
Takustr. 7
14195 Berlin

Germany
Zuse Institute Berlin

ANSGAR RÖSSIG

Verification of Neural Networks

ZIB Report 19-40 (Aug 2019)

Zuse Institute Berlin
Takustr. 7
14195 Berlin
Germany

Telephone: +49 30-84185-0
Telefax: +49 30-84185-125

E-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

bibliothek@zib.de
http://www.zib.de

iii

Contents

1 Introduction 1
1.1 Preliminary notes . 2
1.2 Definition of the verification problem 3
1.3 Further definitions and notation 5

2 Related Work 7
2.1 Neural network verification . 8
2.2 Output range analysis . 10
2.3 Robustness certification . 11

3 Neural Network Verification as MIP 13
3.1 Formulation as feasibility problem 13
3.2 Formulation as optimization problem 15
3.3 Formulation as quadratic programming problem 17
3.4 Ideal MIP formulations for ReLU constraints 18

4 Approximations of ReLU Neural Networks 21
4.1 Basic approximation methods for bound computations

in neural networks . 22
4.2 Comparison of linear ReLU approximations 31
4.3 Efficient optimization based bound tightening for

neural network verification . 36
4.4 Polyhedral aspects of ReLU function in higher dimensions . . . 41
4.5 Computation and comparison of the ReLU image and

its approximation . 42
4.6 Negative approximation results 50
4.7 Optimization based relaxation tightening for two variables . . . 53

5 Primal Heuristics 61
5.1 Random sampling heuristic . 61
5.2 LP based heuristic . 62

6 Branching Methods for Neural Network Verification 64
6.1 Input domain branching . 66
6.2 Branching on ReLU nodes . 68
6.3 Realization in different solvers 69

7 Implementation Details 72
7.1 Structure of SCIP and PySCIPopt 72
7.2 Implementation of the components 72
7.3 Parameter settings . 74

Contents iv

8 Description of Test Instances 77
8.1 ACAS Xu system . 77
8.2 Neural network verification for ACAS Xu system 79
8.3 MNIST based test instances . 80
8.4 Selection of evaluation subsets 81

9 Computational Evaluation 83
9.1 Empirical comparison of bound computation approaches 83
9.2 Comparison of different techniques in our model 85
9.3 Comparison with other solvers 91

10 Conclusions and Future Work 99

A Definitions of Additional Properties on
ACAS Neural Networks 101

B Computational Results for Various Components 103
B.1 Ordering strategies for LP solving in OBBT 103
B.2 Primal heuristics . 105
B.3 Quadratic programming formulation 107
B.4 Solving as feasibility problem 109

C Computational Results UNSAT Test Set 112
C.1 OBBT2 options . 113
C.2 Separator options . 117
C.3 Further configurations . 122

D Zusammenfassung 135

References 137

1

1 Introduction

In this thesis we consider the problem of verifying linear properties of
neural networks. Neural networks are employed succesfully for a broad range
of tasks in application domains such as computer vision, speech recognition,
or natural language processing (cf. Goodfellow et al. [27]). However, despite
their success in many classification and prediction tasks, neural networks may
return unexpected results for certain inputs. This is highly problematic with
respect to the application of neural networks for safety-critical tasks, e.g. in
autonomous driving. During the last few years, various approaches have been
presented that aim to provide formal guarantees on the behaviour of neural
networks. The use of such verification methods may be crucial to enable the
secure and certified application of neural networks for safety-critical tasks.
Moreover, based on first results of Szegedy et al. [50], awareness was raised
that neural networks are prone to fail on so called adversarial examples. These
are created by small perturbations of input samples, such that the changes are
(almost) imperceptible to humans. However, these perturbations are often
sufficient to make a neural network fail on the input sample. The existence
of such adversarial examples can be ruled out by methods of neural network
verification. In fact, a closely related line of research termed as robustness
certification is focused explicitly on this topic.

The contribution of this thesis to the field of neural network verification
is twofold. On the one hand, we aim to provide a good overview of the algo-
rithmic approaches used for verification of neural networks with ReLU activa-
tion function. As detailed later, the ReLU function is piecewise linear and very
commonly used as activation function in neural networks. We also present new
theoretical results with respect to the approximation of ReLU neural networks.
A strong focus is laid on methods for the approximation of neuron bounds,
which are crucial for the performance of the known solving methods. Further-
more, we conduct extensive computational experiments on a combination of
various sets of benchmark instances to compare different solvers. On the
other hand, we also implement a solving model for verification of ReLU neural
networks. It is based on the mixed integer programming (MIP) solver SCIP
[25] and features a combination of several solving techniques. While some
of these techniques are novel, many others have been proposed by various
authors. However, to the best of our knowledge, we provide the first solver
which allows a flexible combination of these different techniques. Especially,
we report detailed runtime results to gain insights into the empirical perfor-
mance of various algorithmic ideas. Of course, we also include our solving
model in the computational study we perform. The results show advantages
of integrating neural network verification with MIP solving and indicate that
our approach is very competitive with others. Besides, it should be noted
that our solving model is the only one which is able to solve the verification
problem for instances which do not have independent bounds for each input
neuron (see Remark 6).

1. Introduction 2

The thesis is organized as follows. In the following sections of this intro-
duction, we formally define the verification problem for ReLU neural networks
and some other fundamental concepts. Chapter 2 covers previous research
which is relevant in the context of neural network verification. The verifica-
tion problem can be formulated as an MIP as we will see in Chapter 3. An
extensive overview of methods for the approximation of ReLU neural networks,
which serve for the computation of neuron bounds, is given in Chapter 4. In
Chapter 5 we explain methods that serve to falsify incorrect properties of
neural networks. Especially, we present a new primal heuristic which has this
purpose. A generic branching algorithm for solving the verification problem
can be found in Chapter 6. Additionally, we explain two specific branching
rules and discuss how different solvers for the verification problem implement
the generic algorithm. Details on our own implementation are presented in
Chapter 7. In Chapter 8 we provide information on the origin and selection
of the test instances that we use for our computational experiments. The
corresponding results are reported in Chapter 9. Chapter 10 concludes the
thesis with some final remarks. In the appendix, we report definitions of some
newly created test cases, additional experimental results and provide a german
summary of the thesis. The code of our implemented solving model and the
benchmark instances, which are used for our computational experiments, can
be found at https://github.com/roessig/verify-nn.

1.1 Preliminary notes

While the application of this thesis is clearly in the broad field of machine
learning, this does not hold for the techniques used in itself. These originate
mostly in the field of linear and discrete optimization. Hence we assume a
certain familiarity of the reader with corresponding concepts. For the foun-
dations of linear programming (LP, also for linear program) we refer to Bert-
simas and Tsitsiklis [5]. A thorough introduction to discrete optimization can
be found in Bertsimas and Weismantel [6]. Moreover, the theory of (convex)
polyhedra is an essential basis for solving linear and discrete optimization
problems. As we will consider some geometrical questions in Chapter 4, we
recommend Grünbaum [29] for a solid overview of this topic.

Nevertheless, fundamental knowledge of machine learning and neural
networks may be beneficial for the understanding of the motivation and
results of this thesis. For a general introduction to machine learning we
recommend Bishop [7], and Goodfellow et al. [27] for an extensive overview
of deep learning and neural networks. Throughout this thesis, we will not
consider the training process of neural networks (or other machine learning
models). Subsequently, we regard neural networks as immutable and deter-
ministic functions. We define the notion of a neural network based on the
rigorous definition given in Bölcskei et al. [8]. For a textbook reference see
e.g. Bishop [7], Section 5.1. In the definition and the rest of the thesis we use
[n] to denote the set {1, . . . , n} for some n ∈ N.

Definition 1 (Neural Network, cf. Bölcskei et al. [8], Definition 1.1). Let
L ∈ N, such that L ≥ 2 is the number of layers and let N0, N1, . . . , NL ∈ N be

https://github.com/roessig/verify-nn

1. Introduction 3

the numbers of neurons in each layer. That means, N0 is the number of inputs
to the neural networks and NL the number of outputs. Let Al ∈ RNl×Nl−1 for
l ∈ [L] be the weights of the network and bl ∈ RNl, l ∈ [L] be the biases. The
family ((Al, bl))

L
l=1 together with a nonlinear activation function σ : R → R

defines a neural network.
We will often regard a neural network as a function F : RN0 → RNL which

is defined by F (x) := xL for x ∈ RN0, where xL is obtained as follows:

x0 := x

xl := σ(Alxl−1 + bl) ∀l ∈ [L− 1]

xL := ALxL−1 + bL

The activation function σ : R→ R is applied component-wise. We will some-
times refer to the family ((Al, bl))

L
l=1 as the weights and biases corresponding

to F . The process of computing x1, . . . , xL out of an input vector x0 is called
forward propagation. Sometimes the layers 1, . . . , L − 1 are called hidden
layers, in contrast to the input layer 0 and output layer L.

Remark 2. Throughout this thesis, we will strongly focus on the ReLU func-
tion as activation function which is defined by ReLU(x) := max{0, x} for
x ∈ R. Indeed, common architectures of feedforward neural networks may
also contain activation functions that do not map from R to R. One example
is the max-pooling function, which maps from Rn to R for some n ∈ N, n ≥ 2.
In order to keep Definition 1 clear and concise, we restrict it to the case which
is mostly relevant for this thesis.

1.2 Definition of the verification problem

In this section we give a formal definition of the verification problem for ReLU
neural networks which forms the topic of this thesis. Additionally, we comment
on some relevant properties of this problem and give a few further definitions.

Definition 3 (Verification Problem for ReLU Neural Networks). Assume that
∅ 6= X ⊂ Rn is a polytope, and let ∅ 6= Y ⊂ Rm be such that Y =

⋂k
i=1Qi

or Y =
⋃k
i=1Qi where k ∈ N and Qi ⊆ Rm is a halfspace for i ∈ [k]. Given

a neural network F : X → Rm with ReLU activation function, the verifi-
cation problem consists in the decision whether F (X) ⊆ Y holds. A triple
(X,Y, F) will be called an instance of the verification problem (for ReLU
neural networks). Furthermore, if F (X) ⊆ Y , we say that the instance is
verifiable, otherwise it is refutable.

Depending on the model which is used to solve the problem, the halfspaces
Qi can either be open or closed. Though, either all of them must be closed
or all of them must be open. Indeed, the use of floating point arithmetic by a
solver for the verification problem makes this distinction rather unimportant,
since numerical comparisons require the use of a certain threshold difference.
Moreover, Katz et al. [35] show that the verification problem for ReLU neural
networks is NP-complete. Hence we cannot expect that the problem can be
solved efficiently in general. We also follow the naming concept of Katz et al.

1. Introduction 4

[35] and refer to verifiable instances of the verification problem as UNSAT
instances, and to refutable instances as SAT instances. This naming corre-
sponds to the existence of a counterexample as defined in the following remark.

Remark 4. If an instance (X,Y, F) is refutable, i.e. F (X) 6⊆ Y , we want
to provide x ∈ X such that F (x) /∈ Y . We will refer to this x ∈ X as a
counterexample for the instance.

Remark 5. More complex properties can be investigated by spliting them into
separate instances. For example, if Y =

(⋃k
i=1Qi

)
∩
(⋃l

j=1 Pj
)

for halfspaces

Qi and Pj and k, l ∈ N, then F (X) ⊆ Y holds if and only if F (X) ⊆ (
⋃k
i Qi)

and F (X) ⊆ (
⋃l
i Pi).

Remark 6. Considering an instance Π = (X,Y, F) of the verification problem
with X ⊂ Rn, we will often assume the existence of bounds li, ui for i ∈ [n]
such that li ≤ xi ≤ ui for x ∈ X. Indeed, the requirements of Definition 3
justify this assumption. These bounds can be computed by solving one LP
per bound. We set

li := min
x∈X

xi and ui := max
x∈X

xi for i ∈ [n].

In fact, for all publicly available instances of the verification problem that we
are aware of, the polytope X is actually a box which is directly given by the
bounds li, ui for i ∈ [n]. For these instances it is thus not necessary to solve
any LP in order to obtain the bounds. However, in this thesis we also consider
instances where X is not a box, cf. Section 8.2.

Remark 7. Assume that we are given an instance Π = (X,Y, F) of the
verification problem as introduced in Definition 3. Some solving models are
not only limited to instances where the input polytope X is in fact a box.
Also the choice of output constraints as represented by Y is more restricted
for some solving models. These require that Y =

⋃k
i=1Qi ⊆ Rm, where k ∈ N

and Qi ⊆ Rm is an open halfspace for i ∈ [k]. Indeed, this is the only of
the cases which are regarded in Definition 3 where Rm\Y is a polyhedron.
Yet, it is possible to use such restricted solving models to solve an instance
Π = (X,Y, F) where Y =

⋂k
i=1Qi ⊆ Rm for open halfpaces Qi ⊆ Rm. To

this end, it is necessary to split the corresponding instance into k instances
(X,Qi, F). Clearly, if F (X) ⊆ Qi for all i ∈ [k], then it holds F (X) ⊆ Y and
Π is verifiable. On the other hand, if there is x ∈ X and some i ∈ [k] such
that F (x) /∈ Qi, we know that Π is refutable since F (X) 6⊆ Y . We will refer to
such an instance Π as conjunction instance. On the other hand, an instance
Π = (X,Y, F) where Y =

⋃k
i=1Qi ⊆ Rm for open halfspaces Qi ⊆ Rm, will be

called disjunction instance. We will also regard those instances as disjunction
instances that fulfill Y = Q for some open halfspace Q ⊆ Rm. In fact, all
instances that we consider in our computational experiments (see Chapter 8)
are based on open halfspaces. Closed halfspaces are only mentioned in some
cases to provide a comprehensive explanation.

1. Introduction 5

1.3 Further definitions and notation

Throughout the thesis, we will consider subsets and elements of Rn, where
we assume that n ∈ N, n ≥ 1. In general, we assume n ≥ 1 for n ∈ N, too.
Remind that we use [n] to denote the set {1, . . . , n} for some n ∈ N. Given
a vector x ∈ Rn, we will often refer to its components as xi, i ∈ [n], i.e. we
assume x = (x1, . . . , xn)T . If other indices are present, we will also write [x]i
instead of xi. For example, ei with i ∈ [n] refers to the i-th unit vector in Rn,
so that [ei]i = 1 and [ei]j = 0 for j ∈ [n]\{i}.

In accordance with Boyd and Vandenberghe [10], Section 2.2.4, we say
that P ⊆ Rn is a polyhedron if it is the intersection of a finite family of closed
halfspaces of Rn. If P is also bounded, it is a polytope. Given c ∈ Rn and
γ ∈ R, cTx ≤ γ is a valid inequality with respect to P if cTx ≤ γ holds for all
x ∈ P . Based on Grünbaum [29], Section 3.1, we note that a polytope is the
convex hull of its extreme points which are called vertices. We use Vertices(P)
to refer to the set of vertices of polytope P . Any affine image of a polytope is
again a polytope (cf. Grünbaum [29], Section 3.1). Especially, this holds for
orthogonal projections which we shortly discuss in the following.

Given a linear subspace V ⊂ Rn of Rn, the mapping pV : Rn → V is the
orthogonal projection on V , if (x− pV (x))T v = 0 holds for all x ∈ Rn and all
v ∈ V (cf. Bosch [9], Section 7.2). In some cases we will consider an orthogonal
projection pV in Rn onto a subspace V = {x ∈ Rn | ∀i ∈ I : xi = 0} ⊂ Rn
for an index set ∅ 6= I ⊂ [n]. Without loss of generality, we assume I = [m]
for some m ∈ N, 1 ≤ m ≤ n − 1. Then we see that V is isomorphic to Rm
since V = {(x, 0)T ∈ Rn | x ∈ Rm}. Given A ⊂ Rn and the resulting image
pV (A) ⊂ Rn, we regard the natural embedding of this set in the space Rm.
We will refer to the embedding of pV (A) in Rm as the embedded image of
the projection. It should be noted that this embedding is unique up to the
ordering of the components. Assume that we have a polytope

P :=
{(x

y

)
∈ Rn+m

∣∣ Ax+By ≤ c
}
⊂ Rn+m

for someA ∈ Rk×n, B ∈ Rk×m and c ∈ Rk. In this case, the embedded image of
projecting P onto the x variables is the set {x ∈ Rn | ∃y ∈ Rm : Ax+By ≤ c}.

Assume that we are given a set V ⊂ Rn. According to Bosch [9], Section
1.4, we denote the linear span of this set as

span(V) :=
{ k∑
i=1

λivi

∣∣∣ k ∈ N,∀i ∈ [k] : λi ∈ R, vi ∈ V
}
.

Furthermore, corresponding to Boyd and Vandenberghe [10], Section 2.1, the
convex hull of V is given as

conv(V) :=
{ k∑
i=1

λivi

∣∣∣ k ∈ N,
k∑
i=1

λi = 1, ∀i ∈ [k] : λi ≥ 0, vi ∈ V
}
,

and the affine hull of V as

aff(V) :=
{ k∑
i=1

λivi

∣∣∣ k ∈ N,
k∑
i=1

λi = 1, ∀i ∈ [k] : λi ∈ R, vi ∈ V
}
.

1. Introduction 6

As in Grünbaum [29], Section 1.1, the dimension of the set V is defined by
its affine hull, dim(V) := dim(aff(V)). For that, it should be noted that
aff(V) can be written as translation of a linear subspace U ⊆ Rn. Hence,
the dimension of aff(V) is given as dim(U) (see Grünbaum [29], Section 1.1).
Especially, this is applicable for the case that V is a polyhedron.

In Chapter 4 we will present a semidefinite programming (SDP) relaxation
of a ReLU neural network as suggested by Raghunathan et al. [43]. SDP is
a special case of convex optimization, which is based on the cone of posi-
tive semidefinite square matrices. We refer to Boyd and Vandenberghe [10],
Chapter 4 for an introduction to this topic.

As mentioned before, we define ReLU(x) := max{0, x} for x ∈ R. More-
over, for x ∈ Rn, we let ReLU(x) := (ReLU(x1), . . . , ReLU(xn))T and for
X ⊂ Rn we say that ReLU(X) := {ReLU(x) | x ∈ X} is the ReLU image of
X. Often, we will regard constraints of the form y = ReLU(x) for x ∈ [l, u],
y ∈ R, that refer to a certain neuron with ReLU activation function. If the
bounds l, u ∈ R with l ≤ u are such that either l ≥ 0 or u ≤ 0, we say that
the corresponding neuron is fixed in its phase. That means, in these cases it
holds y = ReLU(x) = x or y = ReLU(x) = 0, respectively.

To describe the capacities of various algorithms for neural network veri-
fication and robustness certification, we borrow two terms from the field of
mathematical logic. Grassmann and Tremblay [28] state that an argument
is sound if the premises together logically imply the conclusion. Furthermore,
they define that a system is complete, if it is possible to derive every conclu-
sion that logically follows from the premises. These terms can also be used
for the description of algorithms that solve decision problems. We say that
such an algorithm is sound, if each result, which the algorithm computes,
is correct. Clearly, this should hold for any reasonable algorithm. For that
reason we assume the soundness of all algorithms which we consider, unless
stated otherwise. An algorithm is complete, if it returns a result for every
instance of the problem that it shall solve. Due to time and memory limits, an
algorithm can rarely solve each problem instance computationally. However,
for our presentation in Chapter 2, we are mainly interested in the question
whether an algorithm is able to solve all instances from a theoretical point of
view. Some of the algorithms we consider are not able to do so and therefore
incomplete.

7

2 Related Work

Three slightly different problems are regarded in the literature which is
relevant for the topic of this thesis. In fact, results are presented in the context
of (i) neural network verification, (ii) output range analysis, or (iii) certified
robustness. Definition 3 formalizes the verification problem for ReLU neural
networks. While the exact definition is a result of the work on this thesis,
the key properties of this problem are considered likewise in the literature
[11, 12, 14, 17, 19, 35, 38, 41, 42, 51, 57, 56, 61, 62]. In view of an instance
Π = (X,Y, F) of “our” verification problem, these common properties can be
summarized as follows.

A box, a polytope or a union of polytopes is defined as the feasible input
domain X for the property which shall be verified. Then, linear properties are
defined that we denote in terms of a set Y , such that Π is verifiable if and only
if F (X) ⊆ Y . Complete algorithms are employed to solve this problem, i.e. if
there exists x̃ ∈ X such that F (x̃) /∈ Y , this will be reported. Dvijotham et al.
[17] focus on the scalability to larger networks and therefore use an incom-
plete procedure. That means, sometimes they can prove that F (X) ⊆ Y ,
but in other cases their algorithm cannot compute any meaningful result. Of
course, time and memory limits may render the other algorithms incomplete,
too. Furthermore, the verification problem is not necessarily limited to neural
networks with ReLU activations, i.e. other activation functions are sometimes
considered, too. Cheng et al. [13] and Narodytska et al. [40] consider the
verification problem on binarized neural networks, where weights and activa-
tions are constrained to assume one of the values 1 and −1. This allows to
create more specific formulations of the problem that can be solved by SAT
solvers. However, we do not regard this variant of the verification problem in
detail. Indeed, the scope of this thesis is limited to the verification problem
on standard neural networks with ReLU activations.

The idea of output range or reachability analysis is in principle to compute
the output range F (X) of a neural network F , given an input domain X. Since
this is quite difficult, the relevant work of Dutta et al. [16] and Ruan et al. [44]
is limited to computing the range g(F (X)), for some function g : F (X)→ R.
The function g should then give some insights into the output of the neural
network F on input domain X. Clearly, this problem is very closely related
to the verification problem.

Several authors [23, 43, 47, 48, 49, 52, 58, 59, 60, 63, 64] consider the
problem of computing robustness guarantees for neural networks which are
used for classification. Given an input sample x0, the task of such a neural
network F consists in computing F (x0) ∈ C, where C is a finite set of classes.
A frequent application is the classification of contents of an image such as
handwritten digit recognition based on the MNIST data set [37]. Robustness
means, that the classification of an input sample should remain the same when
the input is changed by small perturbations. The computation of certified
robustness bounds should rule out the existence of adversarial examples. As

2. Related Work 8

mentioned before, adversarial examples are obtained by slightly perturbing an
input sample which is classified correctly by the neural network in question.
If the perturbations (although small with respect to some norm) suffice to
provoke an incorrect classification of the obtained input sample, this is called
an adversarial example. Indeed, this problem is a special case of neural network
verification. In this context, the input domain X ⊂ Rn is typically chosen
as X := Bε(x0) = {x ∈ Rn | ‖x − x0‖ ≤ ε} for some given input vector
x0 ∈ Rn and ε > 0. The input vector x0 should be classified correctly by
the neural network and the goal is to prove that this classification is robust
to small, norm bounded perturbations. Various norms are considered in the
literature, e.g. p-norms or the maximum norm, which can be easily represented
by linear inequations. It is the goal to prove F (X) = F (x0) for some ε > 0.
Clearly, binary search can be performed over the value of ε, in order to find
the maximum value of ε such that F (X) = F (x0) holds. Except for Tjeng
et al. [52], this problem is solved by incomplete algorithms. That means, an
algorithm either returns a guarantee that F (X) = F (x0), or no result. In the
latter case, it then remains unclear whether there is a counterexample x̃ ∈ X,
such that F (x̃) 6= F (x0). This happens, as approximations are used which can
be sufficient to prove robustness properties, but failing on this task does not
imply the presence of counterexamples.

Huang et al. [31] propose an algorithm that verifies neural networks
for image classification with respect to manipulations of the input images.
However, they assume the existence of “minimal manipulations” and hence
the resulting algorithm is not sound. That means, robustness may be reported
although counterexamples exist which cannot be obtained as a combination
of such “minimal manipulations”.

In the following sections we give an overview over the relevant work on
neural network verification, output range analysis, and on robustness certifi-
cation of neural networks. Owing to the topic of the thesis, we regard the
literature on neural network verification in more detail.

2.1 Neural network verification

A first approach to verification of neural networks, presented by Pulina and
Tacchella [41], goes back to the year 2010. They implement a tool NeVer for
verification of neural networks based on the solver HySAT (see Fränzle and
Herde [21]). HySAT integrates a SAT solver with a linear programming solving
routine. However, the approach of Pulina and Tacchella [41], with an updated
version in Pulina and Tacchella [42], remains restricted to very small neural
networks of less than 30 neurons. In fact, the approach of Pulina and Tacchella
[41] belongs to the field of satisfiability modulo theories (SMT). SMT gener-
alizes the boolean satisfiability problem by replacing variables with predicates
from various theories. One of such theories is the linear real arithmetic, which
represents the standard model of the real numbers. Scheibler et al. [46] use
the SMT solver iSAT3 [45] for an approach towards the verification of neural
networks. iSAT3 [45] is a successor of the SMT solver HySAT [21]. Though,
the solving model of Scheibler et al. [46] remains limited to very small neural
networks, too.

2. Related Work 9

Also the solver Reluplex for verification of neural networks is presented
in this context, as laid out by Katz et al. [35]. However, it is able to solve
instances which are significantly more difficult. In fact, Reluplex solves the
verification problem using an extended version of the well known simplex algo-
rithm. Katz et al. [35] include additional updating and pivoting rules, that
allow the processing of ReLU constraints within the solving procedure. The
open source LP solver GLPK [26] is used as a basis for that. Moreover, Katz
et al. [35] introduce the most important set of benchmark instances for veri-
fication of neural networks which will be covered in detail in Sections 8.1
and 8.2. Ehlers [19] presents the solver Planet, which is also based on the
LP solver GLPK [26], and on the SAT solver Minisat (see Eén and Sörensson
[18]). However, the LP solver is used as it is to compute linear approximations
of the neural networks, while the SAT solver is adapted to solve the verifica-
tion problem as a satisfiability problem. Computational experiments of Bunel
et al. [11, 12] show, that Planet is not competitive with Reluplex. Yet, Ehlers
[19] introduces a linear approximation of ReLU constraints for Planet, which
is still relevant for other solvers. Especially we use it in our solving model and
hence present it as (4.4) in Section 4.1.

Dvijotham et al. [17] formulate the verification problem as a non-convex
optimization problem (very similar to an MIP formulation), and consider a
Langrangian relaxation of the problem. Using this relaxation, also properties
on big neural networks can be proved. Though, the approach of Dvijotham
et al. [17] is incomplete and therefore in general not able to decide whether
counterexamples exist for an instance of the verification problem.

Xiang et al. [62] regard the propagation of an input polytope through a
ReLU neural network, similar to our considerations in Section 4.4. Indepen-
dently, they also state and prove that the ReLU image of a polytope is a
union of polytopes (see Theorem 33). However, their work remains limited
to theoretical considerations and the presentation of a numerical toy example.
Especially, it remains unclear whether it is possible to implement the approach
efficiently, as it tends to produce exponentially big numbers of polytopes.
In Xiang et al. [61], a more practical approach is presented. It is based on
discretizing the feasible input domain X to obtain single input vectors. Then
the “maximum sensitivity” is computed for each of these vectors, which guar-
antees a maximum change of the neural network output if the perturbation
of the input vector is bounded. If the discretization is fine-grained enough,
this allows the computation of a good approximation of the output F (X) of
a neural network F , given the feasible input domain X. However, the experi-
mental evaluation of Xiang et al. [61] remains limited to a toy example, i.e. a
neural network with nine neurons in total.

Various authors consider MIP models for the verification problem, these
are Tjeng and Tedrake [51], Lomuscio and Maganti [38], Fischetti and Jo [20]
and Cheng et al. [14]. Indeed, it is rather straightforward to formulate the
verification problem as an MIP, as we will see in Chapter 3. The performance
of such MIP models is predominantly determined by the quality of the bounds
which are computed for the ReLU neurons in the neural network. For that
reason, the computation of such bounds is a major topic of this thesis and laid
out in Chapter 4. The use of appropriate branching schemes is also important

2. Related Work 10

for an MIP model of the verification problem, we will provide more details
on this in Chapter 6. In fact, it is not necessary to solve the verification
problem as an MIP if such approximation and branching methods are used.
Bunel et al. [12] present such a branch-and-bound method without solving the
verification problem as MIP directly. Moreover, they provide a good compar-
ison of various methods for neural network verification. Besides their own
approach, the empirical evaluation includes Reluplex [35], Planet [19], and an
MIP model based on the suggestions of various authors [51, 38, 14]. While we
also implement an MIP model to solve the verification problem, its functioning
is more similar to the branch-and-bound method of Bunel et al. [12] than to
the MIP model they use in their comparison. Besides, we consider various
additional aspects, and therefore speed up the solving process significantly.
For a computational comparison of other solvers with ours, we select Reluplex
[35] and the branch-and-bound methods of Bunel et al. [12]. The other solvers
regarded by Bunel et al. [12] are not competitive with these, as their exper-
imental results show. Moreover, we regard the solvers ReluVal and Neurify
as introduced by Wang et al. [57, 56]. In fact, ReluVal [57] was introduced
first, and Neurify [56] is in principle an improved version. Although, these
improvements are also merged into ReluVal, which is designed for different
test instances than Neurify. The concept for both solvers is also a branch-
and-bound scheme, that works with a frequent linear approximation of the
regarded neural network. In contrast to the method of Bunel et al. [12], the
approximation is not as good, but much faster to compute. Indeed, it comes
without the need to solve a great number of linear programs but is based
solely on matrix multiplication. Therefore, Wang et al. [56] report very short
runtimes of their solvers. However, in their pure form, these solvers are limited
to solving instances Π = (X,Y, F) of the verification problem, where X is a
box (cf. Remark 6). Still, the superior performance of ReluVal and Neurify on
many instances is reason enough to include them in our computational exper-
iments. Some more details on the solvers Reluplex [35], ReluVal/Neurify [56],
and the branch-and-bound method of Bunel et al. [12] are explained in Section
6.3. We evaluate all of these computationally to compare them with our own
solving model which combines an MIP formulation of the verification problem
with specialized branching and approximation techniques. More details on the
functioning and implementation can be found in Chapters 6 and 7. Based on
previous experiments of Bunel et al. [12] and others, we can assume that our
selection of solvers comprises the most competitive ones. However, some of
the ideas that are considered for other solving routines are still relevant and
therefore considered throughout the course of this thesis.

2.2 Output range analysis

The work of Dutta et al. [16] and Ruan et al. [44] is very closely related to the
problem of neural network verification. Besides, Ruan et al. [44] explain how
their approach can also be used for robustness certification. Both in Dutta
et al. [16] and Ruan et al. [44], computing the range of output neurons (or
the range of a function that statistically evaluates the network outputs) is the

2. Related Work 11

main aspect. As in the case of neural network verification, it is crucial for this
task to obtain good bounds of the neuron values in a neural network F given
a feasible input domain X.

Dutta et al. [16] use an MIP model to formulate the problem and propose
a local search heuristic. The heuristic uses a gradient ascent algorithm and
is used to improve the bounds of the output range in consideration. After
that, the MIP model is called to check whether this bound is tight or can
be improved further. These steps are iterated, until no more improvement
can be reached. We use the idea of this local search heuristic to implement a
primal heuristic for neural network verification which we lay out in Chapter 5.
Ruan et al. [44] use a nested optimization scheme, which is based on Lipschitz
continuity of most neural networks, e.g. ReLU neural networks. An iterative
algorithm is presented for the one-dimensional case, i.e. X ⊂ R and then
extended for several dimensions.

Neither implementation is included in our computational experiments. The
tool Sherlock of Dutta et al. [16] currently fails even on simple instances
if a zero gradient appears during the local search procedure. Furthermore,
if applied to neural network verification, it is unlikely to produce competi-
tive results as it lacks promising bound computation procedures. However,
it should be noted that Sherlock accepts polytopes in general and not only
boxes as input domains. This is in contrast to the other solvers (except ours)
which we regard for our computational experiments. On the other hand, the
implementation of Ruan et al. [44] is very tailored towards their own test
instances. Therefore, an execution of their method on different test instances
would probably require to implement the algorithm from scratch.

2.3 Robustness certification

Tjeng et al. [52] present an MIP model for robustness certification of neural
networks. For the computation of neuron bounds, they combine naive interval
arithmetic and the linear approximation (4.4) of ReLU constraints. Among
other bound computation approaches, we explain both concepts in Section 4.1.
In fact, the model of Tjeng et al. [52] is very similar to MIP models for neural
network verification (including ours), and therefore constitutes an algorithm
which is sound and complete. As a matter of fact, prior work of Tjeng and
Tedrake [51] was focused on the verification problem. However, several authors
consider incomplete algorithms for certifying robustness of neural networks.
Their general functioning is explained in the following paragraph.

Given a neural network F and a feasible input domain X, these algo-
rithms compute an approximation A ⊇ F (X). The set X contains all input
vectors which are obtained by certain perturbations of a correctly classified
input sample as explained in Section 1.3. As in the case of neural network
verification, robustness is proved if F (X) ⊆ Y holds for a suitable set Y . If
the approximation A is good enough to prove the desired robustness property,
i.e. F (X) ⊆ A ⊆ Y , the algorithm returns this as result. Though, it may be
that the robustness property cannot be proved by means of approximation A,
i.e. A 6⊆ Y . In that case, no result is obtained as we do not know whether

2. Related Work 12

F (X) ⊆ Y holds or not. For that reason such an algorithm is incomplete.
Various concepts of computing an approximation A ⊇ F (X) can be found in
the literature. We point out that all approximation techniques as presented
in Section 4.1 can be used for this task. In the following, we give an overview
of techniques which are used by various authors for the purpose of robustness
certification.

Raghunathan et al. [43] propose an SDP relaxation of ReLU neural
networks which can be used to approximate the output domain F (X) of a
neural network F on input domain X. We explain how this SDP relaxation
can be obtained in Section 4.1. Wong and Kolter [59] use the linear approxi-
mation (4.4) of ReLU constraints to build a linear relaxation of the network
constraints. Then they consider the corresponding dual linear program and
use this to compute robustness guarantees. In subsequent work, Wong et al.
[60] use the Fenchel conjugate function to obtain a dual relaxation which is
applicable also for other types of neural network architectures. In two further
lines of research, linear approximations of ReLU constraints are used to bound
the network output in order to compute robustness guarantees. The work
of Gehr et al. [23] and Singh et al. [47, 49] is based on numerical abstract
domains which are used in static program analysis. Gehr et al. [23] build a
system based on the library Apron (see Jeannet and Miné [32]) for numerical
abstract domains. In this context, ReLU constraints are approximated by
boxes, zonotopes, or polytopes. Singh et al. [47] use the same approximation
as Wang et al. [56] for ReLU constraints, which we explain in Section 4.1
as (4.3). The same approximation is also used by Weng et al. [58], however
the propagation of the bounds is performed by matrix multiplication rather
than a static analyzer with abstract domains. Singh et al. [48] and Zhang
et al. [63] both use the linear approximation of Ehlers [19] which we explain
as (4.4) in Section 4.1, but use only one of the lower bound constraints (see
Remark 19). Again, the propagation is either performed by a static analyzer
for abstract domains (Singh et al. [48]) or via matrix multiplication (Zhang
et al. [63]). Eventually, Singh et al. [49] refine the approaches of Singh et al.
[47, 48] by computing better neuron bounds with the help of an MIP model.
Another approach for robustness certification is presented in Weng et al. [58]
and Zhang et al. [64]. Here, robustness is certified by computing bounds on
the local Lipschitz constant of a neural network F at an input vector x0 ∈ X.
If the constant is bounded appropriately, the output domain of the neural
network can be bounded likewise.

13

3 Neural Network Verification as MIP

It is straightforward to formulate the verification problem as a mixed
integer program (MIP). This has been suggested by Cheng et al. [14] and
by Dutta et al. [16] for output range analysis. Bunel et al. [12] and Tjeng
et al. [52] present a slightly improved formulation, that we introduce in the
following. Anderson et al. [3] give an ideal formulation for single ReLU neurons
and show how it can be separated in linear time. This formulation is more
complex and therefore discussed in Section 3.4.

In the formulation of Bunel et al. [12], each neuron is represented by one
or two (continuous) variables. The value of a neuron before application of
the ReLU function is given as a linear combination of the output values of the
predecessor neurons in the network plus the bias. That means, this connection
can be simply modelled by a linear equation in the MIP. We need two variables
for neurons with ReLU activation function. Let variable x be the input value
to the ReLU function and y be the output value. In this setting we will refer
to x as the ReLU input variable and to y as ReLU output variable. We want
to model y = max{0, x}, which is represented using one additional binary
variable d. Furthermore, we need that upper and lower bounds l ≤ x ≤ u
are known. Then we obtain the following constraints which are equivalent to
y = max{0, x}:

y ≥ x
y ≥ 0

y ≤ x− (1− d)l (3.1)

y ≤ d · u
d ∈ {0, 1}
x ∈ [l, u], l < 0 < u

Essentially, this is a classical big M formulation. Though, we use lower bound
l and upper bound u separately, in order to improve the linear relaxation. Of
course it is possible that we have l ≥ 0 or u ≤ 0 for the bounds. In these cases,
we can omit the binary variable d and replace (3.1) as follows.

If l ≥ 0, this implies y = max{0, x} = x, i.e. (3.1) is replaced by y = x
for x ∈ [l, u]. If u ≤ 0, we have y = max{0, x} = 0 and thus we can set y = 0
for x ∈ [l, u]. These cases correspond to fixing the binary variable d to 1 or
0, respectively. Of course it is beneficial for the solving performance, if such
fixings are applied as often as possible.

3.1 Formulation as feasibility problem

Let Π = (X,Y, F) be a disjunction instance of the verification problem such
that it holds Y =

⋃k
i=1Qi ⊆ Rm for certain open halfspaces Qi, i ∈ [k]. Then

it is straightforward to formulate an MIP which is feasible if and only if Π

3. Neural Network Verification as MIP 14

is refutable. The instance Π of the verification problem is represented by the
following constraints:

x ∈ X, y ∈ Rm\Y and y = F (x) (3.2)

This is an MIP, since x ∈ X and y ∈ Rm\ Y can be represented by linear
constraints. Indeed, X is a polytope and subsequently x ∈ X can be used as
a constraint for an MIP. Furthermore, it holds

y ∈ Rm\Y

⇔ y ∈ Rm\
(k⋃
i=1

Qi
)

⇔ y ∈
k⋂
i=1

(Rm\ Qi),

which means that y is restricted to be an element of a polyhedron. This follows
from the last line, which states that y must be contained in an intersection
of closed halfspaces. y = F (x) can also be expressed by linear constraints
combined with integrality constraints for some auxiliary binary variables as
discussed above. Now, if MIP (3.2) is feasible, there exists x ∈ X such that
F (x) = y /∈ Y . This implies F (X) 6⊆ Y and hence Π is refutable. Otherwise, if
MIP (3.2) is not feasible, that means that for all x ∈ X it holds F (x) = y ∈ Y
and thus Π is verifiable.

Also for conjunction instances where Y =
⋂k
i=1Qi ⊆ Rm for open halfs-

paces Qi, i ∈ [k], we could express Π as an MIP which is checked for feasibility.
Though, this requires the use of further integer variables, since the set Rm\Y is
not a polyhedron in this case. Indeed, the formulation as feasibility problem
requires that the halfspaces Qi which constitute the set Y must be open.
Otherwise, constraints of the type y ∈ Rm\Qi cannot be included in a linear
program.

We regard two other methods which allow to solve conjunction instances.
One possibility is to split instance Π into k instances such that we have
instances Π1 = (X,Q1, F), . . . ,Πk = (X,Qk, F) and process each of these
instances independently (cf. Remark 7). Then Π is verifiable if and only if Πi

is verifiable for each i ∈ [k]. This follows directly from the fact that

F (X) ⊆ Y =

k⋂
i=1

Qi ⇔ ∀i ∈ [k] : F (X) ⊆ Qi.

Clearly, this splitting works indepently from the way that the instances
Π1, . . . ,Πk are solved. Bunel et al. [12] and Katz et al. [35] employ this
splitting idea in their solving methods but do not use the here presented
formulation as MIP. In spite of that, Bunel et al. [12] propose another method
to deal with such instances. This is based on formulating the verification
problem as an optimization problem which we lay out in the subsequent
section.

3. Neural Network Verification as MIP 15

3.2 Formulation as optimization problem

Bunel et al. [12] show how the verification problem can be converted into an
optimization problem. In this setting, an instance Π = (X,Y, F) is verifiable if
the optimum value of the corresponding optimization problem is greater than
zero and refutable if it is lower than zero. Indeed, this method supports both
open and closed halfspaces Qi which constitute the set Y as in Definition 3,
although only one of both for each instance.

Assume that Y =
⋃k
i=1Qi ⊆ Rm where Qi, i ∈ [k] are open halfspaces.

This implies the existence of qi ∈ Rm and bi ∈ R for i ∈ [k] such that we have
halfspaces Qi = {x ∈ Rm | qTi x > bi}. Then we see that

y ∈
k⋃
i=1

Qi

⇔ ∃j ∈ [k] : y ∈ Qj = {x ∈ Rm | qTj x > bj}
⇔ ∃j ∈ [k] : qTj y − bj > 0

⇔ max
i∈[k]

(
qTi y − bi

)
> 0.

The same holds for closed halfspaces Qi, i ∈ [k], if all inequalities “>” are
replaced by their counterparts “≥”. Analogously, with open halfspaces Qi as
before and Y =

⋂k
i=1Qi it holds

y ∈
k⋂
i=1

Qi

⇔ ∀i ∈ [k] : y ∈ Qi = {x ∈ Rm | qTi x > bi}
⇔ ∀i ∈ [k] : qTi y − bi > 0

⇔ min
i∈[k]

(
qTi y − bi

)
> 0.

For the case Y =
⋃k
i=1Qi we consider the following MIP:

minimize t

s.t. x ∈ X
y = F (x) (3.3)

zi = qTi y − bi ∀i ∈ [k]

t = max{z1, . . . , zk}
y ∈ Rm

t, zi ∈ R ∀i ∈ [k]

Indeed, (3.3) is an MIP. Bunel et al. [12] and Tjeng et al. [52] show that the
constraint t = max{z1, . . . , zk} can be replaced by linear constraints using k

3. Neural Network Verification as MIP 16

additional binary variables. The equivalent constraints are

t ≥ zi ∀i ∈ [k]

t ≤ zi + (U − li)(1− di) ∀i ∈ [k]

k∑
i=1

di = 1 (3.4)

di ∈ {0, 1} ∀i ∈ [k]

where U is an upper bound on all zi, i ∈ [k] and li is a lower bound for xi,
i ∈ [k].

Lemma 8. Constraints (3.4) are equivalent to t = max{z1, . . . , zk}.

Proof. Let j ∈ [k] such that zj = t := max{z1, . . . , zk}. We set dj := 1 and

di := 0 for i ∈ [k]\{j}. Then we have
∑k

i=1 di = 1 and for all i ∈ [k] it holds
t ≥ zi. Furthermore it holds t ≤ zj and t ≤ U + zi − li for i ∈ [k]\{j}, since
t ≤ U and zi ≥ li for all i ∈ [k].

Now assume that constraints (3.4) hold. Since we have
∑k

i=1 di = 1 and
di ∈ {0, 1} for i ∈ [k], there is exactly one index j ∈ [k] such that dj = 1.
We claim that t = zj = max{z1, . . . , zk}. Since t ≥ zi for all i ∈ [k] we have
t ≥ max{z1, . . . , zk}. On the other hand, t ≤ zj , i.e. t = zj , which implies
zj = t ≥ max{z1, . . . , zk} and hence the claim is shown.

Theorem 9. Instance Π = (X,Y, F), where Y =
⋃k
i=1Qi for some open

halfspaces Qi = {x ∈ Rm | qTi x > bi}, qi ∈ Rm and bi ∈ R for i ∈ [k], is
verifiable if and only if the optimum value of (3.3) is greater than zero.

Proof. Assume that Π is verifiable, i.e. F (X) ⊆ Y =
⋃k
i=1Qi. Hence, for any

x ∈ X there exists j ∈ [k] such that y := f(x) ∈ Qj , i.e. qTj y − bj > 0. It

follows t ≥ zj := qTj y−bj > 0 which implies the desired result since x ∈ X was
arbitrary. Remind that we regard optimum solutions of an MIP so it suffices
to consider finitely many x ∈ X.

For the opposite direction, assume that the optimum value t̂ of (3.3) fulfills
t̂ > 0. Let x ∈ X be arbitrary and y = F (x). With zi = qTi y − bi for i ∈ [k]
it holds max{z1, . . . , zk} ≥ t̂ > 0 since t̂ is optimal. In other words, there is
j ∈ [k] such that qTj y − bj = zj > 0 and thus y ∈ Qj ⊆ Y . Since x ∈ X was
arbitrary, Π is verifiable.

Remark 10. Theorem 9 can also be stated for the case Y =
⋂k
i=1Qi by

replacing “max” with “min” in (3.3). The proof works analogously since
min{z1, . . . , zk} = −max{−z1, . . . ,−zk}. Furthermore, also closed halfspaces
Qi = {x ∈ Rm | qTi x ≥ bi}, i ∈ [k] can be handled. In this case, the optimum
value of (3.3) must be greater than or equal to zero.

In practice, the optimum value t̂ of (3.3) will usually be siginificantly
greater than zero if an instance is indeed verifiable. Otherwise, we do not
have a reliable proof that the instance is verifiable due to numerical inaccu-
racy. Indeed, Bunel et al. [12] mention that t̂ can be regarded as a margin by
which the neural network F is “safe” with respect to the properties that are

3. Neural Network Verification as MIP 17

verified. Clearly, it is not necessary to actually compute t̂ in order to solve
the verification problem as Bunel et al. [12] point out. If the dual bound of
(3.3) is greater than zero, the instance is verifiable, since the proof of Theorem
9 only relies on the fact that t̂ > 0. Therefore, the development of the dual
bound throughout the solving process gives a good indication of the progress
which is made. This is a clear advantage compared to the formulation as
feasibility problem. For this reason and due to the simple handling of the case
Y =

⋂k
i=1Qi we mainly use this formulation in our implementation. Never-

theless, we make some comparisons to the formulations presented in Sections
3.1 and 3.3.

On the other hand, if the primal bound of (3.3) is lower than zero, we
know that the corresponding instance of the verification problem is refutable
as t̂ < 0 is already implied. However, this case has less relevance since primal
solutions are usually only found by specialized heuristics which we describe in
Chapter 5.

3.3 Formulation as quadratic programming problem

In this section we present a formulation of the verification problem as quadratic
program. As opposed to the MIP formulations which we presented in the
sections before, this formulation does not require any integer or binary vari-
ables. The nonlinear behavior of the ReLU activations is modelled by the
quadratic objective function. Let Π = (X,Y, F) be an instance of the verifica-
tion problem such that Π is a disjunction instance. We assume Y =

⋃k
i=1Qi

for open halfspaces Qi, i ∈ [k] and k ∈ N. Let ((Al, bl))
L
l=1 be the weights and

biases corresponding to F . Moreover, L is the number of layers in the neural
network and N0, . . . , NL are the numbers of neurons per layer as described
in Definition 1. This implies X ⊆ RN0 and Y ⊆ RNL and we can state the
formulation as follows:

minimize

L−1∑
l=1

xTl (xl −Alxl−1 − bl)

xl ≥ Alxl−1 + bl ∀l ∈ [L− 1]

xl ≥ 0 ∀l ∈ [L− 1] (3.5)

xL = ALxL−1 + bL

x0 ∈ X
xL ∈ RNL\ Y
xl ∈ RNl ∀l ∈ [L− 1]

Theorem 11. Instance Π is refutable if and only if the quadratic program
(3.5) is feasible and the optimum value is zero. Otherwise Π is verifiable.

