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Abstract

For the general G/G/1 processor sharing (PS) system a sample path
result for the sojourn times in a busy period is proved, which yields a
relation between the sojourn times under PS and FCFS discipline. In
particular, the result provides a formula for the mean sojourn time in
G/D/1 − PS in terms of the mean sojourn time in the corresponding
G/D/1−FCFS, generalizing known results for GI/M/1 and M/GI/1.
Extensions of the formula provide the basis for a two-moment approxi-
mation of the mean sojourn time in G/GI/1− PS in terms of a related
G/D/1− FCFS.
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1 Introduction

In this paper we consider the G/G/1−PS system, i.e., we assume that the in-
put is given by a stationary ergodic marked point process Φ = {[T`, S`]}

∞

`=−∞

on R with · · · ≤ T−1 ≤ T0 ≤ 0 < T1 ≤ T2 ≤ · · ·, where T` denotes the ar-
rival instant of the `-th request and S` its service requirement. The requests
are served by a single server under processor sharing (PS) discipline, i.e., if
n (> 0) requests are in the single server then each request receives 1/n of
the service capacity2. Besides the PS discipline, later we consider the cor-
responding single server system with the same input Φ and infinite waiting

1This work was supported by a grant from the Siemens AG.
2This type of PS discipline is often called the egalitarian processor sharing discipline,

cf. [Y] p. 102.
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room under the first come first served (FCFS) discipline, abbreviated by
G/G/1 − FCFS.

Since the PS and FCFS discipline are work conserving disciplines, their
corresponding work load processes and hence busy periods are identical, and
under both disciplines the stability condition reads

% :=
mB

mA
< 1, (1.1)

where mB is the mean service time and mA the mean inter-arrival time,
cf. e.g. [BB], [BFL], [FKAS]. Under (1.1) a uniquely determined stationary
work load process can be constructed, having empty periods and thus busy
periods of finite length. By means of this fact for the G/G/1−PS system a
uniquely determined stationary state process of the number of requests and
their residual service times can be constructed along the lines of [BFL], but
which will not be outlined here. Note, although the workload process and
hence also the busy periods are identical under the PS and FCFS discipline
this is clearly not the case for the sojourn times of requests, which are very
sensitive with respect to the service discipline.

Processor sharing systems have been studied extensively in many pa-
pers, see e.g. [Y] and the references therein. Some recent papers are [ZB],
[N], [UB], [BBJ]. However, since the purpose of these studies mainly was
to determine sojourn time characteristics of a request, e.g. its mean and
variance (given its service requirement), independence as well as distribu-
tional assumption are supposed. However, in the general case, few structural
properties seem to be known. For general results see [BT], [BB2].

The aim of this paper is to prove in Section 2 (Lemma 2.1) a sample path
result for the sojourn times of a busy period in G/G/1−PS. As an applica-
tion in Section 3.1 there is given a general relation (Theorem 3.1) between
the sojourn times under PS and FCFS discipline, yielding in particular a for-
mula (Corollary 3.1) for the mean stationary sojourn time in G/D/1 − PS
in terms of the mean stationary sojourn time under FCFS, generalizing cor-
responding known results for GI/M/1 and M/GI/1. Then, extensions of
the formula (Theorem 3.2) are given for a large subset of G/GI/1 systems.
By means of these extensions in Section 3.2 we propose – based on a two-
moment matching of the service time distribution – an approximation for
the mean sojourn time in a G/GI/1−PS in terms of the mean waiting time
in a related G/D/1 − FCFS, thus reducing the complexity.
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2 A sample path relation for the sojourn times in

a busy period under PS discipline

For the G/G/1 − PS system let us consider a sample path of a busy pe-
riod 1 during which n requests arrive and are served. Denote by vk and sk,
k = 1, . . . , n, the sojourn time and service requirement of the k-th arriving
request ordered according to their arrivals, respectively. Further, let v∗k be
the sojourn time of the k-th request if the arrival process is stopped after
the arrival of the k-th request.

