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MEDIANS OF BINARY RELATIONS: COMPUTATIONAL COMPLEXITY 

Yoshiko Wakabayashi 
Institute de Matemätica e Estatistica 

Universidade de Säo Paulo 
Brazil 

Abstract 

Let % be the set of all binary relations on a finite set N and d be the symmetric difference 

distance defined on %. For a given profile II = ( i ? i , . . . ,Rm) € Km, a relation R* e U 

that minimizes the function X/fcLi d(Rk,R) is called a median relation of II. A number of 

problems occuring in the social sciences, in qualitative data analysis and in multicriteria 

decision making can be modelled as problems of finding medians of a profile of binary re­

lations. In these contexts the profile II represents collected data (preferences, similarities, 

games) and the objective is that of finding a median relation of II with some special feature 

(representing e. g., consensus of preferences, clustering of similar objects, ranking of teams, 

etc.). In this paper we analyse the computational complexity of all such problems in which 

the median is required to satisfy one or more of the properties: reflexitivity, symmetry, 

antisymmetry, transitivity and completeness. We prove that whenever transitivity is re­

quired (except when symmetry and completeness are also simultaneously required) then 

the corresponding median problem is A/'P-hard. In some cases we prove that they remain 

AfP-haxd when the profile II has a fixed number of binary relations. 

1. Introduction 

In the social choice theory a classical problem that has been largely investigated and whose 

origin traces back to the late eighteenth century is the problem of aggregating individual 

preferences (linear orders) into a social preference (a linear order). The notion of consensus 

of preferences plays an important role in the social sciences, a reason why many efforts 

have been made to find realistic models to express it (cf. Leclerc [1988a], Day [1988]). 

The first mathematical approaches on problems of aggregation of preferences are cred­

ited to Borda in 1770 and Condorcet in 1785, both concerned with the design of election 

procedures. In a recent paper, Young [1988] discusses the model proposed by these two 

major figures of that time, gives some historical accounts and explains the Condorcet's 

theory of voting (see also Young &; Levenglick [1978]). 

The notion of median relation — a relation minimizing a "remoteness" function de­

fined in terms of the symmetric difference distance — was introduced by Kemeny [1959], 

who investigated a method to aggregate individual preferences into a collective preference. 
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His method, although being of metric nature, is in fact equivalent to the CoNDORCET's 

MAJORITY RULE, according to which the winning collective preference should be the one 

supported by the largest number of votes (Young [1988], Barbut [1967], Fishburn [1977], 

Michaud [1987]). 

In cluster analysis a similar approach was proposed by Regnier [1965], then Mirkin 

[1974], for solving the problem of aggregating equivalence relations into an equivalence 

relation (see also Zahn [1964]). 

The fact that the symmetric difference distance has been used in problems occur­

ring in many different contexts is not a pure coincidence. Axiomatics supporting its use 

has been investigated in several cases, cf. Kemeny [1959], Monjardet [1978], Barthelemy 

[1979] and Barthelemy & Monjardet [1981]. However, the median approach, as any con­

sensus procedure, has some defects as pointed out by Fishburn [1977], Leclerc [1988a] and 

Barthelemy & Monjardet [1988]. This last reference gives also an overview of the devel­

opments on the algorithmic approaches and extensions of the notion of median in other 

structures. The results concerning its algebraic definition that generalizes to any distribu­

tive lattice (cf. Barbut [1961], Monjardet [1980]), as well as more recent results on median 

semilattices, resp. (semi)modular (semi)lattices can be found in Monjardet [1987, 1988], 

resp. Barthelemy [1981] and Leclerc [1988b]. For a unified treatment on this subject the 

reader should refer to Barthelemy, Flament & Monjardet [1982]; Barthelemy, Leclerc & 

Monjardet [1986]; Barthelemy & Monjardet [1988] and Barthelemy [1988]. 

In this paper we analyse the computational complexity of a class of problems of 

finding medians with certain properties. This class includes those classical problems such 

as aggregation of preferences and clustering. 

The material is organized as follows. In Section 2 we give the definitions and notations 

to be used and present the problems to be investigated. In Section 3 the main results on 

the computational complexity of these problems are presented, and in Section 4 we discuss 

special cases concerning restricted domains. 

2. Definition and Notations 

Let JVbea finite set with n objects (e. g. alternatives, candidates, teams, states, etc.) and 

let 1Z denote the set of all binary relations on N. Consider 1Z endowed with a metric d, 

the symmetric difference distance, defined as 

d{R, S) := \R A S\ := \R U S\ - \R n 5 | for all R,SeK. 

A profile of relations in 11, or a profile in 1lm, is an m-tuple II = ( i? i , . . . ,Rm) where 

Rk £ H for k = 1 , . . . , m. Given a profile II = {Rx,..., Rm) in 1lm a relation R* eH that 
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minimizes the function 
m 

fc=i 

is called a median relation of II. 

In this general form the problem of finding a median of a given profile is trivial 

and not interesting. However, if we require the median to satisfy certain properties the 

resulting problem becomes interesting and has nice applications. So, according to the 

desired properties of R* we obtain different problems, and here we consider all those 

arising when the properties are chosen from the set 

P := { Reflexive, Symmetric, Antisymmetric, Transitive, Total }. 

Let us recall some definitions. A relation R € 7Z is reflexive (REF) if (z,i) € R for 

all i e N; R is symmetric (SYM) if (i,j) e R implies (j,i) € R for all i,j G N ; R 

is antisymmetric (ASY) if (i,j) € R and (j,i) € R imply i = j for all i,j e. N; R is 

transitive (TRA) if (i,j) € R and (j, k) e R imply (i,j) e R for all i,j, k e N; R is total 
(TOT) if (i, j) eRov (j, i) e R for all i,j e N. 

