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Abstract

In the recent paper [3] as well as in the preceding ZIB report ZR-
03-19 [2], one of the authors presented an O(ε2) perturbation result for
the eigenvectors of a generalized symmetric stochastic matrix, where the
parameter ε characterized the departure of the perturbed matrix from a
completely decomposable Markov chain. Due to some erroneous inter-
change of indices, the proof has turned out to be incorrect. Here, we give
the corrected results.
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Introduction

In the recent papers [2, 3], a new cluster algorithm for nearly completely decom-
posable Markov chains had been introduced, the Robust Perron Cluster Cluster
Analysis (named PCCA+). Upon characterizing the departure from completely
decomposable chains by ε, the robustness of the method had been justified by
an O(ε2) perturbation result for the eigenvectors of a generalized symmetric
stochastic matrix. Unfortunately, the proof of that result has turned out to be
incorrect, due to some unlucky interchange of indices. However, it can still be
shown that the O(ε) bound for metastability, which was originally derived for
a hard {0, 1}-clustering (PCCA), carries over to PCCA+. In the following, we
indicate where the error in the previous proof had occurred and how the results
must be corrected. In order to facilitate the orientation, we kept the names of
the sections from [2, 3].

1 Perron cluster eigenproblem

Nearly uncoupled Markov chains. Let us shortly repeat the assumptions
which preceded the proof of the perturbation result.
Denote the number of nearly uncoupled Markov chains by k. In this case the
transition matrix T̃ will be block diagonally dominant after suitable permuta-
tion. As a perturbation of the k-fold Perron root λ = 1, a Perron cluster of
eigenvalues

λ̃1 = 1, λ̃2 = 1−O(ε), . . . λ̃k = 1−O(ε) ,

will arise, where ε > 0 denotes some perturbation parameter, which we here
scale as

ε = 1− λ̃2 . (1.1)

Let formal ε-expansions be introduced for the stochastic matrix as

T̃ (ε) = T + εT (1) + O(ε2) , (1.2)

and for the Perron cluster eigenvectors X̃ = [X̃1, . . . , X̃k] ∈ RN×k as

X̃i(ε) = Xi + εX
(1)
i + O(ε2) . (1.3)

In [1], the result

X
(1)
i =

k∑
j=1

bji χj︸ ︷︷ ︸
(I)

+
N∑

j=k+1

1
1− λj

ΠjT
(1)Xi︸ ︷︷ ︸

(II)

(1.4)

has been obtained using projections Πj as defined in the book of Kato [5].
Obviously, the term (I) represents just shifts of the locally constant levels to be
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associated with the almost invariant sets. In [2, 3], the term (II) had wrongly
been dropped. Thus, the corresponding Lemma therein (1.1 in [2], 2.1 in [3]),
which claimed that X(1) = χB, must be abandoned.
In order to see the mistake, let us shortly revisit the lines at the “proof”. Start-
ing from

T̃ (ε)X̃i(ε) = λ̃i(ε)X̃i(ε) , i = 1, . . . , N

and inserting the ε-expansions leads to

TXi = Xi for i = 1, . . . , k , (1.5)

and
T (1)Xi = (I − T )X(1)

i −Xiδλi , i = 1, . . . , k . (1.6)

Hence, for j = k + 1, . . . , N and i = 1, . . . , k, one obtains

〈Xj , T
(1)Xi〉π = 〈Xj , (I − T )X(1)

i − δλiXi〉π

= 〈(I − T )Xj , X
(1)
i 〉π − δλi〈Xj , Xi〉π .

The last term above vanishes due to the π-orthogonality of the unperturbed
eigenvectors. Using TXj = λjXj results in

〈Xj , T
(1)Xi〉π = (1− λj)〈Xj , X

(1)
i 〉π.

The last line is the place where the error occurred in the proof. Due to an
index permutation it was assumed that TXj = Xj which is only satisfied for
j = 1, . . . , k but not for j = k + 1, . . . , N .
With the above result, equation (9) from [1] for i = 1, . . . , k reads correctly

Xi(ε) =
k∑

j=1

α̃ij χj + ε

N∑
j=k+1

1
1− λj

ΠjT
(1)Xi + O(ε2) (1.7)

and can thus be rewritten as

Xi(ε) =
k∑

j=1

α̃ij χj + ε

N∑
j=k+1

〈Xj , X
(1)
i 〉πXj + O(ε2). (1.8)

In general, the terms 〈Xj , X
(1)
i 〉πXj are of order O(1) due to normalization

‖Xj(ε)‖ = 1. However, if the perturbation matrix T (1) has a special structure,
the result can be improved. This is verified by the following corollary.

Corollary 1.1 Under the modeling assumption that T (1) inherits the nearly
completely decomposable structure of T , i.e.