Proof. We first assume that Π is refutable so that we can find x ∈ X with
F (x) /∈ Y . We set x0 := x, xL := F (x) ∈ RNL\ Y and for l ∈ [L − 1]
we let xl := ReLU(Alxl−1 + bl) which implies xl ≥ 0 and xl ≥ Alxl−1 + bl.
Furthermore it is xL = ALxL−1 + bL and for each l ∈ [l − 1] we have for each
i ∈ [Nl] that either [xl]i = 0 or [xl]i = [Alxl−1 + bl]i. Since xl ∈ RNl , this leads

3. Neural Network Verification as MIP 18

to the conclusion that xTl (xl −Alxl−1 − bl) = 0 for all l ∈ [L− 1]. Hence, the
quadratic program (3.5) is feasible and its optimum value is zero.

On the other hand, if (3.5) is feasible and the optimum value is zero, we
know that there is x0 ∈ X, such that F (x) = xL /∈ Y which means that Π is
refutable. Indeed, it holds F (x) = xL since for all l ∈ [L − 1] we have xl ≥ 0
and xl ≥ Alxl−1 + bl, i.e. xTl (xl − Alxl−1 − bl) ≥ 0 for all l ∈ [L − 1]. Hence
we know xTl (xl − Alxl−1 − bl) = 0 for all l ∈ [L− 1] as the objective value of
(3.5) is zero, and it follows that [xl]i[(xl − Alxl−1 − bl)]i = 0 for all i ∈ [Nl]
and l ∈ [L− 1]. Subsequently it holds [xl]i = ReLU(Alxl−1 − bl) and thus we
can conclude that F (x) = xL.

Remark 12. For l ∈ [L− 1] the constraints state xl ≥ 0 and xl ≥ Alxl−1 + bl
so that

∑L−1
l=1 xTl (xl−Alxl−1−bl) ≥ 0 for any feasible solution of (3.5). Hence,

if Π is verifiable, the quadratic program (3.5) is either infeasible, or feasible
with an optimum value greater than zero.

The formulation of the verification problem as quadratic program has the
drawback that it must be decided whether the objective value is zero or not,
while it is always non-negative. Numerical inaccuracy may render this decision
very problematic. It should be noted, that for this formulation the optimum
value does not give a “safety” margin with respect to the properties that shall
be verified, as opposed to the optimum value of (3.3).

To evaluate formulation 3.5 computationally, we try a plain implemen-
tation in SCIP [25]. While the variables xl for l ∈ [L − 1] in (3.5) do not
necessarily require bounds, we compute bounds using the naive approxima-
tion method as presented in Section 4.1. This could possibly improve the
solving process, as the variable domains are somewhat restricted. However,
within a time limit of one hour, SCIP is not able to solve any of the disjunc-
tion instances in our SAT and UNSAT evaluation sets which we describe in
Section 8.4. Further experiments on some MNIST based instances as described
in Section 8.3 show, that only very simple instances can be solved with this
formulation. Detailed computational results can be found in Section B.3 of
the appendix.

3.4 Ideal MIP formulations for ReLU constraints

This section highlights some recent results of Anderson et al. [3] which include
ideal formulations for ReLU constraints. The work of Anderson et al. [3] also
contains results on other activation functions such as leaky or clipped ReLU
and the maximum of affine functions. Yet, we focus our presentation on the
results regarding the ReLU function as in the rest of the thesis.

The notion of an ideal formulation for integer programs can e.g. be found
in Bertsimas and Weismantel [6], Chapter 1. Here we cite the definition of
Vielma [53], who is also an author of Anderson et al. [3]. For that, we use the
following generic MIP formulation (without objective function) based on two

3. Neural Network Verification as MIP 19

rational matrices A,B and a rational vector b of appropriate sizes:

Ax+By ≤ b (MIP)

x ∈ Rn

y ∈ Zm

Definition 13 (Ideal Formulation, Vielma [53]). Let A,B and b in (MIP)
be rational and of appropriate sizes. For simplicity we assume that the LP
relaxation of (MIP) has at least one extreme point or basic feasible solution.
Then the MIP formulation (MIP) is ideal if and only if all the extreme points
of its LP relaxation satisfy the integrality constraints y ∈ Zm.

Clearly, it is desirable for an MIP formulation to be ideal, if the size of
the formulation, i.e. the number of constraints, does not grow too big. An
ideal formulation allows to solve the MIP by computing an extreme point
solution for the corresponding LP relaxation (cf. Bertsimas and Weismantel
[6], Chapter 1). The latter can be performed efficiently using the simplex
algorithm. Nevertheless, it should be noted that the results of Anderson et al.
[3] do refer only to single ReLU neurons and at most the layer before. Hence
we do not have an ideal formulation of the whole network which implies that
solving the verification problem cannot be reduced to solving an LP using the
formulations laid out in this section.

In the context of this thesis, Proposition 3 is the most interesting result
in Anderson et al. [3], which states an ideal MIP formulation that can replace
(3.1). To state this formulation, we notice that the value of the ReLU input
variable x in (3.1) is given as an affine combination of the neuron output values
in the previous layer (which could also be the input layer). Hence there are
w ∈ Rn and b ∈ R such that x = wT z + b where z ∈ Rn represents the neuron
values of the previous layer. Clearly, n ∈ N is the number of neurons in that
layer. Anderson et al. [3] assume that there are known bounds for z, although
they only consider box constraints, i.e. li ≤ zi ≤ ui for i ∈ [n]. For i ∈ [n]
they define

l̃i =

{
li if wi ≥ 0

ui if wi < 0
and ũi =

{
ui if wi ≥ 0

li if wi < 0

and supp(w) := {i ∈ [n] | wi 6= 0}. Using these definitions we can give an
alternative to formulation (3.1).

Theorem 14 (Anderson et al. [3], Proposition 3). Assume that

min
∀i∈[n]: li≤zi≤ui

wT z + b < 0 < max
∀i∈[n]: li≤zi≤ui

wT z + b.

The following is a valid and ideal formulation of y = ReLU(wT z + b):

y ≥ wT z + b (3.6a)

y ≤
∑
i∈I

wi(zi − l̃i(1− d)) +
(
b+

∑
i∈[n]\I

wiũi

)
d ∀I ⊆ supp(w) (3.6b)

li ≤ zi ≤ ui ∀i ∈ [n] (3.6c)

y ≥ 0, y ∈ R (3.6d)

d ∈ {0, 1} (3.6e)

3. Neural Network Verification as MIP 20

For the proof we refer to Anderson et al. [3]. If the assumption of the
theorem is not met, the ReLU function does not need to be modelled but can
be replaced by the zero or identity function, as pointed out by Anderson et al.
[3]. This corresponds to our comment on the same situation regarding (3.1).

It is apparent that formulation (3.6) has a number of constraints which
is exponential in | supp(w)| ≤ n, i.e. in the size of the previous layer in the
network. Anderson et al. [3] present a separation routine which allows to
separate constraints (3.6b) in time linear in n.

Theorem 15 (Anderson et al. [3], Proposition 4). Assume that we are given
a vector (ẑ, ŷ, d̂) ∈ Rn ×R≥0 × [0, 1] where li ≤ ẑi ≤ ui for all i ∈ [n], then we
define the set

Î :=
{
i ∈ supp(w) | wix̂i < wi

(
l̃i(1− d̂) + ũid̂

)}
.

If

ŷ > bẑ +
∑
i∈Î

wi

(
x̂i − l̃i(1− d̂)

)
+
∑

i∈[n]\Î

wiũid̂,

then the constraint corresponding to Î in (3.6b) is the most violated in the
family. Otherwise, none of the inequalities in (3.6b) is violated at (ẑ, ŷ, d̂).

Again, for the proof we refer to Anderson et al. [3]. For the application
of the ideal formulation in our solving model, we follow the suggestion of
Anderson et al. [3] to use formulation (3.1) as a basis and strengthen the
formulation by cuts which are generated using Theorems 14 and 15. Indeed,
this task is the purpose of a separator in SCIP, as constraints (3.6) are not
necessary for the correctness of the model, but may help to strengthen the LP
relaxation of our formulation based on (3.1).

The proofs of Theorem 14 and Theorem 15 in Anderson et al. [3] are
obtained as special cases within a more general setting which treats the ideal
formulation of the maximum of two affine functions. Furthermore, Anderson
et al. [3] also present convex relaxations of ReLU constraints and tight formu-
lations for the maximum of more than two affine functions. Beyond that,
Anderson et al. [3] discuss the fact that formulation (3.6) is ideal for a single
neuron, but not for a whole (deep) neural network that encompasses several
layers of many ReLU neurons. In this context, Anderson et al. [3] present
extended versions of Theorem 14 and Theorem 15, for which they assume
that each zi, i ∈ [n] is the output of a ReLU neuron in the previous layer.
By incorporating the binary variables (corresponding to d in (3.6) or (3.1))
from that layer into the formulation of (3.6b), it is possible to strengthen this
family of constraints. Of course, this is only one step towards a better LP
relaxation for the whole network, since it is still limited to the consideration
of single neurons and their immediate predecessor neurons. In constrast to
the separation routine in Theorem 15, this extended version is not evaluated
computationally in Anderson et al. [3]. Therefore and also due to the higher
complexity of the extended version, we refrain from implementing it in our
model.

21

4 Approximations of ReLU Neural

Networks

Solving the problem of neural network verification requires to model
constraints of the form y = max{0, x} for all ReLU input variables x and
corresponding ReLU output variables y of each layer. In order to obtain
a good model which allows to solve instances of relevant size, it is crucial
to obtain tight bounds l, u on the value of x before the application of the
ReLU function. Hence, we present different possibilities to compute these
bounds and discuss advantages and drawbacks. A main focus is put on the
linear approximation of these constraints for a whole layer at once. The idea
of regarding a whole layer of ReLU neurons at once can also be found in
Anderson et al. [3]. Though, the considerations of Anderson et al. [3] are
limited to the extended versions of Theorems 14 and 15 as discussed in Section
3.4. Also Bunel et al. [12] mention the idea to approximate several ReLU
neurons at once rather than each neuron on its own, but do not investigate this
topic further. Moreover, we present an SDP relaxation for ReLU constraints
as proposed by Raghunathan et al. [43], which acts on a whole layer of ReLU
neurons. However, we mainly focus on linear approximations of whole layers
of ReLU constraints, and present new contributions to this topic. Eventually,
we also provide details on the geometrical aspects of the ReLU image which
arises from the application of the ReLU function to a polytope. One of our
results has been shown independently by Xiang et al. [62], who also consider
ReLU images of polytopes.

The structure of this chapter, which constitutes a major contribution of
this thesis, is as follows: In the first part, we describe approximations for ReLU
neural networks as they can be found in the literature. Then, in Section 4.2,
we define the notion of a ReLU approximation which allows for a detailed and
mathematically well based comparison of different approximation techniques.
Especially, we show that the approximation proposed by Ehlers [19] is best
possible in a certain sense. Section 4.3 deals with the efficient implementation
of an LP based approximation method. In Section 4.4 we lay the theoretical
foundation which allows to investigate how the image under the ReLU function
can be computed for whole layers. Then we show in Section 4.5 that the
approximation of Ehlers [19] can be improved by making a joint approximation
of the ReLU function for several neurons and not just one. In Section 4.7 we
present a new practical method for an improved approximation which is based
on the aforementioned theoretical results. Before that, we use Section 4.6 to
complete our investigations with some negative results on the possibilities for
approximating ReLU constraints.

Given an instance Π = (X,Y, F) of the verification problem with X ⊂ Rn,
we will assume the availabilty of input bounds li, ui with i ∈ [n] for the
components of X throughout this chapter. See Remark 6 for an explanation
of the existence of these bounds. Not all methods presented here require

4. Approximations of ReLU Neural Networks 22

to actually compute bounds li, ui explicitly, since the definition of X as an
intersection of halfspaces may be sufficient.

All approximation methods that we present are executed layer by layer.
Based on the input bounds, we compute bounds for the neurons in the
following layer. This process is iterated until the last layer is reached, i.e.
the output layer. Depending on the instance and the bound computation
approach, it may be possible to prove that an instance Π = (X,Y, F) of
the verification problem is verifiable using only these bounds for the output
layer. Assume that we have a set A which approximates the neural network
output F (X), i.e. F (X) ⊆ A. In case that A ⊆ Y , we have thus shown that
F (X) ⊆ Y , which means that Π is verifiable. Theoretically, it could be shown
that Π is refutable using only approxmiation A of F (X). If A ∩ Y = ∅, we
know that F (X) ∩ Y = ∅ and hence there is x ∈ X such that f(x) /∈ Y , i.e.
Π is refutable. Though, if Y is such that it defines a reasonable property to
verify, this case will most likely not occur.

4.1 Basic approximation methods for bound compu-
tations in neural networks

The most simple approach is to use naive interval arithmetic, which is regarded
by Ehlers [19] and Wang et al. [57]. Assume we want to compute bounds for
a neuron x (before application of any activation function). Let

x =
n∑
i=1

αizi + b,

where zi, i ∈ [n] are the output values of the neurons which are predecessors
of x in the neural network, αi ∈ R for i ∈ [n] are the weights and b ∈ R is the
bias. Given bounds [li, ui] for all zi, i ∈ [n], we compute bounds [l, u] for x as
follows:

l =
∑
i∈[n]
αi>0

αili +
∑
i∈[n]
αi<0

αiui + b and u =
∑
i∈[n]
αi>0

αiui +
∑
i∈[n]
αi<0

αili + b

Assume that we have a set of feasible values {z1, . . . , zn} with zi ∈ [li, ui] for
the predecessor neurons of x. Then we have

x =
∑
i∈[n]
αi>0

αizi +
∑
i∈[n]
αi<0

αizi + b ≥
∑
i∈[n]
αi>0

αili +
∑
i∈[n]
αi<0

αiui + b = l.

Analogously, we can show that u is a feasible upper bound for x.
The ReLU activation function, which enforces y = max{0, x}, can be

simply modelled by setting [max{0, l}, max{0, u}] as bounds for y. If the
corresponding ReLU neuron cannot already be fixed in its phase, we obtain
bounds [0, u] for the ReLU output variable y. Figure 4.1 provides a visual
representation of this approximation, to which we will refer as naive approx-
imation. If there is no activation function at the respective neuron, we can
just keep the bounds [l, u] as computed above. After all bounds for one layer

4. Approximations of ReLU Neural Networks 23

−8 −6 −4 −2 2 4 6 8

2

4

6

8

x

y

Figure 4.1: Naive approximation of ReLU function in one dimension. Here
we have lower bound −4 and upper bound 6 for the ReLU input variable
x. The feasible domain of the ReLU output variable y is given by the solid
black line for the actual ReLU function and by the shaded area for the naive
approximation.

have been computed, the bounds of the next layer are computed based on the
previous bounds.

This simple approach mainly suffers from the fact, that it assumes the inde-
pendency of all predecessor neurons when computing a new bound. Usually
not all neurons of a layer can be at their upper bound or lower bound, respec-
tively, at the same time. Therefore, the bounds computed with this method
are so bad, that they only serve to solve tiny instances.

Wang et al. [57] use symbolic interval arithmetic to keep track on some of
the neuron dependencies in order to compute better bounds. The idea is to
keep a symbolic equation, based on the input values of the network, for each
neuron. Although such symbolic equations can be constructed for all neurons
of a ReLU neural network, each ReLU activation introduces a non-linearity
in the equation. Therefore, these equations can only be handled efficiently,
as long as no ReLU activation has appeared so far. Of course, any neural
network of interest to us contains several ReLU activations. To explain the
concept though, we assume a neural network without activation functions, i.e.
in terms of Definition 1, we let σ be the identity function on R. We have layers
x0, . . . , xL, where xl ∈ RNl and Nl ∈ N is the number of neurons in layer l,
l = 0, . . . , L, and L ∈ N is the number of layers. That means, x0 is the input
layer and xL is the output layer. Then for l ∈ [L] it holds xl = Alxl−1 + bl for
weight matrices Al ∈ RNl×Nl−1 and bias vectors bl ∈ RNl . Now we can express
each layer in terms of the input layer x0, i.e. it holds for l ∈ [L]:

xl = Al(Al−1(. . . (A2(A1x0 + b1) + b2) . . .) + bl−1) + bl (4.1)

Because no activation function is employed, this is a plain linear equation of
the input vector x0. This is the symbolic equation we would have for layer
xl without any activation function. Indeed, we could integrate the ReLU
function in the equation. But then the equation would be no longer linear,
and, especially in deeper layers, very difficult to evaluate. For that reason,
Wang et al. [57] propose to convert the linear equation into numerical lower

4. Approximations of ReLU Neural Networks 24

and upper bounds when a ReLU activation occurs, which cannot be fixed in its
phase. First we see how to obtain explicit neuron bounds from the symbolic
equation (4.1). Assume we want to bound the j-th neuron in layer l ∈ [L], i.e.
j ∈ [Nl]. Essentially, (4.1) can be written as xl = Ãlx0 + b̃l by summarizing all
weights and biases in Ãl ∈ RNl×N0 and b̃l ∈ RNl . We consider the j-th row of
this equation which reads [xl]j = [Ãl]jx0 + [b̃l]j . Let (a1, . . . , aN0) := [Ãl]j and
let [l0, u0], . . . , [lN0 , uN0] be the bounds of the input neurons [x0]1, . . . , [x0]N0 .
Then we can bound [xl]j like this:∑
k∈[N0]
ak>0

aklk +
∑
k∈[N0]
ak<0

akuk + [b̃l]j ≤ [xl]j ≤
∑
k∈[N0]
ak>0

akuk +
∑
k∈[N0]
ak<0

aklk + [b̃l]j (4.2)

The bounds follow directly from the symbolic equation and can be verified
analogously as we showed for the naive interval arithmetic. Now we consider
the integration of the ReLU activations. Wang et al. [57] propose to convert the
symbolic equation into concrete numeric bounds if linearity is broken due to a
ReLU activation. For that, let eq be the symbolic expression for a ReLU input
variable. We compute the numeric bounds that are implied by eq as in (4.2),
based on the feasible input domain for the instance of the verification problem.
We denote the numeric lower and upper bounds (before application of the
ReLU function) as lin and uin, respectively. Accordingly, lout and uout denote
the bounds of the variable after application of the ReLU function. As long as
lin ≥ 0, the symbolic equation remains valid after the ReLU application, i.e. it
can be kept as if there was no ReLU activation. If lin < 0 < uin, which is the
usual case, we cannot keep the linear symbolic equation. Wang et al. [57] set
lout = 0 in this case, which of course implies the loss of dependency information
for following bound computations. Furthermore, also the upper bound uout
must be set to its current numeric value uin, since the linear equation eq,
relating the neuron value to the network inputs, is broken due to the ReLU
application. This corresponds to the approximation which we described for
the case of naive interval arithmetic as depicted in Figure 4.1. If uin ≤ 0, it
can be set lout = uout = 0 which fixes the neuron value to 0. Note that in
this case we do not loose dependency information, as there is no possibility
that this ReLU output variable will have any value different from 0. Table 4.1
shows a comparison of naive and symbolic interval arithmetic for the neural
network depicted in Figure 4.2. It indicates, that this symbolic approach can
only provide better bounds if at least some of the ReLU activations can be
fixed positively, i.e. lin ≥ 0. Otherwise, the symbolic interval arithmetic uses
the same bounds as the naive method and computes new bounds in the same
way. Only in the case of positively fixed ReLU neurons the symbolic equation
is maintained and can lead to better bounds. Negatively fixed ReLU neurons
behave the same way in the symbolic and the naive approach.

To overcome this drawback, Wang et al. [56] improve the method by intro-
ducing a different approximation for the case lin < 0 < uin. The main idea is to
maintain the symbolic dependencies also in this case. Though, we cannot keep
the linear equation for the value of such a neuron, but instead we introduce
symbolic equations which provide a lower and upper bound for the neuron
value. These symbolic bounds can then be propagated through the network

4. Approximations of ReLU Neural Networks 25

a1

a2

x1

0

x2

−1

y1

y2

o1

0
1

1 1

−1

ReLU

ReLU

1

1

Figure 4.2: Neural network with input neurons a1 ∈ [−3, 2] and a2 ∈ [−5, 4].
For our example we try to find an upper bound for the output o1 = y1 + y2 of
the network. We will use this network as a running example throughout the
chapter to illustrate the various bound computation techniques.

Method x1 x2 y1 y2 o1

Naive IA [−8, 6] [−8, 6] [0, 6] [0, 6] [0, 12]

Symbolic IA [57] a1 + a2 a1 − a2 − 1 [0, 6] [0, 6] [0, 12]

Table 4.1: Bounds for the network in Figure 4.2 using interval arithmetic
(IA). In this network, the symbolic IA of Wang et al. [57] shows no improve-
ment over the naive IA. This method only produces better bounds, if at least
some of the ReLU activations can be fixed positively.

and have the advantage that the dependency information partially remains.
First, we present the approximation that Wang et al. [56] propose for the

ReLU constraints instead of the naive approximation which is employed in the
naive and symbolic interval arithmetic. Assume we want to approximate the
constraint y = max{0, x} for x ∈ [l, u] where l < 0 < u. Then, according to
Wang et al. [56], it holds

y ≥ ux

u− l
and y ≤ u(x− l)

u− l
(4.3)

which we prove in the following theorem. A visual representation of these
constraints is given in Figure 4.3.

Theorem 16. Given l < 0 < u, x ∈ [l, u] and y = max{0, x}, inequalities
(4.3) hold.

Proof. y = max{0, x} implies that y ≥ 0 and y ≥ x. Therefore it holds

y ≥ ux

u− l
⇔ uy − yl ≥ ux
⇔ u(y − x) ≥ yl

which proves correctness of the lower bound since u(y − x) ≥ 0 ≥ yl. For the

upper bound we consider two cases. If x < 0 we have y = 0 ≤ u(x−l)
u−l , since

4. Approximations of ReLU Neural Networks 26

−8 −6 −4 −2 2 4 6 8

−4

−2

2

4

6

8

x

y

Figure 4.3: Approximation of ReLU function in one dimension as proposed
by Wang et al. [56]. Here we have lower bound −4 and upper bound 6 for the
ReLU input variable x. The feasible domain of the ReLU output variable y is
given by the solid black line for the actual ReLU function and by the shaded
area for the approximation.

u > 0, u− l > 0 and x− l ≥ 0. If x ≥ 0, we have y = x and see:

y = x ≤ u(x− l)
u− l

⇔ (u− l)x ≤ u(x− l)
⇔ −lx ≤ −lu
⇔ x ≤ u

The last step holds due to the fact that l < 0. Therefore, approximation (4.3)
gives a feasible over-approximation of the equation y = max{0, x}.

Now we describe how Wang et al. [56] apply the approximation (4.3) to
the symbolic equations. In general, each neuron has a symbolic lower bound
eqlow and a symbolic upper bound equp. As long as the neuron depends only
linearly on the input neurons, eqlow and equp coincide and give the exact value
of the neuron (depending on the inputs of the network). This corresponds to
the state that we still have the symbolic equation for the neuron in the first
approach of Wang et al. [57]. If we have the situation that eq := eqlow = equp
describes the exact neuron value, and the numeric bounds of this neuron fulfill
lin < 0 < uin before the ReLU application, the approximation (4.3) is applied
to the symbolic equation eq. Thus we obtain symbolic lower and upper bounds:

eqlow =
uin

uin − lin
eq and equp =

uin
uin − lin

(eq − lin)

If lin ≥ 0 the ReLU function is fixed in its positive phase, thus the symbolic
equations eq = eqlow = equp can be kept without change. If uin ≤ 0, the
symbolic equations eq = eqlow = equp can be fixed to 0.

4. Approximations of ReLU Neural Networks 27

If ReLU approximations have already occured, such that eqlow 6= equp, we
do not have a symbolic equation for the neuron value anymore. Instead, the
approximations are applied to the symbolic upper and lower bounds. To this
end, Wang et al. [56] compute numeric lower and upper bounds llow, ulow and
lup, uup for eqlow and equp, respectively. It holds llow ≤ lup, ulow ≤ uup and
llow ≤ uup. Indeed, eqlow and equp are such that eqlow(a) ≤ equp(a), which
denotes the evaluation of the symbolic equations for the input vector a ∈ RL0 .
Of course, a needs to meet all input constraints. If llow ≥ 0 the ReLU function
is already fixed in its positive phase. In this case, eqlow and equp can be kept
without any change. If uup ≤ 0, both eqlow and equp can be set to 0. Otherwise
we have llow < 0 < uup and the symbolic bounds are updated like this1:

eqlow =

{
0, ulow ≤ 0

ulow
ulow−llow eqlow, ulow > 0

equp =

{
equp, lup ≥ 0
uup

uup−lup (equp − lup), lup < 0

Sometimes it is possible to fix either the ReLU phase of the upper symbolic
bound or the ReLU phase of the lower symbolic bound. This is reached by
distinguishing the different cases as above. Applying this scheme, the upper
and lower symbolic bounds are propagated through the network. For any
neuron, numeric bounds can be computed on basis of the feasible input domain
of the instance of the verification problem. In (4.2) this computation is denoted
explicitly. Each symbolic bound allows the computation of a lower and an
upper numeric bound. The lower numeric bound of the lower symbolic bound
and the upper numeric bound of the upper symbolic bound, i.e. llow and uup,
are then the neuron bounds which we obtain.

Neuron Symbolic bounds Numeric bounds Naive IA

x1 [a1 + a2, a1 + a2] [−8, 6] [−8, 6]

x2 [a1 − a2 − 1, a1 − a2 − 1] [−8, 6] [−8, 6]

y1 [3
7(a1 + a2), 3

7(a1 + a2 + 8)] [−24
7 , 6] [0, 6]

y2 [3
7(a1 − a2 − 1), 3

7(a1 − a2 + 7)] [−24
7 , 6] [0, 6]

o1 [3
7(2a1 − 1), 3

7(2a1 + 15)] [−6, 57
7] [0, 12]

Table 4.2: The symbolic bounds and the concrete numerical values for our
example network in Figure 4.2 computed as proposed by Wang et al. [56].
The symbolic relaxation allows also negative values for the neurons y1 and y2

which are known to be non-negative. Though, the upper bound of 57
7 for o1 is

better than the bound 12 which is computed using symbolic or naive interval
arithmetic (see column “Naive IA” and cf. Table 4.1).

Comparing Figures 4.1 and 4.3 we see, that the approximation (4.3)
suggested by Wang et al. [56] can lead to superior results compared to the

1In Appendix B of Wang et al. [56], ulow and lup are exchanged by mistake in the
corresponding formulas, as confirmed by the main author.

4. Approximations of ReLU Neural Networks 28

naive approximation. This can be also seen in Table 4.2 which shows the
resulting bounds for our example network depicted in Figure 4.2. While the
ReLU function maps only to non-negative values, and also the naive approx-
imation restricts its range to non-negative values, approximaton (4.3) allows
also negative values after the ReLU application. Therefore, it is possible to
find networks, for which the approximation (4.3) actually performs worse
than the naive approximation.

Theorem 17. The approximation of Wang et al. [56] can be worse than naive
interval arithmetic.

Proof. We use the neural network depicted in Figure 4.4 as an example to
show that the bounds computed with the method of Wang et al. [56] can be
worse than the bounds computed with naive interval arithmetic. We obtain
the following bounds:

Variable Symbolic Bound (Wang et al. [56]) Bound of Naive IA

x1 [a1, a1] [−2, 4]

x2 [a2, a2] [−3, 6]

y1 [2
3a1,

2
3a1 + 4

3] [0, 4]

y2 [2
3a2,

2
3a2 + 2] [0, 6]

o1 [2
3(a1 + a2) + 5, 2

3(a1 + a2) + 81
3] [5, 15]

The symbolic bounds for o1 can be evaluated numerically by substituting
the lower bounds of a1 and a2 for the symbolic lower bound of o1, and the
upper bounds of a1 and a2 for the symbolic upper bound. Like this we obtain
bounds [5

3 , 15] for o1. Obviously the lower bound is inferior to the lower bound
computed by naive interval arithmetic, while the upper bounds are identical.

a1

a2

x1

0

x2

0

y1

y2

o1

5
1

1

ReLU

ReLU

1

1

Figure 4.4: Neural network with input neurons a1 ∈ [−2, 4] and a2 ∈ [−3, 6].
The numbers denote the weights or biases, respectively.

We will now consider another bound computation approach that enables
a tighter approximation than the previously discussed approaches. Moreover,
we will show that it is best possible in a certain sense, which we define in the
following section. This linear approximation of the ReLU constraints was first

4. Approximations of ReLU Neural Networks 29

proposed by Ehlers [19]. Given x ∈ [l, u], where l < 0 < u, and y = max{0, x}
the following holds:

y ≥ 0

y ≥ x (4.4)

y ≤ u(x− l)
u− l

We graphically depict this approximation in Figure 4.5 and show that in fact
it coincides with the linear relaxation of the MIP formulation (3.1) for ReLU
constraints. The following theorem is also mentioned in Anderson et al. [3] as
Proposition 17, while the proof can be found in similar form in Bunel et al.
[12], Appendix C.

−8 −6 −4 −2 2 4 6 8

2

4

6

8

x

y

Figure 4.5: Approximation of ReLU function in one dimension as proposed
by Ehlers [19]. Here we have lower bound −4 and upper bound 6 for the ReLU
input variable x. The feasible domain of the ReLU output variable y is given
by the solid black line for the actual ReLU function and by the shaded area
for the convex approximation (4.4).

Theorem 18 (cf. Bunel et al. [12] and Anderson et al. [3]). Given l < 0 < u,
x ∈ [l, u] and y = max{0, x}, inequalities (4.4) hold. Moreover, the feasible
set defined by these inequalities is identical to the embedded image which is
obtained by projecting the linear relaxation of the MIP formulation (3.1) onto
the variables x and y.

Proof. First, we see that for l ≤ x ≤ u and y = max{0, x} the pair (x, y)
fulfills the approximation constraints. y ≥ 0 and y ≥ x trivially hold and
the inequality for the upper bound was already proved for Theorem 16. Now
consider the LP relaxation of (3.1). Again, we have the constraints y ≥ x and
y ≥ 0. In addition, we obtain the following constraints:

y ≤ x− (1− d)l

y ≤ d · u
d ∈ [0, 1]

4. Approximations of ReLU Neural Networks 30

Both constraints give an upper bound on the value of y. We consider the right
hand sides as two functions f, g : [0, 1]→ R of the variable d, i.e.

f(d) := x− (1− d)l = ld+ x− l and g(d) := ud.

Since there are no other constraints on d in the model, we can write the upper
bound of y equivalently as

y ≤ max
d∈[0,1]

min{f(d), g(d)}

For fixed x, both functions are affine, f has negative slope l and g has
positive slope u. Moreover, f(0) = x− l ≥ 0 = g(0) and f(1) = x ≤ u = g(1).
That means, due to the intermediate value theorem, there is d ∈ [0, 1] such
that f(d) = g(d). In this point, the maximum of min{f(d), g(d)} is attained,
since both f and g are monotonic. We compute

f(d̂) = g(d̂)

⇔ ld̂+ x− l = ud̂

⇔ d̂ =
x− l
u− l

and thus the upper bound of y is given as g(d̂) = ux−lu−l . This is exactly the
upper bound enforced by the approximation (4.4).

Remark 19. Of course, the linear approximation (4.4) remains valid, if either
the constraint y ≥ 0 or the constraint y ≥ x is removed. This is regarded
by Singh et al. [48] and Zhang et al. [63] for the application to robustness
certification. While leaving out one of the constraints clearly weakens the
approximation, it provides the advantage that there is only one inequation
which acts as a lower bound. Surely, this is not useful if bounds are computed
using linear programming. Though, it enables the use of matrix multiplication
(cf. Zhang et al. [63]) or static analyzers with abstract domains (cf. Singh
et al. [48]) for the propagation of the inequations.

In the context of robustness certification, Raghunathan et al. [43] propose
an SDP relaxation for ReLU neural networks. Especially, this relaxation acts
simultaneously on all neurons of a layer. First, Raghunathan et al. [43] show
that the ReLU constraint y = max{0, x} for x, y ∈ R can be replaced by three
linear or quadratic constraints: (i) y(y − x) = 0, (ii) y ≥ x, and (iii) y ≥ 0.

This allows to formulate the verification problem as a quadratically
constrained quadratic program (QCQP), which can be relaxed to a semidef-
inite program (SDP). Therefore, we denote the ReLU constraint for a whole
layer containing n ∈ N neurons as y = ReLU(x) where x, y ∈ Rn. This
constraint can be replaced by the following linear and quadratic constraints,
where � denotes the elementwise multiplication of two vectors:

y ≥ 0

y ≥ x
y � y = x� y (4.5)

x, y ∈ Rn

4. Approximations of ReLU Neural Networks 31

In order to relax (4.5) to an SDP formulation, Raghunathan et al. [43] define

v :=

1
x
y

 and P := vvT =

1 xT yT

x xxT xyT

y yxT yyT

 ,
so that an SDP relaxation of (4.5) is given by:

y ≥ 0

y ≥ x
diag(yyT) = diag(xyT) (4.6)

P1,1 = 1

P < 0

The constraint P < 0 expresses that the matrix P must be positive semidefi-
nite. We refer to Raghunathan et al. [43] for a more thorough analysis of this
relaxation and a comparison to the linear approximation (4.4). Furthermore,
Raghunathan et al. [43] explicitly denote the relaxation for neural networks
with several ReLU layers and provide some hints on the inclusion of additional
neuron bounds in the relaxation. In contrast to that, the rest of this chapter
is restricted to results regarding linear approximations of ReLU constraints.

4.2 Comparison of linear ReLU approximations

In general, one ReLU layer contains several neurons, and we are interested to
compute an approximation of the output range of the layer. This approxi-
mated output range can then be regarded as input to the next layer. As we
want to reach a quick propagation of the output ranges through the layers, it
is important that the approximated output range is a polytope. This allows to
compute neuron bounds quickly using linear programming. We notice that in
approximation (4.4) each ReLU output variable y only depends on the corre-
sponding ReLU input variable x, but not on any other neurons in the same
layer. In the following, we develop a theoretical framework to analyse different
linear approximations, so that we can compare them to this approximation
(4.4).

Definition 20 (ReLU approximation). Let n,m ∈ N, A,B ∈ Rm×n, c ∈ Rn,
and P ⊂ Rn be a polytope. We say that

Q :=
{(x

y

)
∈ P × Rn | Ax+By ≤ c

}
⊂ R2n

is a ReLU approximation (of P) if it holds that (P × ReLU(P)) ⊆ Q. Q is
called an independent ReLU approximation, if for all j ∈ [m], there exists
i ∈ [n] such that Ajl = Bjl = 0 for all l ∈ [n] \ {i}. A polytope P is called
ReLU proper, if for all i ∈ [n] it holds

min
x∈P

xi < 0 < max
x∈P

xi.

4. Approximations of ReLU Neural Networks 32

Remark 21. For any ReLU approximation Q of P ⊂ Rn, it is certain that
[P × conv(ReLU(P))] ⊆ Q. In addition, we point out that in an independent
ReLU approximation, each row of A or B has at most one nonzero coefficient.
Regarding the same row index in A and B, this coefficient must also have
the same column index in both A and B. The consideration of ReLU proper
polytopes simplifies the formulation of statements, as fixed ReLU neurons are
not regarded.

The naive approximation applied to a ReLU proper polytope gives a box
[0, u1]×. . .×[0, un], where ui is the upper bound for the corresponding variable.
We see that this is an independent ReLU approximation. Let A = 0 ∈ R2n×n

and for each i ∈ [n], we add two rows to matrix B and vector c to enforce
0 ≤ yi ≤ ui for i ∈ [n], i.e. m = 2n for the m in Definition 20. These rows are
eTi y ≤ ui and −eTi y ≤ 0, where ei is the i-th unit vector in Rn. Hence, we
have exactly one non-zero coefficient in each row of B and only zero coefficients
in A, so that the property holds. In passing we notice that the approximation
(4.3) proposed by Wang et al. [56] is an independent ReLU approximation,
too.

As our discussion of various approximation methods shows, the quality of
these differs significantly. Now we use our defintion of a ReLU approximation
for a more thorough investigation of the possibilities to approximate ReLU
constraints. Within the restrictions of the definition, we would like to find
matrices A,B and c for a ReLU proper polytope P , such that Q is as small as
possible (with respect to inclusion). First, we will restrict our analysis to inde-
pendent ReLU approximations and claim: the approximation (4.4) proposed
by Ehlers [19] is best possible among all independent ReLU approximations of
a ReLU proper polytope. We define this approximation formally as a ReLU
approximation in order to state the result in Theorem 26.

Definition 22. Let P ⊂ Rn be a ReLU proper polytope. The ReLU approxi-
mation of P corresponding to approximation (4.4) will be denoted as QE. In
detail, for i ∈ [n], we set

A(i) =

 0

eTi
ui

li−ui e
T
i

 , B(i) =

−eTi−eTi
eTi

 and c(i) =

 0
0
uili
li−ui

 .
For that, we use li := minx∈P xi and ui := maxx∈P xi and eventually define

AE =

A
(1)

...

A(n)

 , BE =

B
(1)

...

B(n)

 and cE =

c
(1)

...

c(n)

 .
Thus we obtain

QE :=
{(x

y

)
∈ P × Rn | AEx+BEy ≤ cE

}
⊂ R2n.

Remark 23. Indeed, QE is an independent ReLU approximation. All rows
of A and B are either 0 or a multiple of a transposed unit vector eTi ∈ Rn. If
the latter is the case, i ∈ [n] is the same both in A and B when regarding the
same row indices of A and B.

4. Approximations of ReLU Neural Networks 33

Definition 24. Let S ⊂ R2n. Then, for i ∈ [n], we denote the embedded
image (in R2) of the orthogonal projection of S on the subspace span{ei, ei+n}
as S

∣∣
i
.

Lemma 25. Let P ⊂ Rn be a ReLU proper polytope and Q ⊂ R2n an inde-
pendent ReLU approximation of P . Then it holds for all i ∈ [n] and all x̂ ∈ P :

Q
∣∣
i
∩ ({x̂i} × R) =

[
Q ∩ ({x̂} × Rn)

]∣∣∣
i

(4.7)

Furthermore, there exist αi ≤ βi, αi ∈ R ∪ {−∞} and βi ∈ R ∪ {+∞} for
i ∈ [n] such that

{x̂} × [α1, β1]× . . .× [αn, βn] = Q ∩ ({x̂} × Rn). (4.8)

Proof. As in Definition 20, we use

Q =
{(x

y

)
∈ P × Rn | Ax+By ≤ c

}
⊂ R2n.

For the first part we see

Q
∣∣∣
i
∩ ({x̂i} × R)

=
{(xi

yi

) ∣∣∣ x ∈ P, y ∈ Rn, Ax+By ≤ c
}
∩ ({x̂i} × R) (4.9)

=
{(x̂i

yi

) ∣∣∣ x ∈ P : xi = x̂i, y ∈ Rn, Ax+By ≤ c
}

(4.10)

=
{(x̂i

yi

) ∣∣∣ x ∈ P, xi = x̂i, y ∈ Rn, A(i)x+B(i)y ≤ c(i)
}

(4.11)

=
{(x̂i

yi

) ∣∣∣ y ∈ Rn, A(i)x̂+B(i)y ≤ c(i)
}

(4.12)

=
{(x̂i

yi

) ∣∣∣ y ∈ Rn, Ax̂+By ≤ c
}

(4.13)

=
[{(x

y

) ∣∣∣ x ∈ P, y ∈ Rn, Ax+By ≤ c
}
∩ ({x̂} × Rn)

]∣∣∣
i

(4.14)

=
[
Q ∩ ({x̂} × Rn)

]∣∣∣
i

(4.15)

where (4.9) holds due to the defintion of Q and the orthogonal projection, and
(4.10) is rewritten. (4.11) holds, since the set is determined only by the values
of x̂i and yi. The values of xj and yj for j ∈ [n], j 6= i are not relevant for
the set and therefore we do not need any constraints on these. Hence we can
restrict the inequality in the set to the submatrices which are relevant for xi
and yi. In (4.12) it suffices to consider x̂ because all columns except the i-th
column of A(i) are zero. We can now switch back to the original inequality in
(4.13), as this affects only xj and yj for j ∈ [n], j 6= i. Then we can write the
set as an intersection (4.14) and apply the definition of Q (4.15).

4. Approximations of ReLU Neural Networks 34

For the second part of the lemma, we stress that for (x, y)T ∈ Q each yk,
k ∈ [n] is independent of the values of all other yl, l 6= k. This is an immediate
consequence of the definition of an independent ReLU approximation. Because
x̂ ∈ P is fixed, we can find a lower and upper bound for each yk, k ∈ [n] which
define the feasible range. Of course, these bounds can be infinite. Thus, we
obtain (4.8).

Theorem 26. Let P ⊂ Rn be a ReLU proper polytope and QE be the approx-
imation of P as in Definition 22. For any independent ReLU approximation
Q of P it holds QE ⊆ Q.

Proof. Let i ∈ [n] be fixed and Q be an independent ReLU approximation of
P . We define the set

Ci :=
{

(xi, yi) | x ∈ P, yi = max{0, xi}
}

and let Q
∣∣
i

be the embedded image (in R2) of the projection of Q on the

variables xi and yi. We claim that it holds conv(Ci) ⊆ Q
∣∣
i
. By definition of

Q we have Ci ⊆ Q
∣∣
i

and Q
∣∣
i

is a polyhedron, hence convex and therefore the

claim holds. In the first part of this proof, we show that conv(Ci) = QE
∣∣
i
. To

this end, we set

Q̃E :=
{(x

y

)
∈ P × Rn | A(i)x+B(i)y ≤ c(i)

}
⊂ R2n

where A(i), B(i) and c(i) are defined according to Definition 22 and for our
fixed index i. Obviously, we have QE ⊆ Q̃E which implies QE

∣∣
i
⊆ Q̃E

∣∣
i
. We

will show that Q̃E
∣∣
i

= conv(Ci), which allows us to conclude that

conv(Ci) ⊆ QE
∣∣
i
⊆ Q̃E

∣∣
i

= conv(Ci).

Let li := minx∈P xi and ui := maxx∈P xi. Then we find

Ci =
{

(xi,max{0, xi})
∣∣ xi ∈ [li, ui]

}
,

which is a direct consequence of the convexity of P . Because P is ReLU proper
we have li < 0 < ui. Thus we can write

Ci =
{

(xi, 0)
∣∣ xi ∈ [li, 0]

}
∪
{

(xi, xi)
∣∣ xi ∈ [0, ui]

}
.

Hence, Ci is the union of two one-dimensional polytopes and conv(Ci) has
three vertices at coordinates (li, 0), (0, 0) and (ui, ui). These are exactly the
vertices of the polytopes that constitute Ci. Definition 22 establishes A(i), B(i)

and c(i) such that they imply the following constraints for (x, y)T ∈ Q̃E :

yi ≥ 0

yi ≥ xi

yi ≤
ui(xi − li)
ui − li

The segments between the vertices of conv(Ci) induce the following lines:

4. Approximations of ReLU Neural Networks 35

(li, 0), (0, 0) yi = 0

(0, 0), (ui, ui) yi = xi

(ui, ui), (li, 0) yi = ui(xi−li)
ui−li

Taking the respective third vertex into account, we obtain exactly the
constraints of Q̃E and hence show that Q̃E

∣∣
i

= conv(Ci). Since

conv(Ci) ⊆ QE
∣∣
i
⊆ Q̃E

∣∣
i

= conv(Ci),

we find that conv(Ci) = QE
∣∣
i
. Now, we will combine this result with Lemma

25 in order to prove the theorem.
To this end, we fix an arbitrary x̂ ∈ P . Combining the last result with

(4.7) and applying it to QE , we obtain:

conv(Ci) ∩ ({x̂i} × R) =
[
QE ∩ ({x̂} × Rn)

]∣∣∣
i
.

Using conv(Ci) ⊆ Q
∣∣∣
i
, which we showed in the beginning of the proof, and

(4.7) applied to Q, gives

conv(Ci) ∩ ({x̂i} × R) ⊆ Q
∣∣∣
i
∩ ({x̂i} × R) =

[
Q ∩ ({x̂} × Rn)

]∣∣∣
i
.

Thus we obtain[
QE ∩ ({x̂} × Rn)

]∣∣∣
i

= conv(Ci) ∩ ({x̂i} × R) ⊆
[
Q ∩ ({x̂} × Rn)

]∣∣∣
i
. (4.16)

As a consequence of (4.8) in Lemma 25 we have[
Q ∩ ({x̂} × Rn)

]∣∣∣
i

= {x̂i} × [αi, βi]

and
Q ∩ ({x̂} × Rn) = {x̂} × [α1, β1]× . . .× [αn, βn]

is entirely determined by the projections for all i ∈ [n]. The same holds for QE
instead of Q. Since we fixed i ∈ [n] arbitrarily in the beginning, with (4.16)
we are now able to conclude that[

QE ∩ ({x̂} × Rn)
]
⊆
[
Q ∩ ({x̂} × Rn)

]
.

Now fix an arbitrary (x̌, y̌) ∈ QE . Since x̂ ∈ P was also arbitrary, we have

(x̌, y̌) ∈
[
QE ∩ ({x̌} × Rn)

]
⊆
[
Q ∩ ({x̌} × Rn)

]
which implies (x̌, y̌) ∈ Q. This proves QE ⊆ Q.

In Sections 4.4 and 4.5 we discuss possibilities for approximations that are
stronger than (4.4). Therefore we consider ReLU approximations which are
not independent. Finally, we use this theoretical basis for the development of
a novel approximation technique which is laid out in Section 4.7.

Nevertheless, the linear approximation (4.4) can be used to compute tight
bounds for the neuron values in a neural network by solving linear programs.
This method is proposed by Ehlers [19] and extensively used by Bunel et al.
[11]. We give an outline of this approach in Section 4.3. In addition, we
explain techniques that can be used to speed up the computation of the linear
programs and make this method more effective and efficient.

4. Approximations of ReLU Neural Networks 36

4.3 Efficient optimization based bound tightening
for neural network verification

If we build the MIP model using some preliminary lower and upper bounds for
each ReLU neuron, we can use the LP relaxation of the model to approximate
the output values of the neural networks. As shown in Theorem 18, this LP
relaxation coincides with the approximation (4.4) proposed by Ehlers [19].
While optimizing this LP only with respect to the network outputs is fast, it
does usually not suffice to prove relevant properties which are defined for the
network. Yet, this linear approximation of the network can be used to tighten
the lower and upper bounds for all neurons. Ehlers [19] and Bunel et al. [11]
apply this bound tightening technique, which we now describe. For each ReLU
input variable x we compute an optimal solution of the LP relaxation for the
objective functions x and −x. The optimum objective values hence give the
new bounds for x in the neural network. In accordance with Gleixner et al.
[24], we call this technique optimization based bound tightening (OBBT).