To simplify notation we use the abbreviated form of the name 

of the property (given in parentheses) to denote also the set of all relations having this 

property. Thus, for example, TRA denotes the set of all transitive relations in 1Z. Some 

relations having more than one of the properties in P are known by special names, not 

always standard in the literature. Here we adopt the following notation and terminology: 

C denotes the set of all complete preorders, i. e. C = TRA n TOT. 

T denotes the set of all tournaments, i. e. T = ASY C\ TOT. 

C denotes the set of all linear orders, i. e. C — ASY D TRA 0 TOT. 

Ö denotes the set of all partial orders, i. e. Ö = ASY C\ TRA. 

£ denotes the set of all equivalence relations, i. e. £ = REF D SYM 0 TRA. 

For a subset M € H the median problem relative to M, denoted by MP(1Z,M), 

is defined as follows. 

Instance: Profile n = ( i ? i , . . . , Rm) of m relations in TZ. 

Objective: Find a relation R* € M such that .0(11, R*) = miriR^M -0(11, R). 

A variant of this problem, that differs only by the fact that the size of the profile is 

fixed, is denoted by MP(lZ,M,m). So, in this problem we have 

Instance: Profile II = ( i ? i , . . . , Rm) in TV71 where m is fixed. 

We expect the reader to be familiar with the basic concepts of graph theory and 

complexity theory. If not, the definitions not given here can be found in Bondy $z Murty 

[1976], resp. Garey & Johnson [1979]. 
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A graph G with node set V and edge set E is denoted by G = [V,E]. A digraph 
(or directed graph) D with node set N and arc set A is denoted by D = (N,A). A graph 

G = [V, 15], resp. digraph D = (iV, A), is called complete it E = {{u,v} : u,v £ V,u ^ v}, 

resp. A = {{u,v) : u,v E N,u ^ v}. If D = (iV,A) is a digraph with A — N x N then 

D is called /-complete (i. e. complete with all loops). For a digraph D = (N,A), we call 

the arcs in (N x N) \ A missing arcs (analogously, missing edges in case of a graph). A 

digraph is called acyclic if it does not contain any directed cycle. 

A clique of a graph is a complete subgraph of G. It needs not be maximal, as is 

sometimes assumed in the literature. A set of edges A in a graph G — [V, E] is called a 

clique partitioning of G if there is a partition V i , . . . , Vk of V such that the subgraph 

induced by each V;, 1 < i < k, is a clique in G and A is the union of all edges in G with 

both endnodes in the same set of the partition. In this case, if for 1 < i < k the clique 

induced by Vi is denoted by Qi, then we say that C(A) :— {Qi,..., Qk] is the clique set 
denned by A. 

3. Computational Complexity 

We assume here that an instance of the median problems MP(TZ,M) or MP(7l,M,m) 

consisting of a profile II = (R\,.. .,Rm) is given by an (m,ra2)-matrix A = (a^) whose 

rows are the characteristic vectors of the relations (indexed by the pairs (i,j) 6 N x N). 

Thus, a,k,e = 1 (resp. ajtje = 0) if e € Rk (resp. e ^ Rk) and clearly the size of such an 

instance is ö(n2m). 

It is well-known that the median problems we are considering can be formulated as 

0/1 linear programs or optimization problems on weighted digraphs. In fact, it is easy to 

prove that 

D(II, R) = ^T WijTij + ^ T a y , 

where 

(3.1) <*,•;:= KM», J)€Ä*}|, 
(3.2) Wij := m — 2a;j and 

r = (r,j) is the characteristic vector of R. 

Thus, each given instance of MP(1l, M) can be formulated as the 0/1 Hnear program: 

minimize \ . wijrij 
(3.3) (i,j) 

subject to: r = (nj) is the characteristic vector of some relation R 6 M. 
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If the coefficients Wij are interpreted as being weights associated with the arcs (i,j) of 

an /-complete digraph Dn on the node set N, then the problem becomes that of finding 

certain minimum weighted subdigraphs in Dn. For example, if M = C the corresponding 

digraph problem is a special case of the weighted feedback arc set problem or linear 
ordering problem, and if M € £ we obtain the so-called clique partitioning problem 
(see Reinelt [1985], Grötschel, Jünger & Reinelt [1985], Barthelemy, Guenoche & Hudry 

[1988], resp. Wakabayashi [1986] and Grötschel & Wakabayashi [1988]). 

From the above reduction one obtains immediately the following result (excluding 

some trivial non-interesting cases): 

(3.4) Proposit ion. If M € {SYM, ASY, TOT, ASY n TOT} then the problem 

MP(1Z, M) is polynomially solvable. 

D 

We can also make use of the given reduction, in a more specialized way, to show 

that MP(1Z, M) is NP-haxd for other subsets M. Namely, we first note that the obtained 

digraph optimization problems are special in the sense that all of its .weights iü,-y are integers 

having the same parity (cf. (3.1) and (3.2)). Furthermore, we observe that whenever we 

have such an /-complete weighted digraph Dn = (N,An) with m : = max e £ j in |toe| we can 

construct a profile II = ( i ? i , . . . , Rm) in %m such that for each (i,j) € N x N we have 

Wij = m — 2o.ij with aj;- as in (3.1). In other words, these special digraph optimization 

problems are also polynomially reducible to MP(7l, M) or MP(Tl,M,m). 

In order to state more formally the results we introduce first some notations. For any 

set M C 1Z we denote by DOP(M,m) the following Digraph Optimization Problem 
relative to M. 