Lemma 2.1 It holds

n
∑

k=1

(vk + sk) = 2

n
∑

k=1

v∗k. (2.1)

Proof. The proof will be given by induction on n. Since for n = 1 it holds
v1 = s1 = v∗1 , obviously (2.1) is valid. Assume now that (2.1) is true for
busy periods for which at most n requests arrive. Consider an arbitrary
busy period during which n + 1 requests are served and which arrive at the
time instants

0 = t1 ≤ t2 ≤ · · · ≤ tn ≤ tn+1

and have service times sk, k = 1, . . . , n + 1. The departure instant τk of the
k-th request is given by

τk = tk + vk, k = 1, . . . , n+1. (2.2)

Note that the busy period has length
∑n+1

k=1 sk in view of the work conser-
vation law. The induction step is divided into several steps.

1. Consider the modification of the busy period where the (n+1)-st
arriving request is not considered. Hence the modified busy period consists
of n request. Denote the corresponding sojourn times of the modified busy
period by v̄k, k = 1, . . . , n. Then the modified departure times τ̄k are given
by

τ̄k = tk + v̄k, k = 1, . . . , n. (2.3)

Applying the induction assumption to the modified busy period and taking
into account that v∗k, k = 1, . . . , n, does not depend on the requests arriving

1See e.g. [GH] p. 11.
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after the k-th request, we obtain

n+1
∑

k=1

(vk+sk) =

n
∑

k=1

(v̄k+sk) +

n
∑

k=1

(vk−v̄k) + vn+1 + sn+1

= 2
n

∑

k=1

v∗k +
n

∑

k=1

(vk−v̄k) + vn+1 + sn+1. (2.4)

2. Let π be a permutation of {1, . . . , n} such that

τ̄π(1) ≥ τ̄π(2) ≥ · · · ≥ τ̄π(n).

In the following we will exploit several times the fact that under the PS
discipline the service capacity is divided equally among the requests being
in the system, which implies that the residual service times of the requests
in the system are reduced with equal speed. Therefore it holds

τπ(1) ≥ τπ(2) ≥ · · · ≥ τπ(n), (2.5)

too. In view of (2.5), there are indices i, j ∈ {0, . . . , n} such that

τπ(1) ≥ · · · ≥ τπ(j) ≥ tn+1 > τπ(j+1) ≥ · · · ≥ τπ(n),

τπ(1) ≥ · · · ≥ τπ(i) ≥ τn+1 > τπ(i+1) ≥ · · · ≥ τπ(n),

respectively. Obviously, 1 ≤ j ≤ n and 0 ≤ i ≤ j. Further, it holds

τ̄π(k) = τπ(k), k > j, (2.6)

τ̄π(k) − τ̄π(k+1) = τπ(k) − τπ(k+1), k < i, (2.7)

in view of the PS discipline.
For the second summand on the r.h.s. of (2.4) from (2.2), (2.3), (2.6)

and (2.7) we obtain
n

∑

k=1

(vk−v̄k) =
n

∑

k=1

(vπ(k)−v̄π(k)) =
n

∑

k=1

(τπ(k)−τ̄π(k))

=

j−1
∑

k=1

(k+1)
(

(τπ(k)−τ̄π(k))− (τπ(k+1)−τ̄π(k+1))
)

+ (j+1)(τπ(j)−τ̄π(j))− (τπ(1)−τ̄π(1))

=

j−1
∑

k=max(i,1)

(k+1)
(

(τπ(k)−τπ(k+1))− (τ̄π(k)−τ̄π(k+1))
)

+ (j+1)(τπ(j)−τ̄π(j))− τπ(1)+τ̄π(1). (2.8)
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3. Next, by expressing the summands on the r.h.s. of (2.8) in terms of
departure times of the original busy period we will prove that

n
∑

k=1

(vk−v̄k) = τn+1 − tn+1 −
n+1
∑

k=1

sk + τ̄π(1). (2.9)

3.1 Let 0 < i = j ≤ n. Then (τ̄π(j) − tn+1) − (τπ(j) − tn+1) is just the
reduction of vπ(j) since tn+1 in the modified busy period compared to the
original one as the portion of the service capacity assigned to each of the
requests in the system is raised from 1/(j + 1) to 1/j until τn+1. Hence

τ̄π(j) − τπ(j) = −
1

j+1
(τn+1 − tn+1).

