset V_{1} of vertices of G^{1} such that $\alpha_{1}=\alpha\left(G^{1}\left[V_{1}\right]\right)$ and $G^{1}\left[V_{1}\right]$ is rank facetproducing. Moreover, $G^{1}\left[V_{1}\right]$ has a partitionable web with vertex set W_{1}, stability number α_{1}, and clique number $\omega_{1} \geq 2$ as induced subgraph by Corollary 7 .

Notice that Q_{n-k}^{1} is the maximum clique $\{n-k, \ldots, n\}$ of G^{1}. Let w_{1}, \ldots, w_{h} be the elements in increasing order of W_{1} in Q_{n-k}^{1}. We have $h=\omega_{1}$ or $\omega_{1}-1$, by Lemma 4. For every $1 \leq i \leq h$, let q_{i} be the element $w_{i}+\omega$ of Q_{n+1}^{2} and defi ne

$$
W_{2}= \begin{cases}W_{1} \cup\left\{q_{1}, \ldots, q_{\omega_{1}}\right\} & \text { if } h=\omega_{1} \\ W_{1} \cup\{n+1\} \cup\left\{q_{1}, \ldots, q_{\omega_{1}-1}\right\} & \text { if } h=\omega_{1}-1\end{cases}
$$

Let $V_{2}=V_{1} \cup Q_{n+1}^{2}=V_{1} \cup\{n+1, \ldots, n+k+1\}$. Let \mathbf{v} be the $(n+\omega)$-column vector $\left(a_{1}, \ldots, a_{n}, c, \ldots, c\right)$ and \mathbf{y} be the $(n+\omega)$-column vector $\left\{a_{1}, \ldots, a_{n}, 0, \ldots, 0\right)$.

Claim 1 Inequality (2) is valid for $\operatorname{STAB}\left(W_{n+k+1}^{k}\right)$.
Let S be any stable set of G^{2}. Let l be the vertex of S such that $[l+1, n] \cap S=\emptyset$ and let t be the vertex of S such that $[n+1, t-1] \cap S=\emptyset$. Notice that $S \backslash\{t\}$ is a stable set of G^{1}. Hence we have $\mathbf{v}^{T} \chi^{\mathbf{S}}=\left(\mathbf{y}+c \chi^{\mathbf{Q}_{\mathbf{n + 1}}^{2}}\right)^{T} \chi^{\mathbf{S}} \leq c \alpha_{1}+x_{t} \leq$ $c\left(\alpha_{1}+1\right)$ as $x_{t} \leq c$ if $t \notin Q_{n+1}^{2}$ by Lemma 8 , and $x_{t}=c$ if $t \in Q_{n+1}^{2} . \diamond$

Claim 2 The set of vertices W_{2} induces a partitionable web with stability number $\alpha_{1}+1$ and clique number ω_{1}.

Let $1 \leq v_{1} \leq v_{2} \leq \ldots \leq v_{n^{\prime}} \leq n$ be the vertices of W_{1} in increasing order. We discuss the two cases $h=\omega_{1}$ and $h=\omega_{1}-1$.

If $h=\omega_{1}$ then let v be any vertex of W_{2}. If v is a vertex q_{i} of $\left\{q_{1}, \ldots, q_{\omega_{1}}\right\}$ then the set of vertices Q_{v}^{2} meets W_{2} exactly in the ω_{1} vertices $\left\{q_{i}, \ldots, q_{\omega_{1}}\right\} \cup$ $\left\{v_{1}, \ldots, v_{i-1}\right\}$, since W_{1} induces a web of G^{1} with clique number ω_{1} by Lemma 4 (see Fig. 4). If v is a vertex w_{i} of $\left\{w_{1}, \ldots, w_{\omega_{1}}\right\}$ then the set of vertices Q_{v}^{2} meets W_{2} precisely in the ω_{1} vertices $\left\{w_{i}, \ldots, w_{\omega_{1}}\right\} \cup\left\{q_{1}, \ldots, q_{i-1}\right\}$. If v is a vertex of $W_{1} \backslash\left\{w_{1}, \ldots, w_{\omega_{1}}\right\}$, we obviously have $\left|Q_{v} \cap W_{2}\right|=\omega_{1}$ since W_{1} induces a web of G^{1} with clique number ω_{1} due to Lemma 4.