Instance: /-complete digraph Dn = (N, An); weights we G Z for each e € An, all having 

the same parity and with maxe |iue| = m. 

Objective: Find an arc set A* C An such that A* 6 M and w(A*) := ^2eeA. we is 

minimum. 

We denote by BDOP(M,a) a variant of DOP(M,m) in which the objective is the 

same and the instance is as follows. 

Instance: /-complete digraph Dn(N,An); weights we € Z for each e € An, \we\ even; 

(fixed) integer a such that |iüe| < na. 

The reason to introduce these problems is justified by the following result. 

(3.5) Theorem. Let M C 11 and m, a be positive integers. 

(a) IfDOP(M,m) isjVP-hard, then MP(R,M,m) is .NT-hard. 

(b) If BDOP(M, a) is MP-hard, then MP(R, M) is MV-haxd. 
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Proof, (a): Let Dn = (N,An), w and m be given as an instance 1 of DOP(M,m). 

The corresponding instance T of MP{7L,M,m) is constructed as follows. For each pair 

(i, j) £ An we determine the number Z{j := (m — W{j)/2 and set 

-Rfc := {(*, j ) € N x N : ztj > k}, for fc = 1 , . . . , m, 

obtaining this way the profile II = ( i ? i , . . . , Rm). 

Since m i s a constant, the construction of the profile II can be done in 0(n2) and 

therefore in time polynomial in the size of J . The proof that an optimum solution of the 

instance J ' gives an optimum solution of J is straightforward and will be omitted. 

(b) : Given an instance X = (Dn,w,a) of BDOP(M,a) we determine first the value 

q := maxe |ioe|. Since q < na we can construct a profile II = (R\,..., Rq) as in the 

previous case, here as well in time polynomial in the size of 1. The desired conclusion 

follows analogous to Case (a). 

a 
The decision versions of DOP(M,m) and BDOP(M,a) will be denoted by 

DDP(M,m) and BDDP(M,a), respectively. For technical reasons it will be conve­

nient to work with a slight variant of these problems — denoted by DDP*(M,m) and 

BDDP*(M,a) — where the instances consist of loopless complete digraphs. Further­

more, we consider two other properties, TRA* and TOT*, defined as follows. A relation 

R e TRA* iff (i, j ) <E R and ( j , k) e R imply (», Jfe) <E R for all i,j,keN,i^j^k^i; 

and R € TOT* iff (i,j) € R of (;', i) € R for all i,j eN,i^ j . 

The next lemma shows that if we can prove certain A/^-completeness results for DDP* 

or BDDP* then we can derive analogous results for DDP or BDDP. 

(3.6) Lemma. Let M* C TRA* and 

Me{M*,.M*r\REF, M*C\TRA, M* DTRAf) REF}. 

(a) IfDDP*(M*,m) is MV-complete then DDP(M,m) is MV-complete. 

(b) HBDDP*(M*,a) is AfV-complete then BDDP{M,a) is MV-complete. 

Proof, ( a ) : Let Dn = (N,An), w, m and k be an arbitrary instance of DDP*(M*,m). 

The corresponding instance of DDP(M,m), defined by D'n, w', m, k' is constructed as 

follows: D'n — (N, A'n) is the /-complete digraph obtained from Dn by adding to it all the 

missing loops, the weights w'e are defined as: 

( IL'e if e <E An, 

0 if e ^ An and m is even, 

— 1 if e £ An and m is odd, 
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a n d 
• / f k if m is even, 

\ k — n if m is odd. 

We claim that Dn has an arc set B such that B € M* and w(B) < k iff D^ has an 

arc set B' with 5 ' € M and w'(B') < jfc'. 

In fact, given B C An take B' := B U {(«, i) : i € iV}; and conversely, given 5 ' C A^ 

take B := B'\ {(i,i) : ^ € iV}. This proves the claim and establishes the HV-completeness 

oiDDP(M,m). 

(b) : The proof will be omitted as it is analogous to case (a). The only difference is that 

we have to determine first the value maxe |ioe|. 

D 
For the proof of the next theorem we need the fact that the following problem is 

AfP-complete (cf. Karp [1972]): 

Acyclic Subdigraph Problem (ASP) 

Instance: Digraph D = (N,A) without loops; positive integer k < \N\. 

Question: Is there a subset B C A with \B\ > k such that H = (N, B) 

is acyclic? 

The next lemma (easy to be proved by induction) will be useful in theorem (3.8). 

(3.7) Lemma. IfH = (N,B) is an acyclic digraph then there exists a graph H' = (N, B') 

containing H, such that B' € ASY n TRA n TOT*. 

u 
In the subsequent ./ViP-completeness proofs we shall omit the straightforward verifica­

tion that the considered problems are in the class J\fV. 

(3.8) Theorem. Let 

M' = ASY n TRA* and M" = ASY n TRA* n TOT*. 

(a) For every m > 2, DDP*(M',m) is MV'-complete. 

(b) For every m > 1, DDP*(M",m) is MV-complete. 

Proof. [Transformation from the Acyclic Subdigraph Problem (ASP)] 

(i) Assume first that m > 2 and let M € {M',M"}. 

Suppose that D — (N, A) and k are given as an-instance of ASP.Then the corresponding 

instance of DDP*(M, m), defined by defined by Dn. w. m and k', is obtained as follows: 



Dn — (N,An) is the complete digraph obtained from D by adding to it all the missing 

arcs which are not loops; the weights we for e € An are defined as 

_ -m if e £ A, 
e '— -(m — 2) otherwise; 

and 

V :=-2k-(n\m~2). 