Thus (2.8) provides

n
∑

k=1

(vk−v̄k) = τn+1 − tn+1 − τπ(1) + τ̄π(1). (2.10)

Since i > 0 implies τπ(1) ≥ τn+1, it follows that the original busy period,

which has length
∑n+1

k=1 sk, ends at τπ(1), and thus (2.10) yields (2.9).
3.2 Let 0 ≤ i < j ≤ n. Then (τ̄π(j) − tn+1) − (τπ(j) − tn+1) is just the

reduction of vπ(j) since tn+1 in the modified busy period compared to the
original one as the portion of the service capacity assigned to each of the
requests is raised from 1/(j + 1) to 1/j. Hence

τ̄π(j) − τπ(j) = −
1

j+1
(τπ(j) − tn+1). (2.11)

If i < k < j, then (τ̄π(k)− τ̄π(k+1))− (τπ(k)− τπ(k+1)) is the reduction of vπ(k)

since τπ(k+1) as the portion of the service capacity assigned to each of the
requests is raised from 1/(k + 1) to 1/k. Hence

(τ̄π(k) − τ̄π(k+1))− (τπ(k) − τπ(k+1)) = −
1

k+1
(τπ(k) − τπ(k+1)). (2.12)

Finally, because (τ̄π(i) − τ̄π(i+1)) − (τπ(i) − τπ(i+1)) is the reduction of vπ(i)

since τπ(i+1) as the portion of the service capacity assigned to each of the
requests is raised from 1/(i + 1) to 1/i until τn+1, it holds

(τ̄π(i) − τ̄π(i+1))− (τπ(i) − τπ(i+1)) = −
1

i+1
(τn+1 − τπ(i+1)). (2.13)

Thus from (2.8) and (2.11)–(2.13) it follows

n
∑

k=1

(vk−v̄k) = 1I{i > 0}(τn+1 − τπ(1))− tn+1 + τ̄π(1). (2.14)
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If i = 0 then τn+1 > τπ(1), and therefore the original busy period ends at

τn+1 =
∑n+1

k=1 sk, and hence (2.14) implies (2.9). If i > 0 then τn+1 ≤ τπ(1),

and the original busy period ends at τπ(1) =
∑n+1

k=1 sk, and hence (2.14)
implies (2.9), too.

4. Since the modified busy period ends at τ̄π(1), from the work con-
servation law it follows τ̄π(1) =

∑n
k=1 sk, and hence from (2.4), (2.9) and

vn+1 = τn+1 − tn+1 we obtain

n+1
∑

k=1

(vk+sk) = 2

n
∑

k=1

v∗k + τn+1 − tn+1 −

n+1
∑

k=1

sk +

n
∑

k=1

sk + vn+1 + sn+1

= 2

n
∑

k=1

v∗k + 2vn+1 = 2

n+1
∑

k=1

v∗k,

where the last equality is valid as obviously v∗n+1 = vn+1.

Remark 2.1 The difference of the sojourn and service time of a request in
a PS system can be interpreted as the waiting time of the request, cf. [Y]
p. 107, namely as the time which the request has to spend additionally to its
service time in the system in view of the presence of other requests. In terms
of waiting times, (2.1) is equivalent to

n
∑

k=1

wk = 2

n
∑

k=1

w∗k, (2.15)

where wk := vk − sk and w∗k := v∗k − sk are the waiting times of the k-th
request in the busy period of the original and of the modified system, where
the arrival process is stopped after the k-th request, respectively.