Figure 4: construction of W_{2}, case $h=\omega_{1}$ (vertices of W_{2} are drawn in black)
If $h=\omega_{1}-1$ then notice that $w_{1} \neq n-k$ (otherwise Lemma 4 would imply $h=\omega_{1}$). Hence $n+1 \notin\left\{q_{1}, \ldots, q_{h}\right\}$. Let v be any vertex of W_{2}. If v is a vertex q_{i} of $\left\{q_{1}, \ldots, q_{h}\right\}$ then the set of vertices Q_{v}^{2} meets W_{2} exactly in the ω_{1} vertices $\left\{q_{i}, \ldots, q_{h}\right\} \cup\left\{v_{1}, v_{2}, \ldots, v_{i-1}, v_{i}\right\}$, since W_{1} induces a web of G^{1} with clique number ω_{1} by Lemma 4 (see Fig. 5). If v is a vertex w_{i} of $\left\{w_{1}, \ldots, w_{h}\right\}$ then the set of vertices Q_{v} meets W_{2} precisely in the ω_{1} vertices $\left\{w_{i}, \ldots, w_{h}, n+\right.$ $1\} \cup\left\{q_{1}, \ldots, q_{i-1}\right\}$, as $w_{h}<n+1<q_{1}$. If $v=n+1$ then the set of vertices Q_{v} meets W_{2} exactly in the ω_{1} vertices $\left\{n+1, q_{1}, \ldots, q_{h}\right\}$. If v is a vertex of $W_{1} \backslash\left\{w_{1}, \ldots, w_{h}\right\}$, we obviously have $\left|Q_{v} \cap W_{2}\right|=\omega_{1}$ since W_{1} induces a web of G^{1} with clique number ω_{1} due to Lemma 4.

Figure 5: construction of W_{2}, case $h=\omega_{1}-1$ (vertices of W_{2} are drawn in black)
Hence in both cases, W_{2} induces a web with clique number ω_{1} (Lemma 4), with $|W|+\omega_{1}=\left(\alpha_{1}+1\right) \omega_{1}+1$ vertices. Thus W_{2} induces a partitionable web with stability number $\alpha_{1}+1$.

Claim 3 The vertex set $V_{2}=W_{2} \cup Q_{n+1}^{2}$ is \mathbf{v}-connected.
We first show that W_{2} is \mathbf{v}-connected. Since $\mathbf{a}^{T} \mathbf{x} \leq c \alpha_{1}$ is a weak rank facet of $\operatorname{STAB}\left(G^{1}\right)$, we have by defi nition $a_{i}=c$ for every $i \in W_{1}$. Hence for every
$i \in W_{2}$ follows $v_{i}=c$. Since W_{2} is a partitionable web of stability number $\alpha_{1}+1$ by Claim 2, this implies that W_{2} is \mathbf{v}-connected.

Let $w_{1}<w_{2}<\ldots<w_{\omega_{1}}$ be the elements of W_{2} in Q_{n+1}^{2} (by defi nition of W_{2} there are exactly ω_{1} of them). Let S be a maximum stable set of W_{2} disjoint from Q_{1}^{2} (S exists because $W_{2} \cap Q_{1}^{2}$ is a subset of a maximum clique of W_{2}, and for every maximum clique Q of a partitionable graph, there exists a unique maximum stable set avoiding Q by [1]). Let s be the element of S with maximal index. Then for every $w_{\omega_{1}} \leq q \leq n+\omega$, the set $\left.(S \backslash\{s\}) \cup\{q\}\right)$ is obviously a root of inequality (2). Hence $W^{2} \cup\left[w_{\omega_{1}}, n+\omega\right]$ is \mathbf{v}-connected. Likewise, the set $W^{2} \cup\left[n+1, w_{1}\right]$ is \mathbf{v}-connected.

For every $1 \leq i<\omega_{1}$, there exists a maximum stable set of W_{2} disjoint from $Q_{w_{i+1}}^{2}$. Let s be the element of S with maximal index which is less or equal than w_{i}. Then for every $w_{i} \leq q \leq w_{i+1}$, the set $(S \backslash\{s\}) \cup\{q\}$ is a root of inequality (2). Hence $W^{2} \cup\left[w_{i}, w_{i+1}\right]$ is \mathbf{v}-connected and V_{2} is \mathbf{v}-connected as well.