We shall prove that D has an acyclic subdigraph H = (N, B) with \B\ > k iff Dn has 

a subdigraph H' = (JV,£') with 5 ' € M and IÜ(S ' ) < A;'. 

a) Let H = (N,B) be an acyclic subdigraph in £> with | £ | > fc. Since H is also a 

subdigraph of D„, then by Lemma (3.7) there exists in Dn a subdigraph H' — (N,B') 

containing H such that B' € M". Moreover, 

w(B') = tw(5) + ^ ( B ' \ B) 

<\B\(-m)-(K(^j-\B\)(m-2)<k'. 

b) Let iJ ' = (N, B') be a subdigraph in £>„ such that B1 e M and tü(ß') < fc'. Since H' 

is acyclic, by Lemma (3.7) there exists in Dn a subdigraph H" = (N,B") containing H' 

with 5 " € .M". Note that 5 " has at least k arcs with weight —m. Otherwise, if B" has I 

arcs with weight —m, / < A; — 1, then 

u;(£') > w(B") = / ( -m) " ( ( g ) " l)(™ ~ 2 ) > A:'-

Thus, if we take JB := {e G S " : we = — m}, clearly H = (N,B) is an acyclic subdigraph 

of D with |B | > k. ' 

(ii) If m = 1 then the above proof also holds for M = 7W". 

Since ASP is .A/^P-complete and the given transformation is polynomial, the result 
follows. 

D 
We want to prove in the sequel that DDP*(.M,m) for M = SYM n TRA* is AfP-

complete. For that, we introduce an A/!P-complete problem called Restricted Clique 
Partitioning Problem, denoted by RCPP, defined as follows: 

Instance: Complete graph Kn = [V,E], weights we € {-1,0,1} for each e € E, integer 
k. 

Question: Is there a clique partitioning Ac E such that w(A) < k? (That is, is there 

a partition of the node set Vn such that the' sum of the weights of all edges 

with both endnodes in the same set of the partition is less or equal to fc?) 



As the vVP-completeness proof of RCPP is long, in order not to break the continuity, 

we shall postpone it to the end of this section (see Theorem 3.14). 

(3.9) T h e o r e m . Let 

A< = SYMnTRA*. 

Then DDP*(M:m) is MV-complete for every m > 1. 

Proof. [Transformation from RCPP] 

Note that it suffices to prove for m = 1. Let Kn = [Vn,£n], w and k be an arbitrary 

instance of RCPP and assume that Vn = {1,2, . . . , n } . The corresponding instance of 

DDP*(.M,1) defined by Dn, w' and k', is constructed as follows: Dn = (N,An) is a 

complete digraph with node set N = Vn, the weights w'e for e € An are defined as 

, J 1 if (wij = 1) or (u>ij = 0 and i < j), 
%i ' \ —1 if (wij = —1) or (wij = 0 and i > j); 

and k' := k. 

It is immediate that, if Kn = [Vn,Sn] has a clique partitioning A with w(A) < k, 

then B := {ij,ji : {i,j} G A}, is an arc set in Dn such that B € M and w'(B) = w(A). 

Conversely, if Dn has an arc set B € M with w'(B) < k', then it is easy to see that the set 

4̂ •"= {{hj} '• ij € B} is a clique partitioning of Kn with w(A) = w'(B). Since RCPP is 

jV*P-complete (cf. Theorem (3.14)), and the given transformation is polynomial, the result 

follows. 

D 

The following theorem combines Lemma (3.6) and the Theorems (3.5), (3.8) and (3.9). 

(3.10) Theorem. Let M' and M" be such that 

f A S Y n T O T * n T R A * , ASY n TOT* n TRA, 1 
€ l S Y M n T R A * , SYMnTRA J ' 

M" G {ASY n TRA*, ASY n TRA} . 

Then the median problem MP(U,M,m) is MV-hard 

i) for every m > 1 and M € {M',M' n REF}; 

ii) for every m> 2 and Me {M\M" n REF}. 

D 

Two more cases need to be analysed. Namely, when M € {TRA*.TRA* D TOT*}. 
For these cases, we shall consider the decision problem BDDP*. 
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(3.11) Theorem. Let 

M = TRA* n TOT*. 

Then the problem BDDP*(M, 4) is MV-complete. 

Proof. By Theorem (3.8), the problem Q := DDP*(A4*,2) with M* = ASY n TRA* n 

TOT* is jVP-complete. We want to prove that Q is polynomially transformable to Q := 

BDDP*(.M,4). Let Dn = (N,An), w and k be given as an instance of Q. Note that, we 

may assume that k < n2, otherwise Q is trivially solvable. Suppose N = {1 ,2 , . . . , n} , 

n > 2. The corresponding instance of Q defined by Dp, w and k is constructed as follows : 

Dp = (N, A) is the complete digraph of order p = 2n with node set N := {ii, i% : i € A"}. 

To define the weights tüe for e € A we let 

R:= ( J Rij where i?ij := { ( i i , j i ) , ( i i , i 2 )} 
l < j < j < n 

and set 
( 0 ife = (t'2,ii), ieN 

L if e = (ii,«2), i € Â  

We = { Wij if e = (ii, j i ) , e 6 f i 

tu,-,- if e = 0 ' i , i2) , e GÄ 

k M otherwise, 

where 

M : = 4 n 2 and L := 2n4. 

Observe that |«5e| is even and |u>e| < p4 for every e E A. 

The parameter fc is defined as 

k := k + CM, where 

Figure 1 
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We shall prove that Dn = (N,An) has a subdigraph H = (N,B) with B 6 M* and 

w(B) < k iff Dp = (iV, Ä) has a subdigraph H = (AT, B) with B G M and w(B) < k. 