T (1) = κT + O(ε) (1.9)

with some constant parameter κ, (1.7) simplifies to

Xi(ε) =
k∑

j=1

α̃ij χj + O(ε2).
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Proof: Replacing T (1) with (1.9) leads to

εΠjT
(1)Xi = εκΠjTXi + O(ε2) = εκΠjXi + O(ε2) = O(ε2), i = 1, . . . , k,

due to the orthogonality of the unperturbed eigenvectors. Insertion into the
second summand of (1.7) yields the result. ¤

Thus, the O(ε2) perturbation result for the eigenvectors would still be valid.
Equivalently to (1.9), one can write

(T (i, j)− T (1)(i, j))/T (i, j) = (1− κ) + O(ε), ∀ i, j = 1, . . . , N.

Thus, T (1) inherits the structure of T if the element-wise relative error has
nearly the same size for all elements of T .

Robustness of the PCCA approach. Although it cannot be shown that
the constant level pattern of the eigenvectors are perturbed in only O(ε2), the
newly proposed algorithm PCCA+ is nevertheless more robust than the older
method based on the sign structure. This is due to the fact that it avoids the
generic “dirty zero” problem by allowing the occurrence of transition states.

2 Almost characteristic functions

As pointed out in [3], Huisinga and Schmidt [4] had already shown an O(ε) lower
bound for the measure of metastability in the case of a strict {0, 1}-clustering.
The following theorem shows that the result carries over to the framework of
almost characteristic functions. However, in contrast to the earlier proposition
in [2, 3], this bound cannot be improved. The proof is essentially the same as
before, but only uses

π̃ = π + O(ε).

Theorem 2.1 Let Λ̃ = diag(λ̃1, . . . , λ̃k). Assume that for a feasible set of al-
most characteristic functions χ̃ = X̃Ã the inequality

Θ = ‖Ã−1Λ̃Ã − Ik‖1 < 1 (2.1)

is satisfied. Then metastability can be bounded in terms of the perturbation
parameter ε via

k∑
i=1

λ̃i −O(ε) ≤
k∑

i=1

wii <

k∑
i=1

λ̃i . (2.2)

The proof is based on the representation of the coupling matrix

W̃ = D̃−2〈χ̃, T̃ χ̃〉π . (2.3)

Proof: Upon reformulating

〈χ̃, T̃ χ̃〉π = ÃT 〈X̃, T̃ X̃〉πÃ = ÃT 〈X̃, X̃Λ̃〉πÃ = ÃT 〈X̃, X̃〉πΛ̃Ã
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and using π-orthogonality of the eigenvectors X̃ we arrive at

W̃ = D̃−2ÃT Λ̃Ã . (2.4)

Moreover, based on the relation

〈χ̃, χ̃〉π = ÃT 〈X̃, X̃〉πÃ = ÃT Ã ,

we may derive the alternative expression

W̃ = D̃−2〈χ̃, χ̃〉π︸ ︷︷ ︸
S

Ã−1Λ̃Ã︸ ︷︷ ︸
M

. (2.5)

By a short calculation, the above matrix S = (Sij) can be shown to be stochastic,
which implies that

∑k
j=1 Sij = 1. The matrix M = (Mij) is obviously spectrally

similar to the eigenvalue matrix Λ̃. By assumption, M satisfies the condition
Θ = ‖M − Ik‖1 < 1, where ‖ · ‖1 denotes the maximum column sum norm; this
implies that Mii > Mji for j 6= i.
With these properties, the upper bound in (2.2) can be directly verified as
follows:

k∑
i=1

wii =
k∑

i=1

k∑
j=1

SijMji <

k∑
i=1

(
k∑

j=1

Sij)Mii =
k∑

i=1

Mii =
k∑

i=1

λ̃i .

In order to verify the lower bound in (2.2), let D2 = diag(π1, . . . , πk) and observe
that D2 = 〈χ, χ〉π. With this preparation, we derive the perturbation pattern
of the matrix S as:

S = D̃−2〈χ̃, χ̃〉π =
(
D2 + O(ε)

)−1
(〈χ, χ〉π + O(ε)) = Ik + O(ε) .

Insertion into the expression (2.5) then immediately yields

tr(W̃ ) = tr(SM) = tr(M) + O(ε) = tr(Λ̃) + O(ε) .

This result applies for both the upper and the lower bound of the metastability
and therefore confirms (2.2) in particular, which completes the proof. ¤

Note that Λ̃(ε)|ε=0 = Ik so that for sufficiently small perturbation parameter
the above inequality (2.1) will be satisfied.

Conclusion

In contrast to the recent papers [2, 3], the O(ε2) perturbation result for eigen-
vectors has to be replaced by O(ε) bounds. Fortunately, the cluster algorithm
PCCA+ maintains its validity because it is not based on this result. However,
we still do not have a satisfactory theoretical explanation for the simplex struc-
ture of the perturbed eigenvectors. This question will be in the focus of future
work.
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A. Mark, T. Schlick, Ch. Schütte, and R. Skeel, editors, New Algorithms for
Macromolecular Simulation, volume 49 of Lecture Notes in Computational
Science and Engineering, pages 167–181, Berlin, 2006. Springer-Verlag.

[5] T. Kato. Perturbation Theory for Linear Operators. Springer-Verlag, Berlin
Heidelberg, 1984.

6