Let $p=n-\left|W_{1}\right|$ and $\{1, \ldots, n\} \backslash W_{1}=\left\{y_{1}, \ldots, y_{p}\right\}$. Due to Lemma 9, there are p roots S_{1}, \ldots, S_{p} of $\mathbf{a}^{T} \mathbf{x} \leq c \alpha_{1}$ such that the incidence vectors of their restriction to $\left.\{1, \ldots, n\} \backslash W_{1}=\left(\{1, \ldots, n\} \cup Q_{n}\right\}\right) \backslash V_{2}$ are linearly independent, that is

$$
\left|\begin{array}{ccc}
\left|S_{1} \cap\left\{y_{1}\right\}\right| & \cdots & \left|S_{1} \cap\left\{y_{p}\right\}\right| \\
\vdots & & \vdots \\
\left|S_{k^{\prime}} \cap\left\{y_{1}\right\}\right| & \cdots & \left.\left|S_{k^{\prime}} \cap\left\{y_{p}\right\}\right|\right\}
\end{array}\right| \neq 0
$$

Claim 4 For every $1 \leq i \leq p$, there exists a vertex q_{i} of G^{2} such that $S_{i}^{\prime}=S_{i} \cup\left\{q_{i}\right\}$ is a root of inequality (2).

For every $1 \leq i \leq p$, let l_{i} (resp. t_{i}) be the element of S_{i} with minimal (resp. maximal) index. Let $q_{i}=t_{i}+\omega$. Obviously, q_{i} is not a neighbor of t_{i} in G^{2}. If q_{i} is a neighbor of l_{i} in G^{2} then $q_{i}+\omega-1-(n+\omega) \geq l_{i}$. Thus $t_{i}+\omega-1-n \geq l_{i}$, which implies that t_{i} is a neighbor of l_{i} in G^{1} : a contradiction.

Hence $S_{i}^{\prime}=S_{i} \cup\left\{q_{i}\right\}$ is a stable set of G^{2}. Since q_{i} is a vertex of the maximum clique Q_{n}, it follows that S_{i}^{\prime} is a root of inequality (2), as required.

Since $G^{2}\left[W_{2}\right]$ has stability number $\alpha_{1}+1$ (Claim 2), there is a stable set S_{0}^{\prime} of $G^{2}\left[V_{2}\right]$ which is a root of inequality (2).

For every $0 \leq i \leq p$ and $1 \leq j \leq p$, let $\delta_{i, j}=1$ if $y_{j} \in S_{i}^{\prime}, 0$ otherwise. By Claim 1 and 4 , inequality (2) is a valid inequality with $p+1 \mathrm{v}$-critical components $V_{2},\left\{y_{1}\right\}, \ldots,\left\{y_{p}\right\}$, and $p+1$ roots $S_{0}^{\prime}, S_{1}^{\prime}, \ldots, S_{p}^{\prime}$ such that

$$
\left|\begin{array}{cccc}
\left|S_{0}^{\prime} \cap V_{2}\right| & \delta_{0,1} & \cdots & \delta_{0, p} \\
\left|S_{1}^{\prime} \cap V_{2}\right| & \delta_{1,1} & \cdots & \delta_{1, p} \\
\vdots & \vdots & & \vdots \\
\left|S_{p}^{\prime} \cap V_{2}\right| & \delta_{p, 1} & \cdots & \delta_{p, p}
\end{array}\right|=\left|\begin{array}{cccc}
\alpha_{1}+1 & 0 & \cdots & 0 \\
\left|S_{1}^{\prime} \cap V_{2}\right| & \left|S_{1} \cap\left\{y_{1}\right\}\right| & \cdots & \left|S_{1} \cap\left\{y_{p}\right\}\right| \\
\vdots & \vdots & & \vdots \\
\left|S_{p}^{\prime} \cap V_{2}\right| & \left|S_{p} \cap\left\{y_{1}\right\}\right| & \cdots & \left|S_{p} \cap\left\{y_{p}\right\}\right|
\end{array}\right| \neq 0
$$

Lemma 9 implies that inequality (2) defi nes a facet of $\operatorname{STAB}\left(G^{2}\right)$. To fin nish the proof, it remains to show that it is a proper weak rank facet.