It is clear that .M, L and k were chosen conveniently so that the above claim can be 

shown to hold. Before we give the proof, let us explain the idea behind the choice of the 

values for M, L and k. 

Note that for each pair i, j , 1 < i < j < n, the arcs (i,j) and (j, i) in Dn correspond 

to the arcs (ii,ji) and (ji,«2) in Dp, respectively, and that the assigned weights agree 

correspondingly. See Figure 1. Given a subdigraph H = (N,B) in Dp with B G M and 

w{B) < k, we want to construct a subdigraph H = (N,B) in Dn with B G M* and 

w(B) < k. So we want H to have exactly one of the arcs (i\,ji), (j?i, «2) for each pair 

h Ji 1 ^ l < J — n ( s o ^ a ^ ^ e corresponding arcs in Dn can be set into B). Thus we 

choose L conveniently (according to k) so that both of (i\,ji) and ( i i , ^ ) cannot be in 

any transitive subdigraph H with w(B) < k. This can be accomplished by choosing L so 

that whenever both of these arcs are chosen to be in a transitive subdigraph H = (N, B), 

then the choice of («1,^2) forced by the transitivity gives that w(B) > k. The values for k 

and M are so chosen that H must be a subdigraph consisting of : 

i) all arcs with weight 0; 

ii) exactly one of the arcs (ii , j i ) , ( i i , ^ ) f° r each pair i, j , 1 < i < j < n; 

iii) exactly C := (2
2
n) - n — (j) arcs with weight M. 

a) Given a subdigraph H = (N,B) in Dn with B € M* and w(B) < k, construct 

H = (N,B) by setting: 

B:=BI\JB2UB3, 

where 

B! 

§2 

= {(*i,ji),(*i,i2),(»2,ji),(*2,i2) : 1 < * <J < n and (i,j) G B], 

= {0"i»*i)»(ii»»2), 0*2, *i), 0*2, *2) : 1 < * < j < n and (j,i) € B}, 

= {(»2,»i): i£N}. 

Notice that | 5 | =.(2
2

n) and B G TOT*. 
For each pair e = (i,j), 1 < i,j < n, i ^ j , let 5 e be the following basic subdigraph: 

Su 

Figure 2. 

Clearly, H = (N, B) is the union of all basic subdigraphs Se each corresponding to an 

arc e G B. By inspection, it is easy to see that these subdigraphs Se are transitive. Thus 
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it remains to be proved that if e := (*r,J«) and / := (js,h), with r,s,t G {1,2}, are arcs 

of B not in the same basic subdigraph, then g := (ir, h) G -B. Notice that when i = j or 

j = / then e and / are in a same basic subdigraph. Furthermore, B has no arcs such as e 

and / where i = I. Therefore we may assume that i,j, I are pairwise distinct. 

Since e := (ir,j8) € B, then 

.- \i < j then e G JBI and (i, j ) G .6, 

> j then e £ ß 2 and (i, j ) G J5. 

Similarly, / := (j3,h) G B implies that 

. , (j < I then / G B\ and ( j , /) G B, 

\j > I then f e B2 and ( j , f) G B. 

Thus, (i, j ) G 5 and (;', /) G 5 . Since B G TRA*, (i,I) e B. If i < / then g e Bx, otherwise 

g € B2. Hence, g 6 B. This completes the proof that B G TRA*. 

Now let us prove that w(B) < k. Notice that Bi,B2 and j?3 are pairwise disjoint, 

Rr\B3 = 0and | i?n J9| = \R n (5 i U £ 2 ) | = Jf1 = (")• 
Thus, 

w{B) = u?(5 n i?) + w{{Bx U £ 2 ) \ R) + w(Bz) 

= w(B)+(\B\-\B3\-\Bf)R\)M 

= w(B)+(^-n-(n^M<k + CM = k. 

b) Let H = (N, B) be ä.sub digraph of Dp with B e M and 55(5) < A. Then the following 
holds: 

(bi) B does not contain an arc e with we — L. 

Suppose B contains such an arc e. Then 

w{B)>L- £ > e | + 2 Q ) M . 

e€A„ 

Since Yl \we\ < 2n2, it follows that U J ( 5 ) > 6n4 — 4n3 - 2n2. On the other hand, k — 
e£An 

k + CM <n2 + (3 n (3~1 })4n2 = 6n4 - 6n3 + n2 and therefore, w(B) > k, a contradiction. 

(b2) B contains all arcs e with we — 0. 

This follows immediately from (bx) and the fact that B G TOT*. 
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(b3) For every pair (i,j), 1 < i < j < n, \B n Ä,-y| < 1. 

Suppose there is a pair (i,j) such that B contains both of {i\,j\) and ( j i , ^ ) . Since 

B € TRA*, this implies that (ii,i2) € B\ but as u5(il5i2) = X, this contradicts (bi). 

(b4) B contains exactly C arcs with weight M. 

Suppose B has more than C arcs with weight M. Thus 

w(B)>(C + l)M- Y, K|>Jb, 
e € A n 

a contradiction. So, 5 can have at most C arcs with weight M. On the other hand, since 

\B\ > (2
2
n) and B contains n arcs with weight 0 (by (b2)), at most (2) a r c s °f # (by (b3)) 

and no arcs with weight L (by (bi)), then B must contain at least (2
2
n) — n — (2) =: C 

arcs with weight M. Thus 2? contains exactly C arcs with weight M. 

(bs) For every pair (i,j), I < i < j < n, \B C\ Rij\ = 1. 