After the bound update, it is crucial to improve the MIP formulation
(3.1) or the corresponding linear relaxation (4.4), respectively. This allows to
compute significantly tighter bounds in the next layer. Of course, the best
case is that the lower bound is greater than 0, or the upper bound smaller
than 0. In these cases, formulation (3.1) or (4.4) can actually be replaced by{

y = x if the lower bound of x is positive, or

y = 0 if the upper bound of x is negative.

Otherwise, formulation (3.1) or (4.4), respectively, can be strengthened by
adding new constraints with the tighter values for l and u as bounds. Clearly,
the bounds should be computed layer by layer, starting with the first and
ending with the last layer. As the bounds of a neuron depend only on the
bounds of the predecessor neurons, this order allows to incorporate stronger
relaxations of the ReLU constraints for the neurons that follow behind. Indeed,
it is possible to build the approximation of the whole network only during the
process. That means, each variable is added separately to the model. If it
is a ReLU input variable, the bounds of this variable are optimized and then
the ReLU output variable is added using the optimized bounds for the ReLU
constraint. This course of action has the advantage that the size of the LP is
always as small as possible, as the variables which are not necessary are not
yet included in the model.

The major drawback of this LP based approach is its very high computa-
tional cost, as it requires to solve a number of LPs which is up to twice the
number of neurons in the network. We regard the ideas of Gleixner et al. [24],
who implemented an OBBT propagator in SCIP [25]. This propagator tries to
improve the bounds of a variable v by maximizing or minimizing the LP relax-
ation with objective function v. Although this propagator cannot be applied
directly to our problem, as it is focused on nonlinear problems, we investigate
which parts are most useful for verification of neural networks. Gleixner et al.
[24] treat two main topics: First, they show how to generate and propagate
Langrangian variable bounds (LVBs), and second, they propopse methods for

4. Approximations of ReLU Neural Networks 37

the acceleration of OBBT.
LVBs are valid inequalities with respect to the LP relaxations of mixed

integer nonlinear problems (MINLP), which also includes LP relaxations of
MIPs. Gleixner et al. [24] state that LVBs can be viewed as a one-row relax-
ation of the given MINLP, that provide a local approximation of the effect
of OBBT. They are obtained as a by-product of the LP solutions which are
computed during the execution of OBBT. For the following theorem, which
introduces LVBs, we use the definition of Gleixner et al. [24] for an MINLP.

Definition 27 (MINLP, Gleixner et al. [24]).

min cTx

gk(x) ≤ 0 ∀k ∈ [p]

li ≤ xi ≤ ui ∀i ∈ [n] (4.17)

x ∈ Rn

xi ∈ Z ∀i ∈ Λ

is called a mixed integer nonlinear program (MINLP). We have c ∈ Rn as
objective function vector, li ∈ R ∪ {−∞} and ui ∈ R ∪ {+∞} for i ∈ [n] as
lower and upper bounds, and Λ ⊆ [n] is the index set of integral variables. The
constraint functions gk : {x | ∀i ∈ [n] : li ≤ xi ≤ ui} → R, with k ∈ [p] for
some p ∈ N, may be non-convex.

Theorem 28 (Gleixner et al. [24], Theorem 1). Suppose we have a linear
relaxation of MINLP (4.17) which has the feasibility set

S :=
{
x ∈ Rn | Ax ≥ b, ∀i ∈ [n] : li ≤ xi ≤ ui

}
where A ∈ Rm×n, b ∈ Rm, and U ∈ R is a valid upper bound on the optimum
objective value of (4.17). Furthermore, suppose that we have an optimal
primal-dual solution (x̃, λ̃, µ̃) to

min
{
xk | Ax ≥ b, cTx ≤ U, ∀i ∈ [n] : li ≤ xi ≤ ui

}
where λ̃ ∈ Rm≥0 is the vector of dual multipliers for Ax ≥ b and µ̃ ≤ 0 is the

dual mutliplier of the objective cut-off constraint. Let r̃ = ek − AT λ̃ − cµ̃ be
the vector of reduced costs, where ek is the k-th unit vector. Then

xk ≥
n∑
j=1

r̃jxj + µ̃U + λ̃T b (4.18)

is a valid inequality for all x ∈ S ∩
{
x ∈ Rn | cTx ≤ U

}
, which is tight at x̃.

If (x̃, λ̃, µ̃) with λ̃ ∈ Rm≤0 and µ̃ ≥ 0 is optimal for

max
{
xk | Ax ≥ b, cTx ≤ U, ∀i ∈ [n] : li ≤ xi ≤ ui

}
then the same holds for

xk ≤
n∑
j=1

r̃jxj + µ̃U + λ̃T b. (4.19)

4. Approximations of ReLU Neural Networks 38

Valid inequalities of type (4.18) and (4.19) are referred to as LVBs. The
proof of Theorem 28 is based on basic LP duality and can be found in Gleixner
et al. [24]. We also refer to Gleixner et al. [24] for more details on questions
regarding the existence and usefulness of LVBs.

Remark 29. If we model the neural network verification problem as opti-
mization problem as described in Section 3.2, we are only interested whether
there exists a solution with objective value smaller than or equal to zero or
not. Hence, we can safely cut off all solutions with an objective value greater
than some ε > 0. Either the regarded instance Π is refutable and there exists
an optimum solution of the corresponding MIP with negative (or non-positive,
cf. Remark 10) objective value, which is hence smaller than ε. Otherwise Π
is verifiable such that the corresponding MIP has optimum objective value
γ ≥ 0. If γ ≤ ε, we have a non-negative optimum solution as it is the case
without application of LVBs. On the other hand, if γ > ε the MIP becomes
infeasible and we also know that the corresponding instance of the verification
problem is verifiable. For our experiments we set ε := 0.1 to have a sufficiently
big margin to zero in order to prevent erroneous results. If the verification
problem is formulated as feasibility problem, we cannot use this approach for
the generation of LVBs as there is no objective function.

The advantage of LVBs is that they can be propagated efficiently through
a branch-and-bound tree, while the frequent application of OBBT requires a
great computational effort for each branch-and-bound node that is processed.
In fact, LVBs are redundant inequalities and thus it is not benefical to add
them to the LP relaxation as Gleixner et al. [24] (Remark 3) point out. Never-
theless, LVBs identify bounds that are already implied by the relaxation and by
making them explicit (cf. Gleixner et al. [24], Remark 3) they can be propa-
gated to subsequently tighten other bounds. This is possible, since the tight-
ening of variable bounds for some xj in (4.18) or (4.19) tightens the bound
for the corresponding xk on the left hand side. We refer to Gleixner et al.
[24] for more details on the question in which order this propagation can be
performed reasonably. Of course, the propagation of LVBs cannot tighten the
variable bounds as much as the repeated application of OBBT. Yet, we see in
our experiments that for some instances the creation of LVBs is able to speed
up the solving process significantly. We refer to Section 9.2 for an overview
of the experiments. For detailed computational results see the configurations
marked by “genv” in Section C.3 of the appendix.

Gleixner et al. [24] regard three aspects which shall serve to accelerate the
application of OBBT. The first aspect is the selection of variables for which
to apply OBBT. While Gleixner et al. [24] give some arguments for which
variables OBBT should be applied or not, the answer to this question is rather
clear in our case. It is only useful to apply OBBT to those neuron variables
that follow a ReLU layer. Moreover, we also apply OBBT to the objective
variable, if the problem is solved as an optimization problems as described in
Section 3.2. This is useful, because the objective variable depends non-linearly
on the variables which model the properties to verify. This non-linearity is
modelled with the help of various binary variables, as laid out in Section 3.2.

That means, in general OBBT is applied to all ReLU input variables,

4. Approximations of ReLU Neural Networks 39

except the ones in the first ReLU layer, which depend linearly on the input
neurons. It is also applied to variables which are part of a layer without
ReLU activations if that layer follows a ReLU layer. It is not useful to apply
OBBT to ReLU output variables, since the bounds for these variables can
immediately be obtained by applying the ReLU function to the bounds of the
corresponding ReLU input variables. Furthermore, for neuron variables which
follow a layer without activation function, the variable bounds are simply an
affine combination of the bounds in the previous layer. Hence, these bounds
can be easily computed and there is no need to apply OBBT. Summing up,
we have a subset of variables for which it is useful to apply OBBT, while for
the rest of the variables applying OBBT cannot reach any improvements.

Of course, it can be considered not to apply OBBT to all variables where it
can be useful. It could be advantageous not to optimize bounds for neurons in
rear layers which typically have loose bounds. These optimizations take more
time, since the corresponding LPs contain more variables and constraints.
Also, they have less impact on other neurons than optimizations in the front
layers of a network. Therefore, we consider to skip OBBT if the bounds of
a variable are too loose. More exactly, we consider the difference of upper
bound and lower bound before application of OBBT. If this value exceeds a
certain threshold, we do not execute OBBT. On the one hand, this mostly
affects neurons in rear layers, so that these bounds do not have much impact
on further bound computations. On the other hand, we are mostly interested
in bounds that switch their sign from positive to negative or vice versa. If a
bound is quite large before OBBT is applied, it is very likely that applying
OBBT will not make the bound switch its sign. Therefore we try if we can
save computation time by skipping OBBT for bounds with (too) large absolute
values. However, this does not seem to be the case as the performance of the
configuration “no heur base 200” in Table 9.6 shows.

The second aspect is filtering bounds which can hardly be improved by
executing OBBT. Assume that y is the value of a variable, which is a candi-
date for the application of OBBT, in a feasible solution of the LP relaxation.
Moreover, let l ≤ y ≤ u be the bounds which are currently known for this
variable. If then y − l ≤ ε or u− y ≤ ε for some ε > 0, OBBT can strengthen
the corresponding bound by at most ε, as Gleixner et al. [24] point out. The
exclusion of such variables, whose LP solution values are already close to their
bounds, is called bound filtering. One can compute optimal solutions of the
LP relaxation using certain objective functions to hopefully obtain such solu-
tions with variable values close to their bounds. This is called aggressive bound
filtering by Gleixner et al. [24]. More exactly, Gleixner et al. [24] propose to
use positive and negative coefficients in the objective function to push vari-
ables towards their upper or lower bound, respectively. If a variable’s bound
can be filtered, the corresponding objective coefficient is set to zero (or could
be set to a coefficient of opposite sign to try and filter the other bound).

Though, for two reasons we do not make use of bound filtering in our
solving model for verification of neural networks. On the one hand, initial
experiments showed, that usually almost all bounds can be improved signifi-
cantly by OBBT. Subsequently, also aggressive bound filtering as suggested by
Gleixner et al. [24] cannot provide solutions with variable values close to the

4. Approximations of ReLU Neural Networks 40

previously known bounds. This happens, because the actual variable bounds,
computed by OBBT, are usually clearly tighter than the bounds which can
be obtained by any simple method, which even includes the symbolic bound
computation of Wang et al. [56]. On the other hand, it is very beneficial to
keep the LP relaxation small by including only those variables which are rele-
vant for the value of the current neuron variable, as described earlier in this
subsection. This implies, that normally we do not know the solution value of
a variable in the LP relaxation, for which OBBT has not been applied. Before
OBBT is applied to this variable, it is not included in the LP relaxation.
Therefore, it seems reasonable not to employ bound filtering for our purpose.

The third aspect is the order of the variables for which OBBT is executed.
Roughly, this is clear in our case, since variables should be processed layerwise.
The approximation of ReLU layers in the front of the network impacts the
bounds which can be computed for rear layers. Hence, OBBT should be
executed first for the first applicable layer, then for the second until the last
layer is reached. Yet, within the layers, it might be beneficial to use an order
of variables which reduces the number of simplex iterations that are needed
to solve the LPs which arise during the application of OBBT. Gleixner et al.
[24] propose three different strategies to order the variables for which OBBT is
applied. As the computation of good bounds is crucial for verification of neural
networks, and OBBT performs very well for this task, we do not establish a
time limit for OBBT or a limit on the number of simplex iterations as opposed
to Gleixner et al. [24]. Therefore, we are only interested to reduce the number
of simplex iterations which are necessary for the computation of all bounds.
Subsequently, we are never forced to skip OBBT for some variables due to an
iteration limit which is reached.

Gleixner et al. [24] suggest to use a greedy ordering, i.e. OBBT is applied
first to the variable, whose value in a current solution of the LP relaxation is
closest to one of its previously computed bounds. The idea of this approach
is that it requires less simplex iterations to reach optimality if there is not
much difference between the variable’s relaxation value and the known bound
of the variable. After OBBT is executed, the next variable is chosen based on
the LP solution that was found by OBBT and the differences to the variable
bounds. In this stratey, maximization and minimization are mixed arbitrarily,
i.e. if a lower bound is closest to a variable value, we minimize, otherwise
it is maximized. On the contrary, the strategy called min-max by Gleixner
et al. [24] first solves all minimization and then all maximization LPs. This is
motivated by the conjecture that the solutions to the minimization LPs are close
to each other and that processing them sequentially may (indirectly) exploit the
simplex algorithm’s warm starting capabilities; likewise for the solutions to the
maximization LPs (Gleixner et al. [24]). The reverse greedy strategy which
is also considered by Gleixner et al. [24] is not useful in our setting. In this
strategy variables are chosen first for optimization, that have a large distance
to their bounds. The goal is to find “important” reductions, which are often
those with a large ratio between the original and the reduced domain (Gleixner
et al. [24]), before the iteration limit is reached. Yet, the solutions are likely to
be more scattered across the feasible region of the LP relaxation which implies
the necessity for more simplex iterations. Since we do not impose an iteration

4. Approximations of ReLU Neural Networks 41

limit, this strategy does not seem to be useful for our application.
We compare these orders with our standard order, which processes all

neurons of each layer sequentially in a fixed order that arises from the definition
of the neural network. Then, each ReLU input variable is first minimized and
then maximized. However, our experiments do not show a significant reduction
of the runtime if the greedy ordering or the min-max strategy is used. In some
cases the number of solving nodes can be reduced, as certain nodes can be
cut off earlier if one of these orders is used. The computational results can be
found in Section B.1 of the appendix.

Eventually, we consider another approach for bound computations in
neural networks that is also a form of OBBT. Instead of using the LP relax-
ation to compute bounds, it is also possible to employ the exact MIP model
and compute bounds for the neurons with OBBT. This might sound absurd
in the first place, since computing bounds of the output neurons of a neural
network using a MIP model is the topic of the entire thesis. Indeed, applying
OBBT based on MIPs is a technique which is worth to be considered by
an empirical evaluation. Computing the best possible neuron bounds using
the MIP fomulation instead of the LP relaxation leads to strongly improved
bounds. Although not all MIPs are solved to optimality, clear improvements
of the corresponding bounds can be reached within a time limit of few
seconds per MIP. These improvements render it possible to solve also relevant
instances without specialized branching rules for neural network verification.

Clearly, OBBT could also be applied to the SDP relaxation of Raghu-
nathan et al. [43] that we presented in Section 4.1. This should provide better
bounds than OBBT on the LP relaxation, while solving the SDPs should be
significantly faster than solving the corresponding MIPs. However, we do not
implement this approach in the context of this thesis. In future work, it would
be interesting to use the SCIP plugin SCIP-SDP (see Gally et al. [22]) to
implement an SDP relaxation based model for neural network verification.
For the rest of the thesis, the abbreviation OBBT refers to OBBT on the LP
relaxation if not stated differently.

4.4 Polyhedral aspects of ReLU function in higher
dimensions

In general we regard neural network layers that feature ReLU activations for
all neurons of the layer. Hence, we investigate in more detail how the ReLU
function behaves in higher dimensions, i.e. if the ReLU function is applied
componentwise to layers with several neurons. The following definition allows
us to describe the image of the ReLU function in higher dimensions.

Definition 30 (Orthant). An orthant in Rn is a set

Ω(ε1, . . . , εn) := {x ∈ Rn | ∀i ∈ [n] : εixi ≥ 0}

where εi ∈ {−1, 1} for i ∈ [n]. Furthermore, we say that

Θ := {Ω(ε1, . . . , εn) | ∀i ∈ [n] : εi ∈ {−1, 1}}

is the orthant system in Rn.

4. Approximations of ReLU Neural Networks 42

An orthant is called quadrant if n = 2, or octant if n = 3, respectively.
Given n ∈ N, there are 2n different combinations of values for the εi, hence
there are 2n different orthants.

Remark 31. An orthant is a polyhedron, which can be seen directly from the
definition. Moreover, if Θ is the orthant system in Rn, then for each x ∈ Rn
there is Ω ∈ Θ such that x ∈ Ω. This is easily seen, since for x = (x1, . . . , xn)
we can set εi = sgn(xi) for i ∈ [n]. Hence x ∈ Ω(ε1, . . . , εn), because for i ∈ [n]
it holds εixi ≥ 0.

Lemma 32. Let P ⊂ Rn be a polytope, and Ω := Ω(ε1, . . . , εn) be an orthant.
We define S := {i ∈ [n] | εi = −1}. The image of the ReLU function over the
domain P ∩ Ω is ReLU(P ∩ Ω), which is given as the image (in Rn) of the
orthogonal projection of P to the subspace V = {x ∈ Rn | ∀i ∈ S : xi = 0}.
Especially, ReLU(P ∩ Ω) is a polytope of dimension at most n− |S|.

Proof. We define c ∈ Rn such that for i ∈ [n], ci = 0 if i ∈ S and ci = 1
otherwise. Now let C be the diagonal matrix with c on the diagonal. We
claim that C represents the orthogonal projection on V . Let x ∈ Rn be
arbitrary, then we find Cx ∈ V . Moreover, for v ∈ V , we have vi = 0 for all
i ∈ S, and [Cx]i = xi for all i ∈ [n] \ S. Hence, vT (Cx− x) = 0 for all v ∈ V
and the claim is shown.

Regard x ∈ P ∩Ω and let r := ReLU(x). Then it holds ri = 0 for all i ∈ S
and ri = xi for all i ∈ [n] \ S. That means, r = Cx. Hence, the orthogonal
projection C is identical to the application of the ReLU function on the domain
P ∩ Ω. Especially, this means that ReLU(P ∩ Ω) = {Cx | x ∈ P ∩ Ω} is a
polytope, as it is the image of a polytope under an affine map.

Eventually, V can be written as V = {Cx | x ∈ Rn}. As C has rank
n − |S|, this implies dim(V) = n − |S|. Since ReLU(P ∩ Ω) ⊆ V , it follows
dim(ReLU(P ∩ Ω)) ≤ n− |S|.

Theorem 33 (cf. Xiang et al. [62], Corollary 1). For a polytope P ⊂ Rn,
ReLU(P) is a finite union of polytopes.

Proof. Let Θ be the orthant system in Rn and note that |Θ| = 2n. Moreover,
Remark 31 implies that P ⊆

⋃
Ω∈Θ Ω = Rn. Thus, applying Lemma 32 to

P ∩ Ω for all Ω ∈ Θ immediately proves the theorem.

Hence we see that the convex hull of the union of polytopes in Theorem 33
is the best possible convex approximation of the ReLU activations of a layer.
This is clearly true, since Theorem 33 describes the exact feasible set after the
application of the ReLU function. The best convex approximation of this set
is its convex hull, which follows directly from the definition of the convex hull.

4.5 Computation and comparison of the ReLU
image and its approximation

We investigate a simple example to show how the approximation (4.4) of Ehlers
[19] differs from the best possible convex approximation. First we show how
to compute the convex hull of the ReLU image in higher dimensions.

4. Approximations of ReLU Neural Networks 43

Theorem 34. Let P ⊂ Rn be a polytope and Θ be the orthant system of Rn.
We let

VΩ := Vertices(Ω ∩ P) for Ω ∈ Θ and V :=
⋃

Ω∈Θ

VΩ.

Then it holds conv(ReLU(P)) = conv(ReLU(V)).

Proof. The definition of V implies V ⊆ P and hence it holds the inclusion
conv(ReLU(V)) ⊆ conv(ReLU(P)). For the opposite direction, we show
ReLU(P) ⊆ conv(ReLU(V)) which implies the desired inclusion due to the
definition of the convex hull.

Let x ∈ P and choose Ω ∈ Θ such that x ∈ Ω, which is possible as laid
out in Remark 31. Then we have x ∈ Ω ∩ P which is a polytope since P is
a polytope and Ω is a polyhedron. Subsequently, we can also use the convex
hull representation of this polytope which implies x ∈ conv(VΩ) = Ω ∩ P .
Hence there exist λj ≥ 0, j ∈ [m] for some m ∈ N such that

∑m
j=1 λj = 1 and

x =
∑m

j=1 λjvj for certain v1, . . . , vm ∈ VΩ. In the following we see that

ReLU(x) =
m∑
j=1

λj ReLU(vj). (∗)

For i ∈ [n] we have xi =
∑m

j=1 λj [vj]i and we distinguish three cases. If xi > 0,
it is

ReLU(xi) = xi =
m∑
j=1

λj [vj]i =
m∑
j=1

λj ReLU([vj]i).

On the other hand, if xi < 0, we have

ReLU(xi) = 0 =
m∑
j=1

λj · 0 =
m∑
j=1

λj ReLU([vj]i).

In both cases, the last equation holds because x, v1, . . . , vm ∈ Ω and Ω is an
orthant. That means xi > 0 implies [vj]i ≥ 0 for all j ∈ [m], and xi < 0
implies [vj]i ≤ 0 for all j ∈ [m].

If xi = 0, which is the third case, it is either λj [vj]i ≥ 0 for all j ∈ [m]
or λj [vj]i ≤ 0 for all j ∈ [m]. This holds, since λj ≥ 0 for all j ∈ [m],
v1, . . . , vm ∈ Ω and Ω is an orthant. Subsequently, with 0 = xi =

∑m
j=1 λj [vj]i

we have for all j ∈ [m], that either λj = 0 or [vj]i = 0. In this case it holds
that

ReLU(xi) = 0 =
∑
j∈[m]
λj=0

λj [vj]i +
∑
j∈[m]

[vj]i=0

λj [vj]i =
m∑
j=1

λj ReLU([vj]i).

As the ReLU function acts componentwise on x, we can apply these three
cases for i = 1, . . . , n to prove (∗). Thus we find

ReLU(x) ∈ conv(ReLU(VΩ)) ⊆ conv(ReLU(V)).

Since x ∈ P was arbitrary, we have shown that ReLU(P) ⊆ conv(ReLU(V)).

4. Approximations of ReLU Neural Networks 44

Now we prove how to compute the linear approximation (4.4) of the ReLU
function for several variables. To this end we use the ReLU approximation
QE of Definition 22 and consider its projection QE

∣∣
y

to the y variables, which
represent the output of the ReLU layer. It should be noted that the following
theorem and its proof are rather technical, and serve for the correct computa-
tion of examples in the rest of this chapter.

Theorem 35. Let P ⊂ Rn be a ReLU proper polytope and QE be the ReLU
approximation of P as in Definition 22. Furthermore, let Θ be the orthant
system of Rn. We let

VΩ := Vertices(Ω ∩ P) for Ω ∈ Θ and V :=
⋃

Ω∈Θ

VΩ.

In addition, let li := minx∈P xi and ui := maxx∈P xi and for a ∈ [li, ui],
i ∈ [n], set

l(i)(a) :=

{
a, a > 0

0, a ≤ 0
and u(i)(a) := (a− li)

ui
ui − li

.

We define a mapping f : P → P(Rn) such that for x ∈ P

f(x) =
{

(z1, . . . , zn) ∈ Rn
∣∣ ∀i ∈ [n] : zi ∈ {l(i)(xi), u(i)(xi)}

}
.

Moreover, for W ⊆ P we define

f(W) :=
⋃
w∈W

f(w).

Then it holds QE
∣∣
y

= conv(f(V)).

Proof. By definition of V we have V ⊆ P so that f(V) is well defined. First we
see that for all v ∈ V it holds f(v) ⊆ QE

∣∣
y
. This implies conv(f(V)) ⊆ QE

∣∣
y

since QE
∣∣
y

is a polytope and hence convex. Therefore, let v ∈ V ⊆ P be

arbitrary and z ∈ f(v), i.e. zi ∈ {l(i)(vi), u(i)(vi)} for i ∈ [n]. We need to show
that z ∈ QE

∣∣
y

which we do by showing that (v, z) ∈ QE . In view of Definition

22 it holds that (v, z) ∈ QE ⇔ AEv +BEz ≤ cE which is equivalent to

−zi ≤ 0 ⇔ zi ≥ 0

vi − zi ≤ 0 ⇔ zi ≥ vi
ui

li − ui
vi + zi ≤

uili
li − ui

⇔ zi ≤
ui(vi − li)
ui − li

for all i ∈ [n]. We fix an i ∈ [n] and show that the three inequalities hold. For
better readability, we will write l and u instead of l(i) and u(i) in the following.

Clearly, zi ≥ 0 holds, since l(vi) ≥ 0 by definition of l and

u(vi) = (vi − li)
ui

ui − li
≥ 0.

The latter follows from ui ≥ 0 (since P is ReLU proper), ui − li ≥ 0 and
vi − li ≥ 0. Next, we show zi ≥ vi.

4. Approximations of ReLU Neural Networks 45

While l(vi) ≥ vi is clear, for u(vi) we see

u(vi) = (vi − li)
ui

ui − li
≥ vi

⇔ −liui ≥ −vili
⇔ ui ≥ vi

The last line clearly holds and is equivalent to the line before, since P is ReLU
proper and thus −li > 0. We are left to show the last inequality

zi ≤
ui(vi − li)
ui − li

= u(vi).

Assume zi = l(vi), i.e. zi = 0 or zi = vi and we have already shown these
inequalities above. Otherwise, if zi = u(vi), the inequality holds by definition
of u. Hence, we see that z ∈ QE

∣∣
y

and we can conclude that f(v) ⊆ QE
∣∣
y

since z ∈ f(v) was chosen arbitrarily. For the second part of the proof, we we
need to show the opposite inclusion QE

∣∣
y
⊆ conv(f(V)).

Let (x, y) ∈ QE be arbitrary. Definition 22 and the ReLU approximation
(4.4) imply yi ≥ 0, yi ≥ xi and yi ≤ (xi − li) ui

ui−li , i.e. l(xi) ≤ yi ≤ u(xi) for
i ∈ [n]. First, we regard the case l(xi) = u(xi), i.e. l(xi) = yi = u(xi). This
implies either u(xi) = 0 or u(xi) = xi, which is the case if xi = li or xi = ui,
respectively, and then we define ci := 1

2 , so that

(1− ci)l(xi) + ciu(xi) =
1

2
l(xi) +

1

2
u(xi) = yi.

Otherwise it holds l(xi) < u(xi) and we define

ci :=
yi − l(xi)

u(xi)− l(xi)
∈ [0, 1].

This definition implies

(1− ci)l(xi) + ciu(xi)

= l(xi)(1−
yi − l(xi)

u(xi)− l(xi)
) + u(xi)

yi − l(xi)
u(xi)− l(xi)

=
l(xi)(u(xi)− l(xi))− l(xi)yi + l(xi)

2 + u(xi)(yi − l(xi))
u(xi)− l(xi)

=
yi(u(xi)− l(xi))
u(xi)− l(xi)

= yi.

As in the proof of Theorem 34, there is Ω ∈ Θ such that x ∈ Ω∩P . Analo-
gously we find m ∈ N, v1, . . . , vm ∈ VΩ, and λ1, . . . , λm ≥ 0 with

∑m
j=1 λj = 1

such that x =
∑m

j=1 λjvj . We see that

yi = (1− ci)l(xi) + ciu(xi)

= (1− ci)l
(m∑
j=1

λj [vj]i
)

+ ciu
(m∑
j=1

λj [vj]i
)

=
m∑
j=1

λj

[
(1− ci)l([vj]i) + ciu([vj]i)

]
. (4.20)

4. Approximations of ReLU Neural Networks 46

The last equation holds, since u is linear and l is also linear, if restricted to
one of the domains R≥0 or R≤0. Since v1, . . . , vm ∈ Ω and Ω is an orthant,
and λ1, . . . , λm ≥ 0, all summands are either non-positive or non-negative.

After regarding the components yi of y we will now see how y can be

written as a convex combination of points in f(V). For z
(j)
k ∈ f(vj) we define

coefficients c
(j)
k . The definition of f implies |f(vj)| = 2n, that means we have

indices k ∈ [2n]. For better readability, we will assume j ∈ [m] as fixed and

remove it partly from the notation. We define c
(j)
k =

∏n
i=1 γ

(k)
i with

γ
(k)
i =

{
1− ci, if [z

(j)
k]i = l([vj]i)

ci, if [z
(j)
k]i = u([vj]i)

.

We claim that

y =
m∑
j=1

2n∑
k=1

λjc
(j)
k z

(j)
k and

m∑
j=1

2n∑
k=1

λjc
(j)
k = 1 (4.21)

which means that y ∈ conv(f(V)) since z
(j)
k ∈ f(V) and λjc

(j)
k ≥ 0, k ∈ [2n],

is clear. As y ∈ QE
∣∣
y

was chosen arbitrarily, we are left to show (4.21) to
complete the proof of the theorem.

First we fix an order of z
(j)
k , k ∈ [2n]. This order is lexicographic, i.e. the

z
(j)
k are ordered depending on the value of [z

(j)
k]1 to [z

(j)
k]n. For each i ∈ [n],

we first have all z
(j)
k such that [z

(j)
k]i = l([vj]i) and then all z

(j)
k such that

[z
(j)
k]i = u([vj]i). We execute this order, starting from i = 1 and ending at

i = n. Of course, the c
(j)
k are ordered correspondingly, such that they are

ordered likewise lexicographicly by the factors γ
(k)
i . Here, first come those c

(j)
k

that start with factors γ
(k)
i = 1 − ci and afterwards those with γ

(k)
i = ci. In

fact, each z
(j)
k can be represented by a binary number b = b1b2 . . . bn such that

our order corresponds to the order of the natural numbers, i.e. 1, 2, . . . , n.
The binary numbers are written with leading zeros and defined by

bi :=

{
0, if [z

(j)
k]i = l([vj]i)

1, if [z
(j)
k]i = u([vj]i)

for i ∈ [n].

Using this order, it holds for l = 0, . . . , n− 2:

2n−l∑
k=1

n∏
i=l+1

γ
(k)
i

=

2n−l−1∑
k=1

n∏
i=l+1

γ
(k)
i +

2n−l∑
k=2n−l−1+1

n∏
i=l+1

γ
(k)
i

=

2n−l−1∑
k=1

(1− cl+1)

n∏
i=l+2

γ
(k)
i +

2n−l∑
k=2n−l−1+1

cl+1

n∏
i=l+2

γ
(k)
i

= (1− cl+1)

2n−l−1∑
k=1

n∏
i=l+2

γ
(k)
i + cl+1

2n−l∑
k=2n−l−1+1

n∏
i=l+2

γ
(k)
i

4. Approximations of ReLU Neural Networks 47

=

2n−l−1∑
k=1

n∏
i=l+2

γ
(k)
i

The last equation holds due to the fact that cl+1 ∈ [0, 1] and that

2n−l−1∑
k=1

n∏
i=l+2

γ
(k)
i =

2n−l∑
k=2n−l−1+1

n∏
i=l+2

γ
(k)
i ,

which is a consequence of our fixed order. Indeed, in the product, index i runs

from l + 2 to n and it holds γ
(k)
i = γ

(k+2n−l−1)
i for k ∈ [2n−l−1].

By using all the equalities from l = 0 to l = n− 2 we conclude that

2n∑
k=1

c
(j)
k =

2n∑
k=1

n∏
i=1

γ
(k)
i =

2∑
k=1

γ(k)
n = (1− cn) + cn = 1.

Subsequently we see the second part of (4.21), i.e.

m∑
j=1

2n∑
k=1

λjc
(j)
k =

m∑
j=1

λj

2n∑
k=1

c
(j)
k =

m∑
j=1

λj = 1.

To prove the first part of (4.21), it is left to show for i ∈ [n] that

(1− ci)l([vj]i) + ciu([vj]i) =
2n∑
k=1

c
(j)
k [z

(j)
k]i, (4.22)

which can be combined with (4.20) to obtain (4.21). First we regard the case
i = 1. According to our order it holds

2n∑
k=1

c
(j)
k [z

(j)
k]1 =

2n−1∑
k=1

c
(j)
k [z

(j)
k]1 +

2n∑
k=2n−1+1

c
(j)
k [z

(j)
k]1

=
2n−1∑
k=1

c
(j)
k l([vj]1) +

2n∑
k=2n−1+1

c
(j)
k u([vj]1)

= l([vj]1)(1− c1)

2n−1∑
k=1

n∏
d=2

γ
(k)
d + u([vj]1)c1

2n∑
k=2n−1+1

n∏
d=2

γ
(k)
d

Moreover, our order implies that

α :=
2n−1∑
k=1

n∏
d=2

γ
(k)
d =

2n∑
k=2n−1+1

n∏
d=2

γ
(k)
d ,

so that we find

2n∑
k=1

c
(j)
k [z

(j)
k]1 = l([vj]1)(1− c1)α+ u([vj]1)c1α. (4.23)

4. Approximations of ReLU Neural Networks 48

Using c1 ∈ [0, 1], we see that

α = (1− c1)α+ c1α

= (1− c1)

2n−1∑
k=1

n∏
d=2

γ
(k)
d + c1

2n∑
k=2n−1+1

n∏
d=2

γ
(k)
d

=
2n−1∑
k=1

n∏
d=1

γ
(k)
d +

2n∑
k=2n−1+1

n∏
d=1

γ
(k)
d

=

2n∑
k=1

n∏
d=1

γ
(k)
d = 1.

Now we can substitute α by 1 in (4.23) and obtain (4.22). If the fixed order
is changed accordingly, the argument serves to prove (4.22) analogously for

any index i ∈ [n] \ {1}. More exactly, we must start to order z
(j)
k and c

(j)
k by

component [z
(j)
k]i rather than component [z

(j)
k]1. After that, the order can be

performed as before running from the first to the last component, except i,
which is used in the first place. In fact, there is no need to actually change the
order. The sum on the right hand side of (4.22) only has to be splitted such
that the factors (1 − ci) and ci can be extracted separately. Although, this

is difficult to denote since 2i sums are required to separate all c
(j)
k containing

1 − ci or ci, respectively. However, this splitting can be performed for all

components i ∈ [n] of z
(j)
k , which establishes the correctness of (4.22) for all

i ∈ [n]. Finally, we combine (4.22) with (4.20) which results in

yi =
m∑
j=1

λj

2n∑
k=1

c
(j)
k [z

(j)
k]i.

Thus we have shown (4.21) componentwise which concludes the proof.

Now we apply this theorem to compute the approximation (4.4) of Ehlers
[19] for our example neural network as depicted in Figure 4.2. Our goal is to
find a good upper bound for the output o1 of the network. For example, this
would be useful to prove or disprove a property like o1 ≤ c for some constant
c ∈ R. We assume a1 ∈ [−3, 2] and a2 ∈ [−5, 4] as feasible domains for the
input values of the network. The weights and biases of the network imply
that x1 = a1 + a2 and x2 = a1 − a2 − 1. Figure 4.6 shows the feasible input
polytope of the ReLU layer and the corresponding ReLU image. The same
ReLU image can be seen in Figure 4.7, replenished with a depiction of its
convex hull, approximation (4.4) and the naive approximation.

Figure 4.7 clearly shows that even for only two variables the convex hull
of the ReLU image is strictly smaller compared to approximation (4.4). The
naive approximation using only the upper bounds of the variables is even
worse, as can also be seen in Figure 4.7. Indeed, the difference between the
naive “box” approximation and approximation (4.4) makes a big difference
when it comes to the capacity of solving the verification problem for instances
of relevant size. Especially, the quality of the bounds in previous layers heavily

4. Approximations of ReLU Neural Networks 49

−10 −8 −6 −4 −2 2 4 6 8 10

−10

−8

−6

−4

−2

2

4

6

8

x1, y1

x2, y2

Figure 4.6: Feasible set before and after application of the ReLU function
in the example neural network shown in Figure 4.2. The blue polytope is the
set of feasible inputs to the ReLU layer, while the set which is enclosed by red
lines shows the corresponding ReLU image. Moreover, the green dashed lines
indicate the maximum and minimum values for both ReLU input variables x1

and x2.

2 4 6 8

2

4

6

8

y1

y2

Figure 4.7: ReLU image and different convex approximations of it for the
neural network shown in Figure 4.2. The red lines enclose the ReLU image
and the black line (with the coordinate axes) indicates the convex hull of this
ReLU image. Approximation (4.4) of the ReLU image is depicted by the
orange segments and the coordinate axes, while the naive approximation is
the area between the green lines and the coordinate axes.

4. Approximations of ReLU Neural Networks 50

impacts the quality of the bounds in layers behind. Hence it seems appealing
to find an improved approximation of the ReLU image closer to the convex
hull, which is the best possible convex approximation.

4.6 Negative approximation results

Theorem 34 shows how the convex hull of the ReLU image of a polytope
can be computed explicitly. Though, this approach requires the enumeration
of exponentially many vertices. The same convex hull can also be computed
based on Theorem 33, which describes the ReLU image as a union of polytopes.
Balas [4] shows that the convex hull of a union of polytopes can easily be stated
explicitly. Moreover, Jones et al. [33] present a projection algorithm that
could be applicable for the computation of the polytope-orthant intersections
as implied by Lemma 32. Unfortunately, the number of polytopes in the union
grows exponentially with the number of neurons in the corresponding layer.
In general, for each orthant there can be one polytope in the union, i.e. the
union contains up to 2n polytopes where n is the number of neurons in the
layer. Therefore a direct application of this method is practically impossible,
unless the number of polytopes in the union can be significantly reduced.

If the dimension of the input is low, e.g. ≤ 10, the computations could be
tractable. The affine transformations between the layers of a neural network
do not increase this dimension, also if they map to a higher dimensional space.
Though, we prove that the ReLU image of a low dimensional polytope in a
high dimensional space may in general have the full dimension of the space.
Hence, the low input dimension can probably not be maintained when the
polytopes are propagated through the layers.

Theorem 36. Let n ∈ N. Then there is a polytope P ⊂ Rn of dimension one,
such that the ReLU image ReLU(P) has dimension n. Especially, the convex
hull of ReLU(P) also has dimension n.

Proof. We define

P :=
{
λ


−1
−2
...
−n

+


1
1
...
1

 ∣∣∣ λ ∈ [0, 2]
}

and show that it proves the theorem. Obviously P has dimension one. We
choose n + 1 vectors in P and show that they form a set of n + 1 affinely
independent vectors after applying the ReLU function to each of them. This
implies that ReLU(P) has dimension n and its convex hull, too. We choose
the following n+ 1 vectors, which are contained in P :

4. Approximations of ReLU Neural Networks 51

λ 1 1
2

1
3 . . . 1

n−1
1
n 0

0

−1

...

2− n

1− n





1
2

0

...

3−n
2

2−n
2





2
3

1
3

...

4−n
3

3−n
3


. . .



n−2
n−1

n−3
n−1

...

0

− 1
n−1





n−1
n

n−2
n

...

1
n

0





1

1

...

1

1


Now we apply the ReLU function to all these vectors and obtain the following
set of vectors:

λ 1 1
2

1
3 . . . 1

n−1
1
n 0

0

0

...

0

0





1
2

0

...

0

0





2
3

1
3

...

0

0


. . .



n−2
n−1

n−3
n−1

...

0

0





n−1
n

n−2
n

...

1
n

0





1

1

...

1

1


A set of n+1 vectors is affinely independent, if we subtract one vector from all
the others and the remaining n vectors are linearly independent (cf. Bertsimas
and Weismantel [6], Proposition A.1). We see that 0 ∈ ReLU(P) is one of
our vectors, so we can subtract it from the others without any computation.
The other vectors form an upper triangular matrix with strictly positive diag-
onal. Hence this matrix is invertible and the n column vectors are linearly
independent. Subsequently, the n + 1 vectors (including 0 again) are affinely
independent, which we wanted to show.

Our discussion shows that in general it is apparently difficult or impossible
to compute the convex hull of the ReLU image ReLU(P) for a polytope P . On
the other hand, we will now see that the convex hull of ReLU(P) can still give
very bad bounds when it comes to approximating the value of neurons in a
network. Indeed, we can give neither a multiplicative nor an additive approx-
imation guarantee for the quality of the bounds in a neural network which are
computed by a convex approximation. The approximation of ReLU(P) by
conv(ReLU(P)) for only one layer is suffient for this negative result.

Consider a neural network F : Rn → R with ReLU activation function as
in Definition 1. The restriction to a neural network with output dimension
one only serves to present the result more concisely. Clearly, it can also be

4. Approximations of ReLU Neural Networks 52

applied to neural networks with higher output dimension. Let X ⊂ Rn be a
polytope of feasible input values for this network. We can bound the output
of the neural network by U ∈ R, such that it holds F (x) ≤ U for all x ∈ X,
i.e. F (X) ⊆] −∞, U]. Assume that the bound U is tight, i.e. for all ε > 0
there exists x ∈ X with F (x) ≥ U − ε. The exact output range F (X) can
be computed by propagating the input polytope X through the network. In
fact, Theorem 33 shows that the ReLU image of a polytope is a union of
polytopes to which we could again apply the ReLU function. However, this
is computationally infeasible as the number of polytopes grows exponentially.
To alleviate this effect, we assume that after the application of the ReLU
function, the resulting union of polytopes is replaced by its convex hull. If
this convex hull is then propagated further through the network, we do not
obtain the exact output range F (X), but an approximation A ⊇ F (X) of it.
The union of polytopes can be replaced by its convex hull after each ReLU
application or only after some of the layers. In the latter case, we have to
deal with more polytopes but on the other hand the approximation is better.
Eventually, Ũ := supA is an upper bound for the output range of the neural
network on the input polytope X. We will now show that we cannot bound
the value of Ũ compared to the tight bound value U . For that it suffices that
for at least one layer the ReLU image is approximated by its convex hull,
before it is propagated further through the network. Under this assumption
and based on the previous explanations, we state the following theorem.

Theorem 37. A multiplicative or additive approximation guarantee for Ũ ,
based on the value of U , cannot be given.

Proof. We shall see that the neural network which is depicted in Figure 4.8
shows this result. This network has input and output dimension one, and
especially it has constant output 0 ∈ R for any input a1 ∈ R. Subsequently,
we have a tight upper bound U = 0. Because the input dimension is one, any
polytope X ⊂ R of feasible input values for this network is indeed an interval.
Any convex approximation of the first hidden layer produces bounds in Ω(d)
for the output neuron, where d is the length of the input interval. Hence, we
can neither give a mutliplicative nor an additive approximation guarantee for
the output of the network.

First we see that the network has constant output 0 ∈ R by regarding
input values λ ≥ 0 and λ < 0 separately. The following table shows all neuron
values as they appear within the forward propagation of input value λ ∈ R.

a1 x1 x2 y1 y2 x3 x4 y3 y4 o1

λ ≥ 0 λ λ −λ 0 −λ 0 0 0 0

λ < 0 λ 0 −λ −λ −λ −λ −λ −λ 0

Now we consider the feasible output set of the first ReLU layer, i.e. the values
of variables x2 and y2 for λ ∈ R, and denote this set as R. Then we have

R = {(λ, 0) | λ ≥ 0} ∪ {(0,−λ) | λ < 0} = {(a, b) ∈ R2
≥0 | a = 0 ∨ b = 0}.

We assume that λ ∈ [−c, c] for some c > 0, which implies that (0, c) and (c, 0)
are contained in R. Subsequently, we find that (c2 ,

c
2), which is a convex combi-

nation of these two vectors, is an element of conv(R). A forward propagation
of x2 = c

2 and y2 = c
2 through the network leads to the following result:

4. Approximations of ReLU Neural Networks 53

x2 y2 x3 y3 x4 y4 o1
c
2

c
2 0 c

2 0 c
2

c
2

We see that we have an output value of c2 which is in Ω(2c) as we claimed in
the beginning. Especially, c

2 cannot be bounded by any multiplicative or addi-
tive guarantee which is based on the constant output value 0 of the network.
Moreover, it should be noticed that for the second layer we did not use an
approximation but computed the exact ReLU image.

a1

x1

y1

x2

y2

x3

y3

x4

y4

o1

1

−1

ReLU

ReLU

ReLU

ReLU

−1

1

1

−1

1

Figure 4.8: Neural network with constant output 0. All biases are 0, weights
as denoted.

In spite of the theorem which we just presented, convex approximations of
ReLU constraints are highly useful. Especially this holds true for the approx-
imation (4.4) of Ehlers [19], which is applied succesfully by Bunel et al. [12]
and in our solving model (see Chapter 9 for computational results). We use
the following section to describe a method which improves this approximation.

4.7 Optimization based relaxation tightening for
two variables

In this section, we propose an efficient method which can strengthen the convex
ReLU approximation (4.4) by considering at least pairs of two neurons jointly.
In contrast to the approximation (4.4), this ReLU approximation is not inde-
pendent (cf. Definition 20). Because computing the projection of a polytope
on two of its variables remains a problem, we circumvent this issue by solving a
linear program which is sufficient for our purpose. We reconsider the example
from before, i.e. the neural network in Figure 4.2. The depiction in Figure 4.7
shows, that in this situation we could actually add one inequality and would
improve the approximation to be exactly the convex hull of the ReLU image.
This inequality is induced by the connecting segment between the vertices
of the convex hull that maximize y1 or y2, respectively. Of course, we cannot
make this inequality tighter, since otherwise feasible points of the ReLU image
would be cut off. Though, the segment between the vertices that maximize
y1 or y2, respectively, does not always induce a valid inequality as we show in
the following example. Figure 4.9 shows a polytope of feasible x1, x2 values
and the corresponding ReLU image of feasible values for y1 and y2, such that
y1 = max{0, x1} and y2 = max{0, x2}. The polytope is two dimensional, but
can also be considered as embedded image of a higher dimensional polytope

4. Approximations of ReLU Neural Networks 54

which is projected onto its variables x1 and x2. These two variables corre-
spond to two neurons in one layer of a ReLU neural network. The dimension
of the original polytope is then the number of all neurons in that layer. It
should be noted that we use these projections to R2 only for the visualization
of our method. The goal of our method is to obtain a tighter approximation
without computing projections of higher dimensional polytopes. In Figure 4.9,
the segment between the vertices that maximize y1 or y2, respectively, does
not induce a valid inequality with respect to the ReLU image.

−10 −8 −6 −4 −2 2 4 6 8 10

−8

−6

−4

−2

2

4

6

8

x1, y1

x2, y2

Figure 4.9: Feasible set before (blue) and after ReLU application (red) for a
different input polytope than in Figure 4.7. Clearly, the connecting segment
between the vertices that maximize y1 or y2, respectively, does not induce a
valid inequality for the convex hull of the ReLU image.