Claim 5 The set V_{2} is rank facet-producing and $\alpha\left(G^{2}\left[V_{2}\right]\right)=\alpha_{1}+1$.
We have $\alpha\left(G^{2}\left[V_{2}\right]\right) \leq \alpha\left(G^{2}\left[V_{1}\right]\right)+\alpha\left(Q_{n}\right) \leq \alpha_{1}+1$ which further implies $\alpha\left(G^{2}\left[V_{2}\right]\right)=\alpha\left(G^{2}\left[W_{2}\right]\right)$. Let v be any vertex of $V_{2} \backslash W_{2}$. By the defi nition of V_{2}, v is an element of Q_{n+1}^{2}. Therefore $\left|N(v) \cap W_{2}\right| \geq \omega_{1}$ as $\left|W_{2} \cap Q_{n+1}^{2}\right|=\omega_{1}$, by the defi nition of W_{2}. Let δ be the element of W_{2} with maximal index.

If $v<\delta$ then $(\delta-\omega) \in N(v)$. As $\delta-\omega$ is an element of W_{2} by the defi nition of W_{2}, we get $\left|N(v) \cap W_{2}\right| \geq \omega_{1}+1$. If $v \geq \delta$ then v has at least one neighbor in $Q_{v}^{2} \cap W^{2}$, as $\left|Q_{v}^{2} \cap W^{2}\right| \geq \omega_{1}-1 \geq 1$ (Lemma 4). Hence $\left|N(v) \cap W_{2}\right| \geq \omega_{1}+1$.

Thus, in both cases, $\left|N(v) \cap W_{2}\right| \geq \omega_{1}+1$. Hence $\alpha\left(N(x) \cap W_{2}\right)=2$ and therefore, $G^{2}\left[V_{2}\right]$ is rank facet-producing by Galluccio \& Sassano [8] (recall that W^{2} is a partitionable web by Claim 2 and is, therefore, rank-minimal).

An immediate consequence of Theorem 11 is the main result: if $\operatorname{STAB}\left(W_{n}^{k}\right)$ has a proper weak non-rank facet then $\operatorname{STAB}\left(W_{n+k+1}^{k}\right)$ has a proper weak nonrank facet (Theorem 1).

4 Concluding remarks and open problems

The presented construction for non-rank facets of stable set polytopes of webs shows that we obtain, from every single proper weak non-rank facet in $\operatorname{STAB}\left(W_{n}^{k}\right)$, an infi nite sequence $\operatorname{STAB}\left(W_{n}^{k}\right), \operatorname{STAB}\left(W_{n+(k+1)}^{k}\right), \operatorname{STAB}\left(W_{n+2(k+1)}^{k}\right), \ldots$ of not rank-perfect webs (Theorem 1).

If there is a set of webs $W_{n_{0}}^{k}, \ldots, W_{n_{k}}^{k}$ such that $\operatorname{STAB}\left(W_{n_{i}}^{k}\right)$ has a proper weak non-rank facet and $n_{i}=i(\bmod k+1)$ then applying this construction implies that there exist only fi nitely many rank-perfect webs with clique number $k+1$ (Corollary 2). Such sets of non-rank-perfect webs are presented in [16, 17] for $k=3$ and all even values $k \geq 4$; the case of all odd values $k \geq 5$ is open. We conjecture that such sets exist for the remaining cases as well:

Conjecture 12 For every $\omega \geq$ 4, there are only finitely many rank-perfect webs with clique number ω.

According to Ben Rebea's Conjecture [14], the stable set polytopes of quasiline graphs (and therefore of webs) have clique family inequalities as only nontrivial facets. This would particularly mean that all facets admit at most two nonzero coeffi cients. Notice that our construction of non-rank facets does not increase the number of non-zero coeffi cients. In particular, the non-rank facets presented in $[16,17]$ have coeffi cients equal to 2 and 1 only. On the other hand, Liebling et al. [12] found an infi nite sequence of not rank-perfect webs where the non-rank facets admit coeffi cients a and $a+1$ for every $a \geq 1$. Hence we are still far from having a complete description of the stable set polytopes of webs.