Since (2
2
n) < | 5 | = n4-C + | 5 n i 2 | , it follows that \Bf]R\> (2

2
n) - n - C = (£). If for 

some pair (i, j ) , 1 < i < j < n, |.B fl i?,j | < 1 then by (b3) \B D i?| < (2) , a contradiction. 

Thus, the statement is proved. 

(bß) B has no double arcs. 

Immediate from (bi), (b4) and (bs). 

(b7) w(B HR)<k. 

Clearly, w(B) = w(B n R) + CM. Thus, w(B n R) <k - CM = k. 

But (ii,j2) E B C\R and (J2J1) € 5 imply (h , j i ) G -B. Thus, ( i i , j i ) G -B. Analogously, 

analysing the cases j < 1 and j > 1 we conclude that (ji,h) G £?. 

Since 5 G Ti?A* , then (iuji) G 5 and (juh) G 5 imply that (iuh) G 5 . Thus, if 

i < I then (ii, /i) €. B C\ R, and therefore (i, /) G -S. Suppose i > /. By (bß) (ii , fi) G B 

implies (/ i , i i) G" 5 . By (b5), if / < i and (/i , i i) g B C\ R then ( i i , /2) G £ fl Ü But then, 

(i, 0 G 5 and therefore B G I7M*. 

Since the given transformation is polynomial, it follows that Q is MV-complete. 
D 

A construction similar to the one presented in the proof of Theorem (3.11) leads to 

the following result. 

(3.12) Theorem. Let 

M = TRA*. 

Then the problem BD DP* (M, 6) is Afp-complete. 
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Proof. Let Q := DDP*(A^,2) with M* = ASY n TRA* n TOT* be the TVP-complete 

problem considered in Theorem (3.8). Our aim is to prove that Q is polynomially trans­

formable to Q := BDDP*(M,6). For that, let us assume that Dn = (AT, An), w and fc, 

fc < n2 , are given as an instance of Q, and let us construct the corresponding instance of 

Q-

Let Dp = (A7', A) be the complete digraph of order p — In with node set N := 

{ii,«2 : * e N}. 
To define the weights we, set 

# := | J Rij, where Äjj := {(»i , j i ) , ( j1 , t2)} , 
l < i < j < n 

Ä := [ J Äi;-, where fijj := {( j i , i i ) , ( i 2 , i i )} • 
l < i < j < n 

Let M be the smallest even integer such that 

M > k + 2n2 , 

and set 

+ 1 M , M* := 

L : = M + ( ](M* + M) 

Now define we for each e G A, as follows : 

we = < 

( - M * if e = ( i 2 , i i ) , « G iV 

L if e = (i i , 12), « € A7 

u ^ - M * ife = ( t 1 , j 1 ) , e € ß 

u»ji - M* if e = (jj ,i2), e€ R 

M if e G Ä 

10 otherwise . 

Observe that |u>e| is even and \we\ < p6 for every e £ Ä. 
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•cQ< »<; 

Figure 3. 

Let 

fc:=fc+ß)M-(g)+n)M*.-
We claim that Z>n .= (iV, A„) has a subdigraph H = (N,B) with B e M* and 

w{B) <kiEDp = (AT, A) has a subdigraph # = (AT, B) with £ € TÄA* and w(B) < k. 

a) Given H - (N,B) in Dn with 5 e X * and w(B) < k, let H = (N,B) be the 

subdigraph of Dp defined by : 

B := Bx U B2 U £ 3 , 

where 

5a 

# 3 

Then 

= {(*i,Ji),(*i,J2),(*2,Ji)i(*2»J2) : 1 < i < j < n and (i,j) G B) , 

= {0'i,ii),(ii,«2),(i2,«'i),(i2 )22) : 1 < i < ;' < n and (j,i) € # } , 

= {(»2,»i) : l<i<n] . 

w{B) = w(B n R) + w(B \ R) 

^w(BnR) + w(B1UB2\R) + w(B3) 

= w(B) -
2 7 M + V 2 
n N - - • ln^M-nM* 

= w(B) 

< k-

n 
+ n M- + r2)M 

"J+nJM'+r^Mik. 

Using the fact that B € M* it is not difficult to prove that B 6 TRA*. Indeed, the proof 

is analogous to the one present for Theorem (3.11), and therefore it will be omitted. 

b) Let H = (N,B) be a subdigraph of Dp with B € TRA* and w(B) < k. Based on 

H we want to construct a transitive tournament H = (N, B) in Dn with w(B) < k. For 

that, we first observe that H has the following properties : 

15 



(bi) B does not contain an arc e with wt = L. 

Suppose B contains such an arc e. Then 

w{B)>L~nM*-Y^\we\-n{n-\)M* 
e€A 

> M + ( n ^ (M* + M) - nM* - 2n2 -n(n - 1)M" 

>k- (n^jM*-nM* + (U\vi = fc , 

a contradiction. 

(b2) For every pair (i, j), 1 <i < j < n, \B. D i2jj| = 1. 

Suppose there is a pair (i, j) such that | ß n Rij\ = 2. In this case, since B G TRA*, 

it follows that ( i i , i 2) G -ß, contradicting (bi). Thus, \B C\ Rij\ < 1 for every pair (i, j ) , 

1 < i < j £ n- Now suppose there is a pair (i,j) such that \B fl i?jj = 0. Then 

™{S) ~ ~ ( (2) " \) M* " nM+ " £ K |-
efcAn 

Using the fact that ]Ce€>i l̂ -̂ e | 5: 2n2 and making some substitutions we get {o(i?) > 
k . Since this contradicts our assumption, we conclude that (b2) holds. 