Now the idea is to add an inequality to the model which partly cuts off the
polytope resulting from the approximation (4.4), but leaves the ReLU image
intact. The cut is parallel to the segment between the vertices that maximize
y1 or y2, respectively. Depending on the situation, these vertices will either
meet the inequality with equality or not. Figure 4.10 depicts this inequality
and shows that adding this constraint considerably improves the approxima-
tion of the convex hull, compared to approximation (4.4). In the following we
describe how this constraint can be computed. A linear approximation of the
ReLU neural network in question serves as a basis. Naturally, we can use the
LP relaxation for this purpose if the verification problem is formulated as an
MIP. Remind that this is in fact identical to the linear approximation (4.4) of
the network (see Theorem 18), if the basic MIP formulation (3.1) is used.

Assume we want to tighten the approximation for the ReLU output vari-
ables y1 and y2 which correspond to ReLU input variables x1 and x2. All
of these variables are contained in the LP relaxation of the neural network.
In the final solution it must hold y1 = max{0, x1} and y2 = max{0, x2} due
to the ReLU constraints. Let â and b̂ be the optimum solutions when maxi-
mizing x1 or x2, respectively, in the current LP relaxation. Then we write

4. Approximations of ReLU Neural Networks 55

2 4 6 8 10

2

4

6

8

y1

y2

Figure 4.10: Here we see the ReLU image of the polytope depicted in Figure
4.9 colored in red, its convex hull in black, approximation (4.4) in orange,
the inequality which we want to introduce as a black dashed line and the
constraints of the naive approximation as a green dashed line. All sets are
limited by the coordinate axes.

â1 and â2 for the values of the variables x1 and x2 in the solution â. Analo-
gously we write b̂1 and b̂2 for the corresponding variable values in solution b̂.
It should be noted that these LP solutions are computed during the execution
of OBBT, and can therefore be obtained at no additional cost. Obviously it
holds â1 ≥ b̂1 and b̂2 ≥ â2 due to the choice of objective functions. Now we
define a1 := max{0, â1} and analogously a2, b1 and b2. For a visualization of
these points see Figures 4.11, 4.12, 4.13 and 4.14, which show different situa-
tions that may occur. We compute new objective coefficients as c1 := b2 − a2

and c2 := a1 − b1, i.e. c1, c2 ≥ 0. The latter holds due to the fact that α ≥ β
implies max{0, α} ≥ max{0, β} for α, β ∈ R. Again, we solve an LP using
the current relaxation and maximize the objective function c1x1 + c2x2. We
denote the optimum objective value as γ and compute δ := c1a1 + c2a2. It can
be noticed that

δ = c1a1 + c2a2 = (b2 − a2)a1 + (a1 − b1)a2 = b2a1 − b1a2,

hence it holds

δ = b2a1 − b1a2 = (b2 − a2)b1 + (a1 − b1)b2 = c1b1 + c2b2.

Indeed, we determined the objective to be orthogonal to the segment between
the vertices (a1, a2) and (b1, b2). After this computation we can strengthen
the LP relaxation by adding the constraint

c1y1 + c2y2 ≤ max{γ, δ}. (4.24)

Theorem 38. Constraint (4.24) is a valid inequality with respect to the
ReLU image corresponding to y1 and y2. That means, constraint (4.24) can
strengthen the LP relaxation of our MIP for the verification problem but
cannot cut off any feasible solution.

4. Approximations of ReLU Neural Networks 56

Proof. We remind that it holds y1 = max{0, x1}, y2 = max{0, x2} due to the
ReLU constraints, and a1, a2, b1, b2, c1, c2 ≥ 0, hence δ ≥ 0. That means, if
(y1, y2) = (0, 0) we have c1y1 + c2y2 = 0 ≤ δ. If (y1, y2) = (x1, 0) it holds
x1 ≤ a1 and hence c1y1 + c2y2 = c1x1 + 0 ≤ c1a1 + c2a2 = δ. On the other
hand, the case (y1, y2) = (0, x2) implies x2 ≤ b2 and subsequently we see
c1y1 + c2y2 = 0 + c2x2 ≤ c1b1 + c2b2 = δ. Otherwise it holds (y1, y2) = (x1, x2)
which implies c1y1 + c2y2 ≤ γ and we can conclude the proof.

Remark 39. Approximation (4.4) can be improved by adding constraints of
type (4.24) to the LP relaxation of the model. According to Theorem 26,
the improved approximation cannot be independent anymore. Indeed, if an
inequality of type (4.24) is effective, i.e. it actually strengthens approximation
(4.4), then c1, c2 > 0 in (4.24). Otherwise (4.24) reads 0 ≤ 0, y1 ≤ a1 or
y2 ≤ b2 where the two latter hold by definition of a1 and b2. In view of
Definition 20, c1, c2 > 0 implies that matrix B has at least one row which
features two non-zero coefficients. In fact, there will be one such row for each
pair of neurons for which an inequality of type (4.24) is added. Hence, by
definition the corresponding ReLU approximation is not independent.

Although we have to solve only one LP per pair of neurons, applying this
method to all possible pairs of neurons would lead to an immense computa-
tional cost. Therefore, we select only some pairs of neurons for which it is likely
to significantly strengthen the LP relaxation by adding the new inequality to
our model. It can be noticed that the tightness of approximation (4.4) depends
strongly on the bounds l < 0 < u for the corresponding neuron. On the other
hand, if l and u are fixed, the output y = max{0, x} is approximated better or
worse for different values l ≤ x ≤ u of the ReLU input variable x. Indeed, the
approximation is exact if x = l or x = u and the error is maximal for x = 0
as we will see in the following. Theorem 35 shows that these errors directly
translate into the size of the polytope which results from applying approxi-
mation (4.4) to the ReLU constraints. Therefore, we want to find pairs of
neurons, such that for both neurons the ReLU image is approximated rather
badly. In these cases we can expect the most substantial improvements of the
linear relaxation by our method, such that the cost of solving an additional
LP is hopefully outweighed by the improvements which are reached due to the
better LP relaxation.

We use Figures 4.11, 4.12, 4.13 and 4.14 to provide an overview of different
situations where the error of approximation (4.4) is either low or high. All
figures show a projection on variables x1 and x2 of the polytope before the
application of the ReLU function in blue. Red lines indicate the ReLU image of
this polytope, projected on variables y1 and y2, which are the corresponding
ReLU output variables. Black solid lines mark the shape of approximation
(4.4) which can be obtained by applying Theorem 35. A black dashed line
shows the cut which we introduce with our method and the green dashed lines
indicate the lower and upper bounds that can be found by OBBT for the (blue)
input polytope. Besides, the intersection of the non-negative quadrant with
the box which is limited by the green dashed lines, is the naive approximation
of the ReLU image.

4. Approximations of ReLU Neural Networks 57

−14 −12 −10 −8 −6 −4 −2 2 4 6 8 10 12

−4

−2

2

4

6

8

(a1, a2)

(b1, b2)

(â1, â2)

(b̂1, b̂2)

x1, y1

x2, y2

Figure 4.11: In this case approximation (4.4) is tight, i.e. it coincides with
the convex hull of the ReLU image. Hence, it is not useful to apply our method
in this case, as no improvement can be reached. Regarding inequality (4.24),
it holds δ = max{γ, δ}.

−14 −12 −10 −8 −6 −4 −2 2 4 6 8 10 12

−8

−6

−4

−2

2

4

6

8

(a1, a2)

(b1, b2)

(â1, â2)

(b̂1, b̂2)

x1, y1

x2, y2

Figure 4.12: Here we see that a significant error is introduced by approx-
imation (4.4), shown by the black lines. Adding inequality (4.24), where
δ = max{γ, δ}, as a cut reduces this error, as indicated by the black dashed
line.

We regard the quality of ReLU approximations in two ways. On the one
hand, we compute the maximum approximation error that may occur, if we
know bounds l < 0 < u for a neuron with ReLU activation. On the other
hand, we can also include information about the value of the ReLU input
variable x. In that case, we can compute the maximum approximation error
given l < 0 < u and given the value of x with l ≤ x ≤ u.

It is especially interesting, whether a (large) approximation error occurs
when approximating ReLU((â1, â2)) and ReLU((b̂1, b̂2)), i.e. the ReLU

4. Approximations of ReLU Neural Networks 58

−14 −12 −10 −8 −6 −4 −2 2 4 6 8 10 12

−8

−6

−4

−2

2

4

6

8

(a1, a2)

(b1, b2)

(â1, â2)

(b̂1, b̂2)

x1, y1

x2, y2

Figure 4.13: Here and in Figure 4.14 the maximum in inequality (4.24) is
assumed at γ. Although approximation (4.4) is exact for the points (â1, â2)
and (b̂1, b̂2), it does not reach the convex hull. However, adding inequality
(4.24) as a cut does not seem to be very effective.

−14 −12 −10 −8 −6 −4 −2 2 4 6 8 10 12

−16

−14

−12

−10

−8

−6

−4

−2

2

4

6

8

(a1, a2)

(b1, b2)

(â1, â2)

(b̂1, b̂2)

x1, y1

x2, y2

Figure 4.14: This situation is similar to the one in Figure 4.13, though here
approximation (4.4) is not exact for (â1, â2) and (b̂1, b̂2). Adding inequality
(4.24) as a cut seems to to be more effective in this case.

4. Approximations of ReLU Neural Networks 59

images of the OBBT solutions as laid out before Theorem 38. If the
maximum is assumed at δ in constraint (4.24), this constraint is met with
equality by (a1, a2) and (b1, b2), i.e. the exact values of ReLU((â1, â2)) and
ReLU((b̂1, b̂2)). Subsequently, we can be sure to cut off some parts of the
ReLU image approximation polytope, if the ReLU images of (â1, â2) and
(b̂1, b̂2) are not approximated exactly and the maximum in (4.24) is attained
at δ. This situation is depicted in Figure 4.12. Therefore, it seems reasonable
to compute the error which can occur in approximation of ReLU((â1, â2))
and ReLU((b̂1, b̂2)). Since approximation (4.4) is exact if x = l or x = u, it
follows that ReLU(â1) and ReLU(b̂2) are approximated exactly, in contrast to
ReLU(â2) and ReLU(b̂1). We will now see, how big the error in approximating
ReLU(â2) and ReLU(b̂1) may become.

Analogously to the definitions in Theorem 35, we let li := minx∈P xi and
ui := maxx∈P xi where P is the polytope corresponding to the current LP
relaxation. Then, for a ∈ [li, ui], i ∈ {1, 2}, we set (as in Theorem 35)

l(i)(a) :=

{
a, a > 0

0, a ≤ 0
and u(i)(a) := (a− li)

ui
ui − li

.

Assume that ā2 is a feasible approximation of ReLU(â2) according to approx-
imation (4.4) and b̄1 for ReLU(b̂1). Then it holds l(2)(â2) ≤ ā2 ≤ u(2)(â2) and
l(1)(b̂1) ≤ b̄1 ≤ u(1)(b̂1). Hence, the approximation error is u(2)(â2)−l(2)(â2) or
u(1)(b̂1) − l(1)(b̂1), respectively. To see this, it suffices to notice that l(i)(a) =
ReLU(a) for i ∈ {1, 2} and a ∈ [li, ui], while the upper bounds u(2)(â2) or
u(1)(b̂1) can be attained by the approximated values ā2 or b̄1, respectively. An
actual numeric value can be obtained by differentiating two cases. If â2 > 0
we have

u(2)(â2)− l(2)(â2) = (â2 − l2)
u2

u2 − l2
− â2 (4.25a)

and for â2 ≤ 0 it holds

u(2)(â2)− l(2)(â2) = (â2 − l2)
u2

u2 − l2
. (4.25b)

For b̂1 the values can be obtained analogously. The computation of these
values is based on the concrete values of â2 and b̂1 with l2 ≤ â2 ≤ u2 and
l1 ≤ b̂1 ≤ u1, respectively. In fact, â2 and b̂1 are the values of two ReLU input
variables in a layer (in different LP solutions â and b̂).

Now, we compute the maximum approximation error for known bounds
l < 0 < u but unknown value of the ReLU input variable x, which fulfills
l ≤ x ≤ u. To this end, we differentiate whether x has a non-positive or non-
negative value. Assume x ≤ 0, which implies that y = ReLU(x) = 0 while

the approximation only imposes 0 ≤ y ≤ u(x−l)
u−l . Thus the maximum error in

this case is

max
x∈[l,0]

u(x− l)
u− l

= max
x∈[l,0]

x
u

u− l
− lu

u− l
= − lu

u− l
.

The last equation holds, because u
u−l > 0 and thus the maximum is assumed

for x = 0. Similarly, for x ≥ 0 we see that y = ReLU(x) = x is the desired

4. Approximations of ReLU Neural Networks 60

equation, while the approximation gives x ≤ y ≤ u(x−l)
u−l . Here the maximum

error is

max
x∈[0,u]

u(x− l)
u− l

− x = max
x∈[0,u]

x(
u

u− l
− 1)− lu

u− l
= − lu

u− l
.

Analogously, the maximum is assumed for x = 0, since u
u−l < 1 and x ≥ 0.

Hence the maximum error is always emax = − lu
u−l and occurs for x = 0.

Now assume that c := u−l is fixed and we will see which values of l < 0 < u
maximize the maximum approximation error. To this end we notice that
u = c+ l and define

f(l) := − lu

u− l
= − l(c+ l)

c
= − l

2

c
− l.

We can use the first and second derivative of f to show that it has a maximum
at l̂ = − c

2 . That means, the error is maximized for u = c
2 and l = − c

2 . In other
words, if the difference between l and u is fixed, the biggest approximation
error may occur if l < 0 < u are such that |l| = |u|. Furthermore, we see that

emax = − lu

u− l
=

c2

4

c
=
c

4
,

i.e. the maximum approximation error grows linearly in the difference of u
and l. This computation substantiates the intuition (cf. Figure 4.5) that the
approximation (4.4) is rather good if one of the bound values is close to zero.

Based on this error analysis, we use the following concept for the selection
of variable pairs in a ReLU layer. First, we compute the maximum approxima-
tion error − lu

u−l for all neurons of the layer and sort the neurons in descending
order of this error value. Then we consider the first k ∈ N neurons in this
order for the application of our method. We fix n1 as one of these neurons,
for that we need to find another neuron n2 from the same layer to combine it
with. As before, we let x1 and x2 be the ReLU input variables corresponding
to n1 and n2. Likewise, â and b̂ denote the LP solutions when maximizing x1

or x2, respectively, and â1, â2, b̂1, b̂2 are the values of x1 and x2 in these LP
solutions. Our idea is to select such pairs (n1, n2) that we maximize the sum of
the maximum possible errors in approximation of ReLU(â2) and ReLU(b̂1),
i.e. u(2)(â2) − l(2)(â2) + u(1)(b̂1) − l(1)(b̂1). This value can be computed as
described by (4.25). In fact, for all combinations of n1 with a neuron n2 in
the same layer, we compute this value. Then we choose those pairs (n1, n2)
for which the value is among the l ∈ N highest of these values. For all of these
pairs, we apply our optimization based relaxation tightening. We will refer to
the method described in this section as OBBT2 and sometimes also specify
values for k and l.

Unfortunately, it seems that our selection rule for the neuron pairs, based
on the error analysis, is not successful. In our computational experiments, it
does not perform better than the selection of neuron pairs based on a fixed
order, which does not regard the quality of the approximations. Corresponding
computational results can be found in Section 9.2.

61

5 Primal Heuristics

For the problem of neural network verification the use of primal heuristics
lies in the quick falsification of incorrect properties. Surprisingly, even a trivial
heuristic, which only performs random sampling within the set of feasible
inputs, can often find counterexamples to incorrect properties quickly. On the
other hand, finding such counterexamples can take an immense computation
time if one only relies on the standard functionalities of an MIP solver like
SCIP. In addition, primal solutions can be used to tighten neuron bounds in
the rear parts of the neural network at hand. In this case, a good primal bound
for the objective value of the MIP formulation as optimization problem (cf.
Section 3.2) can be propagated backwards through the network and shrink the
feasible domain of some neurons.

5.1 Random sampling heuristic

The idea of the random sampling heuristic is plain and simple: Given an
instance Π = (X,Y, F) of the verification problem, we randomly pick x ∈ X
and check whether F (x) ∈ Y . In case that F (x) /∈ Y , we know that Π is
refutable. Moreover, using the MIP formulation as optimization problem, the
input vector x is also useful if it leads to a decrease of the primal bound, since
this may help to tighten neuron bounds as noted above. Clearly, the primal
bound only depends on the network outputs F (x) and hence on x ∈ X.

In general it is not trivial to obtain x ∈ X, if X ⊂ Rn is an arbitrary
polytope. However, as mentioned in Remark 6, many of the instances we
regard feature a polytope X which is actually a box. In this case, we simply
pick xi ∈ [li, ui] uniformly at random for i ∈ [n], where li, ui are the bounds of
X for each component. Otherwise, if X is not a box, we solve an LP to obtain
x ∈ X using a random objective function. We set x := arg min{cT y | y ∈ X}
where c ∈ [−1, 1]n is drawn uniformly at random. It should be noticed, that
for our instances as described in Section 8.2 it is n = 5, such that solving
these LPs does not impose a big effort. For the input layer of the network
we set x0 := x, and then forward propagation is used to compute the values
of all neurons in the network. After that, the values of the output neurons
are checked for feasibility with respect to the linear properties that should be
verified, i.e. it is inspected whether F (x) ∈ Y . If the verification problem is
modelled as an optimization problem as described in Section 3.2, we compute
the value of the objective variable t. If this value is below zero, the instance
is shown to be refutable. Moreover, the optimization based approach allows
to rank the solutions that are generated by random sampling. For t > 0, the
corresponding input x̃0 is “closer” to being a counterexample if it is smaller.
This does not mean, that there exists an input vector close to x̃0 regarding
any norm, which is actually a counterexample. However, we suspect that there
is a counterexample which activates most of the ReLU neurons in the same
phases. We will therefore use the idea of minimizing t in the more elaborated

5. Primal Heuristics 62

heuristic which we propose.
Bunel et al. [11] quite successfully apply random sampling to reduce the

runtime on instances that admit counterexamples. However, they only use the
simple sampling method, assuming that X is a box. The verification approach
of Wang et al. [56] explicitly assumes that X is a box. In fact, they only check
whether setting xi := ui−li

2 to obtain an input vector x = (x1, . . . , xn)T ∈ X
forms a counterexample for instance Π. The bounds li and ui for xi change
according to a branching scheme though, so that throughout the branch-and-
bound process various input vectors are checked.

5.2 LP based heuristic

We propose another heuristic that can be used in addition to the random
sampling heuristic. It is based on the local search proposed by Dutta et al.
[16], which is used for output range analysis of ReLU neural networks. Though,
we omit the use of gradient information and fit the heuristic more naturally
into the framework of MIP solving. The main idea is to fix all neurons in one of
their phases, such that the optimization variant of neural network verification
consists only in solving a linear program. More exactly, the heuristic works as
follows.

Assume that we have an instance Π = (X,Y, F) of the verification problem.
We start with a feasible input x0 ∈ X for the neural network and use forward
propagation to compute the values of all neurons in the network when applied
to input vector x0. Then, for each ReLU neuron, we fix the binary variable
d in (3.1) to zero or one, corresponding to the phase of the neuron that is
determined by propagating x0 through the network. Furthermore, the binary
variables in the formulation of the maximum function for objective variable t
(3.4) are also fixed, such that t = max{z1, . . . , zk}. With all binary variables
fixed, the MIP as described in Section 3.2 becomes an LP.

Dutta et al. [16] define the notion of a locally active region, which corre-
sponds roughly to the feasible set of such an LP. In fact, the only difference
is that we incorporate the output constraints as modelled by the zi variables
in (3.4). These are not regarded by Dutta et al. [16], as they focus on output
range analysis without verification of special properties.

Our LP is minimized with respect to variable t as objective function. After
the first minimization LP has been solved, we choose a ReLU input variable x̄
(corresponding to one ReLU neuron) of value zero if possible. For this variable,
we switch the fixed value of the corresponding binary variable d̄ from zero to
one or vice versa. Then we optimize again and obtain a new input vector
x̂0 ∈ X for the neural network. Clearly, this is given by the values of the
corresponding variables in the LP. After that, we switch the fixing of another
binary variable, whose corresponding ReLU input variable has value 0 in the
solution. This process is iterated until we find a feasible counterexample, i.e.
the optimal value of the LP is smaller than zero, or we reach a predefined
iteration limit. In case that none of the ReLU input variables is equal to zero,
we have to abort the procedure. Although, this case does not occur too often.
Dutta et al. [16] similarly solve an LP which is defined on the locally active

5. Primal Heuristics 63

region, though the objective function is defined by the gradient of the neural
network at the current input vector.

It is easy to see that switching the fixings of the binary variables as
described, can only reduce the objective value of the optimum LP solution. If
the ReLU input variable x is zero, the corresponding output variable y must
also be zero. This holds both for d = 1 and d = 0 in the set of constraints
(3.1). Hence, if x is zero, the LP solution remains valid after switching the
value of d. The optimum solution of the changed LP can thus not be worse,
i.e. the objective value is equal to or lower than the previous one. In fact,
often the objective value cannot be improved after switching the phase of a
ReLU variable. Yet this is not a major problem, as the simplex algorithm can
often prove optimality of the LP immediately in this case. Hence, there is not
much time spent on such cases.

In the following we describe, how we combine our LP based heuristic with
the random sampling heuristic. First we use the random sampling heuristic, as
described in the first part of this chapter, to find an input vector x0 ∈ X. The
random sampling process and forward propagation are very fast, and therefore
we try many (e.g. 1000) random inputs to find an input x0 ∈ X. Out of all
sampled input vectors, we select x0 ∈ X such that it corresponds to the lowest
value of objective variable t. The hope is, that x0 can be converted into an
actual counterexample by computing a new input vector x̂0. This is given
by the optimum LP solution after some ReLU phase switches as described.
Instance Π is shown to be indeed refutable, if the value of t is below zero in
this optimum LP solution. As mentioned in the beginning of this chapter, the
heuristically found primal solution may also be useful, if the value of t is still
positive. If it is low enough, it may strengthen the neuron bounds in the rear
parts of the network. This happens as the value of t is in fact an upper bound
of max{z1, . . . , zk} in (3.4).

Of course, both heuristics can be applied several times throughout the
solving process and not only in the beginning. Indeed, this is especially useful
in combination with the input domain branching scheme which we describe in
Section 6.1. In this case, the domain, from which random inputs are sampled,
becomes smaller over time due to the branching. Applied in a branch-and-
bound scheme, this helps to focus the random sampling process on smaller
domains in which it could be possible to find a counterexample. We make use
of this strategy in our experimental evaluation.

The LP based heuristic cannot necessarily find an input vector x̂0 ∈ X,
which corresponds to a lower value of t than the start vector x0 ∈ X, which was
obtained by random sampling. Yet, our experimental evaluation shows that
this does happen in many cases. In fact, the mean runtime on our evaluation
set of SAT instances, as described in Section 8.4, drops from 330.1 to 71.7
seconds if our LP based heuristic is employed. Detailed results are provided
in Table B.3 in Section B.2 of the appendix. On the other hand, the mean
runtime on our evaluation set of UNSAT instances (cf. Section 8.4) increases
only slightly from 915.3 to 943.7 seconds due to the application of our LP
based heuristic. Table B.4 shows detailed results for this experiment.

64

6 Branching Methods for Neural Network

Verification

The verification problem can be solved with a generic branch-and-bound
approach as described by Bunel et al. [12]. An introduction into the concept
of branch-and-bound can be found e.g. in Chapter 11 of Bertsimas and Weis-
mantel [6]. Indeed, it is not necessary to formulate and solve the problem as an
MIP, as it is sufficient to compute approximations of the neural network using
one of the methods we presented in Chapter 4. However, the branching rules
which we present for neural network verification, can be integrated into the
MIP solving process if a suitable MIP solver like SCIP [25] is used. First
we present a generic algorithm, that solves the verification problem with
branching. In contrast to the generic branch-and-bound algorithm presented
in Bunel et al. [12], we do not require that the verification problem is solved
as an optimization problem. For the algorithm, remind that SAT refers to a
refutable instance, while UNSAT refers to a verifiable instance.

Function is verifiable(Π)

r ← approximate(Π)

if r = UNSAT then
return True

else if r = SAT then
return False

else
Π1, Π2 ← split(Π)

if is verifiable(Π1) = False then
return False

end
if is verifiable(Π2) = False then

return False
end
return True

end

The verification problem can be solved by the recursive function
is verifiable. Applied to an instance Π = (X,Y, F), the function returns
“True”, if the instance is verifiable, and “False” otherwise. In the latter
case, a valid counterexample should also be provided, which we omit here for
brevity. The function is verifiable calls another function approximate,
that computes neuron bounds using one of the approximation methods
presented in Chapter 4. Then it checks, whether the approximation suffices
to conclude that the instance is verifiable (UNSAT) or refutable (SAT). We
mentioned how this can be done in the beginning of Chapter 4. In these cases,
the function is verifiable returns the corresponding result. Otherwise,

6. Branching Methods for Neural Network Verification 65

we split the current instance into two sub-instances for which the function
is verifiable is called again. In this chapter, we present two possibili-
ties how the split function can perform the branching. If the verification
problem is solved as an MIP (cf. Chapter 3), the behaviour of the function
is verifiable can be integrated into the branch-and-bound procedure of
the MIP solver. Basically, a single execution of the function is verifiable

corresponds to the processing of one node in the branch-and-bound tree
of the MIP solver. This processing comprises the following steps. First,
tighter neuron bounds are computed (by the function approximate), using
an approximation method as presented in Chapter 4. In SCIP, it is suitable
to implement a propagator for this task. Then the “UNSAT” case in function
is verifiable corresponds to a node which can be cut off. If the “SAT”
case occurs, a counterexample for the verification problem is found, and the
computation can be terminated. Otherwise, branching can be used to create
child nodes which can be approximated better to finally solve the problem.
There are slight differences between the different MIP formulations of the
verification problem as introduced in Sections 3.1 and 3.2.

Using the formulation as satisfiability problem, the “UNSAT” case in the
function is verifiable corresponds to an infeasible node. If a feasible solu-
tion is found at the current node, this corresponds to the “SAT” case. Simi-
larly, if no feasible solution is found, and infeasibility cannot be proved, new
child nodes are created by branching. On the other hand, if the formulation as
optimization problem is used, the “UNSAT” case correponds to a dual (lower)
bound which is greater than zero. Accordingly, the “SAT” case corresponds
to a primal (upper) bound lower than zero. Otherwise, branching is applied
to create child nodes. Our course of action differs slightly from the standard
branch-and-bound approach for MIP solving, since we do not need to compute
the actual optimum value of the MIP. Therefore, we can cut off a node when-
ever the dual bound is greater than zero. If an optimum solution should be
computed, a node may only be cut off if the dual bound of the node is greater
or equal to the global primal bound. However, if we find a primal solution with
negative objective value, we have found a counterexample for the instance and
can immediately stop the solving process. Before that and in general for all
verifiable instances, the primal bound is always positive. Therefore we can
cut off solving nodes earlier, if we only demand that the dual bound is greater
than zero. In this case, it is certain that no counterexample can be found
at this node, which would imply an objective value smaller than zero. It is
possible that we cut off the optimal solution of a verifiable instance if we cut
off a node where the dual bound is greater than zero, but smaller than the
global primal bound. But this is not a problem with respect to the question
whether the instance is verifiable or refutable. When all nodes are solved or
cut off, and the value of the dual bound is positive, we know that the instance
is verifiable. We refer to Section 3.2, especially Remark 10, for some details
on the (non-)necessity of strictly positive or negative bounds.

In principle, we can use standard routines of an MIP solver for the whole
computation, after we have computed initial neuron bounds using one of the
approximation methods as laid out in Chapter 4. The initial bounds are
necessary for both formulations of the verification problem as an MIP model.

6. Branching Methods for Neural Network Verification 66

We can improve the branch-and-bound procedure by cutting nodes off earlier,
as described above. However, the initially computed bounds are often quite
loose. Therefore, many relevant instances of the verification problem cannot
be solved if an approximation of the network is computed only once. Clearly,
this depends on the quality of the approximation. If OBBT is applied directly
to the MIP model rather than the LP relaxation, as described in the end of
Section 4.3, it may often be sufficient to compute this approximation just once
in the beginning. If the neuron bounds are good enough, the MIP model can be
solved by standard techniques of an MIP solver. Sometimes, even solving the
linear relaxation may be sufficient to show whether the instance is verifiable
or refutable. However, the application of OBBT on the MIP model is very
time consuming and hence not the best choice in many cases. Corresponding
computational results can be found in Table 9.6 in Section 9.2. Therefore it
is often necessary to compute a better approximation after branching. In this
chapter we present two branching rules specific to neural network verification.
Using these branching rules, it is possible to compute tighter neuron bounds
for the resulting sub-instances after branching. A well chosen combination
of approximation methods and branching rules is crucial for solving relevant
instances of the verification problem. This can be supported by using other
MIP solving techniques such as cutting plane generation, domain propagation,
and conflict analysis.

6.1 Input domain branching

Bunel et al. [12] propose a branching rule which splits the set of feasible input
vectors for an instance of the verification problem. The same rule is also
used by Wang et al. [57] for their solver Reluval and called “iterative interval
refinement”. Given an instance Π = (X,Y, F) of the verification problem,
the design of the branching rule is based on the assumption that X is a box.
However, the branching rule can also be applied if X is not a box, although it
might be less efficient in this case. We use our general assumption from Remark
6, that expresses the existence of bounds li ≤ xi ≤ ui for all x ∈ X ⊂ Rn and
i ∈ [n]. In case that X is a box, it holds X = [l1, u1] × . . . × [ln, un] by
definition of X. Otherwise, we have X ⊆ [l1, u1] × . . . × [ln, un]. Bunel et al.
[12] propose to select j ∈ [n] and split the domain of variable xj to subdomains

[lj ,
uj−lj

2] and [
uj−lj

2 , uj]. The domains of all other variables xi, i ∈ [n]\{j}
are left unchanged and thus we obtain two instances Πj1 = (Xj1, Y, F) and
Πj2 = (Xj2, Y, F) where

Xj1 = X ∩
(

[l1, u1]× . . .× [lj ,
uj−lj

2]× . . .× [ln, un]
)

and

Xj2 = X ∩
(

[l1, u1]× . . .× [
uj−lj

2 , uj]× . . .× [ln, un]
)
.

If X is not a box, it may happen that Xj1 = ∅ and Xj2 = X or vice
versa. That means, we do not perform a sensible branching in this case.
However, the computational experiments with our self defined instances, where
X is not a box, indicate that this branching rule may still be useful for
such instances. Corresponding results are reported in Sections 9.2 and 9.3.

6. Branching Methods for Neural Network Verification 67

Assuming Xj1, Xj2 6= ∅, we have thus two instances Πj1 and Πj2 of the veri-
fication problem with smaller input polytopes than Π. We know that Π is
verifiable, if F (X) ⊆ Y . This holds, if both F (Xj1) ⊆ Y and F (Xj2) ⊆ Y , i.e.
if Πj1 and Πj2 are verifiable. However, using one of the approximation methods
that we presented in Chapter 4, tighter neuron bounds can be computed for
the instances Πj1 and Πj2. Possibly, these tighter bounds suffice to conlude
that these instances are verifiable as laid out in the beginning of Chapter 4.
Otherwise, we can branch on these instances again. This can be continued,
until the applied approximation method is able to prove verifiability for all
instances at leaves of the branch-and-bound tree. Clearly, verifiability can
also be proven by other means of an MIP solver, if the problem is formulated
and solved as an MIP.

The selection of the branching variable is very important for the perfor-
mance of the branching rule, as noted already by Bunel et al. [12]. The first
proposal for a selection rule can be found in Bunel et al. [11], where the selec-
tion follows a fixed scheme. For that, an order of the input neurons, which
correspond to the possible branching variables, is fixed. Let N0 ∈ N be the
number of input neurons, which we index from 0 to N0−1. For a solving node
at depth d of the branch-and-bound tree, the branching variable is determined
as the (d mod N0)-th variable in the fixed order. We will refer to this selection
rule with the name “standard”. An advantage of this branching rule is that
the chosen branching variables are evenly distributed over all input neurons.
On the other hand, this rule does not use any information about the impor-
tance of the input neurons for the output of the neural network. Especially
with respect to the properties that shall be verified, it can be more efficient to
branch the domains of a few variables more often, and not evenly the domains
of all variables.

Bunel et al. [12] implement a selection rule which is based on work of
Wong and Kolter [59]. The idea is similar to the idea of strong branching
for MIP solving. Wong and Kolter [59] propose a method to compute an
approximation A ⊇ F (X) of the network output for an instance Π = (X,Y, F)
of the verification problem. In fact, they use approximation (4.4) as introduced
by Ehlers [19]. With that they obtain an LP which is a linear relaxation of the
verification problem, formulated as optimization problem. Then they consider
the dual of this LP, which they solve to compute a lower bound of the primal.
According to Bunel et al. [12], this gives only a loose bound, but can be
perfomed very fast. Hence, Bunel et al. [12] try all input neurons as branching
variables, and choose the one which results in the best lower bound, according
to the approximation method of Wong and Kolter [59].

For our implementation we mainly use a selection rule “gradient” which
is quite similar to the one used in Wang et al. [57] and works as follows.
Given an instance Π = (X,Y, F), it is possible to extend the neural network
represented by F to a neural network F̃ . This network F̃ encodes also the
properties which shall be verified. It has output dimension one, and for a fixed
input x ∈ X, the output is the same as the value of the objective variable t
in the MIP formulation as optimization problem (3.3). We use a max-pooling
layer to model the computation of the maximum in (3.3) in the neural network
F̃ and refer to Bunel et al. [12] for more details on the construction. As in

6. Branching Methods for Neural Network Verification 68

Wang et al. [57], we use gradient information for the selection of the branching
variable. X ⊂ Rn is the feasible input domain of the instance Π, and we use
the input bounds li ≤ xi ≤ ui for i ∈ [n] and x ∈ X. We compute the
gradient of F̃ at the input vectors x1 = (l1, . . . , ln), x2 = (u1−l12 , . . . , un−ln2),
and x3 = (u1, . . . , un). We let

g := ∇F̃ (x1) +∇F̃ (x2) +∇F̃ (x3) ∈ Rn

and for i ∈ [n] we compute zi := |gi| · (ui − li). Then we choose the branching
variable j ∈ [n] such that zj = max{z1, . . . , zn}. The intuition is that verifi-
ability of the instance depends mainly on the values of input neurons with a
high (averaged) absolute gradient value. Like Wang et al. [57], we also include
the size of the current domain into the decision for the branching variable. If
the domain of a variable is very large, then branching on this domain may be
more effective than branching on a variable with a small domain, although the
corresponding absolute gradient value might be bigger. We use the absolute
value of the gradient as we want to measure the impact of input changes on the
network verifiability, but not in a special direction. See Table 9.6 in Section
9.2 for runtime results of our solving model in various configurations. In the
corresponding computational experiments we also evaluate the performance
of the domain branching rule that we explained here.

6.2 Branching on ReLU nodes

It is a natural possibility to perform branching over the two phases of a ReLU
neuron. If the verification problem is formulated as an MIP, this corresponds
exactly to branching over the binary variables which correspond to the ReLU
neurons. The concept of this branching rule is already used by Katz et al.
[35], Ehlers [19], and Cheng et al. [14]. Wang et al. [56] also apply it for their
solver Neurify and call it “directed constraint refinement”.

Given a ReLU input variable x and the corresponding output variable y,
we can branch the constraint y = max{0, x} into two cases: either x ≤ 0,
y = 0, or x > 0, y = x. Regarding fomulation (3.1) of a ReLU constraint,
which uses a binary variable d along with some linear constraints, these cases
correspond to d = 0 or d = 1, respectively. Since our solving model is based on
the formulation of the verification problem as an MIP, we can simply perform
branching over the binary variables. Hence, the only question is how to select
the branching variables.

In Ehlers [19] this decision is made by the underlying SAT solver and not
specific to the problem of neural network verification. Katz et al. [35] adapt
the simplex algorithm to create their solver Reluplex, which always maintains
an assignment to all variables, which may violate some constraints, though. If
several intents to resolve a conflict by pivoting of variables are unsuccessful,
branching is performed. This procedure does not yield a selection rule which
could be used within a MIP solver. Cheng et al. [14] propose to branch first
on variables that are located in the front of the neural network, since these
branching decisions immediately influence the ReLU phases in rear layers.
Wang et al. [56] prioritize variables that belong to ReLU neurons which have
a large gradient with respect to the outputs of the network.

6. Branching Methods for Neural Network Verification 69

We use the two latter ideas for the implementation of the branching rule
in our model. Of course we do not branch on ReLU neurons whose phases are
already fixed. In fact, if the phase of a ReLU neuron can be fixed, we do so by
fixing the corresponding binary variable to zero or one, respectively. Using the
idea of Cheng et al. [14], we implement a selection rule “standard”. For that,
we order all ReLU neurons layer by layer, starting at the input layer. Then,
we consider all those binary variables which belong to ReLU neurons that are
not yet fixed and branch on one after the other. Moreover, we implement a
selection rule “gradient” that selects a branching variable out of the binary
variables which are not fixed. We compute the gradients of the weights on
all incoming edges of this neuron with respect to the outputs of the extended
network F̃ . This is the same extended network F̃ as introduced in Section
6.1 for the input domain branching rule. We compute the gradients at some
of the input vectors which are generated during the execution of the primal
heuristic as described in Chapter 5. Then we take the absolute value of the
sum over the gradients at the incoming edges and select the variable with the
highest value. However, our experiments show that this strategy does not work
good, as it leads to the selection of many variables in rear layers. Therefore,
the selection rule “standard”, which selects branching variables from the front
layers, performs better in our experiments. Computational results with respect
to the performance of these selection rules can be found in Table 9.6 along with
corresponding explanations in Section 9.2.

6.3 Realization in different solvers

In this section, we explain how the solving methods of Bunel et al. [12], Wang
et al. [56], and Katz et al. [35] can be viewed as implementations of the generic
algorithm which we presented in the beginning of this chapter. We will provide
details on our own solving model in Chapter 7.

Bunel et al. [12] formulate the verification problem as an optimization
problem analogously to the MIP formulation we presented in Section 3.2. Yet,
the problem is not solved directly as an MIP. Bunel et al. [12] build an LP
relaxation of the problem for which they use the linear approximation (4.4) as
proposed by Ehlers [19]. Based on this LP relaxation, OBBT can be applied
as described in Section 4.3. Bunel et al. [12] use the basic version of OBBT
without regarding any of the additional ideas we laid out in Section 4.3 based
on the work of Gleixner et al. [24]. Gurobi is employed as LP solver. As long
as the lower bound, obtained by solving the linear relaxation, is not positive,
input domain branching is applied. The selection of the branching variable
is based on the procedure of Wong and Kolter [59] for robustness certifica-
tion as laid out in Section 6.1. Additionally, random sampling over the input
domain, as we described in Chapter 5, is used to find counterexamples. At
each node of the branch-and-bound tree, Bunel et al. [12] randomly select
1024 vectors from the current input domain. Forward propagation is applied
to check whether any of these vectors is in fact a feasible counterexample for
the instance. The algorithm terminates, if either a counterexample is found
by the random sampling heuristic, or the global lower bound of the problem

6. Branching Methods for Neural Network Verification 70

can be proved to be positive. Although Bunel et al. [12] solve the verification
problem as an optimization problem which allows the processing of conjunc-
tion instances, this is not implemented by Bunel et al. [12]. Subsequently,
conjunction instances must be splitted as described in Remark 7 to be solved
by the implementation of Bunel et al. [12].

Wang et al. [56, 57] regard the verification problem as a satisfiability
problem. They use symbolic upper and lower bounds for all neurons, combined
with approximation (4.3). The functioning of their algorithm is similar to the
approach of Bunel et al. [12]. They compute an approximation of the output
domain of a neural network using their bound computation approach, which
we described in detail in Section 4.1. As this is usually not sufficient to prove
that an instance is verifiable, branching on ReLU nodes (see Section 6.2) is
used to solve the problem in the solver Neurify [56]. For the solver ReluVal
[57], which is designed to be used on the ACAS data set (cf. Section 8.1),
input domain branching is used. This is based on the fact, that the ACAS Xu
neural networks have only five inputs, which makes input domain branching
quite efficient. It should be noted, that the current version of ReluVal also
uses the bound computation approach with symbolic equations as presented
in Wang et al. [56]. In both cases, gradient information is used for the selec-
tion of the branching variable. That means, gradients are computed for the
interval bounds of each ReLU neuron (for ReLU branching) or each input
neuron (for input domain branching). The larger of both gradients is multi-
plied with the interval width. Branching is then performed at the neuron for
which the maximum value was computed. In order to find counterexamples,
a technique similar to the random sampling heuristic described in Chapter 5
is used. However, at each branch-and-bound node, it is checked for only one
vector whether it forms a counterexample for the instance. Therefore, finding
counterexamples may take relatively long. Wang et al. [56] also implement an
optional “adversary check mode” in ReluVal and Neurify. If this mode is used,
the approximation of the neural network is not refined anymore at all nodes
that have a depth of 20 or higher in the branch-and-bound tree. Instead, it is
only checked at these nodes, whether a counterexample is found. To obtain a
candidate vector for a counterexample, each component is set to the middle
of the corresponding interval in the input domain. The input domain is split
as in the case of input domain branching (cf. Section 6.1), such that different
candidate vectors are obtained. ReluVal and Neurify are only able to work on
instances Π = (X,Y, F) of the verification problem where X is a box. Due
to the bound computation approach, it is not possible to solve an instance Π
where X is not a box. This is in constrast to the approaches of Bunel et al.
[12] and Katz et al. [35]. In principle, X could be any polytope for these algo-
rithms, but this is not implemented in the solvers. On the other hand, ReluVal
and Neurify are able to process conjunction instances directly, whereas these
need to be split as described in Remark 7 for the other solvers.

The solver Reluplex of Katz et al. [35] is based on an extended version
of the simplex algorithm, which was introduced by Dantzig [15] for linear
programming. Although, it still can be seen as an implementation of the
generic branching algorithm we presented in the beginning of the chapter.
In the algorithm of Katz et al. [35], each variable is assigned to some value

6. Branching Methods for Neural Network Verification 71

that may possibly violate variable bounds or ReLU constraints. Variables are
either in the so called basis or non-basic. Basic variables can be represented as
linear combinations of non-basic variables. These equations form the simplex
tableau. Pivoting operations can be used so that a non-basic variables enters
the basis and one of the basic variables leaves the basis. As in MIP formu-
lations of the verification problem, each ReLU neuron is represented by two
variables x and y. In any feasible solution, it must then hold y = max{0, x}
for all ReLU neurons. As long as there is a pair (x, y) of such variables with
y 6= max{0, x}, there are two options in the Reluplex procedure. Either the
value of one of the variables is changed or a split is introduced. Introducing
a split corresponds to branching on a ReLU neuron. If either of the vari-
ables x and y is non-basic, its assigned value is updated so that y = max{0, x}
holds. This implies that the assigned values of basic variables are also changed.
However, this may result in broken ReLU constraints of other neurons or
violated variable bounds. In case that both x and y are in the basis, one
of these variables may be pivoted out of the basis, so that its value can be
updated. A split is introduced for a ReLU pair (x, y), if the number of updates
to the variables x and y exceeds a certain threshold. So the introduction of a
new split is the last possible measure to resolve a broken ReLU equation. This
shall prevent the creation of too many sub-instances that need to be solved.
Furthermore, variable bounds can be tightened throughout the execution of
the algorithm. Since basic variables are represented by a linear combination
of non-basic variables in the simplex tableau, this connenction can be used
to improve the bounds of basic variables. In some cases, this may help to fix
the phase of ReLU pairs, which accelerates the solving process. If a feasible
solution is found that fulfills all ReLU constraints and respects all variable
bounds, the algorithm terminates. In the generic algorithm, this corresponds
to the “SAT” case. There is no special heuristic for finding counterexamples.
Otherwise, if the value of a basic variables violates its bounds and the vari-
able cannot be pivoted out of the basis, the corresponding (sub-)instance is
verifiable. This corresponds to the “UNSAT” case in the generic algorithm.
Pivoting, updates of variable values, and bound tightenings can be seen as part
of the approximate function in the generic algorithm. The splitting of ReLU
pairs corresponds to the function split. Katz et al. [35] take the following
strategy for the execution of the algorithm. First, violations of variable bounds
are fixed, and after that violations of ReLU constraints are resolved. As the
fixing of violated ReLU pairs may introduce new bound violations, this process
is iterated. If a ReLU pair has already been updated or pivoted five times,
this pair is splitted, i.e. branching is applied. For each variable that enters
the basis, bound tightening is performed. Additional bound tightenings are
performed after a fixed number of pivoting operations. As we mentioned
before, Reluplex is only able to work with conjunction instances if these are
splitted into disjunction instances as laid out in Remark 7.

72

7 Implementation Details

In this chapter we describe the implementation of our solving model for
neural network verification. It is based on the academic and non-commercial
MIP and MINLP solver SCIP [2]. In fact, SCIP is designed as a solver
for constraint integer programming (CIP), which encompasses both MIP and
MINLP. However, our use of SCIP is limited to its MIP capabilities. We
access SCIP via its corresponding Python interface called PySCIPopt [39].
Our code is mostly written in Python 3.6, while some extensions are made to
PySCIPopt using the Cython programming language. The implementation is
publicly available at https://github.com/roessig/verify-nn. In the first
section of this chapter, we give a short outline of the functioning of SCIP and
its interplay with PySCIPopt. We limit our presentation to those components
that are relevant for our solving model. After that, we provide some details
regarding the implementation of our solving model in this framework. In the
last part of this chapter, we explain the available settings of our solving model.

7.1 Structure of SCIP and PySCIPopt

The solver SCIP is embedded in the SCIP Optimization Suite [25]. Especially,
this suite includes the LP solver SoPlex, which is the default LP solver used
by SCIP. However, SCIP provides interfaces to other LP solvers, too. We
use SCIP 6.0.1 and combine it with CPLEX 12.8.0.0 as LP solver. In many
cases, most of the solving time in our model is spent on LP solves. Therefore,
preliminary experiments showed significant reductions of solving times when
CPLEX 12.8.0.0 was used instead of SoPlex in the current version 4.0.1.

SCIP uses a branch-and-bound approach to solve MIPs. This is supported
by the computation of LP relaxations and the introduction of cutting planes.
Several plugin types are defined that allow to include problem specific algo-
rithms in the MIP solving process. For our solving model, we implement
branching rules, a primal heuristic, domain propagators, an event handler,
and a separator. In fact, all of these plugin are implemented via the Python
interface PySCIPopt. As some of our methods need access to the public API
of SCIP, these are directly implemented into PySCIPopt.

7.2 Implementation of the components

Our solving model is designed such that it allows a flexible combination of
various techniques, which we described during the course of this thesis. Its
structure is based on the generic algorithm that we presented in Chapter 6.
Bound computation approaches, branching rules and further techniques can
be combined in several ways. Moreover, a variety of settings allows to tune
the behaviour of the various components.