References

[1] R.G. Bland, H.C. Huang, and L.E. Trotter, Graphical properties related to minimal imperfection. Discrete Math. 27 (1979) 11-22
[2] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas, Progress on Perfect Graphs. Mathematical Programming B 97 (2003) 405-422
[3] V. Chv'atal, On Certain Polytopes Associated with Graphs. J. Combin. Theory B 18 (1975) 138-154
[4] V. Chv'atal, On the Strong Perfect Graph Conjecture. J. Combin. Theory B 20 (1976) 139-141
[5] G. Cornu'ejols and W.R. Pulleyblank, Critical Graphs, Matchings, and Tours of a Hierarchy of Relaxations for the Traveling Salesman Problem. Combinatorica 3 (1983) 35-52
[6] G. Dahl, Stable Set Polytopes for a Class of Circulant Graphs. SIAM J. Optim. 9 (1999) 493-503
[7] J.R. Edmonds and W.R. Pulleyblank, Facets of 1-Matching Polyhedra. In: C. Berge and D.R. Chuadhuri (eds.) Hypergraph Seminar. Springer-Verlag, Heidelberg, (1974) 214-242
[8] A. Galluccio and A. Sassano, The Rank Facets of the Stable Set Polytope for Claw-Free Graphs. J. Comb. Theory B 69 (1997) 1-38
[9] G. Giles and L.E. Trotter, jr., On Stable Set Polyhedra for $K_{1,3}-$ free Graphs. J. Comb. Theory B 31 (1981) 313-326
[10] M. Grötschel, L. Lov’asz, and A. Schrijver, Geometric Algorithms and Combinatorial Optimization. Springer-Verlag, (1988)
[11] J. Kind, Mobilitätsmodelle für zellulare Mobilfunknetze: Produktformen und Blockierung. PhD thesis, RWTH Aachen (2000)
[12] T.M. Liebling, G. Oriolo, B. Spille, and G. Stauffer, On Non-Rank Facets of the Stable Set Polytope of Claw-Free Graphs and Circulant Graphs. Submitted to Math. Methods of Operations Research
[13] L. Lov’asz, A Note on Factor-critical Graphs. Studia Sci. Math. Hungar. 7 (1972) 279-280
[14] G. Oriolo, Clique Family Inequalities for the Stable Set Polytope for QuasiLine Graphs. In: Special Issue on Stability Problems, Discrete Applied Math. 132 (2003) 185-201
[15] M.W. Padberg, Perfect Zero-One Matrices. Math. Programming 6 (1974) 180-196
[16] A. Pêcher and A. Wagler, On Non-Rank Facets of Stable Set Polytopes of Webs with Clique Number Four, ZIB-Report ZR 03-01 (2003)
[17] A. Pêcher and A. Wagler, Almost all webs with odd clique number are not rank-perfect, LaBRI-Report RR-1305-03 (2003)
[18] L.E. Trotter, jr., A Class of Facet Producing Graphs for Vertex Packing Polyhedra. Discrete Math. 12 (1975) 373-388
[19] A.K. Wagler, Critical Edges in Perfect Graphs. PhD thesis, TU Berlin (2000)
[20] A.K. Wagler, Antiwebs are rank-perfect. to appear in: Quarterly Journal of the Belgian, French and Italian OR Societies

[^0]: ${ }^{1}$ Laboratoire Bordelais de Recherche Informatique (LaBRI), 351 cours de la Libération, 33405 Talence, France, pecher@labri.fr

[^1]: ${ }^{\dagger}$ Laboratoire Bordelais de Recherche Informatique (LaBRI), 351 cours de la Libération, 33405 Talence, France, pecher@labri.fr; this work was supported by DONET/ZIB
 ${ }^{\ddagger}$ Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB), Takustr. 7, D-14195 Berlin, Germany, wagler@zib.de; this work supported by the Deutsche Forschungsgemeinschaft (Gr 883/9-1)

[^2]: ${ }^{1}$ By PORTA it is possible to generate all facets of the convex hull of a given set of integer points, see http://www.zib.de