(b^) For every i, 1 < i < n, (i2 , ii) G B. 

Suppose for some i, 1 < i < n, (i2 ,H) & -ß- Then 

S(£) > -(n - 1)M* - J ] K| - Q ) M * 

> (Yf) + l) M - nM* - 2n2 - ß W 

a contradiction. 

(b4) For every pair (i, j ) , 1 < i < j < n, \B fl i? ! ; j = 1. 

By (b2), for every pair (i.j), 1 < i < j < n. exactly one of the arcs (ii,jx) or ( j i , i 2 ) 

is in B. I£(z'i,ii) € B, since ( i 2 , n ) G B, it follows that (i2,; 'i) £ •#• Analogously, if 

(ii,*2) € -B then (ji,z'i) G B. Thus, | 5 n Äjj| > 1. Now suppose there is a pair ( i , j ) , 
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1 < * < j < n, such that \B n Rij\ > 1. This implies that B has more than (") arcs with 
weight M and therefore 

£ ( £ ) > ( Q + I ) M - Y/\we\-(^)M*-nM* 

> (2 ) M + i - ( ( 2 ) + " ) M * = * ' 

a contradiction. So, we have proved that (b4) holds. 

(b5) w(BClR)<k-($M*. 
This follows from the fact that w(B 0 R) = w(B) + nM* - Q)M and w(B) < k . 

Now let H = (N, B) be the subdigraph of Dn with 

B:={(i,j):(i1,j1)GBnR, 1 < i < j < n} U 

{{j,i):(h,i2)€BriR, l<i<j<n}. 

We claim that B € M* and w(B) < k. Note that \B\ = \B C\ R\ = g ) . Furthermore, 

w(B) = w(B HR)+ Q) M*. Thus, by (b5) it foUows that w(B) < k. The definition of B 

and fact (ba) yield immediately that 5 G A S F (~1 TOT*. So it remains to be shown that 

B€ TRA*. 
Let ( i , j ) and (j,l) be arcs of B, i ^ j ^ I ^ i. li i < j and ( i , j ) G -S then 

(hiji) G I? Hi?. If z > j and (i, j ) € i? then (ü,J2) G B C\ R. In the latter case, since 

(J2) j i ) € 5 and B G Ti?A*, it follows that (ii,ji) G -Ö. From an analogous analysis of 

cases j < I and j > I, we conclude that (ji,h) G B. Thus, (i\,ji) G B and (j'1,/1) G B,. 

and therefore («i,/i) G B. If i < /, then (ii,h) G 5 D R, and hence (i,/) G B. Suppose 

/ < i. Then (ii,h) & B C\ R, and therefore by (b4) it follows that (/2,Zi) S" B. In this 

case, (/ i , i i) $? B; otherwise (h,h) G 5 and (h,ii) G -S would imply (h,ii) G JB, a 

contradiction. But if (h,ii) $• -8, by (b2) we conclude that (ii,h) G B. Thus (i,/) G .5, 

and this proves that B G TRA*. 

Clearly, the transformation of Q to Q is polynomial and therefore Q is «/VP-complete. 

D 
The next theorem summarizes the results implied by the last two theorems together 

with Lemma (3.6) and Theorem (3.5). 

(3.13) Theorem. Let M' € {TRA* n TOT*, TRA n TOT*, TRA*, TRA] and 

Me {M',M'f)REF} . 

Then the median problem MP(H, M) is AfP-hard. 

D 
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In Table 4 we give an overview of the obtained results. Each row of the table corre­

sponds to a median problem MP('R., M), where M is the intersection of the sets specified 

by the boxes marked with heavy lines. The traced lines in the boxes corresponding to the 

column REF indicate that this property may be included or not, without changing the 

complexity status of the problem. In the cases indicated with "f" we have shown that the 

restricted version M.P(R-,M,m) is also jVP-hard. 

REF SYM ASY TOT* TRA" TRA 

Any Combination 

7 / / / " , " W/M /////A W/IM 
in I ' I " 

i * 111111 '/lll/l/t i//llll\ '///III 
11111111 
i ,11 /111 W//; • i n 11 • 11 
, , i , i i , , 

• 1111111, i/lllllh /////I , i r , 11' 11 
11,11111 

' t i i t i i i '///M 1 , <, ,1 1111 
. i i i t i i , 

, 111111, 'i/lll/h / t / ' I , I I , I I 
, 1111111 
1111 a i , '/////I, W/llh '11/1/1/ 
111 a i ' i 

' 11,11 11 Wi/i 
' , , , I I , I 
. n i l , / , Wilt 1 l/t 

'////III ////// 
' i • 1111 ( '1/1111/ 1/11/ 
• • 1 1 1 1 1 , 
U l i , , / 

U-U.I.J-LJ '//////} Ill/Ill '/////, 

TABLE 4. 

To close this section we present the A/'P-completeness proof of the Restricted Clique 

Partitioning Problem, needed to prove Theorem (3.9). We shall base our proof on the 

transformation from the following well-known jVP-complete problem (cf. Garey,Johnson 

& Stockmeyer [1976]) : 

Simple Max-Cut Problem (SMCP) 

Instance : Graph G = [V, E], positive integer k. 

Question : Does G have a cut of size at least k ? 

(3.14) Theorem. The Restricted Clique Partitioning Problem (RCCP) is j\fV-complete. 