The general approach can be laid out as follows. Based on the basic MIP

https://github.com/roessig/verify-nn

7. Implementation Details 73

formulation of ReLU constraints (3.1), we model the verification problem as
an MIP. Various options exist, how the upper and lower bounds used in (3.1)
are computed. The verification problem is either formulated as a feasibility
problem (see Section 3.1) or as an optimization problem (see Section 3.2).
Major parts of our implementation are focused on the formulation as opti-
mization problem, though.

We implement two branching rules, corresponding to the two specific
branching rules for neural network verification as presented in Chapter 6.
To these we will refer as (input) domain branching and ReLU branching. In
the case of ReLU branching, we call the function branchVar in PySCIPopt
for the binary variable d in formulation (3.1) corresponding to the selected
ReLU neuron. This function performs branching on integer variables, so that
SCIP automatically creates the corresponding nodes in the branch-and-bound
tree. Furthermore, we explicitly tighten the bounds of the variables x and y
in (3.1) at the child nodes corresponding to the branching. In the domain
branching rule, we use the function branchVarVal in PySCIPopt to bisect the
selected input interval. Of course, standard MIP branching can also be used
instead of or in combination with the specialized branching rules. Depending
on the instance which is solved, the default branching rules of SCIP may even
outperform ReLU and domain branching.

SCIP features a so called diving mode which we extensively use for various
routines in our solving model. This mode can be started during the solution
process, and allows to change the current LP relaxation of the problem. The
LP consists of LP rows of the form l ≤ cTx ≤ u, where c ∈ Rn is a vector
of coefficients, x ∈ Rn represents the variable values, and l ∈ R ∪ {−∞} and
u ∈ R∪{+∞} are the left and right hand side. It is possible to change variable
bounds, left and right hand side of LP rows, and the objective function. The
LP can be repeatedly changed and solved again. After terminating the diving
mode, the LP relaxation is set back to the state before starting the mode.

Especially, we use the diving mode for the execution of OBBT. As we need
to solve many LPs during the execution of OBBT, we try to keep these LPs as
small as possible. As pointed out in Section 4.3, we only need to include those
variables in the LP, that correspond to neurons in layers before the neuron
whose bounds shall be optimized. Using the diving mode of SCIP, we do this as
follows. First, we relax all LP rows, which means that left and right hand side
are set to infinite values such that they do not impose restrictions any longer.
Then, all variables are fixed to zero, which effectively removes them from the
LP. During the execution of the LP, the fixed variables are released one by
one to their orginal domains. This activates the corresponding variable for the
next LP solve. Additionally, we reset the left and right hand sides of those
LP rows, where all variables with non-zero coefficients have been activated
already. These functions are implemented as extensions of PySCIPopt since
they require direct access to the LP data structures of SCIP. It should be
noted that this approach can be used generally to solve the LP relaxation in
SCIP only on a subset of variables, i.e. it is not limited to our application.

We implement two different propagators that are used to tighten variable
bounds throughout the solving process. One of the propagators is used with
the formulation of the verification problem as satisfiability problem, whereas

7. Implementation Details 74

the other one corresponds to the formulation as optimization problem. Both
propagators can work with several different bound computation approaches
as laid out in Chapter 4. The propagators call the corresponding functions,
e.g. for the execution of OBBT, and tighten the variable bounds. Our imple-
mentation also contains the bound computation approach proposed by Wang
et al. [56], based on their approximation (4.3). However, the implementation
of this routine is not optimised with respect to fast execution. In case of the
formulation as optimization problem, the propagator is also responsible for the
inclusion of Langrangian variable bounds (LVBs) as presented in Section 4.3.
The generation of LVBs is oriented very closely at the implementation of the
OBBT propagator in SCIP as described in Gleixner et al. [24]. As we cannot
use the OBBT propagator of SCIP directly, we need access to the public API
of SCIP for the creation of LVBs. Therefore, we implement the corresponding
functions directly as part of PySCIPopt using Cython.

A primal heuristic is implemented and follows our description in Chapter 5.
We provide settings that allow to use the heuristic only at the root node of the
branch-and-bound tree, or frequently at many or all nodes of the tree. For the
execution of the LP based heuristic, the diving mode of SCIP is used. It is also
used for the generation of feasible input vectors for an instance Π = (X,Y, F)
of the verification problem where X is not a box (cf. Chapter 5).

In Section 3.4 we described how the linear relaxation of a ReLU neural
network based on formulation (3.1) can be strengthened by additional cutting
planes. These have been suggested by Anderson et al. [3] along with a separa-
tion routine, that helps to find useful cutting planes easily. Hence, using the
interface PySCIPopt, we implement a separator which executes this separa-
tion routine and adds cutting planes if possible. SCIP provides various options
which we use to control the behaviour of the separator, we explain these in
the subsequent section.

Eventually, if the formulation of the verification problem as optimization
problem is used, we include an event handler that interrupts the solving process
if the global dual bound is greater than zero or the primal bound is lower than
zero. As we described with respect to the generic algorithm in Chapter 6, the
verification problem is already solved in these cases.

7.3 Parameter settings

In the following we provide an overview of the parameter settings that are
available for our solving model and give short explanations. Not all parameters
are always relevant. The parameters marked with * are only considered if the
corresponding technique is activated.

Parameter Default Explanation

eps 5e-08 numerical tolerance for various comparisons

timelimit 10000 time limit in seconds; not used for our experiments

presolving rounds 0 presolving is always disabled, i.e. value set to 0

use opt mode True True: formulation as optimization problem is used
False: formulation as feasibility problem is used

7. Implementation Details 75

Parameter Default Explanation

build optimize nodes False True: use OBBT (possibly on MIP) for
computation of initial neuron bounds

build use symbolic False True: use bound computation of Wang et al. [56]
for initial neuron bounds

use linear model True Only relevant if build optimize nodes is True. In
that case, OBBT is applied on LP if True, or on
MIP if False.

delete linear cons True Should redundant linear constraints be removed
after MIP constraints are added?

sampling heuristic local max iter -1000 number of iterations for sampling heuristic except
at the root node, negative value to disable

sampling heuristic local freq 1 frequency of heuristic application in
branch-and-bound tree, cf. SCIP documentation

sampling heuristic local maxdepth 8 maximum depth in the branch-and-bound tree, up
to which heuristic is executed

sampling heuristic max iter 1000 number of iterations for sampling heuristic at root
node, negative value to disable

sampling heuristic freq 1 should be 1

sampling heuristic maxdepth 0 should be 0

sampling heuristic bound
for lp heur

100000.0 LP heuristic is only executed, if sampling heuristic
found a solution with objective value smaller than
this value (only if use opt mode is True)

sampling heuristic max
iter lp heur

1000 maximum number of LP solves in LP heuristic

sampling heuristic use lp sol gen False Should be True if input domain of the instance is
not a box, else False.

use domain branching True Should domain branching rule be used?

*domain branching split mode gradient selection of branching variable, cf. Section 6.1,
either “gradient” or “standard”

*domain branching priority 100000 priority of the branching rule, cf. SCIP
documentation

*domain branching maxdepth 20 maximum depth in branch-and-bound tree up to
which the branching rule is applied

*domain branching maxbounddist 1 float value between 0 and 1, cf. SCIP
documentation, 1 means that branching rule is
applied at each node

use relu branching False Should ReLU branching be used?

*relu branching split mode standard selection of branching variable, cf. Section 6.2,
either “gradient” or “standard”

*relu branching priority 100000 priority of the branching rule, cf. SCIP
documentation

*relu branching maxdepth 10 maximum depth in branch-and-bound tree up to
which the branching rule is applied

*relu branching maxbounddist 1 float value between 0 and 1, cf. SCIP
documentation, 1 means that branching rule is
applied at each node

use obbt propagator True Should our propagator be used? (OBBT is not
necessarily executed.)

obbt maxdepth 20 maximum depth in branch-and-bound tree up to
which the propagator is executed

obbt optimize nodes True Should OBBT be applied? Needs
use obbt propagator to be True so that OBBT is
executed.

obbt use genvbounds False Should LVBs be generated? (needs that the
parameters obbt optimize nodes and
use opt mode are True)

7. Implementation Details 76

Parameter Default Explanation

use obbt two variables False Should OBBT2 be applied? (needs that the
parameters obbt optimize nodes and
use obbt propagator are True)

*obbt k 10 value of k for OBBT2

*obbt l 10 value of l for OBBT2

*obbt sort True Should variable pairs for OBBT2 be selected
according to the order based on our error analysis?
(cf. Section 4.7)

obbt use symbolic False Should bound computation approach of Wang et al.
[56] be applied in propagator?

obbt bound for opt -200 positive value: OBBT is only executed at neurons
with bounds l < 0 < u, if |l|+ |u| smaller than the
parameter value
negative value: OBBT is always executed if bounds
fulfill l < 0 < u

bfs from all inputs True Should be True if not all neurons are reachable from
each input neuron (i.e. via non-zero weights), else
False.

use ideal separator False Should separator based on work of Anderson et al.
[3] be used?

*sepa freq 1 frequency of separator application in
branch-and-bound tree, cf. SCIP documentation

*sepa priority 100 priority of the separator, cf. SCIP documentation

*sepa maxbounddist 0.0 float value between 0 and 1, cf. SCIP
documentation, 0.0 means that the separator is
only applied at the node with the best lower bound

*sepa delay False Should the separator be delayed if other separators
found cuts? (cf. SCIP documentation)

77

8 Description of Test Instances

In order to evaluate our model computationally and to compare it to
other solvers for neural network verification, we need a set of reasonable test
instances. As pointed out in Remark 6, research in the area of neural network
verification has focused on instances Π = (X,Y, F) where the input polytope
X is in fact a box. Indeed, we are not aware of any publicly available instances
of the verification problem where X is not a box. Therefore, we define such
instances to show the capabilities of our solving model. As a basis we use
the neural networks of the ACAS Xu system, which were used by Katz et al.
[35] to create instances of the verification problem. The ACAS Xu system is
designed to prevent collisions of (autonomous) aircrafts. We also perform our
evaluations on the original instances published by Katz et al. [35]. However, all
of these instances are very similar with respect to the network structure, as all
of the neural networks have input and output dimension five and contain 300
ReLU neurons. Therefore, we also use test instances with neural networks that
are trained on the well known MNIST handwritten digit data set (cf. LeCun
et al. [36]). In fact, we use the neural networks as pusblished by Wang et al.
[56] and verify robustness of classifications using the L∞ norm. In contrast
to the neural networks of the ACAS Xu system, the input dimension of the
MNIST networks is 784, i.e. relatively high. This difference is especially inter-
esting with respect to the performance of input domain branching as presented
in Section 6.1. However, based on Katz et al. [35], we start this chapter with
a description of the ACAS Xu system, which is a natural candidate for the
application of neural network verification. Subsequently, we explain the defi-
nition of corresponding test instances for the verification problem. After that,
we lay out the definition of test instances based on the MNIST data set. In
the last section of this chapter, we explain the selection of two subsets of the
various test instances. We use these subsets to reduce the computational cost
for the evaluation of several parameter settings in our model.

8.1 ACAS Xu system

The ACAS Xu system is a variant of the Airborne Collision Avoidance System
X (ACAS X) for unmanned aircrafts. Julian et al. [34] investigate how the
decision making logic of ACAS Xu can be represented by a neural network
instead of a very large table that requires several gigabytes of memory. This
is taken as motivation by Katz et al. [35] to verify desirable properties of the
neural networks for the ACAS Xu system using their solver Reluplex. Seven
input variables, as defined in Table 8.1, are regarded in the ACAS Xu system,
which models an encounter of two aircrafts. The purpose of the system is the
proposal of an appropriate action for the so called ownship, whose flight is
possibly affected by an intruder, i.e. another aircraft nearby. Of course, the
ACAS Xu system can also state that in a situation there is no reason to expect
a collision.

8. Description of Test Instances 78

ρ distance between ownship and intruder
θ angle to intruder relative to ownship heading direction
ψ heading angle of intruder relative to ownship heading direction

vown speed of ownship
vint speed of intruder
τ time until loss of vertical separation

αprev previous advisory

Table 8.1: Input variables for ACAS Xu system (cf. Katz et al. [35]).

vown
vint

ψ

θ

ρ

Figure 8.1: Visualization of geometric relations in the ACAS Xu system.

Based on Katz et al. [35] we give an outline of the functioning. Given an
assignment of feasible values to the input variables as listed in Table 8.1, ACAS
Xu computes scores for five different action items. These are Clear-of-Conflict
(COC), weak left, weak right, strong left, or strong right. The action with
the lowest score is then recommended by the ACAS Xu system. In fact, input
variable τ is discretized to take one of the values 0, 1, 5, 10, 20, 40, 60, 80 or 100
seconds, while αprev is a discrete variable as it represents the action which was
previuosly recommended by ACAS Xu. These variables are integrated into the
neural networks and hence there are 45 neural networks, where each of these
represents one of the possible combinations of τ and αprev. Subsequently, each
network has input dimension five due to the five remaining input variables
ρ, θ, ψ, vown, and vint. The output dimension is also five for each network,
as there are five possible actions. Furthermore, each network has six hidden
layers, where each of these contains 50 neurons with ReLU activations. A
depiction of the geometric relations between the different input variables can
be seen in Figure 8.1, and Table 8.2 shows the naming scheme for the neural
networks.

αprev COC weak left weak right strong left strong right

i 1 2 3 4 5

τ in s 0 1 5 10 20 40 60 80 100

j 1 2 3 4 5 6 7 8 9

Table 8.2: ACAS Xu neural networks are denoted as i j where i and j
correspond to the values of τ and αprev as indicated by the tables.

8. Description of Test Instances 79

8.2 Neural network verification for ACAS Xu
system

Katz et al. [35] define ten different properties for the ACAS neural networks,
where some properties are defined for all 45 networks, and others only for one
of these. We refer to Katz et al. [35] for details on the definitions of these
properties. Apparently, the definition of Property 8 in Katz et al. [35] does
not match the corresponding data which is released on Github by Katz et al.
[35]. For our evaluations we stick to the released data, which was also used
by Bunel et al. [12] in their comparison. This implies that the instance for
Property 8 is a disjunction instance as defined in Remark 7, which is also
the case for Properties 1, 2, 3, and 4. The definition of Property 6 does not
exactly meet our definition of the verification problem, as the set of allowed
input vectors is not a polytope. Nevertheless, Katz et al. [35] already split this
property into Properties 6a and 6b, both of which are then feasible conjunction
instances. Furthermore, Property 7 consists of two disjunction instances that
are combined as in Remark 5. The other properties, i.e. 5, 9, and 10 are
plain conjunction instances. While Properties 1, 2, 3, and 4 are applied to
all or most of the 45 neural networks, for the others, each property is tested
on only one network. Therefore, we name the instances like property4 3 7,
where the first digit indicates the property and the last two digits denote
the neural network as defined in Table 8.2. For Properties 5 to 10, which
are defined on only one network each, we leave out the name of the neural
network. Yet, if we split one of the conjunction instances 5, 6a, 6b, 7, 9, or 10
into separate instances as suggested in Remark 7, we may add a digit to the
name to differentiate between these. For example, property5 property is the
actual Property 5 as one (conjunction) instance, while property5 property 0

is one of the instances obtained by splitting the original property as explained
in Remark 7.

Both Bunel et al. [11, 12] and Wang et al. [57, 56] use this set of instances
to evaluate their solving models for neural network verification. Therefore,
we also use this set of instances, which is the most relevant benchmarking
set for verification of neural networks, for our computational experiments. In
fact, detailed runtimes for the approaches of Wang et al. [56] and Bunel et al.
[12] are not provided in the respective papers, and the hardware equipment is
different. Therefore, we also include their programs in our evaluation.

Moreover, we use the neural networks of the ACAS Xu system for the
definition of instances Π = (X,Y, F) where X is not a box. We define
different properties which are called lin opp, int away, and var dist. Prop-
erty lin opp(dir) models the situation that the intruder is close and heads
directly or roughly towards the ownship, which means that COC should not be
the recommended output. In case of int away, the intruder is faster than the
ownship and ahead of it, and flies roughly in the same direction. Therefore, a
strong turn should not be the recommended action. The situation modelled for
property var dist is similar. However, in this case both aircrafts are heading
in upward direction in Figure 8.1 and the intruder is ahead of the ownship.
Moreover, if the distance between the aircrafts is smaller, the intruder must be

8. Description of Test Instances 80

faster compared to the ownship. So, for var dist we demand that COC has
the minimal score. It should be noted, that the instances based on property
var dist are conjunction instances, while the other instances are disjunction
instances. Formal definitions of these properties can be found in Appendix A.

8.3 MNIST based test instances

LeCun et al. [36] introduced the famous MNIST data set for handwritten
digit recognition which has been used extensively for benchmarking of machine
learning models. Each image features a handwritten digit between zero and
nine, which should be recognized correctly by machine learning models that
were trained on the data set. In fact, it is possible to train relatively small
neural networks on this data set, as the size of the grayscale images is only
28 × 28 pixels. Usually, neural networks for this classification task have ten
output neurons. The one with the highest value indicates which digit is shown
in the input image, according to the neural network.

It would be desirable to give a formal definition of each digit, and then
verify whether a neural network classifies the digits correctly according to
these definitions. However, it is very difficult to give a proper definition of
a handwritten digit. Therefore, we regard the robustness of the classification
of the images as in Wang et al. [56]. We assume that the classification of an
image should not change, if each pixel of the image is allowed to change its
value only slightly. Each pixel has an integer value between 0 and 255 which
indicates the intensity of the pixel between white and black. To generate
instances of the verification problem, we allow a perturbation of each pixel
value by at most 1, 5, 10, or 20, of course limited by the general bounds of 0
and 255. Using these constraints, we obtain a polytope X ⊂ R784 of allowed
input vectors for the neural network. Then we impose the condition, that
the classification of the image should remain the same, with respect to the
original (and correct) classification. Verifying this property implies that we
obtain a conjunction instance of the verification problem. In fact, we demand
that the value of the output neuron corresponding to the correct classification
is greater than the values of all other output neurons. Assume that zero is
the correct classification and y0 is the corresponding output neuron, and the
other output neurons are y1, . . . , y9. Then we define the robustness property

Y :=
9⋂
i=1

{(y0, . . . , y9)T | y0 > yi} ⊂ R10,

so Y is the intersection of open halfspaces. To obtain an instance of the
verification problem, we need a neural network F . Wang et al. [56] provide
three (fully connected) ReLU neural networks which are trained on the MNIST
data set. Each of these networks has two hidden layers of 24, 50, or 512
ReLU neurons each, and 10 neurons without activation function in the output
layer. We only use the networks with 24 and 512 neurons per layer, for which
Wang et al. [56] report classification accuracies of 96.59 % and 98.27 % on
the MNIST test set [36]. From the MNIST images provided by Wang et al.
[56] on Neurify’s Github repository [55], we select the images numbered 2, 4,

8. Description of Test Instances 81

and 11 showing the digits one, four, or six, respectively. Combined with the
four different perturbation bounds, we obtain 12 instances (X,Y, F) of the
verification problem for each of the two neural networks. As these instances
are quite similar among each other, and verifying robustness on images of
digits is a somewhat artificial task, it seems unreasonable to create a very big
number of such instances. However, also these instances are based on neural
networks that arise from a training process on real data. This gives hope that
verification of these is similar to verification of other neural networks with
similar architectures.

According to our definition in Remark 7, all of these instances are conjunc-
tion instances. Hence, some solving methods require to split each of the
instances into nine separate instances.

8.4 Selection of evaluation subsets

To evaluate various settings of our solving model, we use a subset of the
instances that we presented in Sections 8.2 and 8.3. In fact, we use two subsets,
one contains SAT instances and the other one UNSAT instances. Both are
chosen such that they contain a diverse selection of all the instances. Mostly
we use the set of UNSAT instances, since the majority of settings only affects
the computation of the dual bound. To evaluate these settings, it is not useful
to compare results on SAT instances, as these almost only depend on the
performance of the primal heuristic. In both sets, there are conjunction and
disjunction instances. As we also perform experiments using the formulation
of the verification problem as feasibility problem, we exclude the conjunction
instances in this case, because they cannot be solved directly by the model.

For the SAT subset, we select three of the instances that we defined on the
ACAS neural networks (see Section 8.2 and Appendix A). In addition to that,
we use two MNIST instances with 24 neurons per layer, and two with 512
neurons per layer. From the ACAS instances of Katz et al. [35], we use three
instances belonging to Property 2, the two instances that constitute Property
7, and the instance for Property 8. There are no SAT instances belonging to
other properties. A detailed list of the resulting 13 instances can be found in
Section B.2 of the appendix, where we present results on the application of
primal heuristics.

For the UNSAT subset, we select 23 instances in total. Four instances
are selected out of our self defined ACAS instances, one of these is
lin acas 3 1 var dist. This is one of the two conjunction instances of
our self defined instances as listed in Appendix A. Then we include five
MNIST instances, three where the neural network has 24 neurons per layer,
and two with networks of 512 neurons per layer. Eventually we choose some
of the instances introduced by Katz et al. [35], such that each property is
represented, if corresponding UNSAT instances exist. We select two instances
of Property 1 which have medium difficulty. For Property 2, there are only
two UNSAT instances, which we both include. Furthermore, we include two
instances each of Property 3 and 4. These are rather easy to solve, similar to
all other instances of Properties 3 and 4. Properties 5 and 10 are included
as one conjunction instance each. Regarding Properties 6a and 6b, for each

8. Description of Test Instances 82

we choose one of the instances that are obtained by splitting the instances
according to Remark 7. Furthermore, we select two of the instances that
Property 9 can be split into. In fact, the conjunction instances are quite hard
to solve. Hence, it should be noticed, that one of the instances after splitting
tends to be significantly easier to solve than the whole conjuntion instance
(at least for UNSAT instances). This is the reason to include such instances
in the evaluation subset, because otherwise most of the instances cannot be
solved within a time limit of two hours. Regarding Properties 7 and 8, there
are no corresponding UNSAT instances. Finally, the tables in Appendix C
list all instances which are contained in our UNSAT evaluation subset.

83

9 Computational Evaluation

In this chapter we present empirical results for various experiments that
we conducted on the test instances which we presented in the last chapter.
First, we provide an empirical comparison of the quality of the bounds which
are computed by various methods as laid out in Chapter 4. Then we give an
overview of various configurations of our solving model and their influence on
its performance. We also use these experiments to determine good settings for
our solving model that should be used to reach the best performance. In the
last section, we present detailed runtime results of our solving model and the
programs of Bunel et al. [12], Wang et al. [56], and Katz et al. [35].

The evaluation of computational experiments requires the consideration
of various result values for many test instances. Average values can often
help to gain relevant insights. Though, given several non-negative values
v1, . . . , vk ∈ R≥0, an average of these values can be computed by different
means. Especially, if the values have different orders of magnitude, these
differences can be quite substantial. While the arithmetic mean 1

k

∑k
i=1 vi

is most commonly used for the computation of average values, it is heavily
influenced by high values. Therefore, single (high) outlier values may have an
unintentionally strong impact on the average value. Especially for the compu-
tation of averaged runtimes we use the shifted geometric mean as defined in
Hendel [30]. Based on a shift value s ∈ R≥0, it is given by

(k∏
i=1

vi + s
) 1

k − s.

The shifted geometric mean does not only reduce the influence of outliers
with high values, but also limits the influence of small values. The latter
is in contrast to the geometric mean without shift. We refer to Hendel [30]
and Achterberg [1] for a more detailed discussion and example calculations.
If not stated differently, runtimes are always reported in seconds and for the
computation of corresponding mean values we use a shift value of 10 (seconds).
Average values for the number of solving nodes are also computed as shifted
geometric mean with a shift value of 10.

9.1 Empirical comparison of bound computation
approaches

We use our evaluation set of UNSAT instances, as described in Section 8.4,
for a numeric comparison of the bounds which are obtained by various bound
computation approaches. Considering an instance Π = (X,Y, F) of the veri-
fication problem, we asssume that the ReLU neural network F has neurons
1, . . . , N . For all neurons we compute lower and upper bounds [li, ui], i ∈ [N],
based on the feasible input domain X. The bounds are computed layerwise
from the first to the last layer. Branching is not applied, i.e. we consider the

9. Computational Evaluation 84

approximation which assumes the whole polytope X as feasible input domain.
Then we compute the shifted geometric mean of {u1 − l1, . . . , uN − lN} with
shift value 1 for each instance. The mean value indicates how good the corre-
sponding bound computation approach is. We use a relatively low shift value
of 1, because small bound improvements can often be important. Clearly, it
is desirable that the difference ui − li is as small as possible for all neurons
i ∈ [N]. Hence, we can use the averaged values to compare the quality of the
bounds that are computed by different methods. In view of Table 9.1, which
shows the results, it is apparent that the quality of the computed bounds
differs vastly. Of course, in general the better methods do come with a higher
computational cost.

Instance Naive IA Sym. IA Symbolic OBBT OBBT2 OBBT2 OBBT
equations LP k=2, l=5 k=10, l=10 MIP

lin acas 1 1 int away 214.36 178.85 119.17 36.51 35.95 34.67 4.23
lin acas 1 1 lin opp2 182.90 111.48 60.60 15.60 15.49 15.01 3.55
lin acas 1 1 lin opp dir 175.81 98.07 57.77 16.79 16.75 16.14 4.24
lin acas 3 1 var dist 155.95 110.24 73.78 15.38 15.14 14.32 1.25
mnist 24 image11 5 1183.50 888.54 755.85 732.07 732.07 732.07 670.67
mnist 24 image2 5 1150.58 834.30 743.92 718.20 718.20 718.20 634.58
mnist 24 image4 1 240.24 141.79 136.55 136.17 136.17 136.17 134.88
mnist 512 image11 5 895.37 654.84 475.09 442.19 442.19 442.19 440.36
mnist 512 image2 1 174.50 92.88 77.00 73.98 73.98 73.98 72.95
property10 property 189.95 93.06 52.47 18.49 18.29 17.49 6.43
property1 1 1 156.76 142.13 101.46 33.10 32.24 30.64 6.98
property1 2 2 251.37 246.90 141.17 52.89 52.41 50.27 12.54
property2 3 3 276.92 256.99 145.08 47.43 46.86 45.11 12.20
property2 4 2 169.18 167.75 100.07 36.38 36.18 35.26 8.79
property3 4 3 35.07 10.03 5.38 1.42 1.37 1.34 0.86
property3 4 4 46.96 18.14 5.87 1.18 1.17 1.17 0.85
property4 2 2 20.35 8.58 5.06 0.83 0.82 0.81 0.54
property4 3 7 54.87 24.96 8.84 2.91 2.83 2.81 2.27
property5 property 63.30 37.02 24.38 5.90 5.79 5.52 2.39
property6 6a property 3 155.80 123.15 67.99 27.09 26.81 25.62 5.87
property6 6b property 1 179.81 135.86 72.60 27.22 26.95 25.79 5.72
property9 property 0 66.15 33.42 17.63 6.21 6.15 5.89 2.61
property9 property 4 66.15 33.42 17.63 6.21 6.15 5.89 2.62

shifted geo. mean (shift=1) 156.54 98.30 60.23 24.83 24.61 23.98 10.38

Table 9.1: Averaged differences between neuron bounds in our UNSAT test
set for different bound computation methods. “IA” stands for interval arith-
metic, i.e. symbolic IA is the approach of Wang et al. [57]. “Symbolic equa-
tions” refers to the improved method of Wang et al. [56]. We evaluate OBBT
on the LP relaxation as well as on the MIP directly, and also our new tech-
nique OBBT2 with two different parameter settings. For OBBT on the MIP
model, a time limit of five seconds is set for each MIP which is solved. In fact,
the instances “property9 property 0” and “property9 property 4” differ only
in the property to be verified, which explains the coinciding numbers.

The results in Table 9.1 show that the best bounds are computed by OBBT
on the MIP model. However, this approach implies very long runtimes. Here
we only consider the quality of the bounds and refer to Section 9.2 for exper-
iments which evaluate the final performance of various bound computation
techniques. While OBBT2 computes better bounds compared to OBBT on

9. Computational Evaluation 85

the LP relaxation, the improvements are unfortunately quite minor. The
configuration k = 10, l = 10 implies that 100 additional LPs need to be solved
for each layer of the neural network, compared to 10 in the case of k = 2,
l = 5. We also see that the approaches of Wang et al. [57, 56] are clearly supe-
rior to naive interval arithmetic. Yet, they are not competitive with OBBT if
regarding only the quality of the computed bounds.

9.2 Comparison of different techniques in our
model

In this section we provide an overview of the performance of our solving model
in various configurations. Especially, we evaluate different settings for OBBT2
and for the separator based on the work of Anderson et al. [3]. Furthermore, we
compare many different settings and evaluate the performance of our solving
model with these settings. While the formulation of the verification problem as
optimization problem is used in most cases, we also provide some results using
the formulation as satisfiability problem. The experiments in this section are
run for the instances of our evaluation set of UNSAT instances as described
in Section 8.4. All results are obtained on cluster nodes with Intel Xeon
CPUs E5-2670 which have a clock rate of 2.5 GHz. Each experiment is run
exlusively on one cluster node and a memory limit of 32 GB is set. For our
time measurements (in wall clock time), we use a script which is provided
by Bunel et al. [12] and was used for their computational study. In general
we set a time limit of two hours, i.e. 7200 seconds for all experiments. If
the time limit is hit during the solving process, we assume the time limit
of 7200 seconds as runtime for the corresponding instance. This allows the
computation of average runtimes over all instances, also in the presence of
instances for which the time limit is hit. Clearly, we possibly underestimate
the real average runtime, but still we obtain a lower bound on the average
runtime. The same approach is also taken in Achterberg [1].

We report results both for the whole UNSAT test set, and separately for
the instances that are based on the ACAS XU system (cf. Section 8.2), and the
instances that are based on the MNIST [37] data set. Since the structure of the
corresponding neural networks is quite different, the performance of a certain
configuration may be bad on the ACAS instances, but good on the MNIST
instances, or vice versa. Comparing ACAS and MNIST based instances, the
main differences are the number of input neurons (5 vs. 784) and the number
of layers in the neural networks (6 vs. 2). Detailed results for all experiments
presented in this Section can be found in Appendix C.

For the experiments in this section we use a baseline configuration
“no heur base” of our solving model. In this configuration, domain branching
is used up to a depth of 20 in the branch-and-bound tree. It should be noted
that this depth is usually not exceeded, if domain branching is used. For
the selection of the branching variable, we apply the gradient based selection
rule as described in Section 6.1. Furthermore, OBBT is applied to the LP
relaxation at each solving node up to a depth of 20 in the branch-and-bound
tree. The primal heuristic is enabled only at the root node. Further techniques

9. Computational Evaluation 86

(e.g. the separator based on the work of Anderson et al. [3]) are not applied.
For a list of the detailed parameter settings we refer to Section C.3 of the
appendix.

Computational results for our relaxation tightening technique OBBT2 are
reported in Tables 9.2 and 9.3. We evaluate four different configurations
of OBBT2 and compare them to the baseline configuration “no heur base”.
Especially, we investigate our selection rule for the pairs of neurons to which
OBBT2 is applied. As described in Section 4.7, two parameters k, l ∈ N deter-
mine the number of selected neuron pairs. Indeed, per layer of the neural
network, kl pairs are then chosen for the execution of OBBT2. This implies
that kl LPs per layer of the neural network must be solved additionally for the
execution of OBBT2. We try two different parameter settings, k = 2, l = 5 on
the one hand, and k = 10, l = 10 on the other hand. Moreover, to evaluate the
performance of our selection rule, we alternatively choose kl neuron pairs in a
fixed order. We use this as a baseline selection rule, since this selection order
of the neuron pairs is based on the input description of the neural network.
In contrast to that, our selection rule is based on the error analysis as laid
out in Section 4.7. The suffix “ nosort” in the name of the configuration indi-
cates that the baseline selection rule is used. Furthermore, “ 10” means that
k = 10, l = 10 is set while otherwise it holds k = 2, l = 5. In Table 9.2
averaged runtimes are reported for the different configurations of OBBT2 and
the baseline configuration “no heur base” without OBBT2. Clearly, in many
cases the application of OBBT2 leads to increased runtimes. Especially in the
case k = 10, l = 10 the cost for solving 100 additional LPs per network layer
is not outweighed by the improvements to the LP relaxation. Unfortunately,
the results also indicate that our selection rule cannot outperform the baseline
selection rule. Apparently, our error analysis does not help to select neuron
pairs at which OBBT2 is more effective. However, the results in Table 9.3
clearly show that OBBT2 works in principle. The average number of solving
nodes in the branch-and-bound tree, which is computed only for instances
that were solved within the time limit, is significantly reduced by OBBT2.
Furthermore, in the case k = 10, l = 10 the reduction is clearly larger than in
the case k = 2, l = 5 which can be attributed to the stronger LP relaxation.
However, the runtime increases heavily in this case. See Section C.1 of the
appendix for detailed results of this experiment. The results for the baseline
configuration “no heur base” can be found in Section C.3.

Subset (number of instances) All (23) ACAS (18) MNIST (5)

Configuration Time Timeouts Time Timeouts Time Timeouts

no heur base 854.9 5 771.2 2 1237.3 3
no heur base obbt2 nosort 888.0 5 816.8 2 1199.1 3
no heur base obbt2 892.8 5 821.0 2 1206.2 3
no heur base obbt2 10 nosort 1225.2 9 1230.0 6 1208.1 3
no heur base obbt2 10 1249.5 9 1261.8 6 1206.0 3

Table 9.2: Runtime results for the application of OBBT2. In the column
“Timeouts” we report for how many of the instances the execution was stopped
due to the time limit of two hours.

9. Computational Evaluation 87

Configuration Nodes Time

no heur base obbt2 10 nosort 48.2 387.4
no heur base obbt2 10 48.7 400.3
no heur base obbt2 51.2 252.1
no heur base obbt2 nosort 51.7 249.6
no heur base 55.6 236.3

Table 9.3: OBBT2 clearly reduces the number of solving nodes, which is
computed as shifted geometric mean with shift value 10 (as the runtime mean
values). We regard only those 14 instances, which are solved within the time
limit by all methods. If the execution of a method is stopped due to the time
limit, it is not reasonable to compare the number of solving nodes between
different methods.

In the following, we report computational results regarding the application
of the separator in our solving model, which is based on the work of Anderson
et al. [3]. As mentioned in Section 7.2, we implement a separator in PySCIPopt
according to our description in Section 3.4. In SCIP there are various settings
available that control when and how often this separator is executed. Since the
execution of the separator is not necessary for the correctness of the solving
model, we can freely adapt these settings to reach a maximum reduction of
the overall runtime. In Table 9.4 we see that the execution of the separator at
some of the solving nodes reduces the average runtime of our solving model.
We use the same baseline configuration “no heur base” as in our evaluation
of OBBT2 as a reference for comparison. Detailed computational results and
the settings for the various configurations can be found in Section C.2 of
the appendix. In the configuration “no heur sepa0 freq5”, which leads to the
shortest average runtime, the separator is applied only at each fifth depth
level of the branch-and-bound tree. Moreover, then it is only applied to the
solving node with the best, i.e. highest, dual bound. In all other configurations
(except “no heur base”), the separator is applied at each level of the branch-
and-bound tree. However, the separator may be applied to all solving nodes
as in “no heur sepa1”, or only to those with a sufficiently good lower bound
(other configurations).

Subset (number of instances) All (23) ACAS (18) MNIST (5)

Configuration Time Timeouts Time Timeouts Time Timeouts

no heur sepa0 freq5 839.2 5 757.4 2 1213.1 3
no heur sepa1 841.2 5 760.5 2 1208.7 3
no heur sepa0 842.9 5 757.4 2 1237.0 3
no heur sepa0 high 849.9 5 771.9 2 1200.9 3
no heur base 854.9 5 771.2 2 1237.3 3
no heur sepa 855.0 5 776.4 2 1208.6 3

Table 9.4: Comparison of settings for the separator as suggested by Anderson
et al. [3]. In the column “Timeouts” we report for how many of the instances
the execution was stopped due to the time limit of two hours.

In Table 9.5 we analyse how the application of the separator impacts the
number of necessary solving nodes. For this comparison, we regard only those

9. Computational Evaluation 88

18 instances of the UNSAT test set which are solved within the time limit in
this experiment. Table 9.5 shows that the number of solving nodes is reduced
due to the application of the separator. Since we cut off nodes whenever the
dual bound is positive, the processing order of the solving nodes also impacts
the total number of necessary solving nodes. Therefore, the number of solving
nodes can be smaller although the separator is executed less often.

Configuration Nodes Time

no heur sepa0 freq5 108.9 458.8
no heur sepa0 109.0 461.4
no heur sepa 109.1 469.9
no heur sepa1 109.2 460.2
no heur sepa0 high 109.4 466.4
no heur base 112.6 469.9

Table 9.5: Mean values for runtime and number of solving nodes over the
18 instances of the UNSAT test set that are solved within the time limit by
all configurations in the table. In both cases, the shifted geometric mean over
the 18 instances with shift value 10 is used.

In Table 9.6 we report mean runtimes on the UNSAT test set for several
different configurations of our solving model. With respect to OBBT2 and the
separator, we use those configurations that led to the best results in the corre-
sponding comparisons. Detailed computational results for each test instance
and the parameter settings of each configuration can be found in Appendix
C. Here we try to give an impression of the differences between the config-
urations which we tested. Except for two cases, the primal heuristic is used
only at the root node and not at any other solving nodes. We are mostly
interested in the computation of the dual bound by various methods. Since
the primal heuristic contains some random influence, we want to keep this
influence small. Though, we do employ the primal heuristic at the root node
to obtain a primal bound for the problem, which corresponds to the usual
solving process with heuristic enabled. Otherwise, in most cases no primal
solution is found at all. We try this with the configuration “no heur atall”,
where the primal heuristic is also disabled at the root node. Contrary to
this, in the configuration “heur base 20” the primal heuristic is applied at all
solving nodes of the branch-and-bound tree up to a depth of eight. In fact,
most of the other configurations are adapted from our baseline configuration
“no heur base” by including additional solving techniques.

It is apparent to see in Table 9.6, that there is a clear difference between
solving MNIST based and ACAS based instances. In fact, the configura-
tion “no heur base genv” is the fastest in total because it performs well
on both types of instances. However, it is not the best configuration for
either of the two subsets (although close to the best configuration for ACAS
instances). The best configurations with respect to the MNIST instances
(“no heur relu genv” with respect to number of timeouts, “mnist base” with
respect to mean runtime) do not perform well on the ACAS instances.

The configurations in Table 9.6 are sorted by the total number of timeouts
on the UNSAT evaluation set. In the following, we give short descriptions of

9. Computational Evaluation 89

the configurations in this order. The configuration “no heur base genv” corre-
sponds to the baseline configuration with the additional use of Langrangian
variable bounds (LVBs) as described in Section 4.3. Obviously, the LVBs are
quite beneficial for solving MNIST based instances as it can be seen in Table
9.6. As discussed before, the configuration “no heur sepa0 freq5” is the best
one we found when investigating the performance of the separator. Next in
Table 9.6 follows our baseline configuration which is hence quite good already.
Indeed, “no heur base obbt2 nosort” is the best of our configurations that use
OBBT2 and it has a higher mean runtime. The configuration “heur base 20” is
identical to the baseline configuration “no heur base”, except that the primal
heuristic is also executed locally. This happens at all solving nodes up to a
depth of eight in the branch-and-bound tree. While the additional executions
of the heuristic do increase the runtime, these are often necessary to find coun-
terexamples successfully. Although the heuristic may also help to compute
tighter neuron bounds, we see that the runtime effect of its extensive applica-
tion is negative on our UNSAT evaluation set. In contrast, the configuration
“no heur atall” does not use the primal heuristic at all, and therefore times
out on one more ACAS instance than the configurations considered so far.
The configuration “no heur base 200” is very similar to the baseline config-
uration, however OBBT is only applied to neurons for which the difference
between upper and lower bound is less than 200. Apparently this strategy is
not beneficial on our benchmark set. Regarding the mean runtime compared
to the number of timeouts, the configuration “no heur base mip” is not in
line with the other configurations. Indeed, this configuration applies OBBT
to the MIP model in the beginning of the solving process to compute initial
neurons bounds. This comes with a high computational cost, also for rather
easy instances. However, for more difficult instances, this stratey is not that
bad as indicated by the relatively low number of timeouts.

Subset (number of instances) All (23) ACAS (18) MNIST (5)

Configuration Time Timeouts Time Timeouts Time Timeouts

no heur base genv 586.3 3 765.4 2 221.6 1
no heur sepa0 freq5 839.2 5 757.4 2 1213.1 3
no heur base 854.9 5 771.2 2 1237.3 3
no heur base obbt2 nosort 888.0 5 816.8 2 1199.1 3
heur base 20 930.2 5 855.7 2 1255.5 3
no heur atall 843.5 6 764.2 3 1202.3 3
no heur base 200 952.3 6 757.3 2 2165.0 4
no heur base mip 1556.5 6 1578.2 3 1480.9 3
no heur relu genv 750.3 7 1180.0 7 141.6 0
no heur relu 970.2 9 1334.2 8 304.5 1
domain relu 939.4 10 1054.5 8 618.8 2
no heur relu gradient 1348.9 13 1907.9 12 383.1 1
no heur std branch 1615.6 13 1756.0 10 1196.3 3
no heur sym 3416.8 18 4651.6 15 1121.8 3
mnist base 2753.5 19 7200.0 18 77.5 1

Table 9.6: Runtime results on the UNSAT test set using the formulation as
optimization problem and various configurations.

In the configuration “no heur relu genv”, ReLU branching is combined
with OBBT on the LP relaxation and the creation of LVBs. Most notably,

9. Computational Evaluation 90

this configuration is the only one that solves all MNIST instances in the evalu-
ation set within the time limit. Though, the performance on the ACAS based
instances is rather mediocre. Due to the low number of input neurons of the
ACAS neural networks, input domain branching is more efficient for these
instances. The same holds for the configuration “no heur relu” which does
not include the LVBs. Therefore, it performs not as good on both subsets of
our benchmark set. In the configuration “domain relu”, domain branching is
used up to a depth of six in the branch-and-bound tree and ReLU branching
afterwards. Compared to the baseline configuration which uses only domain
branching, it therefore performs better on the MNIST instances. The configu-
ration “no heur relu gradient” applies ReLU branching and uses the gradient
based selection of the branching variable as described in Section 6.2. Clearly,
the gradient based selection rule is inferior to the selection rule “standard”
which is used by the other configurations with ReLU branching. In these
configurations, branching variables are selected primarily from the first layers
of the neural networks. Though, the selection of the branching variable for
domain branching based on a fixed scheme, as suggested in Bunel et al. [11],
is not competitive with the gradient based selection (cf. Section 6.1). This is
shown clearly by the performance of the configuration “no heur std branch”.
Gradient based selection is used in all other configurations which use domain
branching, i.e. also in “no heur base”. In the configuration “no heur sym”
OBBT is not used and instead the bound computation approach of Wang et
al. [56] as described in Section 4.1 (see also “symbolic equations” in Section
9.1). It should be noted that our implementation of this method is not
very optimized, thus that the computations are quite slow and hence many
instances cannot be solved within the time limit. Domain branching is applied
in this configuration as in our baseline configuration “no heur base”. Eventu-
ally, the configuration “mnist base” uses neither domain branching nor ReLU
branching, and OBBT is also disabled. Initial neuron bounds are computed
by naive interval arithmetic. Subsequently, in this configuration the solving
process is mostly limited to the application of standard MIP techniques.
Notably enough, this configuration has the lowest mean runtime on the subset
of MNIST based instances. On the other hand, it times out on all ACAS based
instances. This vast difference can probably be attributed to the different
number of layers in the neural networks. As the MNIST neural networks have
only two layers, the initial neuron bounds, which are computed by naive IA, are
sufficiently good to solve the instances. Though, the ACAS neural networks
have six layers, and the neuron bounds, which are computed by naive IA,
are therefore extremely loose in rear layers. Hence, these instances cannot
be solved successfully without specialized bound computation methods (and
branching rules).

While all the configurations for which runtimes are reported in Table 9.6
solve the verification problem as an optimization problem, we also evaluate
our solving model with the formulation as satisfiability problem. Indeed, we
try three such configurations as can be seen in Table 9.7. Though, with the
formulation as satisfiability problem not all of the instances in our evaluation
set of UNSAT instances can be solved directly. Although it would be possible
to split such instances into various ones, which could then be solved as laid

9. Computational Evaluation 91

Configuration Time Timeouts

no heur sepa nonopt 555.3 1
no heur base nonopt 555.9 1
no heur base 590.1 1
no heur relu nonopt 1040.2 6

Table 9.7: Comparison of various configurations using the formulation
as feasibility problem with the baseline configuration of the formulation as
optimization problem (“no heur base”). Detailed results and the applicable
instances can be found in Section B.4 of the appendix.

out in Section 3.1, we simply omit these from our evaluation. The remaining
15 instances can be found in the tables in Section B.4 of the appendix. We
create a configuration “no heur base nonopt” that is identical to our baseline
configuration “no heur base” with the only difference that the formulation as
feasibility problem is used. In fact, we also use the same gradient based selec-
tion of the branching variable for the domain branching rule, which is actually
based on the formulation as optimization problem. However, the implementa-
tion of the selection rule does not affect the MIP formulation of the verification
problem. Moreover, we try to include the separator (“no heur sepa nonopt”)
and ReLU branching instead of domain branching (“no heur relu nonopt”).
LVBs cannot be created for the formulation as satisfiability problem as there
is no objective function. It can be seen that two of the configurations which use
the formulation as feasibility problem perform indeed better than our baseline
configuration “no heur base”. Therefore, we also use a configuration which
is based on the formulation as satisfiability problem for the comparison with
other solvers in the next section.

9.3 Comparison with other solvers

In this section we provide detailed results of computational experiments which
we conducted to investigate the performance of different solvers for neural
network verification. Besides our own solving model, which we regard in
various configurations, we include the programs of Bunel et al. [12], Wang
et al. [56], and Reluplex by Katz et al. [35]. The work of Wang et al. [56]
is implemented in two solvers, Neurify and ReluVal. ReluVal is used on the
ACAS instances of Katz et al. [35], whereas Neurify can be applied to the
MNIST instances. Our benchmark set consists of all the instances described
in Chapter 8, which can be grouped into three categories. First, we have
the ACAS instances as defined by Katz et al. [35]. Second, we have MNIST
instances, for which we use the corresponding neural networks provided by
Wang et al. [56]. Third, we have our self defined instances which are also
based on the ACAS neural networks but do not have a box as feasible input
domain. Due to that, the instances of the last category can only be solved
by our solving model. As mentioned in Section 2.2, the solver Sherlock of
Dutta et al. [16] for output range analysis is in principle capable to solve such
instances. However, it fails in certain cases (cf. Section 2.2) and we therefore
exclude it from the evaluation. In principle, the solving approaches of Katz et

9. Computational Evaluation 92

al. [35] and Bunel et al. [12] allow that the feasible input domain is not a box.
Though, this is not reflected in their corresponding implementations such that
their programs cannot be applied to our newly defined instances (cf. Section
6.3). We always check whether any alleged counterexample presented by some
solver is indeed a feasible counterexample for the corresponding instance. In
general, we perform these checks with a numerical tolerance of 10−8. Several
counterexamples are only feasible though, if a higher numerical tolerance is
allowed, which we report in that case.