3 Applications

In this section we derive some relations between the stationary sojourn times
for G/G/1 under PS and FCFS. Moreover, we propose an approximation
for the mean stationary sojourn time in G/GI/1−PS in terms of the mean
stationary waiting time in a related G/D/1 − FCFS.
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3.1 Relations between sojourn times for G/G/1 under PS
and FCFS

Lemma 2.1 can be used for deriving an upper bound for the mean sojourn
time in a G/G/1 − PS system in terms of the mean sojourn time in the
corresponding G/G/1−FCFS system. As in Lemma 2.1 consider a sample
path of a busy period of n requests with service times sk, k = 1, . . . , n.
Additionally to the sojourn time vP

k (= vk) of the k-th request under the PS
discipline let vF

k , k = 1, . . . , n, be the corresponding sojourn time under the
FCFS discipline.

Theorem 3.1 The sojourn times vP
k of the G/G/1−PS system and vF

k of
the G/G/1 − FCFS system satisfy

n
∑

k=1

(vP
k − sk) ≤ 2

n
∑

k=1

(vF
k − sk). (3.1)

For the G/D/1 system it holds equality in (3.1).

Proof. Consider a sample path of a busy period of n requests and let
0 = t1 ≤ · · · ≤ tn be the arrival epochs of the n requests. Analogously to
Lemma 2.1 let v∗k be the sojourn time of the k-th request in the PS system if
the arrival process is stopped after the arrival of the k-th request. Obviously,
the work conservation law provides

v∗k ≤

k
∑

j=1

sj − tk, k = 1, . . . , n, (3.2)

as the busy period induced by the first k arrivals (t1, s1), . . . , (tk, sk) has
length

∑k
j=1 sj . If all service times are equal, i.e., in case of a G/D/1−PS

system, we have equality in (3.2) because then the requests leave the system
in the order of their arrivals. In case of the G/G/1−FCFS system it holds

vF
k =

k
∑

j=1

sj − tk, k = 1, . . . , n. (3.3)

Combining (2.1), where vk = vP
k , (3.2) and (3.3) we obtain (3.1), where in

(3.1) we have equality in case of deterministic service times.

By means of ergodicity arguments, cf. e.g. [BB], [BFL], [FKAS], the
sample path result of Theorem 3.1 yields a corresponding result for the
mean stationary sojourn times.
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Corollary 3.1 Under the stability condition % < 1 for the stationary so-
journ times V P of the G/G/1 − PS system and V F of the corresponding
G/G/1 − FCFS system it holds

EV P−ES ≤ 2 (EV F−ES), (3.4)

where S denotes a generic r.v. of the service time, with equality in case of
deterministic service times, i.e., for the G/D/1 system it holds

EV P−ES = 2 (EV F−ES). (3.5)

Now we will generalize (3.5) to a broader class of G/GI/1 systems, cover-
ing in particular the corresponding known results for GI/M/1 and M/GI/1.
Consider the service time distributions Bi(x) := P (S ≤ x), i ∈ {1, 2}, de-
fined by

B1(x) := 1− p 1I{x<s}, x ∈ R+, (3.6)

B2(x) := 1− p exp(−x/s), x ∈ R+, (3.7)

where p ∈ (0, 1] and s ∈ R+ \ {0}, i.e., Bi(x) is a mixture of a zero and a
deterministic or exponential time with mean s, respectively.

Theorem 3.2 Let % < 1. Then for the systems G/GI/1 with GI = Bi,
i ∈ {1, 2}, and M/GI/1 it holds

EV P −ES =
2(ES)2

ES2
(EV F −ES), (3.8)

where V P and V F denote the stationary sojourn times in the corresponding
systems under the PS and FCFS discipline, respectively.

Proof. 1. For the M/GI/1 system (3.8) follows directly from the well-
known formulae for EV P and EV F , cf. e.g. [Y] p. 109 and [W] p. 278.

2. Consider now the systems G/GI/1 with GI = Bi, i ∈ {1, 2}.
2.1 First let p = 1, i.e., we deal with the G/D/1 and G/M/1 system,

respectively. Since in case of a G/D/1 system ES2 = (ES)2, (3.8) is an
immediate consequence of Corollary 3.1. In case of a G/M/1 system (3.8)
is equivalent to EV P = EV F because of ES2 = 2(ES)2. In view of the
exponential service times, under the PS as well as under the FCFS discipline
the departure process is a Poisson process of intensity 1/ES as long as there
are requests in the system. Consequently, the numbers of requests in the
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system are stochastically equivalent under both disciplines, and by Little’s
formula it follows EV P = EV F .