A different hardware setup than in the previous section is used to conduct
the experiments in this section. However, this affects only the type of CPU
which is used. We still set a memory limit of 32 GB and use the script of
Bunel et al. [12] to measure the wall clock time of program executions. Each
experiment is run exclusively on one cluster node with an Intel Xeon Gold
5122 CPU which operates at a clock rate of 3.6 GHz. Subsequently, we can
expect lower runtimes compared to the experiments described in Section 9.2.

Besides the program names ReluVal, Neurify and Reluplex, we use the
following terms to denote the various solving models. Adv refers to ReluVal
or Neurify using the adversary check mode as described in Section 6.3. BaB
denotes the branch-and-bound method as implemented by Bunel et al. [12].
Eventually, we use NonOpt to describe that our solving model is used with the
formulation of the verification problem as feasibility problem. Joint refers to
our solving model using the formulation as optimization problem, which can
also solve conjunction instances (cf. Remark 7). On the other hand, Separate
indicates that we solve the verification problem as optimization problem, but
conjunction instances are split into several disjunction instances which are
then solved. This splitting is explained in Remark 7. As explained in Section
6.3, conjunction instances also have to be splitted for BaB and Reluplex.

Based on the results of our evaluation experiments in Section 9.2, we
choose the configuration “no heur sepa0 freq5” as the best for the ACAS
instances. Though, in order for a good performance on refutable instances,
we do adapt this configuration to execute the primal heuristic also locally
up to a depth of eight in the branch-and-bound tree. Compared to the
configuration “no heur sepa0 freq5”, the only difference is that the parameter
“sampling heuristic local max iter” is set to 1000. For NonOpt, the parameter
“use opt mode” is set to False, for Joint it is True. We refer to our hints in
the beginning of Appendix C on how the parameter settings must be chosen
for the different types of instances. Moreover, the detailed parameter settings
of the various configurations can be found in Appendix C, too.

Instance Result ReluVal Adv NonOpt Joint BaB Reluplex

property1 1 1 UNSAT 0.4 0.1 88.0 95.9 329.4 822.3
property1 1 2 UNSAT 0.5 0.2 146.0 155.3 703.7 1300.9
property1 1 3 UNSAT 1.9 1.5 359.6 382.5 1349.5 timelimit
property1 1 4 UNSAT 1.7 1.7 141.1 148.1 791.9 2260.2
property1 1 5 UNSAT 0.3 0.3 100.0 105.9 60.4 1750.7
property1 1 6 UNSAT 0.4 0.2 127.7 130.6 68.3 999.0
property1 1 7 UNSAT 0.1 0.1 81.8 83.5 66.0 398.0
property1 1 8 UNSAT 0.1 0.1 15.1 17.1 15.2 741.2
property1 1 9 UNSAT 0.1 0.1 15.9 14.6 16.5 204.9
property1 2 1 UNSAT 0.6 0.6 246.5 260.0 974.8 3015.1
property1 2 2 UNSAT 1.1 1.2 968.3 1029.9 1687.5 5351.5

9. Computational Evaluation 93

Instance Result ReluVal Adv NonOpt Joint BaB Reluplex

property1 2 3 UNSAT 1.6 1.5 928.8 988.1 818.8 4123.8
property1 2 4 UNSAT 0.6 0.6 116.5 125.0 603.2 1646.8
property1 2 5 UNSAT 3.8 3.4 1187.3 1148.5 timelimit timelimit
property1 2 6 UNSAT 2.7 2.7 2319.3 2443.8 timelimit timelimit
property1 2 7 UNSAT 11.2 10.3 4368.0 4620.1 timelimit 6329.2
property1 2 8 UNSAT 3.5 3.5 3557.8 3713.8 timelimit timelimit
property1 2 9 UNSAT 8.9 7.2 timelimit timelimit timelimit timelimit
property1 3 1 UNSAT 0.4 0.5 184.0 195.0 818.1 886.6
property1 3 2 UNSAT 0.8 0.8 215.8 269.1 1224.7 2200.6
property1 3 3 UNSAT 1.1 1.3 211.0 220.9 1007.5 2235.1
property1 3 4 UNSAT 0.6 0.6 121.9 130.0 604.1 2025.7
property1 3 5 UNSAT 1.5 1.5 459.9 480.5 4595.1 2737.0
property1 3 6 UNSAT 28.4 21.9 1124.0 1174.8 timelimit timelimit
property1 3 7 UNSAT 12.1 10.9 1081.2 1142.7 timelimit timelimit
property1 3 8 UNSAT 7.8 6.7 2540.9 2665.7 timelimit timelimit
property1 3 9 UNSAT 11.7 8.5 982.6 1052.0 timelimit timelimit
property1 4 1 UNSAT 17.0 16.0 567.0 597.6 2525.6 timelimit
property1 4 2 UNSAT 2.5 2.5 490.0 501.4 1287.9 5064.6
property1 4 3 UNSAT 1.1 1.2 1344.5 1370.2 940.5 3106.0
property1 4 4 UNSAT 0.8 1.0 134.9 137.9 829.4 2679.3
property1 4 5 UNSAT 2.9 3.1 1927.2 2002.1 timelimit timelimit
property1 4 6 UNSAT 22.6 15.1 timelimit timelimit timelimit timelimit
property1 4 7 UNSAT 22.3 17.6 3869.8 4205.4 timelimit timelimit
property1 4 8 UNSAT 48.9 16.8 1786.9 1856.2 timelimit timelimit
property1 4 9 UNSAT 21.2 15.8 timelimit timelimit timelimit timelimit
property1 5 1 UNSAT 0.6 0.6 255.4 301.4 1204.2 1424.1
property1 5 2 UNSAT 0.6 0.6 204.2 171.7 809.2 3187.3
property1 5 3 UNSAT 0.3 0.3 165.2 177.5 794.2 1461.0
property1 5 4 UNSAT 0.4 0.5 111.0 124.8 594.5 3011.9
property1 5 5 UNSAT 1.2 1.2 624.0 652.0 timelimit 6622.6
property1 5 6 UNSAT 15.9 13.7 3092.2 3248.8 timelimit timelimit
property1 5 7 UNSAT 3.4 3.4 3427.0 3558.0 timelimit timelimit
property1 5 8 UNSAT 16.1 11.0 3538.5 3816.2 timelimit timelimit
property1 5 9 UNSAT 7.8 7.4 4706.9 4995.1 timelimit timelimit
property2 2 1 SAT 0.1 0.1 24.8 1.4 17.2 386.6
property2 2 2 SAT 0.3 0.2 1.4 1.2 15.5 9.9
property2 2 3 SAT 0.2 0.1 24.8 1.2 15.3 43.3
property2 2 4 SAT 0.1 0.1 1.2 1.2 13.0 29.6
property2 2 5 SAT 0.1 0.1 1.2 1.4 16.4 238.8
property2 2 6 SAT 0.2 0.1 1.3 1.2 15.6 5195.4
property2 2 7 SAT 0.1 0.1 1.2 1.2 16.2 4498.2
property2 2 8 SAT 0.1 0.1 1.2 1.2 17.1 697.7
property2 2 9 SAT timelimit 0.3 1.2 1.4 16.6 (wrong)
property2 3 1 SAT 0.2 0.2 1.2 1.1 13.4 583.1
property2 3 2 SAT 4252.8 0.2 23.7 1.5 88.1 777.6
property2 3 3 UNSAT 5382.9 95.6 3548.5 3964.8 timelimit timelimit
property2 3 4 SAT 0.4 0.1 1.2 1.2 13.4 1463.1
property2 3 5 SAT 0.1 0.1 1.2 1.2 14.3 3761.4
property2 3 6 SAT 0.2 0.1 1.2 1.3 15.0 149.3
property2 3 7 SAT 87.2 3.2 1.2 1.2 17.1 595.6
property2 3 8 SAT 0.3 0.2 1.3 1.2 15.3 536.5
property2 3 9 SAT 0.2 0.1 4.7 1.2 15.1 67.2
property2 4 1 SAT 0.1 0.1 1.4 1.2 13.5 700.8
property2 4 2 UNSAT timelimit 205.2 timelimit timelimit timelimit timelimit
property2 4 3 SAT 0.2 0.1 1.3 6.0 18.0 10.6
property2 4 4 SAT 0.1 0.1 1.3 1.3 12.9 75.9
property2 4 5 SAT 0.2 0.1 1.1 1.4 16.4 3430.9
property2 4 6 SAT 0.1 0.1 1.2 1.3 15.8 1169.8
property2 4 7 SAT 0.1 0.1 1.3 1.2 16.1 3470.2
property2 4 8 SAT 0.1 0.1 1.2 1.3 16.7 4274.8
property2 4 9 SAT 50.6 0.1 1.2 1.2 16.7 5354.9
property2 5 1 SAT 0.1 0.1 1.2 1.2 15.9 1456.7
property2 5 2 SAT 0.2 0.1 1.4 1.2 14.1 290.1
property2 5 3 SAT timelimit (UNSAT) 691.7 2.1 1199.7 (wrong)
property2 5 4 SAT 0.2 0.2 4.1 1.2 16.2 33.0
property2 5 5 SAT 0.2 0.1 1.2 1.2 15.3 932.4

9. Computational Evaluation 94

Instance Result ReluVal Adv NonOpt Joint BaB Reluplex

property2 5 6 SAT 0.1 0.1 1.1 1.4 17.1 1857.9
property2 5 7 SAT 0.2 0.1 1.3 1.2 18.0 1211.9
property2 5 8 SAT 0.1 0.1 1.2 1.3 16.5 5435.2
property2 5 9 SAT 0.1 0.1 1.3 1.4 20.4 (wrong)
property3 1 1 UNSAT 112.2 73.1 40.0 42.3 79.9 6946.6
property3 1 2 UNSAT 2.4 2.5 10.9 13.5 13.2 5588.8
property3 1 3 UNSAT 3.7 3.7 87.8 92.9 105.9 1277.5
property3 1 4 UNSAT 0.3 0.3 3.4 4.4 6.5 595.9
property3 1 5 UNSAT 0.2 0.2 2.9 2.9 6.1 359.8
property3 1 6 UNSAT 0.1 0.1 2.4 3.4 5.4 74.2
property3 2 1 UNSAT 21.5 15.6 7.8 14.8 9.8 1367.4
property3 2 2 UNSAT 8.1 8.2 11.4 12.8 18.8 739.7
property3 2 3 UNSAT 0.2 3.2 40.8 44.8 159.1 1184.2
property3 2 4 UNSAT 0.6 0.6 2.6 2.6 4.8 47.5
property3 2 5 UNSAT 0.4 0.4 2.8 4.1 5.5 268.8
property3 2 6 UNSAT 0.1 0.1 2.4 3.4 5.7 90.4
property3 2 7 UNSAT 0.2 0.3 2.4 3.7 5.6 132.9
property3 2 8 UNSAT 0.4 0.1 2.2 3.2 5.5 93.8
property3 2 9 UNSAT 0.1 0.1 1.9 2.1 4.6 31.5
property3 3 1 UNSAT 3.0 2.8 3.5 4.5 4.9 202.0
property3 3 2 UNSAT 6.1 6.1 19.1 21.0 69.2 1772.9
property3 3 3 UNSAT 0.3 0.3 3.5 4.4 5.1 1234.8
property3 3 4 UNSAT 0.5 0.5 7.0 8.3 12.7 238.8
property3 3 5 UNSAT 2.1 2.1 2.8 3.9 5.4 94.5
property3 3 6 UNSAT 22.0 20.8 3.5 8.0 13.6 287.9
property3 3 7 UNSAT 0.2 0.1 2.0 3.1 4.3 40.5
property3 3 8 UNSAT 3.5 3.6 2.8 3.8 5.4 205.1
property3 3 9 UNSAT 2.7 2.7 2.5 3.8 4.7 134.2
property3 4 1 UNSAT 8.5 8.4 8.3 10.0 28.9 231.8
property3 4 2 UNSAT 106.8 81.0 22.8 24.6 64.4 3240.4
property3 4 3 UNSAT 2.3 2.3 20.3 22.3 90.8 1990.7
property3 4 4 UNSAT 0.2 0.2 2.3 3.5 4.8 100.7
property3 4 5 UNSAT 0.1 0.1 2.5 2.6 6.1 39.9
property3 4 6 UNSAT 0.2 0.2 4.6 5.9 6.8 346.4
property3 4 7 UNSAT 0.5 0.5 2.5 3.6 5.7 144.9
property3 4 8 UNSAT 1.8 1.8 2.9 4.1 6.0 165.3
property3 4 9 UNSAT 0.1 0.1 3.1 4.4 6.1 162.3
property3 5 1 UNSAT 22.8 20.9 24.0 29.0 72.0 1278.7
property3 5 2 UNSAT 2.3 2.2 3.0 3.5 5.3 170.5
property3 5 3 UNSAT 0.2 0.2 3.7 4.8 5.5 388.6
property3 5 4 UNSAT 0.2 0.2 5.5 3.6 5.0 72.0
property3 5 5 UNSAT 0.5 0.5 3.2 4.4 5.4 98.6
property3 5 6 UNSAT 0.9 1.0 2.8 3.9 7.0 329.5
property3 5 7 UNSAT 0.1 0.1 2.3 3.2 4.8 41.2
property3 5 8 UNSAT 0.1 0.1 2.6 3.7 5.9 353.1
property3 5 9 UNSAT 0.1 0.1 2.2 2.2 4.9 22.7
property4 1 1 UNSAT 1.2 1.1 8.7 11.0 12.7 1463.5
property4 1 2 UNSAT 1.3 1.3 15.3 17.3 13.4 1437.2
property4 1 3 UNSAT 0.4 0.4 25.8 27.6 46.8 1328.9
property4 1 4 UNSAT 0.3 0.3 6.5 8.4 12.9 121.2
property4 1 5 UNSAT 0.5 0.5 6.3 7.8 5.7 406.0
property4 1 6 UNSAT 0.2 0.3 3.2 4.4 5.8 249.7
property4 2 1 UNSAT 0.8 0.9 8.9 11.4 6.8 371.8
property4 2 2 UNSAT 2.1 2.1 7.6 10.0 6.0 471.0
property4 2 3 UNSAT 0.9 1.0 3.1 3.7 6.0 284.0
property4 2 4 UNSAT 0.2 0.2 3.2 4.2 5.3 98.4
property4 2 5 UNSAT 0.4 0.4 3.2 4.1 5.5 174.0
property4 2 6 UNSAT 0.3 0.3 3.9 5.0 6.5 135.1
property4 2 7 UNSAT 0.1 0.1 2.3 3.1 5.1 39.6
property4 2 8 UNSAT 0.1 0.1 7.8 9.3 14.8 623.0
property4 2 9 UNSAT 0.1 0.1 2.1 7.2 4.9 59.3
property4 3 1 UNSAT 1.1 1.2 4.4 5.5 5.7 556.1
property4 3 2 UNSAT 0.5 0.4 3.8 5.0 5.7 125.7
property4 3 3 UNSAT 0.1 0.1 3.2 4.2 4.7 131.6
property4 3 4 UNSAT 0.2 0.2 3.0 4.0 6.1 85.9
property4 3 5 UNSAT 1.4 1.1 4.2 5.3 6.3 233.2

9. Computational Evaluation 95

Instance Result ReluVal Adv NonOpt Joint BaB Reluplex

property4 3 6 UNSAT 1.4 1.3 3.7 4.8 6.3 161.4
property4 3 7 UNSAT 0.4 0.3 2.6 2.8 5.0 346.1
property4 3 8 UNSAT 0.3 0.3 6.6 7.7 44.7 148.9
property4 3 9 UNSAT 1.5 1.5 3.8 3.9 5.8 703.1
property4 4 1 UNSAT 3.2 3.1 3.4 4.3 5.7 55.8
property4 4 2 UNSAT 2.3 2.2 4.0 4.5 6.0 277.5
property4 4 3 UNSAT 1.3 1.3 4.0 4.6 5.9 277.7
property4 4 4 UNSAT 1.5 1.5 7.2 8.5 48.9 235.8
property4 4 5 UNSAT 1.5 1.6 3.7 4.7 6.7 246.1
property4 4 6 UNSAT 0.1 0.1 3.4 4.5 5.7 200.5
property4 4 7 UNSAT 0.2 0.2 2.6 3.7 5.4 53.9
property4 4 8 UNSAT 0.2 0.2 3.4 3.7 6.0 221.5
property4 4 9 UNSAT 0.1 0.1 4.0 4.5 6.2 480.2
property4 5 1 UNSAT 2.9 2.9 3.9 4.9 6.2 583.3
property4 5 2 UNSAT 0.7 0.6 3.8 4.7 5.5 239.0
property4 5 3 UNSAT 0.2 0.2 3.6 4.6 5.5 141.4
property4 5 4 UNSAT 0.2 0.2 2.9 3.9 5.0 164.5
property4 5 5 UNSAT 0.6 0.6 3.7 4.8 5.9 130.2
property4 5 6 UNSAT 0.4 0.4 3.1 3.3 5.7 182.7
property4 5 7 UNSAT 0.1 0.1 2.4 3.4 5.4 44.2
property4 5 8 UNSAT 0.1 0.1 3.2 4.3 5.7 126.3
property4 5 9 UNSAT 0.2 0.1 2.5 3.5 5.4 133.1
property8 SAT 2939.7 74.5 22.9 1.2 20.3 timelimit

shifted geo. mean 5.7 3.1 34.1 34.1 67.5 669.0

Table 9.8: Runtimes on ACAS properties. In adversary check mode, Reluval
fails on property2 5 3 and reports UNSAT instead of SAT. We set the runtime
to 7200 s for the mean computation in this case. We also assume a runtime of
7200 s for those three cases, for which Reluplex reports counterexamples that
are not even valid with a numerical tolerance of 10−3. These are denoted as
“wrong” in the table.

Table 9.8 contains the runtime results for all ACAS instances of Properties
1, 2, 3, 4, and 8 as defined by Katz et al. [35]. It should be noted that these are
all disjunction instances. The mean runtime of Reluplex is at least one order
of magnitude larger than the mean runtimes of all other solvers. ReluVal is
clearly superior to all other solvers, especially if its adversary check mode is
applied. We see that our solving model, which uses SCIP to strongly integrate
the bound computations into a MIP framework, performs significantly better
than the rather similar approach of Bunel et al. [12].

Instance Result Reluval Adv NonOpt Joint Separate BaB Reluplex

property5 UNSAT 12.3 9.1 3922.2 timelimit 4104.8 timelimit 4883.4
property6a UNSAT 3.3 3.2 7078.8 6248.2 3745.0 timelimit timelimit
property6b UNSAT 1.6 1.5 5935.9 4207.5 6179.1 timelimit timelimit
property7 SAT memlimit 1099.1 timelimit 3012.7 3012.7 timelimit timelimit
property9 UNSAT 411.5 184.5 5672.0 timelimit 5921.1 4214.8 timelimit
property10 UNSAT 1.3 1.1 timelimit 3268.3 5335.3 4567.3 5516.3

sh. geo. mean 60.0 33.6 6053.9 4875.5 4564.6 6107.5 6456.0

Table 9.9: Runtimes on ACAS properties. If Reluval is run in normal check
mode, it terminates prematurely on Property 7 due to a lack of memory. We
use the time limit of 7200 seconds for the mean computation in this case.

A similar picture of the performance of the various solvers can be seen in

9. Computational Evaluation 96

Table 9.9, which shows the results on the ACAS instances of Properties 5, 6,
7, 9, and 10. Especially here it should be noted that we underestimate the
runtime of instances for which the solving process is stopped due to the time
limit. Also, remind that Property 7 is neither a conjunction nor a disjunction
instance directly as we commented in Section 8.2. Therefore, we do have to
split the instance to be solvable with our implementation. The corresponding
runtime for solving method Joint in Table 9.9 is in fact obtained with the
method Separate. We include the value also for method Joint, since this
allows the computation of a meaningful mean runtime.

In Tables 9.10 and 9.11 we report runtimes for the MNIST instances.
We remind that all of these are conjunction instances by definition. For
our solving model we use the configuration “mnist base” as presented in
Section 9.2 and adapt it by two small changes. We enable the local primal
heuristic, however it is only executed at the root node, so that the primal
heuristic is executed twice at the root node. This is achieved by setting
“sampling heuristic local max iter” to 1000 and “sampling heuristic local freq”
to 10. In fact, the configuration “no heur relu genv” would also be a good
choice. Using that configuration, the instance mnist 512 image11 5 is solved
clearly within the time limit which is not the case if if the configuration
“mnist base” is used. Though, the latter configuration (with the additional
execution of the primal heuristic as described above), leads to a lower mean
runtime on the MNIST instances with 512 neurons per layer. For that reason,
we present the results which are obtained with the configuration “mnist base”.

The instances which are based on neural networks with two layers of 24
neurons are solved very quickly by most solvers, as can be seen in Table 9.10.
Though, domain branching is apparently not a good strategy to solve these
instances, which feature 784 input neurons. This is shown by the high number
of timeouts of the solving method BaB of Bunel et al. [12] on these MNIST
instances (see Table 9.10).

Clearly, the MNIST instances with 512 neurons per layer are much more
challenging. In Table 9.11 we see that our solving model performs quite good
when the approach Joint is taken, i.e. conjunction instances are solved directly
as one optimization problem. In several cases Neurify aborts the solving
process with no result. For the corresponding instances we assume the time
limit of 7200 seconds as runtime in order to compute the mean runtime. If the
conjunction instances are split into separate disjunction instances, our solving
model mostly fails to find counterexamples within the time limit (see NonOpt
and Separate). This can be explained by the fact that the instances, which are
obtained after splitting, are solved sequentially one after the other. However,
if a verifiable instances is processed first, this may already lead to a timeout.
Reluplex is only able to solve two of the easiest instances within the time limit,
and the branch-and-bound method of Bunel et al. [12] also performs consid-
erably worse than Neurify and our solving model. Though for all MNIST
instances, it should be noted that the counterexamples which are produced by
Neurify are only feasible if one applies a large numerical tolerance of 10−3. It
is clear to see, that the instances with the lowest perturbation radius of 1 are
easy to verify. On the other hand, for the instances with a high perturbation
radius of 10 or 20, counterexamples are found in most cases. Apparently, the

9. Computational Evaluation 97

Instance Result Neurify Adv NonOpt Joint Separate BaB Reluplex

mnist 24 image11 1 UNSAT 0.4 0.4 10.6 8.1 28.0 25.7 0.5
mnist 24 image11 10 UNSAT 2.0 2.1 31.0 15.5 35.3 timelimit 4824.5
mnist 24 image11 20 SAT 0.4 0.5 6.0 7.5 7.8 timelimit 3437.6
mnist 24 image11 5 UNSAT 0.4 0.4 860.7 6.1 31.6 22.4 189.9
mnist 24 image2 1 UNSAT 0.4 0.4 25.1 3.8 27.1 21.5 1.6
mnist 24 image2 10 SAT 0.4 0.5 2.6 2.1 2.0 timelimit 24.7
mnist 24 image2 20 SAT 0.4 0.5 2.7 2.0 2.0 timelimit 19.2
mnist 24 image2 5 UNSAT 0.4 0.4 31.6 13.6 36.8 timelimit timelimit
mnist 24 image4 1 UNSAT 0.4 0.6 12.4 2.5 25.8 22.3 0.9
mnist 24 image4 10 SAT 0.4 0.5 7.9 2.0 2.1 timelimit 70.5
mnist 24 image4 20 SAT 0.5 0.6 2.7 2.3 5.3 timelimit 11.9
mnist 24 image4 5 SAT 0.4 0.5 23.1 2.0 24.0 timelimit 536.1

shifted geo. mean 0.4 0.5 18.8 4.4 14.1 1006.3 86.1

Table 9.10: Runtimes on the MNIST 24 data set. In contrast to all other
solvers, Neurify reports SAT for instance mnist 24 image11 10. However, all
counterexamples that Neurify produces, are only valid when applying a large
numerical tolerance of 10−3. We regard the instance mnist 24 image11 10
as verifiable and exclude it from the mean computation. Counterexamples
produced by Reluplex are valid with a numerical tolerance of 10−5.

perturbation radius 5 poses the biggest difficulties for the solvers, as the corre-
sponding instances are probably on the borderline between SAT and UNSAT.

Instance Result Neurify Adv NonOpt Joint Separate BaB Reluplex

mnist 512 image11 1 UNSAT 0.2 0.5 80.0 39.9 236.3 4446.4 371.6
mnist 512 image11 10 - no result no result timelimit timelimit timelimit timelimit timelimit
mnist 512 image11 20 SAT 0.6 0.8 timelimit 28.6 timelimit timelimit timelimit
mnist 512 image11 5 UNSAT 0.2 0.5 timelimit timelimit timelimit 4908.0 timelimit
mnist 512 image2 1 UNSAT 0.5 0.5 92.0 97.4 498.6 4854.3 timelimit
mnist 512 image2 10 SAT no result no result timelimit 30.9 timelimit timelimit timelimit
mnist 512 image2 20 SAT 0.4 0.7 timelimit 12.4 56.2 timelimit timelimit
mnist 512 image2 5 - no result no result timelimit timelimit timelimit timelimit timelimit
mnist 512 image4 1 UNSAT 0.3 0.5 84.3 32.8 290.4 4512.2 1132.2
mnist 512 image4 10 SAT no result no result timelimit 22.9 timelimit timelimit timelimit
mnist 512 image4 20 SAT 0.4 0.6 timelimit 21.6 122.3 timelimit timelimit
mnist 512 image4 5 - no result no result timelimit timelimit timelimit timelimit timelimit

shifted geo. mean 148.5 150.4 2434.9 220.7 1612.8 6235.3 4830.5

Table 9.11: Runtimes on the MNIST 512 data set. The instances for which
Neurify returns no result are treated as time limit instances in the mean
computation. Counterexamples of Neurify are only valid when applying a
large numerical tolerance of 10−3.

Eventually, we present runtime results for the ACAS based instances which
we defined as part of this thesis (cf. Section 8.2 and Appendix A). As explained
before, these instances cannot be processed by the other solvers in our compu-
tational study. Therefore, we only report the results of our solving model using
the configuration “heur sepa0 freq5” and both the formulation as optimization
problem, and as feasibility problem. Some instances cannot be solved directly
with the formulation as feasibility problem and are therefore left out in that
case. Regarding the other instances, the performance of both formulations is

9. Computational Evaluation 98

quite similar. See Table 9.12 for the results which are obtained with the formu-
lation as optimization problem, and Table 9.13 for the results corresponding
to the formulation as feasibility problem.

Instance Dual Bound Primal Bound Nodes Result Status Time

1 1 int away 0.0057 0.0057 229 UNSAT optimal 415.6
1 1 int away2 0.015 0.015 403 UNSAT optimal 560.7
1 1 lin opp 0.91 0.91 315 UNSAT optimal 1316.3
1 1 lin opp2 0.6 0.6 249 UNSAT optimal 983.4
1 1 lin opp2 dir 0.6 0.6 583 UNSAT optimal 2404.9
1 1 lin opp dir 0.69 0.69 543 UNSAT optimal 2488.6
1 2 int away -1.7e+04 -0.11 2 SAT bound 23
1 2 int away2 -1.7e+04 -0.1 2 SAT bound 22.3
2 1 var dist 0.13 0.16 483 UNSAT bound 1679.2
2 2 lin opp -2.5e+06 -2.8 1 SAT bound 1.7
2 2 lin opp2 -4.3e+02 -0.21 41 SAT bound 537.9
3 1 var dist 0.12 0.26 285 UNSAT bound 629.2

Table 9.12: Linear ACAS instances run with our model using the formulation
as optimization problem. In the column status, “optimal” means that the
problem was solved to optimality, while “bound” implies that the solving
process was interrupted due to a positive dual or negative primal bound.

Instance Dual Bound Primal Bound Nodes Result Status Time

1 1 int away - - 227 UNSAT infeasible 395.3
1 1 int away2 - - 515 UNSAT infeasible 634.2
1 1 lin opp - - 313 UNSAT infeasible 1217.3
1 1 lin opp2 - - 247 UNSAT infeasible 934.5
1 1 lin opp2 dir - - 583 UNSAT infeasible 2315.9
1 1 lin opp dir - - 543 UNSAT infeasible 2410.8
1 2 int away - - 2 SAT optimal 17.7
1 2 int away2 - - 2 SAT optimal 17.9
2 2 lin opp - - 1 SAT optimal 5.5
2 2 lin opp2 - - 297 SAT optimal 1763.2

Table 9.13: Linear ACAS instances run with our model using the formula-
tion as feasibility problem. Using this formulation, there are no meaningful
primal and dual bounds. The solution status shows that either infeasibility is
detected, or a feasible, i.e. optimal, solution is found.

Summing up, our solving model shows a solid performance in all categories
of our benchmark set. This highlights the success of our approach, which
combines MIP solving, using the solver SCIP [25], with specialized bound
computation and branching techniques. Especially, we can solve instances with
general polytopes as input domains which is not possible with the algorithm of
Wang et al. [56]. Moreover, our solving model clearly outperforms the solvers
of Bunel et al. [12] and Katz et al. [35]. Subsequently, Reluplex cannot be
regarded as a state-of-the-art solver for neural network verification anymore.
While ReluVal and Neurify from Wang et al. [56] show impressive runtime
results for most instances, they rely primarily on branching. For big instances,
this can become problematic due to limited numerical accuracy and memory
capacity.

99

10 Conclusions and Future Work

In this thesis we give a profound overview of the field of neural network
verification. While we strongly focus on fully connected neural networks with
ReLU activation function, many results and techniques can be applied simi-
larly to neural networks of other architectures. For example, this includes
the leaky ReLU activation function, dropout and max-pooling layers. The
thesis features a theoretical and empirical comparison of various approxima-
tion methods for ReLU neural networks. These enable the computation of
lower and upper bounds for each neuron in a neural network. Such bounds
are necessary for the succesful verification of properties of neural networks,
and the quality of the bounds heavily impacts the performance of verification
algorithms. Hence, we develop a theoretical framework for the comparison of
linear approximation methods. We also present a novel approximation tech-
nique which is able to improve the linear relaxation of a ReLU neural network.
Besides that, we show how the local search procedure of Dutta et al. [16] can
be implemented differently in an MIP solving context such that it serves as a
primal heuristic. Additionally, we describe a novel formulation of the verifica-
tion problem as quadratic program. The newly proposed techniques are also
evaluated computationally within our newly implemented solving model.

Eventually, we conduct extensive computational experiments using various
solvers on a diverse set of test instances. These experiments help to gain an
understanding of the performance and efficiency of various solving techniques
on different types of test instances. Especially, we compare the programs of
Bunel et al. [12], Wang et al. [56] and Katz et al. [35] with our own solving
model. We use a benchmark set for verification of neural networks as intro-
duced by Katz et al. [35]. The corresponding instances are based on the
ACAS Xu system for aircraft collision avoidance and have five input neurons.
Furthermore, we investigate test instances based on the MNIST data set [37],
using neural networks of Wang et al. [56]. In contrast to the instances of
Katz et al. [35], these have a significantly higher number of 784 input neurons.
Moreover, we define some additional instances based on the ACAS Xu system,
which do not have independent input bounds. These instances can only be
solved by our solving model, as the other solvers support only instances with
independent bounds for all input neurons.

Currently, only neural networks with ReLU activation function can be
processed by our solver. Especially, our solving model shows the potential of
integrating an MIP model of the verification problem with specialized solving
techniques such as bound computation methods and branching rules. For the
implementation we use the academic MIP solver SCIP [25] and its Python
interface PySCIPopt [39]. In fact, we provide the first available solver for
instances of the verification problem that do not have independent bounds for
each input neuron. Our solving model is not only applied successfully to such
instances but also to benchmark instances from the literature as mentioned
above. On these instances, it is only outperformed by the programs of Wang

10. Conclusions and Future Work 100

et al. [56], which are faster by one or two orders of magnitude. However, due
to better approximation techniques, in our model branching is performed quite
rarely compared to the approach of Wang et al. [56]. In comparison to the
solvers of Katz et al. [35] and Bunel et al. [12], our implementation is clearly
superior; partially it is faster by more than one order of magnitude. Moreover,
it is publicly available at https://github.com/roessig/verify-nn.

Although our implementation is limited to neural networks with ReLU
activation function, the approach could be easily extended to work with other
piecewise-linear activation functions. Examples for that are the leaky ReLU
function or max-pooling layers. In addition, the great flexibility of our solving
model allows the integration of further techniques such that future improve-
ments may render it even more efficient. For future work, it would be highly
interesting to integrate the SDP relaxation of Raghunathan et al. [43] into
our solving model, which should be possible using the SCIP plugin SCIP-SDP
[22]. Furthermore, the solving approach of Wang et al. [56] could be integrated
deeply with our model using an optimized implementation of their bound
computation approach. Eventually, the intelligent combination of the various
techniques which are already available in our solving model or mentioned here
could lead to significant improvements of the solving performance.

In conclusion, it can be said that many challenges remain in the field
of neural network verification. The further scalability of current verification
approaches is still an open task. Besides, new approaches for the falsification
of incorrect properties would be highly interesting. Although we present a new
heuristic for that (based on ideas of Dutta et al. [16]), better algorithms could
probably be developed. Eventually, it is the aim of this thesis to constitute a
solid foundation for the interested reader to pursue these questions.

https://github.com/roessig/verify-nn

101

A Definitions of Additional Properties on

ACAS Neural Networks

Here we provide the formal definitions of our properties on the ACAS
neural networks. The numbers i j in the beginning of each name refer to the
neural network which is used (cf. Table 8.2 in Chapter 8).

The input constraints for (i) 1 1 lin opp and (ii) 1 1 lin opp2 are given
as follows, where either constraint (i) or (ii) is used. Desired output: COC
should not be minimal.

1000 ≤ ρ ≤ 2000

−3.141593 ≤ θ ≤ 0 (i)

0 ≤ θ ≤ 3.141593 (ii)

−3.141593 ≤ ψ ≤ 3.141593

1000 ≤ vown ≤ 1200

800 ≤ vint ≤ 1200

θ = −ψ
−100 ≤ vown − vint ≤ 100

Input constraints for (i) 2 2 lin opp and (ii) 2 2 lin opp2, where either
constraint (i) or (ii) is used. Desired output: COC should not be minimal.

1000 ≤ ρ ≤ 2000

0 ≤ θ ≤ 3.141593 (i)

−3.141593 ≤ θ ≤ 0 (ii)

−3.141593 ≤ ψ ≤ 3.141593

100 ≤ vown ≤ 1200

0 ≤ vint ≤ 1200

θ = −ψ
vown = vint

Input constraints for (i) 1 1 lin opp dir and (ii) 1 1 lin opp2 dir, where
either constraint (i) or (ii) is used. Desired output: COC should not be
minimal.

1000 ≤ ρ ≤ 2500

−3.141593 ≤ θ ≤ 0 (i)

0 ≤ θ ≤ 3.141593 (ii)

−3.141593 ≤ ψ ≤ 3.141593

800 ≤ vown ≤ 1200

600 ≤ vint ≤ 1200

θ = −ψ
vown = vint

A. Definitions of Additional Properties on ACAS Neural Networks 102

Input constraints for (i) 1 1 int away and (ii) 1 1 int away2. Desired
output: (i) strong left is not minimal, or (ii) strong right is not minimal.

5000 ≤ ρ ≤ 6000

−3.141593 ≤ θ ≤ 3.141593

−3.141593 ≤ ψ ≤ 3.141593

1000 ≤ vown ≤ 1200

500 ≤ vint ≤ 1200

vint ≥ vown + 100

−0.392699 ≤ ψ − θ ≤ 0.392699

Input constraints for (i) 1 2 int away and (ii) 1 2 int away2. Desired
output: (i) strong left is not minimal, or (ii) strong right is not minimal.

5000 ≤ ρ ≤ 7000

−3.141593 ≤ θ ≤ 3.141593

−3.141593 ≤ ψ ≤ 3.141593

500 ≤ vown ≤ 1200

500 ≤ vint ≤ 1200

vint ≥ vown + 100

−0.392699 ≤ ψ − θ ≤ 0.392699

Input constraints for 2 1 var dist and 3 1 var dist. Desired output:
COC is minimal.

10000 ≤ ρ ≤ 60760

−0.141593 ≤ θ ≤ 0.141593

−0.141593 ≤ ψ ≤ 0.141593

300 ≤ vown ≤ 1200

0 ≤ vint ≤ 1200

vint ≥ vown + 601− 0.01ρ

103

B Computational Results for Various

Components

In each of the following sections we report the results of a computational
experiment which is focused on one special technique or concept we presented
in this thesis. Like the experiments in Section 9.2, each experiment is run
on a cluster node with Intel Xeon CPU E5-2670 at a clock rate of 2.5 GHz.
Moreover, a memory limit of 32 GB is set. Here, we present computational
results with respect to four different topics: various orders in which the LPs
for OBBT are solved (cf. Section 4.3), the primal heuristic as presented in
Chapter 5, the quadratic programming formulation of the verification problem
(cf. Section 3.3), and solving the verification problem as a feasibility problem
(cf. Section 3.1).

B.1 Ordering strategies for LP solving in OBBT

We compare the different ordering strategies for the LP solves during the
execution of OBBT as proposed by Gleixner et al. [24] and presented in Section
4.3. The runtimes in Table B.1 were obtained without the local use of our
primal heuristic, as opposed to the runtimes in Table B.2. Both contain the
number of solving nodes and the runtimes on all instances of our UNSAT eval-
uation set. Our standard ordering as explained in Section 4.3 is indicated as
“base”. Indeed, this ordering is the fastest according to the shifted geometric
mean (using shift value 10) which we compute over all instances. Hence, it
is apparently not useful to apply the greedy or the min-max strategy. We do
not report mean values for the number of solving nodes as this is not mean-
ingful if the solving process is aborted in some cases due to the time limit. See
Chapter 9 for some more details on the use of the shifted geometric mean and
the execution of experiments. As commented there, we assume 7200 seconds
for the runtime if the time limit of two hours is hit during execution.

B. Computational Results for Various Components 104

Instance Nodes Time

base greedy min-max base greedy min-max

lin acas 1 1 int away 229.0 223.0 223.0 523.9 766.7 869.0
lin acas 1 1 lin opp2 251.0 211.0 211.0 1235 1100.5 1179.0
lin acas 1 1 lin opp dir 547.0 369.0 369.0 3253.1 2344.8 2510.7
lin acas 3 1 var dist 299.0 211.0 211.0 754.6 695.8 793.0
mnist 24 image11 5 - - - timelimit timelimit timelimit
mnist 24 image2 5 - - - timelimit timelimit timelimit
mnist 24 image4 1 1.0 1.0 1.0 8.8 8.0 6.3
mnist 512 image11 5 - - - timelimit timelimit timelimit
mnist 512 image2 1 2.0 2.0 2.0 418.3 345.5 355.1
property10 property 909.0 909.0 909.0 4506.9 5365.7 5971.8
property1 1 1 11.0 11.0 11.0 127.1 125.8 123.1
property1 2 2 105.0 105.0 105.0 1615 1695.9 1674.8
property2 3 3 2349.0 - - 7038.7 timelimit timelimit
property2 4 2 - - - timelimit timelimit timelimit
property3 4 3 13.0 13.0 13.0 28.4 38.0 44.0
property3 4 4 1.0 1.0 1.0 4.7 8.3 6.8
property4 2 2 3.0 3.0 3.0 13.4 15.4 18.1
property4 3 7 1.0 1.0 1.0 4.8 6.8 6.0
property5 property - - - timelimit timelimit timelimit
property6 6a property 3 1185.0 - - 5802.2 timelimit timelimit
property6 6b property 1 317.0 317.0 317.0 2101.9 2498.8 2756.9
property9 property 0 463.0 463.0 463.0 2301.2 2574.9 2834.7
property9 property 4 783.0 783.0 783.0 3447.8 3996.8 4442.7

shifted geo. mean 854.8 899.6 930.7

Table B.1: Evaluation of ordering strategies without local heuristic.

Instance Nodes Time

base greedy min-max base greedy min-max

lin acas 1 1 int away 131.0 137.0 125.0 476.7 623.6 656.7
lin acas 1 1 lin opp2 251.0 211.0 211.0 1466.3 1300.2 1470.5
lin acas 1 1 lin opp dir 519.0 355.0 355.0 3536.2 2568.6 2875.3
lin acas 3 1 var dist 299.0 211.0 211.0 995.3 878.9 972.9
mnist 24 image11 5 8191.0 8191.0 8191.0 5408.6 6117.2 5956.2
mnist 24 image2 5 - - - timelimit timelimit timelimit
mnist 24 image4 1 1.0 1.0 1.0 9.7 10.4 8.8
mnist 512 image11 5 - - - timelimit timelimit timelimit
mnist 512 image2 1 2.0 2.0 2.0 423.6 355.2 365.3
property10 property 865.0 865.0 865.0 4889.3 5690.1 6279
property1 1 1 11.0 11.0 11.0 138.6 134.1 135.2
property1 2 2 105.0 105.0 105.0 1724.9 1783 1816.8
property2 3 3 1101.0 1069.0 1039.0 3710.4 4605.6 5105
property2 4 2 - - - timelimit timelimit timelimit
property3 4 3 13.0 13.0 13.0 39.2 54.7 58.8
property3 4 4 1.0 1.0 1.0 7.1 9.9 8.9
property4 2 2 3.0 3.0 3.0 16.8 18.7 22.7
property4 3 7 1.0 1.0 1.0 6.8 6.4 8.1
property5 property - - - timelimit timelimit timelimit
property6 6a property 3 - - - timelimit timelimit timelimit
property6 6b property 1 785.0 645.0 622.0 3609.6 4190.2 4371.9
property9 property 0 463.0 463.0 463.0 2577.1 3023.2 3134.9
property9 property 4 723.0 723.0 723.0 3594.5 4084.3 4694.4

shifted geo. mean 907.5 946.9 989.1

Table B.2: Evaluation of ordering strategies with local heuristic employed.

B. Computational Results for Various Components 105

B.2 Primal heuristics

In this section we present computational results regarding our primal heuristic
as laid out in Chapter 5. For all tables, the configuration “base” indicates
that our heuristic, as described in Chapter 5, is run both at the root node
and locally at each solving node up to a tree depth of eight. We compare
this to running the heuristic only at the root node (“root node”) or not at
all (“none”) in Table B.5. Furthermore, we investigate how our LP based
heuristic performs compared to using only the sampling heuristic (“no lp”).
The better performance of the LP based heuristic on our evaluation set of SAT
instances can be seen in Table B.3. In Table B.4 we report how the LP based
heuristic affects the runtime on UNSAT instances.

The number of solving nodes and the runtimes in all tables are obtained
as the arithmetic mean over several runs (see table captions). Since the values
between different runs do not differ much in general, it is admissible to use the
arithmetic mean. We perform several runs in order to obtain reliable results,
although the performance of the heuristics depends on randomly generated
values. In each table, the column “Timeouts” shows, how many of these runs
were interrupted as the time limit of two hours was reached.

Instance Nodes Timeouts Time

base no lp base no lp base no lp

lin acas 1 2 int away2 2.0 2.0 0 0 34.4 29.5
lin acas 2 2 lin opp 1.0 1.0 0 0 6.1 3.8
lin acas 2 2 lin opp2 43.0 186.0 0 0 826.8 2436.9
mnist 24 image2 20 1.0 1.0 0 0 8.5 7.9
mnist 24 image4 5 1.0 405.0 0 0 9.0 831.2
mnist 512 image11 20 1.0 - 0 5 40.8 timelimit
mnist 512 image4 20 1.0 - 0 5 35.3 timelimit
property2 2 2 1.0 1.0 0 0 5.5 2.9
property2 3 7 1.0 1.0 0 0 5.1 4.8
property2 5 3 8.2 1250.0 0 0 109.3 2294.2
property7 property 3 85.0 - 0 4 4514.0 5773.9
property7 property 4 - - 5 5 timelimit timelimit
property8 property 1.0 2.6 0 0 6.5 32.6

Table B.3: Computational results for the LP based heuristic, as described in
Chapter 5 (“base”), compared to using only the sampling heuristic (“no lp”).
The results are obtained as the arithmetic mean over five runs on our evalu-
ation set of SAT instances. The shifted geometric mean of the runtimes over
all instances is 71.7 s for the “base” configuration, which includes our LP
heuristic, and 330.1 s for the configuration “no lp” without the LP heuristic.

B. Computational Results for Various Components 106

Instance Nodes Timeouts Time

base no lp base no lp base no lp

lin acas 1 1 int away 131.0 143.0 0 0 491.6 511.6
lin acas 1 1 lin opp2 251.0 251.0 0 0 1526.7 1544.0
lin acas 1 1 lin opp dir 509.7 512.7 0 0 3672.2 3685.8
lin acas 3 1 var dist 299.7 299.0 0 0 1116.6 1024.9
mnist 24 image11 5 8191.0 8191.0 0 0 5504.4 5710.6
mnist 24 image2 5 - - 3 3 timelimit timelimit
mnist 24 image4 1 1.0 1.0 0 0 12.7 11.3
mnist 512 image11 5 - - 3 3 timelimit timelimit
mnist 512 image2 1 2.0 2.0 0 0 427.8 418.9
property10 property 865.0 865.0 0 0 4932.2 4756.9
property1 1 1 11.0 11.0 0 0 140.4 140.7
property1 2 2 105.0 105.0 0 0 1772.1 1717.9
property2 3 3 1143.6 1116.3 0 0 3800.8 3745.8
property2 4 2 - - 3 3 timelimit timelimit
property3 4 3 13.0 13.0 0 0 45.7 39.9
property3 4 4 1.0 1.0 0 0 9.4 5.9
property4 2 2 3.0 3.0 0 0 18.9 15.4
property4 3 7 1.0 1.0 0 0 7.3 6.2
property5 property - - 3 3 timelimit timelimit
property6 6a property 3 - - 3 3 timelimit timelimit
property6 6b property 1 842.7 780.3 0 0 3775.7 3642.4
property9 property 0 463.0 463.0 0 0 2685.5 2559.3
property9 property 4 723.7 728.3 0 0 3720.4 3710.9

Table B.4: The runtimes and numbers of solving nodes are given as the
arithmetic mean over three runs on our evaluation set of UNSAT instances.
The shifted geometric mean of the runtimes over all instances is 945.9 s for
the “base” configuration, which includes our LP heuristic, and 915.3 s for
the configuration “no lp” without the LP heuristic. That means, the runtime
increases only slightly due to the application of our heuristic.