2.2 Now let p ∈ (0, 1), i.e., the service times are a proper mixture of a
zero and a positive (deterministic or exponential) time. Besides the input
Φ = {[T`, S`]}

∞

`=−∞ consider the modified input Φ̃ = {[T̃`, S̃`]}
∞

`=−∞ with

· · · ≤ T̃−1 ≤ T̃0 ≤ 0 < T̃1 ≤ T̃2 ≤ · · · consisting of all those requests of Φ
having a positive service time. In the following let us endow all quantities
and variables which are related to Φ̃ with a tilde, thus S̃ denotes the generic
deterministic or exponential service time with mean s, and Ṽ P , Ṽ F are the
stationary sojourn times in the G/G/1 system with input Φ̃ under the PS
and FCFS discipline, respectively. The following observation is crucial: the
requests with a zero service time have under the PS discipline a sojourn
time of length zero whereas under the FCFS discipline they do not have any
impact on the workload process and hence on the waiting times. This, (3.6),
(3.7), and since the service times {S`}

∞

`=−∞ are i.i.d. r.v.’s independent on
the arrival process, yield in case of GI = Bi, i ∈ {1, 2}, the relations

EV P = pEṼ P , EV F −ES = EṼ F −ES̃, (3.9)

ES = pES̃, ES2 = pES̃2. (3.10)

Note that EṼ P (EṼ F −ES̃) is the mean stationary sojourn time (waiting
time) in the corresponding G/D/1 − PS (FCFS) or G/M/1 − PS (FCFS)
system, respectively, where G stands for the process {T̃`}

∞

`=−∞ of arrival

instants of Φ̃, D for the constant service times s in case of B1(x) and M for
the exponential service times with mean s in case of B2(x). (Note, a rigorous
proof of (3.9) can be given by applying Palm’s formula for marked point
processes and using the independence assumptions of the service times.)
From (3.9), (3.10) and step 2.1 above we obtain

EV P−ES = p (EṼ P−ES̃) = p
2(ES̃)2

ES̃2
(EṼ F−ES̃)

=
2(ES)2

ES2
(EV F−ES).

Remark 3.1 (i) Note, for the GI/M/1 system the fact EV P = EV F is
well-known, cf. e.g. [R] p. 441.
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(ii) Theorem 3.2 states that (3.8) holds for a much broader class than for
GI/M/1 and M/GI/1 systems.
(iii) Using the squared coefficient of variation c2

B := ES2/(ES)2−1, relation
(3.8) is equivalent to

EV P −ES =
2

1+c2
B

(EV F −ES),

where c2
B1

= (1− p)/p ≥ 0 and c2
B2

= (2− p)/p ≥ 1, cf. (3.6), (3.7).

Although Theorem 3.2 shows that (3.8) holds for a broad class of G/GI/1
systems, this relation is not true for G/GI/1 systems in general. Let us
consider the MGI/GI/1 system. Note that the MGI batch arrival process
is a special G process, cf. e.g. [BB], [BFL]. There arrive batches of positive
size X according to a Poisson process of intensity λ. The mean sojourn time
EV F of an arriving request under the FCFS discipline is given by, cf. e.g.
[T] p. 277,

EV F = ES +
ES

2(1−%)

(

%
ES2

(ES)2
+ b

)

, (3.11)

where % = λEX ES < 1, cf. (1.1), and b := EX2/EX − 1 is the mean num-
ber of requests that arrive together with the tagged arriving request other
than this request. Since for the MGI/GI/1−PS system an explicit formula
for EV P seems not to be available, let us restrict now to H2-distributed
service times with balanced means, i.e.,