Instance Nodes Timeouts Time

base root node none base root node none base root node none

lin acas 1 2 int away2 2.0 - - 0 3 3 30.4 timelimit timelimit
lin acas 2 2 lin opp 1.0 1.0 - 0 0 3 3.3 3.8 timelimit
lin acas 2 2 lin opp2 43.0 - 1177.0 0 1 0 808.4 6825.9 7056.3
mnist 24 image2 20 1.0 1.0 421.0 0 0 0 6.0 6.7 1162.3
mnist 24 image4 5 1.0 1.0 - 0 0 3 6.3 7.9 timelimit
mnist 512 image11 20 1.0 1.0 - 0 0 3 39.4 46.4 timelimit
mnist 512 image4 20 1.0 1.0 - 0 0 3 33.0 35.6 timelimit
property2 2 2 1.0 1.0 - 0 0 3 2.7 3.7 timelimit
property2 3 7 1.0 1.0 - 0 0 3 2.6 3.2 timelimit
property2 5 3 5.7 977.0 2066.0 0 0 0 66.7 1677.3 2997.1
property7 property 3 77.0 - - 0 3 3 4042.5 timelimit timelimit
property7 property 4 - - - 3 3 3 timelimit timelimit timelimit
property8 property 1.0 1.0 - 0 0 3 3.8 5.0 timelimit

Table B.5: The results are obtained as arithmetic mean over three runs on
our evaluation set of SAT instances. It is obvious that without application of
any specialized heuristic, SAT instances can hardly be solved.

B. Computational Results for Various Components 107

B.3 Quadratic programming formulation

In this section we present the computational results of our implementation
of the quadratic programming model for verification of neural networks. It
should be noticed that we use a different SCIP setup for the results in this
section. For nonlinear programming problems, it is beneficial to compile SCIP
with Ipopt (cf. Wächter and Biegler [54]), which is a software package for
nonlinear optimization. The results are therefore obtained with SCIP 6.0.0
using Ipopt 3.12.5, and Soplex 4.0.0 as LP solver. We evaluate the quadratic
programming model on the disjunction instances from the UNSAT and SAT
evaluation sets. Additionally, we split the instances of the MNIST 24 test set
as described in Remark 7 and evaluate the quadratic programming model on
these. In contrast to the other experiments in this thesis, we use a time limit
of one hour since very few instances can be solved within a reasonable amount
of time.

Instance Dual Bound Primal Bound Nodes Result Status Time

linear acas 1 1 int away -7.9e+09 - 1 - - timelimit
linear acas 1 1 lin opp2 -5.7e+09 - 1 - - timelimit
linear acas 1 1 lin opp dir -5.1e+09 - 1 - - timelimit
property1 1 1 -3.1e+09 - 1 - - timelimit
property1 2 2 -3.8e+09 - 1 - - timelimit
property2 3 3 -4.1e+09 - 1 - - timelimit
property2 4 2 -2.1e+09 - 94 - - timelimit
property3 4 3 -3.7e+07 - 55 - - timelimit
property3 4 4 -9.3e+07 - 1 - - timelimit
property4 2 2 -5.2e+06 - 108 - - timelimit
property4 3 7 -1.7e+09 - 138 - - timelimit
property6 6a property 3 -3.2e+09 - 1 - - timelimit
property6 6b property 1 -4.4e+09 - 1 - - timelimit
property9 property 0 -1.3e+08 - 1 - - timelimit
property9 property 4 -1.3e+08 - 1 - - timelimit

Table B.6: Computational results for all disjunction instances of our UNSAT
evaluation set with time limit of one hour.

Instance Dual Bound Primal Bound Nodes Result Status Time

linear acas 1 2 int away2 -5.3e+09 - 1 - - timelimit
linear acas 2 2 lin opp -7.6e+09 - 1 - - timelimit
linear acas 2 2 lin opp2 -8.2e+09 - 1 - - timelimit
property2 2 2 -3.4e+09 - 1 - - timelimit
property2 3 7 -1.6e+13 - 5929 - - timelimit
property2 5 3 -4.9e+09 - 1 - - timelimit
property7 property 3 -4.6e+08 - 1 - - timelimit
property7 property 4 -4.6e+08 - 1 - - timelimit
property8 property -2.7e+11 - 965 - - timelimit

Table B.7: Computational results for all disjunction instances of our SAT
evaluation set with time limit of one hour.

B. Computational Results for Various Components 108

Instance Dual Bound Primal Bound Nodes Result Status Time

mnist 24 image11 10 0 -4.7e+07 - 537 - - timelimit
mnist 24 image11 10 1 -4.7e+07 7.1e+05 444 - - timelimit
mnist 24 image11 1 0 - - 0 UNSAT infeasible 1.4
mnist 24 image11 1 1 - - 0 UNSAT infeasible 1.4
mnist 24 image11 1 2 - - 0 UNSAT infeasible 1.5
mnist 24 image11 1 3 - - 0 UNSAT infeasible 1.4
mnist 24 image11 1 4 - - 0 UNSAT infeasible 1.6
mnist 24 image11 1 5 - - 0 UNSAT infeasible 1.6
mnist 24 image11 1 7 - - 0 UNSAT infeasible 1.6
mnist 24 image11 1 8 - - 0 UNSAT infeasible 1.4
mnist 24 image11 1 9 - - 0 UNSAT infeasible 1.6
mnist 24 image11 20 0 -1.8e+08 - 1 - - timelimit
mnist 24 image11 20 1 -1.7e+08 - 130 - - timelimit
mnist 24 image11 5 0 -1.1e+07 2e+06 540 - - timelimit
mnist 24 image11 5 1 -8.3e+06 - 593 - - timelimit
mnist 24 image2 10 0 -5.5e+07 - 1 - - timelimit
mnist 24 image2 10 2 -5.6e+07 - 1 - - timelimit
mnist 24 image2 1 0 - - 0 UNSAT infeasible 1.5
mnist 24 image2 1 2 - - 1 UNSAT infeasible 96.0
mnist 24 image2 1 3 - - 0 UNSAT infeasible 1.4
mnist 24 image2 1 4 - - 0 UNSAT infeasible 1.5
mnist 24 image2 1 5 - - 1 UNSAT infeasible 114.5
mnist 24 image2 1 6 - - 0 UNSAT infeasible 1.4
mnist 24 image2 1 7 - - 1 UNSAT infeasible 97.2
mnist 24 image2 1 8 - - 1 UNSAT infeasible 96.5
mnist 24 image2 1 9 - - 0 UNSAT infeasible 1.5
mnist 24 image2 20 0 -1.7e+08 - 1 - - timelimit
mnist 24 image2 5 0 -1.5e+07 - 460 - - timelimit
mnist 24 image2 5 2 -1.6e+07 - 600 - - timelimit
mnist 24 image4 10 0 -5.4e+07 0.0 1 SAT bound 1074.0
mnist 24 image4 10 1 -5.4e+07 - 464 - - timelimit
mnist 24 image4 10 2 -5.5e+07 - 1 - - timelimit
mnist 24 image4 1 0 - - 0 UNSAT infeasible 1.6
mnist 24 image4 1 1 - - 0 UNSAT infeasible 1.5
mnist 24 image4 1 2 - - 0 UNSAT infeasible 1.5
mnist 24 image4 1 3 - - 0 UNSAT infeasible 1.6
mnist 24 image4 1 5 - - 0 UNSAT infeasible 1.6
mnist 24 image4 1 6 - - 0 UNSAT infeasible 1.4
mnist 24 image4 1 7 - - 0 UNSAT infeasible 1.5
mnist 24 image4 1 8 - - 0 UNSAT infeasible 1.6
mnist 24 image4 1 9 - - 1 UNSAT infeasible 103.7
mnist 24 image4 20 0 -1.8e+08 - 1 - - timelimit
mnist 24 image4 5 0 -1.3e+07 5.8e+05 541 - - timelimit
mnist 24 image4 5 1 -1.2e+07 1.6e+06 883 - - timelimit

Table B.8: Quadratic programming formulation on MNIST 24 test set with
splitted instances. We set the time limit of one hour for each original instance,
and report the runtimes for all instances after splitting until the time limit
is reached. If zero solving nodes are indicated, infeasibility was detected by
presolving. The solving status “bound” indicates that the solving process was
aborted as a primal bound of 0.0 was reached. Status “infeasible” means that
SCIP detected infeasibility of the quadratic program, which corresponds to an
UNSAT instance of the verification problem. Except from the SAT instance
“mnist 24 image4 10 0”, only very easy instances with a small input domain
are solved within the time limit of one hour.

B. Computational Results for Various Components 109

B.4 Solving as feasibility problem

In this section we provide some computational results on the performance
of our solving model using the formulation as feasibility problem, which we
presented in Section 3.1. We refer to the beginning of Appendix C for some
notes on the reported parameter settings.

Instance Nodes Result Status Time

lin acas 1 1 int away 227.0 UNSAT infeasible 503.0
lin acas 1 1 lin opp2 249.0 UNSAT infeasible 1194.5
lin acas 1 1 lin opp dir 547.0 UNSAT infeasible 3141.7
property1 1 1 11.0 UNSAT infeasible 121.8
property1 2 2 105.0 UNSAT infeasible 1546.1
property2 3 3 1849.0 UNSAT infeasible 5358.9
property2 4 2 - - - timelimit
property3 4 3 13.0 UNSAT infeasible 26.4
property3 4 4 1.0 UNSAT infeasible 4.0
property4 2 2 3.0 UNSAT infeasible 10.3
property4 3 7 1.0 UNSAT infeasible 4.7
property6 6a property 3 1183.0 UNSAT infeasible 5495.2
property6 6b property 1 317.0 UNSAT infeasible 2039.4
property9 property 0 463.0 UNSAT infeasible 2212.6
property9 property 4 781.0 UNSAT infeasible 3303.5

Table B.9: Results for configuration “no heur base nonopt” which is the
baseline configuration using the formulation of the verification problem as
satisfiability problem.

Parameter Value

use opt mode False
sampling heuristic local max iter -1000
sampling heuristic local freq 1
sampling heuristic local maxdepth 8
sampling heuristic max iter 1000
sampling heuristic freq 1
sampling heuristic maxdepth 0
sampling heuristic bound for lp heur 100000.0
sampling heuristic max iter lp heur 1000
use domain branching True
domain branching split mode gradient
domain branching priority 100000
domain branching maxdepth 20
domain branching maxbounddist 1
use relu branching False
use obbt propagator True
obbt maxdepth 20
obbt use genvbounds False
use obbt two variables False
obbt optimize nodes True
obbt use symbolic False
obbt bound for opt -200
use ideal separator False

B. Computational Results for Various Components 110

Instance Nodes Result Status Time

lin acas 1 1 int away 1602.0 UNSAT infeasible 2504.3
lin acas 1 1 lin opp2 - - - timelimit
lin acas 1 1 lin opp dir - - - timelimit
property1 1 1 31.0 UNSAT infeasible 343.7
property1 2 2 121.0 UNSAT infeasible 1808.3
property2 3 3 - - - timelimit
property2 4 2 - - - timelimit
property3 4 3 41.0 UNSAT infeasible 66.1
property3 4 4 1.0 UNSAT infeasible 5.7
property4 2 2 5.0 UNSAT infeasible 13.7
property4 3 7 1.0 UNSAT infeasible 4.3
property6 6a property 3 - - - timelimit
property6 6b property 1 - - - timelimit
property9 property 0 817.0 UNSAT infeasible 4129.3
property9 property 4 1463.0 UNSAT infeasible 5474.0

Table B.10: Results for configuration “no heur relu nonopt”, in which ReLU
branching is used instead of domain branching.

Parameter Value

use opt mode False
sampling heuristic local max iter -1000
sampling heuristic local freq 1
sampling heuristic local maxdepth 8
sampling heuristic max iter 1000
sampling heuristic freq 1
sampling heuristic maxdepth 0
sampling heuristic bound for lp heur 100000.0
sampling heuristic max iter lp heur 1000
use domain branching False
use relu branching True
relu branching split mode standard
relu branching priority 100000
relu branching maxdepth 20
relu branching maxbounddist 1
use obbt propagator True
obbt maxdepth 20
obbt use genvbounds False
use obbt two variables False
obbt optimize nodes True
obbt use symbolic False
obbt bound for opt -200
use ideal separator False

B. Computational Results for Various Components 111

Instance Nodes Result Status Time

lin acas 1 1 int away 227.0 UNSAT infeasible 513.5
lin acas 1 1 lin opp2 245.0 UNSAT infeasible 1193.3
lin acas 1 1 lin opp dir 543.0 UNSAT infeasible 3144.1
property1 1 1 11.0 UNSAT infeasible 128.3
property1 2 2 91.0 UNSAT infeasible 1342.7
property2 3 3 2157.0 UNSAT infeasible 6085.5
property2 4 2 - - - timelimit
property3 4 3 13.0 UNSAT infeasible 26.0
property3 4 4 1.0 UNSAT infeasible 4.0
property4 2 2 3.0 UNSAT infeasible 10.5
property4 3 7 1.0 UNSAT infeasible 4.3
property6 6a property 3 1159.0 UNSAT infeasible 5447.3
property6 6b property 1 309.0 UNSAT infeasible 1954.6
property9 property 0 463.0 UNSAT infeasible 2233.5
property9 property 4 777.0 UNSAT infeasible 3306.5

Table B.11: Results for configuration “no heur sepa nonopt” which corre-
sponds to the baseline configuration “no heur base nonopt”, but additionally
includes the separator.

Parameter Value

use opt mode False
sampling heuristic local max iter -1000
sampling heuristic local freq 1
sampling heuristic local maxdepth 8
sampling heuristic max iter 1000
sampling heuristic freq 1
sampling heuristic maxdepth 0
sampling heuristic bound for lp heur 100000.0
sampling heuristic max iter lp heur 1000
use domain branching True
domain branching split mode gradient
domain branching priority 100000
domain branching maxdepth 20
domain branching maxbounddist 1
use relu branching False
use obbt propagator True
obbt maxdepth 20
obbt use genvbounds False
use obbt two variables False
obbt optimize nodes True
obbt use symbolic False
obbt bound for opt -200
use ideal separator True
sepa freq 1
sepa priority 100
sepa maxbounddist 0.5
sepa delay False

112

C Computational Results UNSAT Test Set

In the following sections we report detailed computational results for the
experiments that are presented in Section 9.2. Each experiment is conducted
on the evaluation set of UNSAT instances as presented in Section 8.4. As laid
out in Section 9.2, each experiment is run on a cluster node with Intel Xeon
CPU E5-2670 at a clock rate of 2.5 GHz. Moreover, a memory limit of 32
GB is set. On each page we report the results for one configuration and the
corresponding settings in our solving model. In all configurations, the verifi-
cation problem is solved as an optimization problem based on the formulation
we presented in Section 3.2. We present runtime, number of solving nodes,
the result SAT (refutable) or UNSAT (verifiable), and the values of the dual
and primal bound, if these are finite. Additionally, we report a status which
is “optimal”, if the MIP was solved to optimality or “bound”, if the solving
process was interrupted due to a positive dual or a negative primal bound. If
the status is “infeasible”, all solving nodes have been cut off throughout the
solving process. With respect to the prameter settings of our solving model,
we refer to Section 7.3 for an explanation of these. It should be noted that
various parameters are not relevant in certain cases. Therefore, not all param-
eters are reported for all configurations. If parameter values are not explicitly
stated, they can be assumed to take the default values as indicated in Section
7.3.

Two parameters are set differently for various instances within the evalua-
tion set of UNSAT instances. For our self defined instances that are based on
the ACAS neural networks (see Section 8.2 and Appendix A), the parameter
“sampling heuristic use lp sol gen” is set to True, otherwise to False. This is
due to the fact that for all other instances the feasible input domain is a box.
On the other hand, the parameter “bfs from all inputs” is set to True for all
ACAS based instances, and to False for all MNIST based instances. It must be
True for the ACAS based instances, because the corresponding neural networks
have a neuron without activation function between each input neuron and the
first ReLU layer. These neurons in between apply a linear transformation to
each input component and can only be reached from the corresponding input
neuron. Therefore, a breadth-first search (BFS) must be performed from each
input neuron to find all neurons in the network. However, doing so for the
MNIST instances would be wasted computational effort. The two parameters
are set analogously in all configurations and therefore we do not report their
values in the tables of this section.

C. Computational Results UNSAT Test Set 113

C.1 OBBT2 options

Instance Dual Bound Primal Bound Nodes Result Status Time

lin acas 1 1 int away 0.22 0.22 171.0 UNSAT optimal 522.6
lin acas 1 1 lin opp2 1.2 1.2 231.0 UNSAT optimal 1387.6
lin acas 1 1 lin opp dir 1.7 1.7 527.0 UNSAT optimal 3806.6
lin acas 3 1 var dist 0.11 0.26 283.0 UNSAT bound 837.9
mnist 24 image11 5 - - - - - timelimit
mnist 24 image2 5 - - - - - timelimit
mnist 24 image4 1 1.2e+03 1.2e+03 1.0 UNSAT optimal 6.6
mnist 512 image11 5 - - - - - timelimit
mnist 512 image2 1 1e+04 1e+04 2.0 UNSAT bound 418.3
property10 property 0.02 0.16 715.0 UNSAT bound 4540.5
property1 1 1 1.5e+03 1.5e+03 11.0 UNSAT optimal 160.0
property1 2 2 1.5e+03 1.5e+03 95.0 UNSAT optimal 1856.2
property2 3 3 0.036 0.12 1499.0 UNSAT bound 6083.4
property2 4 2 - - - - - timelimit
property3 4 3 6.6 6.6 11.0 UNSAT optimal 28.4
property3 4 4 4.6 4.6 1.0 UNSAT optimal 6.4
property4 2 2 5.5 5.5 3.0 UNSAT optimal 15.3
property4 3 7 4.4 4.4 1.0 UNSAT optimal 5.1
property5 property - - - - - timelimit
property6 6a property 3 0.19 0.19 1043.0 UNSAT optimal 6376.0
property6 6b property 1 0.25 0.25 297.0 UNSAT optimal 2412.0
property9 property 0 0.7 0.7 397.0 UNSAT optimal 2433.3
property9 property 4 0.54 0.54 667.0 UNSAT optimal 3552.5

Table C.1: Configuration “no heur base obbt2”: Baseline configuration with
additional application of OBBT2, where our selection rule as described in
Section 4.7 is applied with k = 2, l = 5.

Parameter Value

sampling heuristic local max iter -1000
sampling heuristic local freq 1
sampling heuristic local maxdepth 8
sampling heuristic max iter 1000
sampling heuristic freq 1
sampling heuristic maxdepth 0
sampling heuristic bound for lp heur 100000.0
sampling heuristic max iter lp heur 1000
use domain branching True
domain branching split mode gradient
domain branching priority 100000
domain branching maxdepth 20
domain branching maxbounddist 1
use relu branching False
use obbt propagator True
obbt maxdepth 20
obbt use genvbounds False
use obbt two variables True
obbt k 2
obbt l 5
obbt sort True
obbt optimize nodes True
obbt use symbolic False
obbt bound for opt -200
use ideal separator False

C. Computational Results UNSAT Test Set 114

Instance Dual Bound Primal Bound Nodes Result Status Time

lin acas 1 1 int away 0.22 0.22 167.0 UNSAT optimal 499.1
lin acas 1 1 lin opp2 1.2 1.2 231.0 UNSAT optimal 1376.6
lin acas 1 1 lin opp dir 1.7 1.7 535.0 UNSAT optimal 3834.8
lin acas 3 1 var dist 0.12 0.26 289.0 UNSAT bound 845.4
mnist 24 image11 5 - - - - - timelimit
mnist 24 image2 5 - - - - - timelimit
mnist 24 image4 1 1.2e+03 1.2e+03 1.0 UNSAT optimal 6.0
mnist 512 image11 5 - - - - - timelimit
mnist 512 image2 1 1e+04 1e+04 2.0 UNSAT bound 419.9
property10 property 0.04 0.16 739.0 UNSAT bound 4612.2
property1 1 1 1.5e+03 1.5e+03 11.0 UNSAT optimal 156.6
property1 2 2 1.5e+03 1.5e+03 95.0 UNSAT optimal 1756.7
property2 3 3 0.028 0.093 1489.0 UNSAT bound 5988.3
property2 4 2 - - - - - timelimit
property3 4 3 6.4 6.4 13.0 UNSAT optimal 32.0
property3 4 4 4.6 4.6 1.0 UNSAT optimal 5.8
property4 2 2 5.5 5.5 3.0 UNSAT optimal 14.6
property4 3 7 4.4 4.4 1.0 UNSAT optimal 4.7
property5 property - - - - - timelimit
property6 6a property 3 0.22 0.22 1047.0 UNSAT optimal 6401.7
property6 6b property 1 0.25 0.25 299.0 UNSAT optimal 2389.8
property9 property 0 0.7 0.7 413.0 UNSAT optimal 2499.5
property9 property 4 0.26 0.26 655.0 UNSAT optimal 3567.3

Table C.2: Configuration “no heur base obbt2 nosort”: Baseline configura-
tion with additional application of OBBT2, where the baseline selection rule
(cf. Section 9.2) is applied with k = 2, l = 5.

Parameter Value

sampling heuristic local max iter -1000
sampling heuristic local freq 1
sampling heuristic local maxdepth 8
sampling heuristic max iter 1000
sampling heuristic freq 1
sampling heuristic maxdepth 0
sampling heuristic bound for lp heur 100000.0
sampling heuristic max iter lp heur 1000
use domain branching True
domain branching split mode gradient
domain branching priority 100000
domain branching maxdepth 20
domain branching maxbounddist 1
use relu branching False
use obbt propagator True
obbt maxdepth 20
obbt use genvbounds False
use obbt two variables True
obbt k 2
obbt l 5
obbt sort False
obbt optimize nodes True
obbt use symbolic False
obbt bound for opt -200
use ideal separator False

C. Computational Results UNSAT Test Set 115

Instance Dual Bound Primal Bound Nodes Result Status Time

lin acas 1 1 int away 0.22 0.22 165.0 UNSAT optimal 889.7
lin acas 1 1 lin opp2 1.2 1.2 213.0 UNSAT optimal 2658.7
lin acas 1 1 lin opp dir - - - - - timelimit
lin acas 3 1 var dist 0.12 0.26 257.0 UNSAT bound 1533.5
mnist 24 image11 5 - - - - - timelimit
mnist 24 image2 5 - - - - - timelimit
mnist 24 image4 1 1.2e+03 1.2e+03 1.0 UNSAT optimal 5.9
mnist 512 image11 5 - - - - - timelimit
mnist 512 image2 1 1e+04 1e+04 2.0 UNSAT bound 437.6
property10 property - - - - - timelimit
property1 1 1 1.5e+03 1.5e+03 11.0 UNSAT optimal 376.4
property1 2 2 1.5e+03 1.5e+03 89.0 UNSAT optimal 5569.7
property2 3 3 - - - - - timelimit
property2 4 2 - - - - - timelimit
property3 4 3 6.6 6.6 11.0 UNSAT optimal 44.1
property3 4 4 4.6 4.6 1.0 UNSAT optimal 5.7
property4 2 2 5.5 5.5 3.0 UNSAT optimal 21.2
property4 3 7 4.4 4.4 1.0 UNSAT optimal 6.2
property5 property - - - - - timelimit
property6 6a property 3 - - - - - timelimit
property6 6b property 1 0.23 0.23 269.0 UNSAT optimal 5070.1
property9 property 0 0.88 0.88 355.0 UNSAT optimal 4725.2
property9 property 4 0.54 0.54 583.0 UNSAT optimal 6504.4

Table C.3: Configuration “no heur base obbt2 10”: Baseline configuration
with additional application of OBBT2, where our selection rule as described
in Section 4.7 is applied with k = 10, l = 10.

Parameter Value

sampling heuristic local max iter -1000
sampling heuristic local freq 1
sampling heuristic local maxdepth 8
sampling heuristic max iter 1000
sampling heuristic freq 1
sampling heuristic maxdepth 0
sampling heuristic bound for lp heur 100000.0
sampling heuristic max iter lp heur 1000
use domain branching True
domain branching split mode gradient
domain branching priority 100000
domain branching maxdepth 20
domain branching maxbounddist 1
use relu branching False
use obbt propagator True
obbt maxdepth 20
obbt use genvbounds False
use obbt two variables True
obbt k 10
obbt l 10
obbt sort True
obbt optimize nodes True
obbt use symbolic False
obbt bound for opt -200
use ideal separator False

C. Computational Results UNSAT Test Set 116

Instance Dual Bound Primal Bound Nodes Result Status Time

lin acas 1 1 int away 0.22 0.22 151.0 UNSAT optimal 839.8
lin acas 1 1 lin opp2 1.2 1.2 215.0 UNSAT optimal 2663.0
lin acas 1 1 lin opp dir - - - - - timelimit
lin acas 3 1 var dist 0.12 0.26 263.0 UNSAT bound 1535.8
mnist 24 image11 5 - - - - - timelimit
mnist 24 image2 5 - - - - - timelimit
mnist 24 image4 1 1.2e+03 1.2e+03 1.0 UNSAT optimal 5.9
mnist 512 image11 5 - - - - - timelimit
mnist 512 image2 1 1e+04 1e+04 2.0 UNSAT bound 439.3
property10 property - - - - - timelimit
property1 1 1 1.5e+03 1.5e+03 11.0 UNSAT optimal 370.0
property1 2 2 1.5e+03 1.5e+03 85.0 UNSAT optimal 4980.4
property2 3 3 - - - - - timelimit
property2 4 2 - - - - - timelimit
property3 4 3 6.4 6.4 11.0 UNSAT optimal 39.8
property3 4 4 4.6 4.6 1.0 UNSAT optimal 4.8
property4 2 2 5.5 5.5 3.0 UNSAT optimal 20.2
property4 3 7 4.4 4.4 1.0 UNSAT optimal 5.0
property5 property - - - - - timelimit
property6 6a property 3 - - - - - timelimit
property6 6b property 1 0.23 0.23 267.0 UNSAT optimal 4886.3
property9 property 0 1 1 357.0 UNSAT optimal 4819.1
property9 property 4 0.54 0.54 573.0 UNSAT optimal 6515.5

Table C.4: Configuration “no heur base obbt2 10 nosort”: Baseline config-
uration with additional application of OBBT2, where the baseline selection
rule (cf. Section 9.2) is applied with k = 10, l = 10.

Parameter Value

sampling heuristic local max iter -1000
sampling heuristic local freq 1
sampling heuristic local maxdepth 8
sampling heuristic max iter 1000
sampling heuristic freq 1
sampling heuristic maxdepth 0
sampling heuristic bound for lp heur 100000.0
sampling heuristic max iter lp heur 1000
use domain branching True
domain branching split mode gradient
domain branching priority 100000
domain branching maxdepth 20
domain branching maxbounddist 1
use relu branching False
use obbt propagator True
obbt maxdepth 20
obbt use genvbounds False
use obbt two variables True
obbt k 10
obbt l 10
obbt sort False
obbt optimize nodes True
obbt use symbolic False
obbt bound for opt -200
use ideal separator False

C. Computational Results UNSAT Test Set 117

C.2 Separator options

Instance Dual Bound Primal Bound Nodes Result Status Time

lin acas 1 1 int away 0.22 0.22 229.0 UNSAT optimal 530.0
lin acas 1 1 lin opp2 1.2 1.2 247.0 UNSAT optimal 1234.4
lin acas 1 1 lin opp dir 1.7 1.7 543.0 UNSAT optimal 3283.0
lin acas 3 1 var dist 0.11 0.26 289.0 UNSAT bound 729.8
mnist 24 image11 5 - - - - - timelimit
mnist 24 image2 5 - - - - - timelimit
mnist 24 image4 1 1.2e+03 1.2e+03 1.0 UNSAT optimal 6.3
mnist 512 image11 5 - - - - - timelimit
mnist 512 image2 1 1e+04 1e+04 2.0 UNSAT bound 416.9
property10 property 0.016 0.16 895.0 UNSAT bound 4511.3
property1 1 1 1.5e+03 1.5e+03 11.0 UNSAT optimal 137.6
property1 2 2 1.5e+03 1.5e+03 93.0 UNSAT optimal 1461.4
property2 3 3 0.038 0.12 1885.0 UNSAT bound 5712.7
property2 4 2 - - - - - timelimit
property3 4 3 6.4 6.4 13.0 UNSAT optimal 29.9
property3 4 4 4.6 4.6 1.0 UNSAT optimal 6.9
property4 2 2 5.5 5.5 3.0 UNSAT optimal 14.9
property4 3 7 4.4 4.4 1.0 UNSAT optimal 5.9
property5 property - - - - - timelimit
property6 6a property 3 0.22 0.22 1159.0 UNSAT optimal 5761.1
property6 6b property 1 0.23 0.23 301.0 UNSAT optimal 1987.4
property9 property 0 1 1 463.0 UNSAT optimal 2328.9
property9 property 4 0.54 0.54 779.0 UNSAT optimal 3470.3

Table C.5: Configuration “no heur sepa0 high”: Baseline configuration with
additional execution of the separator with high priority among all separators,
but only at the current best node, i.e. the node with the highest dual bound.

Parameter Value

sampling heuristic local max iter -1000
sampling heuristic local freq 1
sampling heuristic local maxdepth 8
sampling heuristic max iter 1000
sampling heuristic freq 1
sampling heuristic maxdepth 0
sampling heuristic bound for lp heur 100000.0
sampling heuristic max iter lp heur 1000
use domain branching True
domain branching split mode gradient
domain branching priority 100000
domain branching maxdepth 20
domain branching maxbounddist 1
use relu branching False
use obbt propagator True
obbt maxdepth 20
obbt use genvbounds False
use obbt two variables False
obbt optimize nodes True
obbt use symbolic False
obbt bound for opt -200
use ideal separator True
sepa freq 1
sepa priority 100000
sepa maxbounddist 0.0
sepa delay False

C. Computational Results UNSAT Test Set 118

Instance Dual Bound Primal Bound Nodes Result Status Time

lin acas 1 1 int away 0.22 0.22 229.0 UNSAT optimal 530.0
lin acas 1 1 lin opp2 1.2 1.2 247.0 UNSAT optimal 1241.8
lin acas 1 1 lin opp dir 1.7 1.7 543.0 UNSAT optimal 3281.5
lin acas 3 1 var dist 0.11 0.26 289.0 UNSAT bound 731.0
mnist 24 image11 5 - - - - - timelimit
mnist 24 image2 5 - - - - - timelimit
mnist 24 image4 1 1.2e+03 1.2e+03 1.0 UNSAT optimal 8.8
mnist 512 image11 5 - - - - - timelimit
mnist 512 image2 1 1e+04 1e+04 2.0 UNSAT bound 418.1
property10 property 0.027 0.16 897.0 UNSAT bound 4539.6
property1 1 1 1.5e+03 1.5e+03 11.0 UNSAT optimal 136.2
property1 2 2 1.5e+03 1.5e+03 93.0 UNSAT optimal 1454.9
property2 3 3 0.054 0.093 1757.0 UNSAT bound 5639.1
property2 4 2 - - - - - timelimit
property3 4 3 6.6 6.6 13.0 UNSAT optimal 27.5
property3 4 4 4.6 4.6 1.0 UNSAT optimal 5.0
property4 2 2 5.5 5.5 3.0 UNSAT optimal 13.1
property4 3 7 4.4 4.4 1.0 UNSAT optimal 4.9
property5 property - - - - - timelimit
property6 6a property 3 0.22 0.22 1149.0 UNSAT optimal 5729.0
property6 6b property 1 0.25 0.25 303.0 UNSAT optimal 1984.6
property9 property 0 0.7 0.7 463.0 UNSAT optimal 2325.8
property9 property 4 0.89 0.89 779.0 UNSAT optimal 3473.2

Table C.6: Configuration “no heur sepa0”: Baseline configuration with addi-
tional execution of the separator but only at the current best node, i.e. the
node with the highest dual bound.

Parameter Value

sampling heuristic local max iter -1000
sampling heuristic local freq 1
sampling heuristic local maxdepth 8
sampling heuristic max iter 1000
sampling heuristic freq 1
sampling heuristic maxdepth 0
sampling heuristic bound for lp heur 100000.0
sampling heuristic max iter lp heur 1000
use domain branching True
domain branching split mode gradient
domain branching priority 100000
domain branching maxdepth 20
domain branching maxbounddist 1
use relu branching False
use obbt propagator True
obbt maxdepth 20
obbt use genvbounds False
use obbt two variables False
obbt optimize nodes True
obbt use symbolic False
obbt bound for opt -200
use ideal separator True
sepa freq 1
sepa priority 100
sepa maxbounddist 0.0
sepa delay False

C. Computational Results UNSAT Test Set 119

Instance Dual Bound Primal Bound Nodes Result Status Time

lin acas 1 1 int away 0.22 0.22 229.0 UNSAT optimal 527.7
lin acas 1 1 lin opp2 1.2 1.2 249.0 UNSAT optimal 1241.1
lin acas 1 1 lin opp dir 1.7 1.7 543.0 UNSAT optimal 3246.1
lin acas 3 1 var dist 0.12 0.26 285.0 UNSAT bound 723.9
mnist 24 image11 5 - - - - - timelimit
mnist 24 image2 5 - - - - - timelimit
mnist 24 image4 1 1.2e+03 1.2e+03 1.0 UNSAT optimal 7.2
mnist 512 image11 5 - - - - - timelimit
mnist 512 image2 1 1e+04 1e+04 2.0 UNSAT bound 415.2
property10 property 0.026 0.16 881.0 UNSAT bound 4372.6
property1 1 1 1.5e+03 1.5e+03 11.0 UNSAT optimal 130.1
property1 2 2 1.5e+03 1.5e+03 93.0 UNSAT optimal 1447.6
property2 3 3 0.054 0.093 1775.0 UNSAT bound 5727.6
property2 4 2 - - - - - timelimit
property3 4 3 6.4 6.4 13.0 UNSAT optimal 28.2
property3 4 4 4.6 4.6 1.0 UNSAT optimal 5.7
property4 2 2 5.5 5.5 3.0 UNSAT optimal 13.0
property4 3 7 4.4 4.4 1.0 UNSAT optimal 5.8
property5 property - - - - - timelimit
property6 6a property 3 0.22 0.22 1149.0 UNSAT optimal 5649.1
property6 6b property 1 0.25 0.25 305.0 UNSAT optimal 2033.3
property9 property 0 0.7 0.7 461.0 UNSAT optimal 2282.1
property9 property 4 0.26 0.26 777.0 UNSAT optimal 3438.1

Table C.7: Configuration “no heur sepa0 freq5”: Baseline configuration with
additional execution of the separator but only at the current best node, i.e.
the node with the highest dual bound, and each fifth depth level of the branch-
and-bound tree.

Parameter Value

sampling heuristic local max iter -1000
sampling heuristic local freq 1
sampling heuristic local maxdepth 8
sampling heuristic max iter 1000
sampling heuristic freq 1
sampling heuristic maxdepth 0
sampling heuristic bound for lp heur 100000.0
sampling heuristic max iter lp heur 1000
use domain branching True
domain branching split mode gradient
domain branching priority 100000
domain branching maxdepth 20
domain branching maxbounddist 1
use relu branching False
use obbt propagator True
obbt maxdepth 20
obbt use genvbounds False
use obbt two variables False
obbt optimize nodes True
obbt use symbolic False
obbt bound for opt -200
use ideal separator True
sepa freq 5
sepa priority 100
sepa maxbounddist 0.0
sepa delay False

C. Computational Results UNSAT Test Set 120

Instance Dual Bound Primal Bound Nodes Result Status Time

lin acas 1 1 int away 0.22 0.22 227.0 UNSAT optimal 530.9
lin acas 1 1 lin opp2 1.2 1.2 247.0 UNSAT optimal 1233.1
lin acas 1 1 lin opp dir 1.7 1.7 543.0 UNSAT optimal 3275.5
lin acas 3 1 var dist 0.11 0.26 287.0 UNSAT bound 727.0
mnist 24 image11 5 - - - - - timelimit
mnist 24 image2 5 - - - - - timelimit
mnist 24 image4 1 1.2e+03 1.2e+03 1.0 UNSAT optimal 6.8
mnist 512 image11 5 - - - - - timelimit
mnist 512 image2 1 1e+04 1e+04 2.0 UNSAT bound 416.7
property10 property 0.016 0.16 883.0 UNSAT bound 4509.2
property1 1 1 1.5e+03 1.5e+03 11.0 UNSAT optimal 135.9
property1 2 2 1.5e+03 1.5e+03 93.0 UNSAT optimal 1453.3
property2 3 3 0.054 0.093 1831.0 UNSAT bound 5708.4
property2 4 2 - - - - - timelimit
property3 4 3 6.6 6.6 13.0 UNSAT optimal 33.2
property3 4 4 4.6 4.6 1.0 UNSAT optimal 6.7
property4 2 2 5.5 5.5 3.0 UNSAT optimal 15.6
property4 3 7 4.4 4.4 1.0 UNSAT optimal 6.3
property5 property - - - - - timelimit
property6 6a property 3 0.18 0.18 1149.0 UNSAT optimal 5714.8
property6 6b property 1 0.23 0.23 307.0 UNSAT optimal 2010.0
property9 property 0 0.7 0.7 463.0 UNSAT optimal 2330.9
property9 property 4 0.54 0.54 779.0 UNSAT optimal 3468.9

Table C.8: Configuration “no heur sepa”: Baseline configuration with addi-
tional execution of the separator.

Parameter Value

sampling heuristic local max iter -1000
sampling heuristic local freq 1
sampling heuristic local maxdepth 8
sampling heuristic max iter 1000
sampling heuristic freq 1
sampling heuristic maxdepth 0
sampling heuristic bound for lp heur 100000.0
sampling heuristic max iter lp heur 1000
use domain branching True
domain branching split mode gradient
domain branching priority 100000
domain branching maxdepth 20
domain branching maxbounddist 1
use relu branching False
use obbt propagator True
obbt maxdepth 20
obbt use genvbounds False
use obbt two variables False
obbt optimize nodes True
obbt use symbolic False
obbt bound for opt -200
use ideal separator True
sepa freq 1
sepa priority 100
sepa maxbounddist 0.5
sepa delay False

C. Computational Results UNSAT Test Set 121

Instance Dual Bound Primal Bound Nodes Result Status Time

lin acas 1 1 int away 0.22 0.22 227.0 UNSAT optimal 534.6
lin acas 1 1 lin opp2 1.2 1.2 247.0 UNSAT optimal 1237.0
lin acas 1 1 lin opp dir 1.7 1.7 543.0 UNSAT optimal 3283.9
lin acas 3 1 var dist 0.11 0.26 289.0 UNSAT bound 734.4
mnist 24 image11 5 - - - - - timelimit
mnist 24 image2 5 - - - - - timelimit
mnist 24 image4 1 1.2e+03 1.2e+03 1.0 UNSAT optimal 6.6
mnist 512 image11 5 - - - - - timelimit
mnist 512 image2 1 1e+04 1e+04 2.0 UNSAT bound 421.6
property10 property 0.016 0.16 885.0 UNSAT bound 4491.6
property1 1 1 1.5e+03 1.5e+03 11.0 UNSAT optimal 133.6
property1 2 2 1.5e+03 1.5e+03 93.0 UNSAT optimal 1458.6
property2 3 3 0.052 0.12 1825.0 UNSAT bound 5913.7
property2 4 2 - - - - - timelimit
property3 4 3 6.4 6.4 13.0 UNSAT optimal 29.2
property3 4 4 4.6 4.6 1.0 UNSAT optimal 4.7
property4 2 2 5.5 5.5 3.0 UNSAT optimal 13.8
property4 3 7 4.4 4.4 1.0 UNSAT optimal 4.7
property5 property - - - - - timelimit
property6 6a property 3 0.22 0.22 1149.0 UNSAT optimal 5707.0
property6 6b property 1 0.25 0.25 307.0 UNSAT optimal 2003.2
property9 property 0 0.7 0.7 463.0 UNSAT optimal 2318.0
property9 property 4 0.54 0.54 779.0 UNSAT optimal 3477.8

Table C.9: Configuration “no heur sepa1”: Baseline configuration with addi-
tional execution of the separator at each node of the branch-and-bound tree.

Parameter Value

sampling heuristic local max iter -1000
sampling heuristic local freq 1
sampling heuristic local maxdepth 8
sampling heuristic max iter 1000
sampling heuristic freq 1
sampling heuristic maxdepth 0
sampling heuristic bound for lp heur 100000.0
sampling heuristic max iter lp heur 1000
use domain branching True
domain branching split mode gradient
domain branching priority 100000
domain branching maxdepth 20
domain branching maxbounddist 1
use relu branching False
use obbt propagator True
obbt maxdepth 20
obbt use genvbounds False
use obbt two variables False
obbt optimize nodes True
obbt use symbolic False
obbt bound for opt -200
use ideal separator True
sepa freq 1
sepa priority 100
sepa maxbounddist 1.0
sepa delay False

C. Computational Results UNSAT Test Set 122

C.3 Further configurations

Instance Dual Bound Primal Bound Nodes Result Status Time

lin acas 1 1 int away 0.081 0.081 2245.0 UNSAT optimal 1987.7
lin acas 1 1 lin opp2 - - - - - timelimit
lin acas 1 1 lin opp dir - - - - - timelimit
lin acas 3 1 var dist 0.00096 0.26 1062.0 UNSAT bound 1274.6
mnist 24 image11 5 1.2e+03 1.2e+03 1.0 UNSAT optimal 10.9
mnist 24 image2 5 2e+02 2e+02 593.0 UNSAT optimal 942.6
mnist 24 image4 1 1.2e+03 1.2e+03 1.0 UNSAT optimal 6.1
mnist 512 image11 5 8.6e+03 8.6e+03 1.0 UNSAT optimal 595.4
mnist 512 image2 1 1e+04 1e+04 1.0 UNSAT optimal 403.4
property10 property 0.037 0.16 161.0 UNSAT bound 656.8
property1 1 1 1.5e+03 1.5e+03 31.0 UNSAT optimal 372.3
property1 2 2 1.5e+03 1.5e+03 125.0 UNSAT optimal 1982.4
property2 3 3 - - - - - timelimit
property2 4 2 - - - - - timelimit
property3 4 3 6.4 6.4 57.0 UNSAT optimal 100.5
property3 4 4 4.5 4.6 2.0 UNSAT bound 5.5
property4 2 2 5.5 5.5 5.0 UNSAT optimal 15.2
property4 3 7 2.6 4.4 2.0 UNSAT bound 5.2
property5 property - - - - - timelimit
property6 6a property 3 - - - - - timelimit
property6 6b property 1 - - - - - timelimit
property9 property 0 0.7 0.7 829.0 UNSAT optimal 4521.7
property9 property 4 0.54 0.54 1273.0 UNSAT optimal 5837.1

Table C.10: Configuration “no heur relu genv”: ReLU branching combined
with generation of LVBs.

Parameter Value

sampling heuristic local max iter 0
sampling heuristic local freq 1
sampling heuristic local maxdepth 20
sampling heuristic max iter 1000
sampling heuristic freq 1
sampling heuristic maxdepth 0
sampling heuristic bound for lp heur 100000.0
sampling heuristic max iter lp heur 1000
use domain branching False
use relu branching True
relu branching split mode standard
relu branching priority 100000
relu branching maxdepth 20
relu branching maxbounddist 1
use obbt propagator True
obbt maxdepth 20
obbt use genvbounds True
use obbt two variables False
obbt optimize nodes True
obbt use symbolic False
obbt bound for opt -200
use ideal separator False

C. Computational Results UNSAT Test Set 123

Instance Dual Bound Primal Bound Nodes Result Status Time

lin acas 1 1 int away - - - - - timelimit
lin acas 1 1 lin opp2 - - - - - timelimit
lin acas 1 1 lin opp dir - - - - - timelimit
lin acas 3 1 var dist - - - - - timelimit
mnist 24 image11 5 1.4e+02 1.2e+03 10.0 UNSAT bound 6.1
mnist 24 image2 5 0.43 1.6e+02 3750.0 UNSAT bound 20.0
mnist 24 image4 1 1.2e+03 1.2e+03 4.0 UNSAT bound 5.1
mnist 512 image11 5 - - - - - timelimit
mnist 512 image2 1 8.7e+03 1e+04 11.0 UNSAT bound 87.9
property10 property - - - - - timelimit
property1 1 1 - - - - - timelimit
property1 2 2 - - - - - timelimit
property2 3 3 - - - - - timelimit
property2 4 2 - - - - - timelimit
property3 4 3 - - - - - timelimit
property3 4 4 - - - - - timelimit
property4 2 2 - - - - - timelimit
property4 3 7 - - - - - timelimit
property5 property - - - - - timelimit
property6 6a property 3 - - - - - timelimit
property6 6b property 1 - - - - - timelimit
property9 property 0 - - - - - timelimit
property9 property 4 - - - - - timelimit

Table C.11: Configuration “mnist base”: Except for the primal heuristic at
the root node, no specific techniques for verification of neural networks are
used. The problem is solved as a plain MIP by SCIP.

Parameter Value

sampling heuristic local max iter -1000
sampling heuristic local freq 1
sampling heuristic local maxdepth 8
sampling heuristic max iter 1000
sampling heuristic freq 1
sampling heuristic maxdepth 0
sampling heuristic bound for lp heur 100000.0
sampling heuristic max iter lp heur 1000
use domain branching False
use relu branching False
use obbt propagator False
obbt maxdepth 20
obbt use genvbounds False
use obbt two variables False
obbt optimize nodes True
obbt use symbolic False
obbt bound for opt -200
use ideal separator False

C. Computational Results UNSAT Test Set 124

Instance Dual Bound Primal Bound Nodes Result Status Time

lin acas 1 1 int away 0.22 0.22 229.0 UNSAT optimal 523.9
lin acas 1 1 lin opp2 1.2 1.2 251.0 UNSAT optimal 1235.0
lin acas 1 1 lin opp dir 1.7 1.7 547.0 UNSAT optimal 3253.1
lin acas 3 1 var dist 0.11 0.26 299.0 UNSAT bound 754.6
mnist 24 image11 5 - - - - - timelimit
mnist 24 image2 5 - - - - - timelimit
mnist 24 image4 1 1.2e+03 1.2e+03 1.0 UNSAT optimal 8.8
mnist 512 image11 5 - - - - - timelimit
mnist 512 image2 1 1e+04 1e+04 2.0 UNSAT bound 418.3
property10 property 0.021 0.16 909.0 UNSAT bound 4506.9
property1 1 1 1.5e+03 1.5e+03 11.0 UNSAT optimal 127.1
property1 2 2 1.5e+03 1.5e+03 105.0 UNSAT optimal 1615.0
property2 3 3 0.12 0.12 2349.0 UNSAT optimal 7038.7
property2 4 2 - - - - - timelimit
property3 4 3 6.4 6.4 13.0 UNSAT optimal 28.4
property3 4 4 4.6 4.6 1.0 UNSAT optimal 4.7
property4 2 2 5.5 5.5 3.0 UNSAT optimal 13.4
property4 3 7 4.4 4.4 1.0 UNSAT optimal 4.8
property5 property - - - - - timelimit
property6 6a property 3 0.22 0.22 1185.0 UNSAT optimal 5802.2
property6 6b property 1 0.23 0.23 317.0 UNSAT optimal 2101.9
property9 property 0 0.7 0.7 463.0 UNSAT optimal 2301.2
property9 property 4 0.54 0.54 783.0 UNSAT optimal 3447.8

Table C.12: Configuration “no heur base”: Our baseline configuration which
applies domain branching and OBBT to the LP relaxation.

Parameter Value

sampling heuristic local max iter -1000
sampling heuristic local freq 1
sampling heuristic local maxdepth 8
sampling heuristic max iter 1000
sampling heuristic freq 1
sampling heuristic maxdepth 0
sampling heuristic bound for lp heur 100000.0
sampling heuristic max iter lp heur 1000
use domain branching True
domain branching split mode gradient
domain branching priority 100000
domain branching maxdepth 20
domain branching maxbounddist 1
use relu branching False
use obbt propagator True
obbt maxdepth 20
obbt use genvbounds False
use obbt two variables False
obbt optimize nodes True
obbt use symbolic False
obbt bound for opt -200
use ideal separator False

C. Computational Results UNSAT Test Set 125

Instance Dual Bound Primal Bound Nodes Result Status Time

lin acas 1 1 int away 8.9e-06 0.019 5448.0 UNSAT bound 2788.4
lin acas 1 1 lin opp2 - - - - - timelimit
lin acas 1 1 lin opp dir - - - - - timelimit
lin acas 3 1 var dist - - - - - timelimit
mnist 24 image11 5 8.8 1.2e+03 17.0 UNSAT bound 18.9
mnist 24 image2 5 1.3e+02 1.6e+02 1393.0 UNSAT bound 2246.9
mnist 24 image4 1 1.2e+03 1.2e+03 1.0 UNSAT optimal 5.4
mnist 512 image11 5 - - - - - timelimit
mnist 512 image2 1 8.4e+03 1e+04 2.0 UNSAT bound 414.3
property10 property 0.034 0.16 140.0 UNSAT bound 593.5
property1 1 1 1.5e+03 1.5e+03 31.0 UNSAT optimal 382.7
property1 2 2 1.5e+03 1.5e+03 174.0 UNSAT optimal 3199.0
property2 3 3 - - - - - timelimit
property2 4 2 - - - - - timelimit
property3 4 3 6.4 6.4 31.0 UNSAT optimal 59.8
property3 4 4 4.6 4.6 1.0 UNSAT optimal 4.7
property4 2 2 5.5 5.5 5.0 UNSAT optimal 16.1
property4 3 7 4.4 4.4 1.0 UNSAT optimal 7.6
property5 property - - - - - timelimit
property6 6a property 3 - - - - - timelimit
property6 6b property 1 - - - - - timelimit
property9 property 0 0.11 0.7 853.0 UNSAT bound 4674.8
property9 property 4 0.00083 0.54 1342.0 UNSAT bound 5980.2

Table C.13: Configuration “no heur relu”: Similar to the baseline configura-
tion “no heur base”, but with ReLU branching instead of domain branching.

Parameter Value

sampling heuristic local max iter 0
sampling heuristic local freq 1
sampling heuristic local maxdepth 20
sampling heuristic max iter 1000
sampling heuristic freq 1
sampling heuristic maxdepth 0
sampling heuristic bound for lp heur 100000.0
sampling heuristic max iter lp heur 1000
use domain branching False
use relu branching True
relu branching split mode standard
relu branching priority 100000
relu branching maxdepth 20
relu branching maxbounddist 1
use obbt propagator True
obbt maxdepth 20
obbt use genvbounds False
use obbt two variables False
obbt optimize nodes True
obbt use symbolic False
obbt bound for opt -200
use ideal separator False

C. Computational Results UNSAT Test Set 126

Instance Dual Bound Primal Bound Nodes Result Status Time

lin acas 1 1 int away 0.28 0.28 229.0 UNSAT optimal 521.9
lin acas 1 1 lin opp2 - - 251.0 UNSAT infeasible 1241.0
lin acas 1 1 lin opp dir - - 547.0 UNSAT infeasible 3281.2
lin acas 3 1 var dist 0.11 - 299.0 UNSAT bound 757.1
mnist 24 image11 5 - - - - - timelimit
mnist 24 image2 5 - - - - - timelimit
mnist 24 image4 1 1.3e+03 1.3e+03 2.0 UNSAT bound 6.6
mnist 512 image11 5 - - - - - timelimit
mnist 512 image2 1 7.9e+03 - 2.0 UNSAT bound 411.6
property10 property 0.021 0.16 909.0 UNSAT bound 4484.1
property1 1 1 - - 11.0 UNSAT infeasible 126.4
property1 2 2 - - 105.0 UNSAT infeasible 1645.4
property2 3 3 - - - - - timelimit
property2 4 2 - - - - - timelimit
property3 4 3 - - 13.0 UNSAT infeasible 26.2
property3 4 4 - - 1.0 UNSAT infeasible 3.9
property4 2 2 - - 3.0 UNSAT infeasible 12.4
property4 3 7 4.4 4.4 1.0 UNSAT optimal 4.0
property5 property - - - - - timelimit
property6 6a property 3 0.29 0.29 1185.0 UNSAT optimal 5811.9
property6 6b property 1 0.36 0.36 317.0 UNSAT optimal 2104.1
property9 property 0 5 5 463.0 UNSAT optimal 2299.9
property9 property 4 - - 783.0 UNSAT infeasible 3466.6

Table C.14: Configuration “no heur atall”: Baseline configuration but with
heuristic completely disabled.

Parameter Value

sampling heuristic local max iter -1000
sampling heuristic local freq 1
sampling heuristic local maxdepth 8
sampling heuristic max iter -1000
sampling heuristic freq 1
sampling heuristic maxdepth 0
sampling heuristic bound for lp heur 100000.0
sampling heuristic max iter lp heur 1000
use domain branching True
domain branching split mode gradient
domain branching priority 100000
domain branching maxdepth 20
domain branching maxbounddist 1
use relu branching False
use obbt propagator True
obbt maxdepth 20
obbt use genvbounds False
use obbt two variables False
obbt optimize nodes True
obbt use symbolic False
obbt bound for opt -200
use ideal separator False

C. Computational Results UNSAT Test Set 127

Instance Dual Bound Primal Bound Nodes Result Status Time

lin acas 1 1 int away 0.00059 0.22 382.0 UNSAT bound 828.6
lin acas 1 1 lin opp2 0.021 1.2 888.0 UNSAT bound 3608.3
lin acas 1 1 lin opp dir - - - - - timelimit
lin acas 3 1 var dist 0.00086 0.26 419.0 UNSAT bound 912.1
mnist 24 image11 5 1.2e+03 1.2e+03 511.0 UNSAT optimal 226.6
mnist 24 image2 5 - - - - - timelimit
mnist 24 image4 1 1.2e+03 1.2e+03 1.0 UNSAT optimal 8.6
mnist 512 image11 5 - - - - - timelimit
mnist 512 image2 1 1e+04 1e+04 2.0 UNSAT bound 419.7
property10 property - - - - - timelimit
property1 1 1 1.5e+03 1.5e+03 11.0 UNSAT optimal 128.0
property1 2 2 1.5e+03 1.5e+03 105.0 UNSAT optimal 1624.2
property2 3 3 - - - - - timelimit
property2 4 2 - - - - - timelimit
property3 4 3 6.6 6.6 13.0 UNSAT optimal 30.4
property3 4 4 4.6 4.6 1.0 UNSAT optimal 4.9
property4 2 2 5.5 5.5 3.0 UNSAT optimal 15.1
property4 3 7 4.4 4.4 1.0 UNSAT optimal 4.5
property5 property 0.021 0.37 1709.0 UNSAT bound 3034.8
property6 6a property 3 - - - - - timelimit
property6 6b property 1 - - - - - timelimit
property9 property 0 - - - - - timelimit
property9 property 4 - - - - - timelimit

Table C.15: Configuration “domain relu”: In this configuration, domain
branching is applied up to a depth level of six in the branch-and-bound tree,
and ReLU branching afterwards.

Parameter Value

sampling heuristic local max iter -1000
sampling heuristic local freq 1
sampling heuristic local maxdepth 8
sampling heuristic max iter 1000
sampling heuristic freq 1
sampling heuristic maxdepth 0
sampling heuristic bound for lp heur 100000.0
sampling heuristic max iter lp heur 1000
use domain branching True
domain branching split mode gradient
domain branching priority 100000
domain branching maxdepth 6
domain branching maxbounddist 1
use relu branching True
relu branching split mode standard
relu branching priority 10000
relu branching maxdepth 20
relu branching maxbounddist 1
use obbt propagator True
obbt maxdepth 20
obbt use genvbounds False
use obbt two variables False
obbt optimize nodes True
obbt use symbolic False
obbt bound for opt -200
use ideal separator False

C. Computational Results UNSAT Test Set 128

Instance Dual Bound Primal Bound Nodes Result Status Time

lin acas 1 1 int away - - - - - timelimit
lin acas 1 1 lin opp2 - - - - - timelimit
lin acas 1 1 lin opp dir - - - - - timelimit
lin acas 3 1 var dist - - - - - timelimit
mnist 24 image11 5 15 1.2e+03 47.0 UNSAT bound 45.5
mnist 24 image2 5 41 1.6e+02 1653.0 UNSAT bound 2439.6
mnist 24 image4 1 1.2e+03 1.2e+03 1.0 UNSAT optimal 10.2
mnist 512 image11 5 - - - - - timelimit
mnist 512 image2 1 8.4e+03 1e+04 2.0 UNSAT bound 464.7
property10 property 0.0037 0.16 145.0 UNSAT bound 551.0
property1 1 1 - - - - - timelimit
property1 2 2 1.5e+03 1.5e+03 127.0 UNSAT optimal 2252.7
property2 3 3 - - - - - timelimit
property2 4 2 - - - - - timelimit
property3 4 3 6.4 6.4 257.0 UNSAT optimal 565.9
property3 4 4 4.6 4.6 1.0 UNSAT optimal 5.8
property4 2 2 5.5 5.5 9.0 UNSAT optimal 25.3
property4 3 7 4.4 4.4 1.0 UNSAT optimal 5.3
property5 property - - - - - timelimit
property6 6a property 3 - - - - - timelimit
property6 6b property 1 - - - - - timelimit
property9 property 0 - - - - - timelimit
property9 property 4 - - - - - timelimit

Table C.16: Configuration “no heur relu gradient”: In this configuration,
ReLU branching is applied and the branching variable is selected based on
gradient information.

Parameter Value

sampling heuristic local max iter 0
sampling heuristic local freq 1
sampling heuristic local maxdepth 20
sampling heuristic max iter 1000
sampling heuristic freq 1
sampling heuristic maxdepth 0
sampling heuristic bound for lp heur 100000.0
sampling heuristic max iter lp heur 1000
use domain branching False
use relu branching True
relu branching split mode gradient
relu branching priority 100000
relu branching maxdepth 20
relu branching maxbounddist 1
use obbt propagator True
obbt maxdepth 20
obbt use genvbounds False
use obbt two variables False
obbt optimize nodes True
obbt use symbolic False
obbt bound for opt -200
use ideal separator False

C. Computational Results UNSAT Test Set 129

Instance Dual Bound Primal Bound Nodes Result Status Time

lin acas 1 1 int away - - 227.0 UNSAT infeasible 1434.5
lin acas 1 1 lin opp2 - - 229.0 UNSAT infeasible 2031.3
lin acas 1 1 lin opp dir - - 431.0 UNSAT infeasible 3532.5
lin acas 3 1 var dist 0.001 - 247.0 UNSAT bound 1277.7
mnist 24 image11 5 - - - - - timelimit
mnist 24 image2 5 - - - - - timelimit
mnist 24 image4 1 1.3e+03 1.3e+03 2.0 UNSAT bound 6.8
mnist 512 image11 5 - - - - - timelimit
mnist 512 image2 1 8.1e+03 1.1e+04 2.0 UNSAT bound 1162.7
property10 property 0.012 0.16 805.0 UNSAT bound 4053.4
property1 1 1 - - 1.0 UNSAT infeasible 882.9
property1 2 2 - - 103.0 UNSAT infeasible 2550.2
property2 3 3 - - - - - timelimit
property2 4 2 - - - - - timelimit
property3 4 3 - - 1.0 UNSAT infeasible 240.5
property3 4 4 - - 1.0 UNSAT infeasible 73.2
property4 2 2 - - 1.0 UNSAT infeasible 219.3
property4 3 7 4.4 4.4 1.0 UNSAT optimal 66.3
property5 property - - - - - timelimit
property6 6a property 3 - - 1181.0 UNSAT infeasible 7169.4
property6 6b property 1 0.28 0.28 301.0 UNSAT optimal 2693.9
property9 property 0 - - 457.0 UNSAT infeasible 2982.7
property9 property 4 - - 773.0 UNSAT infeasible 4157.0

Table C.17: Configuration “no heur base mip”: Similar to the baseline
configuration “no heur base”, but initial neuron bounds are computed by
OBBT on the MIP formulation.

Parameter Value

build optimize nodes True
use linear model False
sampling heuristic local max iter -1000
sampling heuristic local freq 1
sampling heuristic local maxdepth 8
sampling heuristic max iter 1000
sampling heuristic freq 1
sampling heuristic maxdepth 0
sampling heuristic bound for lp heur 100000.0
sampling heuristic max iter lp heur 1000
use domain branching True
domain branching split mode gradient
domain branching priority 100000
domain branching maxdepth 20
domain branching maxbounddist 1
use relu branching False
use obbt propagator True
obbt maxdepth 20
obbt use genvbounds False
use obbt two variables False
obbt optimize nodes True
obbt use symbolic False
obbt bound for opt -200
use ideal separator False

C. Computational Results UNSAT Test Set 130

Instance Dual Bound Primal Bound Nodes Result Status Time

lin acas 1 1 int away - - - - - timelimit
lin acas 1 1 lin opp2 1.2 1.2 985.0 UNSAT optimal 5242.6
lin acas 1 1 lin opp dir - - - - - timelimit
lin acas 3 1 var dist 0.1 0.26 789.0 UNSAT bound 2687.8
mnist 24 image11 5 - - - - - timelimit
mnist 24 image2 5 - - - - - timelimit
mnist 24 image4 1 1.2e+03 1.2e+03 1.0 UNSAT optimal 5.9
mnist 512 image11 5 - - - - - timelimit
mnist 512 image2 1 1e+04 1e+04 2.0 UNSAT bound 419.0
property10 property 0.021 0.16 909.0 UNSAT bound 4483.6
property1 1 1 1.5e+03 1.5e+03 135.0 UNSAT optimal 1777.8
property1 2 2 - - - - - timelimit
property2 3 3 - - - - - timelimit
property2 4 2 - - - - - timelimit
property3 4 3 6.4 6.4 63.0 UNSAT optimal 119.5
property3 4 4 4.6 4.6 1.0 UNSAT optimal 4.9
property4 2 2 5.5 5.5 3.0 UNSAT optimal 12.8
property4 3 7 4.4 4.4 1.0 UNSAT optimal 4.7
property5 property - - - - - timelimit
property6 6a property 3 - - - - - timelimit
property6 6b property 1 - - - - - timelimit
property9 property 0 - - - - - timelimit
property9 property 4 - - - - - timelimit

Table C.18: Configuration “no heur std branch”: Similar to the baseline
configuration “no heur base”, but the domain branching variable is selected
by the rule “standard” (cf. Section 6.1).

Parameter Value

sampling heuristic local max iter -1000
sampling heuristic local freq 1
sampling heuristic local maxdepth 8
sampling heuristic max iter 1000
sampling heuristic freq 1
sampling heuristic maxdepth 0
sampling heuristic bound for lp heur 100000.0
sampling heuristic max iter lp heur 1000
use domain branching True
domain branching split mode standard
domain branching priority 100000
domain branching maxdepth 20
domain branching maxbounddist 1
use relu branching False
use obbt propagator True
obbt maxdepth 20
obbt use genvbounds False
use obbt two variables False
obbt optimize nodes True
obbt use symbolic False
obbt bound for opt -200
use ideal separator False

C. Computational Results UNSAT Test Set 131

Instance Dual Bound Primal Bound Nodes Result Status Time

lin acas 1 1 int away - - - - - timelimit
lin acas 1 1 lin opp2 - - - - - timelimit
lin acas 1 1 lin opp dir - - - - - timelimit
lin acas 3 1 var dist - - - - - timelimit
mnist 24 image11 5 - - - - - timelimit
mnist 24 image2 5 - - - - - timelimit
mnist 24 image4 1 1.2e+03 1.2e+03 1.0 UNSAT optimal 5.8
mnist 512 image11 5 - - - - - timelimit
mnist 512 image2 1 5.1e+03 1e+04 2.0 UNSAT bound 303.7
property10 property - - - - - timelimit
property1 1 1 3.3e+02 1.5e+03 825.0 UNSAT bound 460.6
property1 2 2 - - - - - timelimit
property2 3 3 - - - - - timelimit
property2 4 2 - - - - - timelimit
property3 4 3 - - - - - timelimit
property3 4 4 4.6 4.6 5579.0 UNSAT optimal 1892.3
property4 2 2 - - - - - timelimit
property4 3 7 4.4 4.4 1001.0 UNSAT optimal 153.2
property5 property - - - - - timelimit
property6 6a property 3 - - - - - timelimit
property6 6b property 1 - - - - - timelimit
property9 property 0 - - - - - timelimit
property9 property 4 - - - - - timelimit

Table C.19: Configuration “no heur sym”: In this configuration, neuron
bounds are computed using the approach of Wang et al. [56].

Parameter Value

sampling heuristic local max iter -1000
sampling heuristic local freq 1
sampling heuristic local maxdepth 8
sampling heuristic max iter 1000
sampling heuristic freq 1
sampling heuristic maxdepth 0
sampling heuristic bound for lp heur 100000.0
sampling heuristic max iter lp heur 1000
use domain branching True
domain branching split mode gradient
domain branching priority 100000
domain branching maxdepth 20
domain branching maxbounddist 1
use relu branching False
use obbt propagator True
obbt maxdepth 20
obbt use genvbounds False
use obbt two variables False
obbt optimize nodes False
obbt use symbolic True
obbt bound for opt -200
use ideal separator False

C. Computational Results UNSAT Test Set 132

Instance Dual Bound Primal Bound Nodes Result Status Time

lin acas 1 1 int away 0.22 0.22 229.0 UNSAT optimal 493.9
lin acas 1 1 lin opp2 1.2 1.2 251.0 UNSAT optimal 1219.1
lin acas 1 1 lin opp dir 1.7 1.7 547.0 UNSAT optimal 3222.0
lin acas 3 1 var dist 0.11 0.26 299.0 UNSAT bound 738.0
mnist 24 image11 5 - - - - - timelimit
mnist 24 image2 5 - - - - - timelimit
mnist 24 image4 1 1.2e+03 1.2e+03 1.0 UNSAT optimal 8.0
mnist 512 image11 5 - - - - - timelimit
mnist 512 image2 1 - - - - - timelimit
property10 property 0.11 0.16 1407.0 UNSAT bound 5551.1
property1 1 1 1.5e+03 1.5e+03 17.0 UNSAT optimal 122.1
property1 2 2 1.5e+03 1.5e+03 109.0 UNSAT optimal 1395.8
property2 3 3 0.12 0.12 2341.0 UNSAT optimal 6889.4
property2 4 2 - - - - - timelimit
property3 4 3 6.4 6.4 13.0 UNSAT optimal 28.4
property3 4 4 4.6 4.6 1.0 UNSAT optimal 4.1
property4 2 2 5.5 5.5 3.0 UNSAT optimal 12.7
property4 3 7 4.4 4.4 1.0 UNSAT optimal 4.2
property5 property - - - - - timelimit
property6 6a property 3 0.22 0.22 1185.0 UNSAT optimal 5586.9
property6 6b property 1 0.24 0.24 317.0 UNSAT optimal 1971.5
property9 property 0 0.88 0.88 463.0 UNSAT optimal 2284.3
property9 property 4 0.54 0.54 783.0 UNSAT optimal 3432.3

Table C.20: Configuration “no heur base 200”: This configuration is similar
to the baseline configuration “no heur base”, but OBBT is applied only at
neurons where the difference between upper and lower bound is less than 200.

Parameter Value

sampling heuristic local max iter -1000
sampling heuristic local freq 1
sampling heuristic local maxdepth 8
sampling heuristic max iter 1000
sampling heuristic freq 1
sampling heuristic maxdepth 0
sampling heuristic bound for lp heur 100000.0
sampling heuristic max iter lp heur 1000
use domain branching True
domain branching split mode gradient
domain branching priority 100000
domain branching maxdepth 20
domain branching maxbounddist 1
use relu branching False
use obbt propagator True
obbt maxdepth 20
obbt use genvbounds False
use obbt two variables False
obbt optimize nodes True
obbt use symbolic False
obbt bound for opt 200
use ideal separator False

C. Computational Results UNSAT Test Set 133

Instance Dual Bound Primal Bound Nodes Result Status Time

lin acas 1 1 int away 0.0057 0.0057 229.0 UNSAT optimal 613.7
lin acas 1 1 lin opp2 0.6 0.6 251.0 UNSAT optimal 1462.4
lin acas 1 1 lin opp dir 0.69 0.69 547.0 UNSAT optimal 3679.1
lin acas 3 1 var dist 0.11 0.26 299.0 UNSAT bound 994
mnist 24 image11 5 - - - - - timelimit
mnist 24 image2 5 - - - - - timelimit
mnist 24 image4 1 1.2e+03 1.2e+03 1.0 UNSAT optimal 9.8
mnist 512 image11 5 - - - - - timelimit
mnist 512 image2 1 1e+04 1e+04 2.0 UNSAT bound 426.3
property10 property 0.021 0.16 909.0 UNSAT bound 4996.3
property1 1 1 1.5e+03 1.5e+03 11.0 UNSAT optimal 137.9
property1 2 2 1.5e+03 1.5e+03 105.0 UNSAT optimal 1717.9
property2 3 3 - - - - - 6820.1
property2 4 2 - - - - - timelimit
property3 4 3 6.4 6.4 13.0 UNSAT optimal 38.8
property3 4 4 4.6 4.6 1.0 UNSAT optimal 6.9
property4 2 2 5.5 5.5 3.0 UNSAT optimal 16.3
property4 3 7 4.4 4.4 1.0 UNSAT optimal 5.9
property5 property - - - - - timelimit
property6 6a property 3 0.066 0.066 1185.0 UNSAT optimal 6052.3
property6 6b property 1 0.23 0.23 317.0 UNSAT optimal 2348.1
property9 property 0 0.7 0.7 463.0 UNSAT optimal 2584.9
property9 property 4 0.26 0.26 783.0 UNSAT optimal 3775.9

Table C.21: Configuration “heur base 20”: This configuration is similar to
the baseline configuration “no heur base”, but the primal heuristic is also
applied locally up to a depth of eight in the branch-and-bound tree.

Parameter Value

sampling heuristic local max iter 1000
sampling heuristic local freq 1
sampling heuristic local maxdepth 8
sampling heuristic max iter 1000
sampling heuristic freq 1
sampling heuristic maxdepth 0
sampling heuristic bound for lp heur 100000.0
sampling heuristic max iter lp heur 1000
use domain branching True
domain branching split mode gradient
domain branching priority 100000
domain branching maxdepth 20
domain branching maxbounddist 1
use relu branching False
use obbt propagator True
obbt maxdepth 20
obbt use genvbounds False
use obbt two variables False
obbt optimize nodes True
obbt use symbolic False
obbt bound for opt -200
use ideal separator False

C. Computational Results UNSAT Test Set 134

Instance Dual Bound Primal Bound Nodes Result Status Time

lin acas 1 1 int away 0.22 0.22 229.0 UNSAT optimal 525.6
lin acas 1 1 lin opp2 1.2 1.2 251.0 UNSAT optimal 1243.2
lin acas 1 1 lin opp dir 1.7 1.7 547.0 UNSAT optimal 3243.2
lin acas 3 1 var dist 0.081 0.26 269.0 UNSAT bound 706.5
mnist 24 image11 5 1.2e+03 1.2e+03 1.0 UNSAT optimal 9.8
mnist 24 image2 5 - - - - - timelimit
mnist 24 image4 1 1.2e+03 1.2e+03 1.0 UNSAT optimal 8.2
mnist 512 image11 5 8.6e+03 8.6e+03 1.0 UNSAT optimal 608.9
mnist 512 image2 1 1e+04 1e+04 1.0 UNSAT optimal 405.0
property10 property 0.011 0.16 803.0 UNSAT bound 4148.6
property1 1 1 1.5e+03 1.5e+03 11.0 UNSAT optimal 126.4
property1 2 2 1.5e+03 1.5e+03 105.0 UNSAT optimal 1577.0
property2 3 3 0.12 0.12 2325.0 UNSAT optimal 6989.1
property2 4 2 - - - - - timelimit
property3 4 3 6.4 6.4 13.0 UNSAT optimal 28.2
property3 4 4 4.5 4.6 2.0 UNSAT bound 5.6
property4 2 2 5.5 5.5 3.0 UNSAT optimal 12.1
property4 3 7 3 4.4 2.0 UNSAT bound 5.5
property5 property - - - - - timelimit
property6 6a property 3 0.066 0.066 1185.0 UNSAT optimal 5799.3
property6 6b property 1 0.23 0.23 317.0 UNSAT optimal 2105.6
property9 property 0 0.7 0.7 463.0 UNSAT optimal 2295.3
property9 property 4 0.54 0.54 783.0 UNSAT optimal 3466.8

Table C.22: Configuration “no heur base genv”: This configuration corre-
sponds to the baseline configuration “no heur base” with additional generation
of LVBs.

Parameter Value

sampling heuristic local max iter -1000
sampling heuristic local freq 1
sampling heuristic local maxdepth 8
sampling heuristic max iter 1000
sampling heuristic freq 1
sampling heuristic maxdepth 0
sampling heuristic bound for lp heur 100000.0
sampling heuristic max iter lp heur 1000
use domain branching True
domain branching split mode gradient
domain branching priority 100000
domain branching maxdepth 20
domain branching maxbounddist 1
use relu branching False
use obbt propagator True
obbt maxdepth 20
obbt use genvbounds True
use obbt two variables False
obbt optimize nodes True
obbt use symbolic False
obbt bound for opt -200
use ideal separator False

137

References

[1] Tobias Achterberg. “Constraint Integer Programming”. PhD thesis.
2007. url: http://dx.doi.org/10.14279/depositonce-1634.

[2] Tobias Achterberg. “SCIP: solving constraint integer programs”. In:
Mathematical Programming Computation 1.1 (July 2009), pp. 1–41. issn:
1867-2957. doi: 10.1007/s12532-008-0001-1.

[3] Ross Anderson, Joey Huchette, Christian Tjandraatmadja, and Juan
Pablo Vielma. “Strong convex relaxations and mixed-integer program-
ming formulations for trained neural networks”. In: arXiv (Nov. 2018).
url: https://arxiv.org/abs/1811.01988.

[4] E. Balas. “Disjunctive Programming and a Hierarchy of Relaxations
for Discrete Optimization Problems”. In: SIAM Journal on Algebraic
Discrete Methods 6.3 (1985), pp. 466–486. url: https://doi.org/10.
1137/0606047.

[5] Dimitris Bertsimas and John Tsitsiklis. Introduction to Linear Optimiza-
tion. Athena Scientific, 1997. isbn: 1886529191.

[6] Dimitris Bertsimas and Robert Weismantel. Optimization over Integers.
Dynamic Ideas, 2005. isbn: 978-0975914625.

[7] Christopher M. Bishop. Pattern Recognition and Machine Learning.
Information Science and Statistics. Springer, 2006. isbn: 978-0-387-
31073-2.

[8] Helmut Bölcskei, Philipp Grohs, Gitta Kutyniok, and Philipp Petersen.
“Optimal approximation with sparsely connected deep neural networks”.
In: SIAM Journal on Mathematics of Data Science (2019). url: http:
//www.nari.ee.ethz.ch/commth/pubs/p/deep-approx-18.

[9] Siegfried Bosch. Lineare Algebra. 4th ed. Springer, 2008. doi: 10.1007/
978-3-642-55260-1.

[10] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. New
York, NY, USA: Cambridge University Press, 2004. isbn: 0521833787.

[11] Rudy Bunel, Ilker Turkaslan, Philip H. S. Torr, Pushmeet Kohli, and
M. Pawan Kumar. “Piecewise Linear Neural Network verification: A
comparative study”. In: arXiv (2017). url: https://arxiv.org/abs/
1711.00455.

[12] Rudy Bunel, Ilker Turkaslan, Philip H. S. Torr, Pushmeet Kohli, and
Pawan Kumar Mudigonda. “A Unified View of Piecewise Linear Neural
Network Verification”. In: Advances in Neural Information Processing
Systems 31 (NIPS 2018). Ed. by Samy Bengio, Hanna Wallach, Hugo
Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett.
2018, pp. 4795–4804. url: https://arxiv.org/abs/1711.00455v3.

http://dx.doi.org/10.14279/depositonce-1634
https://doi.org/10.1007/s12532-008-0001-1
https://arxiv.org/abs/1811.01988
https://doi.org/10.1137/0606047
https://doi.org/10.1137/0606047
http://www.nari.ee.ethz.ch/commth/pubs/p/deep-approx-18
http://www.nari.ee.ethz.ch/commth/pubs/p/deep-approx-18
https://doi.org/10.1007/978-3-642-55260-1
https://doi.org/10.1007/978-3-642-55260-1
https://arxiv.org/abs/1711.00455
https://arxiv.org/abs/1711.00455
https://arxiv.org/abs/1711.00455v3

References 138

[13] Chih-Hong Cheng, Georg Nührenberg, Chung-Hao Huang, and Harald
Ruess. “Verification of Binarized Neural Networks via Inter-neuron
Factoring”. In: Verified Software. Theories, Tools, and Experiments -
10th International Conference: Revised Selected Papers. 2018, pp. 279–
290. url: https://doi.org/10.1007/978-3-030-03592-1_16.

[14] Chih-Hong Cheng, Georg Nührenberg, and Harald Ruess. “Maximum
Resilience of Artificial Neural Networks”. In: Automated Technology
for Verification and Analysis. Ed. by Deepak D’Souza and K. Narayan
Kumar. Cham: Springer International Publishing, 2017, pp. 251–268.
isbn: 978-3-319-68167-2.

[15] George B. Dantzig. Linear programming and extensions. Rand Corpora-
tion Research Study. Princeton Univ. Press, 1963.

[16] Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish
Tiwari. “Output Range Analysis for Deep Feedforward Neural Networks”.
In: NASA Formal Methods - 10th International Symposium, NFM 2018,
Newport News, VA, USA, April 17-19, 2018, Proceedings. 2018, pp. 121–
138. doi: 10.1007/978-3-319-77935-5_9.

[17] Krishnamurthy Dvijotham, Robert Stanforth, Sven Gowal, Timothy A.
Mann, and Pushmeet Kohli. “A Dual Approach to Scalable Verification
of Deep Networks”. In: UAI. AUAI Press, 2018, pp. 550–559.

[18] Niklas Eén and Niklas Sörensson. “An Extensible SAT-solver”. In:
Theory and Applications of Satisfiability Testing. Ed. by Enrico
Giunchiglia and Armando Tacchella. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2004, pp. 502–518. isbn: 978-3-540-24605-3.

[19] Rüdiger Ehlers. “Formal Verification of Piece-Wise Linear Feed-Forward
Neural Networks”. In: Automated Technology for Verification and Anal-
ysis. Ed. by Deepak D’Souza and K. Narayan Kumar. Cham: Springer
International Publishing, 2017, pp. 269–286. isbn: 978-3-319-68167-2.
doi: 10.1007/978-3-319-68167-2_19.

[20] Matteo Fischetti and Jason Jo. “Deep Neural Networks and Mixed
Integer Linear Optimization”. In: Constraints 23.3 (July 2018), pp. 296–
309. issn: 1383-7133. doi: 10.1007/s10601-018-9285-6.

[21] Martin Fränzle and Christian Herde. “HySAT: An efficient proof engine
for bounded model checking of hybrid systems”. In: Formal Methods in
System Design 30.3 (June 2007), pp. 179–198. url: https://doi.org/
10.1007/s10703-006-0031-0.

[22] Tristan Gally, Marc E. Pfetsch, and Stefan Ulbrich. “A framework for
solving mixed-integer semidefinite programs”. In: Optimization Methods
and Software 33.3 (2018), pp. 594–632. doi: 10.1080/10556788.2017.
1322081. url: https://doi.org/10.1080/10556788.2017.1322081.

[23] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov,
Swarat Chaudhuri, and Martin T. Vechev. “AI2: Safety and Robust-
ness Certification of Neural Networks with Abstract Interpretation”. In:
IEEE Symposium on Security and Privacy. IEEE Computer Society,
2018, pp. 3–18.

https://doi.org/10.1007/978-3-030-03592-1_16
https://doi.org/10.1007/978-3-319-77935-5_9
https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.1007/s10601-018-9285-6
https://doi.org/10.1007/s10703-006-0031-0
https://doi.org/10.1007/s10703-006-0031-0
https://doi.org/10.1080/10556788.2017.1322081
https://doi.org/10.1080/10556788.2017.1322081
https://doi.org/10.1080/10556788.2017.1322081

References 139

[24] Ambros M. Gleixner, Timo Berthold, Benjamin Müller, and Stefan
Weltge. “Three enhancements for optimization-based bound tight-
ening”. In: Journal of Global Optimization 67.4 (2017), pp. 731–757.
issn: 1573-2916. url: https://doi.org/10.1007/s10898-016-0450-
4.

[25] Ambros Gleixner, Michael Bastubbe, Leon Eifler, Tristan Gally, Gerald
Gamrath, Robert Lion Gottwald, Gregor Hendel, Christopher Hojny,
Thorsten Koch, Marco E. Lübbecke, Stephen J. Maher, Matthias
Miltenberger, Benjamin Müller, Marc E. Pfetsch, Christian Puchert,
Daniel Rehfeldt, Franziska Schlösser, Christoph Schubert, Felipe
Serrano, Yuji Shinano, Jan Merlin Viernickel, Matthias Walter, Fabian
Wegscheider, Jonas T. Witt, and Jakob Witzig. The SCIP Optimization
Suite 6.0. Technical Report. Optimization Online, July 2018. url: http:
//www.optimization-online.org/DB_HTML/2018/07/6692.html.

[26] GLPK (GNU Linear Programming Kit). url: https://www.gnu.org/
software/glpk/ (visited on 03/05/2019).

[27] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.

[28] Winfried K. Grassmann and J. Paul Tremblay. Logic and discrete math-
ematics - a computer science perspective. Prentice Hall, 1996. isbn: 978-
0-13-501206-2.

[29] Branko Grünbaum. Convex Polytopes. Ed. by Volker Kaibel, Victor Klee,
and Günter M. Ziegler. 2nd ed. Springer-Verlag New York, 2003. isbn:
978-0-387-00424-2.

[30] Gregor Hendel. “Empirical Analysis of Solving Phases in Mixed Integer
Programming”. MA thesis. 2014, p. 159.

[31] Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. “Safety
Verification of Deep Neural Networks”. English. In: Computer Aided
Verification (CAV). Ed. by Rupak Majumdar and Viktor Kunčak.
Lecture Notes in Computer Science Part 1. Springer, July 2017, pp. 3–
29. doi: 10.1007/978-3-319-63387-9_1.

[32] Bertrand Jeannet and Antoine Miné. “Apron: A Library of Numerical
Abstract Domains for Static Analysis”. In: Computer Aided Verification.
Ed. by Ahmed Bouajjani and Oded Maler. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, pp. 661–667. isbn: 978-3-642-02658-4.

[33] Colin Jones, E. C. Kerrigan, and Jan Maciejowski. Equality Set Projec-
tion: A new algorithm for the projection of polytopes in halfspace repre-
sentation. Tech. rep. Cambridge: Cambridge University Engineering
Dept, 2004. url: http://infoscience.epfl.ch/record/169768.

[34] Kyle Julian, Jessica Lopez, Jeffrey S. Brush, Michael Owen, and Mykel
J. Kochenderfer. “Policy compression for aircraft collision avoidance
systems”. In: Digital Avionics Systems Conference (DASC). 2016. doi:
10.1109/DASC.2016.7778091.

https://doi.org/10.1007/s10898-016-0450-4
https://doi.org/10.1007/s10898-016-0450-4
http://www.optimization-online.org/DB_HTML/2018/07/6692.html
http://www.optimization-online.org/DB_HTML/2018/07/6692.html
https://www.gnu.org/software/glpk/
https://www.gnu.org/software/glpk/
http://www.deeplearningbook.org
https://doi.org/10.1007/978-3-319-63387-9_1
http://infoscience.epfl.ch/record/169768
https://doi.org/10.1109/DASC.2016.7778091

References 140

[35] Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J.
Kochenderfer. “Reluplex: An Efficient SMT Solver for Verifying Deep
Neural Networks”. In: Computer Aided Verification - 29th International
Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceed-
ings, Part I. 2017, pp. 97–117. doi: 10.1007/978-3-319-63387-9_5.

[36] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-Based
Learning Applied to Document Recognition”. In: Proceedings of the
IEEE 86.11 (Nov. 1998), pp. 2278–2324.

[37] Yann LeCun, Corinna Cortes, and Christopher J.C. Burges. THE
MNIST DATABASE of handwritten digits. 1998. url: http://yann.
lecun.com/exdb/mnist/ (visited on 02/15/2019).

[38] Alessio Lomuscio and Lalit Maganti. “An approach to reachability anal-
ysis for feed-forward ReLU neural networks”. In: arXiv (2017). url:
http://arxiv.org/abs/1706.07351.

[39] Stephen Maher, Matthias Miltenberger, Joao Pedro Pedroso, Daniel
Rehfeldt, Robert Schwarz, and Felipe Serrano. “PySCIPOpt: Mathe-
matical Programming in Python with the SCIP Optimization Suite”.
In: Mathematical Software - ICMS 2016. Vol. 9725. 2016, pp. 301–307.
doi: 10.1007/978-3-319-42432-3_37.

[40] Nina Narodytska, Shiva Kasiviswanathan, Leonid Ryzhyk, Mooly
Sagiv, and Toby Walsh. “Verifying Properties of Binarized Deep Neural
Networks”. In: AAAI Conference on Artificial Intelligence. 2018. url:
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/

16898.

[41] Luca Pulina and Armando Tacchella. “An Abstraction-Refinement
Approach to Verification of Artificial Neural Networks”. In: Computer
Aided Verification. Ed. by Tayssir Touili, Byron Cook, and Paul Jackson.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 243–257. isbn:
978-3-642-14295-6.

[42] Luca Pulina and Armando Tacchella. “Challenging SMT solvers to verify
neural networks”. In: AI COMMUNICATIONS 25 (Jan. 2012), pp. 117–
135. doi: 10.3233/AIC-2012-0525.

[43] Aditi Raghunathan, Jacob Steinhardt, and Percy S Liang. “Semidef-
inite relaxations for certifying robustness to adversarial examples”.
In: Advances in Neural Information Processing Systems 31. Ed. by
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett. Curran Associates, Inc., 2018, pp. 10877–10887. url:
http://papers.nips.cc/paper/8285-semidefinite-relaxations-

for-certifying-robustness-to-adversarial-examples.pdf.

[44] Wenjie Ruan, Xiaowei Huang, and Marta Kwiatkowska. “Reachability
Analysis of Deep Neural Networks with Provable Guarantees”. In:
Proceedings of the Twenty-Seventh International Joint Conference on
Artificial Intelligence, IJCAI-18. International Joint Conferences on
Artificial Intelligence Organization, July 2018, pp. 2651–2659. url:
https://doi.org/10.24963/ijcai.2018/368.

https://doi.org/10.1007/978-3-319-63387-9_5
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1706.07351
https://doi.org/10.1007/978-3-319-42432-3_37
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16898
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16898
https://doi.org/10.3233/AIC-2012-0525
http://papers.nips.cc/paper/8285-semidefinite-relaxations-for-certifying-robustness-to-adversarial-examples.pdf
http://papers.nips.cc/paper/8285-semidefinite-relaxations-for-certifying-robustness-to-adversarial-examples.pdf
https://doi.org/10.24963/ijcai.2018/368

References 141

[45] Karsten Scheibler, Stefan Kupferschmid, and Bernd Becker. “Recent
Improvements in the SMT Solver iSAT”. In: Methoden und Beschrei-
bungssprachen zur Modellierung und Verifikation von Schaltungen und
Systemen (MBMV), Warnemünde, Germany, March 12-14, 2013. 2013,
pp. 231–241.

[46] Karsten Scheibler, Leonore Winterer, Ralf Wimmer, and Bernd Becker.
“Towards Verification of Artificial Neural Networks”. In: Methoden und
Beschreibungssprachen zur Modellierung und Verifikation von Schal-
tungen und Systemen, MBMV 2015, Chemnitz, Germany, March 3-4,
2015. 2015, pp. 30–40.

[47] Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and
Martin T. Vechev. “Fast and Effective Robustness Certification”. In:
NeurIPS. 2018, pp. 10825–10836.

[48] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin T. Vechev.
“An abstract domain for certifying neural networks”. In: PACMPL
3.POPL (2019), 41:1–41:30.

[49] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin T. Vechev.
“Boosting Robustness Certification of Neural Networks”. In: Interna-
tional Conference on Learning Representations. May 2019. url: https:
//files.sri.inf.ethz.ch/website/papers/RefineAI.pdf.

[50] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna,
Dumitru Erhan, Ian J. Goodfellow, and Rob Fergus. “Intriguing prop-
erties of neural networks”. In: International Conference on Learning
Representations. 2014. url: https://arxiv.org/abs/1312.6199v4.

[51] Vincent Tjeng and Russ Tedrake. “Verifying Neural Networks with
Mixed Integer Programming”. In: arXiv (2017). url: https://arxiv.
org/abs/1711.07356v1.

[52] Vincent Tjeng, Kai Y. Xiao, and Russ Tedrake. “Evaluating Robustness
of Neural Networks with Mixed Integer Programming”. In: International
Conference on Learning Representations. 2019. url: https://arxiv.
org/abs/1711.07356v3.

[53] Juan Pablo Vielma. “Embedding Formulations and Complexity for
Unions of Polyhedra”. In: Management Science 64.10 (Oct. 2018),
pp. 4721–4734. issn: 0025-1909. url: https://doi.org/10.1287/

mnsc.2017.2856.

[54] Andreas Wächter and Lorenz T. Biegler. “On the implementation of
an interior-point filter line-search algorithm for large-scale nonlinear
programming”. In: Mathematical Programming 106.1 (Mar. 2006),
pp. 25–57. issn: 1436-4646. url: https://doi.org/10.1007/s10107-
004-0559-y.

[55] Shiqi Wang. Neurify Github repository. 2018. url: https://github.
com/tcwangshiqi-columbia/Neurify (visited on 02/15/2019).

https://files.sri.inf.ethz.ch/website/papers/RefineAI.pdf
https://files.sri.inf.ethz.ch/website/papers/RefineAI.pdf
https://arxiv.org/abs/1312.6199v4
https://arxiv.org/abs/1711.07356v1
https://arxiv.org/abs/1711.07356v1
https://arxiv.org/abs/1711.07356v3
https://arxiv.org/abs/1711.07356v3
https://doi.org/10.1287/mnsc.2017.2856
https://doi.org/10.1287/mnsc.2017.2856
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1007/s10107-004-0559-y
https://github.com/tcwangshiqi-columbia/Neurify
https://github.com/tcwangshiqi-columbia/Neurify

References 142

[56] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman
Jana. “Efficient Formal Safety Analysis of Neural Networks”. In:
32nd Conference on Neural Information Processing Systems (NIPS).
Montreal, Canada, 2018. url: https://arxiv.org/abs/1809.08098.

[57] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman
Jana. “Formal Security Analysis of Neural Networks using Symbolic
Intervals”. In: 27th USENIX Security Symposium (USENIX Security
18). Baltimore, MD: USENIX Association, 2018. url: https://www.
usenix.org/conference/usenixsecurity18/presentation/wang-

shiqi.

[58] Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh,
Duane Boning, and Inderjit S. Dhillon AND Luca Daniel. “Towards Fast
Computation of Certified Robustness for ReLU Networks”. In: Interna-
tional Conference on Machine Learning (ICML). July 2018.

[59] Eric Wong and Zico Kolter. “Provable Defenses against Adversarial
Examples via the Convex Outer Adversarial Polytope”. In: Proceed-
ings of the 35th International Conference on Machine Learning. Ed.
by Jennifer Dy and Andreas Krause. Vol. 80. Proceedings of Machine
Learning Research. Stockholmsmässan, Stockholm Sweden: PMLR, Oct.
2018, pp. 5286–5295. url: https://arxiv.org/abs/1711.00851.

[60] Eric Wong, Frank Schmidt, Jan Hendrik Metzen, and J. Zico Kolter.
“Scaling provable adversarial defenses”. In: Advances in Neural Informa-
tion Processing Systems 31. Ed. by S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett. Curran Associates, Inc.,
2018, pp. 8400–8409. url: http://papers.nips.cc/paper/8060-

scaling-provable-adversarial-defenses.pdf.

[61] Weiming Xiang, Hoang-Dung Tran, and Taylor T. Johnson. “Output
Reachable Set Estimation and Verification for Multi-Layer Neural
Networks”. In: IEEE Transactions on Neural Networks and Learning
Systems (TNNLS) (2018). doi: 10.1109/TNNLS.2018.2808470.

[62] Weiming Xiang, Hoang-Dung Tran, Joel A. Rosenfeld, and Taylor T.
Johnson. “Reachable Set Estimation and Safety Verification for Piece-
wise Linear Systems with Neural Network Controllers”. In: 2018 Annual
American Control Conference (ACC). June 2018, pp. 1574–1579. doi:
10.23919/ACC.2018.8431048.

[63] Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca
Daniel. “Efficient Neural Network Robustness Certification with General
Activation Functions”. In: Advances in Neural Information Processing
Systems 31. Ed. by S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N.
Cesa-Bianchi, and R. Garnett. Curran Associates, Inc., 2018, pp. 4939–
4948. url: http://papers.nips.cc/paper/7742-efficient-neural-
network-robustness-certification-with-general-activation-

functions.pdf.

https://arxiv.org/abs/1809.08098
https://www.usenix.org/conference/usenixsecurity18/presentation/wang-shiqi
https://www.usenix.org/conference/usenixsecurity18/presentation/wang-shiqi
https://www.usenix.org/conference/usenixsecurity18/presentation/wang-shiqi
https://arxiv.org/abs/1711.00851
http://papers.nips.cc/paper/8060-scaling-provable-adversarial-defenses.pdf
http://papers.nips.cc/paper/8060-scaling-provable-adversarial-defenses.pdf
https://doi.org/10.1109/TNNLS.2018.2808470
https://doi.org/10.23919/ACC.2018.8431048
http://papers.nips.cc/paper/7742-efficient-neural-network-robustness-certification-with-general-activation-functions.pdf
http://papers.nips.cc/paper/7742-efficient-neural-network-robustness-certification-with-general-activation-functions.pdf
http://papers.nips.cc/paper/7742-efficient-neural-network-robustness-certification-with-general-activation-functions.pdf

References 143

[64] Huan Zhang, Pengchuan Zhang, and Cho-Jui Hsieh. “RecurJac: An
Efficient Recursive Algorithm for Bounding Jacobian Matrix of Neural
Networks and Its Applications”. In: arXiv (2019). url: https://arxiv.
org/abs/1810.11783.

https://arxiv.org/abs/1810.11783
https://arxiv.org/abs/1810.11783