H2(x) := p1(1−exp(−x/s1)) + p2(1−exp(−x/s2)), x ∈ R+, (3.12)

where p1 = 1− p2 ∈ (0, 1), s1, s2 ∈ R+ \ {0}, s1 6= s2 and

p1s1 = p2s2. (3.13)

Specializing the general results of [KMR], [B] for the M GI/GI/1− PS and
MGI/GH/1−PS system, where GH stands for generalized hyperexponential
distribution, respectively, to the H2 distribution with balanced means, after
tedious algebra one obtains that for the M GI/H2/1−PS system with (3.13)
it holds

EV P = ES +
ES

2(1−%)

(

2% + b−
ab

2−%

)

, (3.14)

where

a :=
ES2 − 2(ES)2

ES2
∈ (0, 1).
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From (3.11), (3.14) it follows

EV P −ES =
2(ES)2

ES2

(

1 +
(1−%)ab

(2−%)(2%+(1−a)b)

)

(EV F −ES). (3.15)

Therefore, for the MGI/H2/1 system with (3.13) it holds

EV P −ES ≥
2(ES)2

ES2
(EV F −ES) (3.16)

with equality iff b = 0, in which case we have a M/H2/1 system covered by
Theorem 3.2.

3.2 Two-moment approximation for EV P in G/GI/1− PS

Consider the general G/GI/1 − PS system with service time distribution
B(x). The mean mB (> 0) and squared coefficient of variation c2

B (≥ 0) of
the service times provide a two-moment characterization of B(x). Choosing
p and s as

p :=
1

1 + c2
B

, s := (1 + c2
B)mB , (3.17)

then B1(x), defined by (3.6), (3.17), is a two-moment approximation of
B(x), i.e., the first two moments of the service times coincide. Hence the
mean sojourn time EV P

1 in the corresponding G/B1/1− PS system can be
considered as an approximation for EV P . From Theorem 3.2 and step 2.2
(3.9), (3.10) of its proof it follows

EV P
1 = ES + p

2(ES̃)2

ES̃2
EW̃F

1 ,

where EW̃F
1 := EṼ F

1 − ES̃ is the mean stationary waiting time in the
corresponding G/D/1−FCFS system with D = s given by (3.17). In view
of (3.17), therefore we obtain the two-moment approximation

EV P ≈ ES +
2

1 + c2
B

EW̃F
1 (3.18)

for EV P in terms of EW̃F
1 , thus reducing the complexity. Note that EW̃F

1

can be computed efficiently in several cases. Numerical studies – not re-
ported here – have shown that (3.18) provides a good approximation, e.g.
in case of Poisson-distributed batch arrivals with deterministic inter-arrival
times, where EW̃F

1 can be computed efficiently via Spitzer’s identity for the
mean waiting time in GI/GI/1−FCFS systems by interpreting an arriving
batch as one customer whose service time is proportional to the batch size.

11



Remark 3.2 Note, for c2
B ≥ 1 one obtains an analogous approximation to

(3.18) by using B2(x) instead of B1(x). Choosing

p :=
2

1 + c2
B

, s :=
1 + c2

B

2
mB , (3.19)

then B2(x) is a two-moment approximation of B(x), too, and analogously
to (3.18) we obtain the approximation

EV P ≈ ES +
2

1 + c2
B

EW̃F
2 , (3.20)

where EW̃F
2 denotes the mean stationary waiting time in the corresponding

G/M/1 − FCFS system with exponential service times with mean s given
by (3.19). Note that (3.20) is of the same structure as (3.18) and that the
r.h.s. of (3.20) is also well defined in the general case of c2

B ≥ 0.

Remark 3.3 Note that (3.18), (3.20) provide approximations for EV P for
a general G/GI input. For the GI/GI/1−PS system Sengupta [S] suggested
to approximate the stationary sojourn time by the product of two indepen-
dent r.v.’s, where one of them is the service time and the other one has
a Gamma distribution, where the parameters are determined from known
analytical results for the M/GI/1 − PS and GI/M/1 − PS system. The
proposed approximation is exact in some limiting cases and provides good
approximations for GI/GI/1 − PS as reported.
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