Proof. [ Transformation from the Simple Max-Cut Problem (SMCP) ] 

Let G = \V,E] and k be given as an instance of SMCP, and assume that |V| = n. Let 

G' = [V',E'] be a complete graph of order Zn obtained from G by adding to it 2n more 
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nodes and completing it with all the missing edges, which are not loops. Assume that 

V :=VUXl)Y, where \X\ = \Y\ = n. Assign weights we to each edge e G E' by setting 

( 1 if e e E U (X : Y) , 

u;e := < - 1 if e G (V : X U Y) , 

I 0 otherwise ; 

and let 

k' := |E| - & - n2 . 

We claim that G has a cut C with \C\ > ki€G' has a clique partitioning A with w(A) < k'. 

a) Assume that C - E(VX : V \ Vx) is a cut in G with |C| > k, and let V2 := V \ Vx. Then 

the edge set A :- £'(Vi U X) U E' (7 2 U r ) is a clique partitioning of G' with 

u;(i4) = u ; ( i ; ' ( F 1 U A ' ) ) + u ; ( £ ' ( V 2 u y ) ) 

= -\(V1:X)\-\(V2:Y)\ + \E\C\ 

= -n2 + \E\ - \C\ < -n2 + \E\-k =: k' . 

b) Assume that G' has a clique partitioning A with w{A) < k'. We want to prove that G 

has a cut C with \C\ > k. Let us assume for the moment that the following holds : 

Claim 1: G' has a clique partitioning A' with w(A') < k' and C(A') = {Qi , ^2} , where 

Qx and Q2 are such that VQ\ = X U V\ and VQ2 = Y U V2 for some nonempty subsets 

Vi and V2 of V. 

Note that, in this case, w(A') = iu(£<2i) + w(EQ2) = - n 2 + |jE?(Vi)| + |^(V2) | = 

- n 2 + \E\ - |£(Vi : V2)\, and since tü(A') < k' = - n 2 + | £ | - k, it follows that \E(Vi : 

V2)\ > k, and therefore C := -E(Fi : V2) defines the desired cut C in G. 

Thus, in order to complete the proof it remains to be shown that Claim 1 holds. Before 

that, for notational convenience, let us give names to the different types of cliques we shall 

consider. According to its intersection with the sets V, X, Y, a clique H = [VH, EH] may 

be of one of the following types (see Figure 5) : 

Figure 5. 
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Type 1 : 
(X, V)-intersecting (if VH fl X ^ 0, VH n V ^ 0 and V # n F = 0) or 

(7, ^-intersecting (if V # n y ^ 0, V # n V ^ 0 and Vtf n X = 0) . 

Type 2 : 

(X, Y, V)-intersecting (if V # n X ^ 0, 7 tf n 7 ^ 0 and VH fl V ^ 0) . 

Type 3 : 

V-included (if 0 ^ VH C V) . 

Type 4 : 

X-included (if Q^VHC X) or Y-included (if l / V ^ c y ) . 

Type 5 : 
(X, y)-intersecting (if V # fl X £ 0, V # H y ^ 0 and VH D V = 0) . 

Note that according to the given definitions the desired clique partitioning A' of Claim 

1 must be such that C(A') = {Qi, Q2}, where Qi and Q2 are both of Type 1. 

For simplicity, we say that a clique partitioning A\ is better than a clique partitioning 

A2 if either w(Ai) < w{A2), or w{Ax) = w{A2) and |C(Ai)| < \C(A2)\. 

Since each clique partitioning A is bijectively associated with the clique set C(A), 

when we refer to a clique partitioning B obtained from A by replacing some of the cliques 

in C(A) with others, we are in fact defining how C(B) is constructed and therefore defining 

in this way the arc set B. 

Now consider the following Claim 2 to be used in the proof of Claim 1. 

Claim 2: Let Q be a clique partitioning of G" and assume that Q i , . . . , Qi, I > 2, are 

cliques in C(Q) all of which are (PK, V)-intersecting, where W = X or W = Y. Let a := 
l l 

£ \VQi n W\ and ß := £ |W?i fl V|. If a > ß, then the clique partitioning Q' obtained 
t = i j = i 

from Q by replacing the cliques Q\,..., Qi with the clique G'[VQ\ U . . . U VQi] is such 
that w(Q') < w(Q). 

The proof of Claim 2 will be omitted as it can be obtained without any difficulty by 

induction on /. (For / > 3 prove that there exist two cliques Qi and Qj, 1 < i < j < 7, 

such that \(VQi U VQj) C\W\> \{VQi U VQj) n V\.) 

Proof of Claim 1 

Let A be the set of the clique partitionings A of G with w(Ä) < k and such that C(Ä) 

contains the smallest number possible p of cliques of Type 2. Clearly, A ^ 0 and p > 0. 

Our aim is to prove first that p = 0, and then show the existence of the desired clique 

partitioning A'. 

Let us start by assuming that p > 1. Now let A be a be3t clique partitioning in A, 

and let ff1}..., ifp be the chques of Type 2 contained in C(A). 
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For 1 < i < p let 

, Xi := VHi n X , x 

Yi:=VHir\Y, y 

Vi := VHi n V , t; 

:= 1*1 , 

== \Vi\ • 

Suppose C(A) contains a clique Hi, 1 < i < p, such that u,- < x,-. Then we can split 

Hi into a clique of Type 1, G'[Xi U V;], and a clique of Type 4, G'[Yi\, obtaining this way 

a clique partitioning A with w(Ä) < w(Ä) and with C(Ä) containing p- 1 cliques ot Type 

2. Since this contradicts the choice of A, we conclude that u; > a;,- for i = 1 , . . . ,p. 

By symmetry, we also conclude that t>j > yi for i = 1 , . . . ,p. 

It is immediate that C(A) contains no (X, F)-intersecting cliques. Otherwise, a better 

clique partitioning could be obtained from A by replacing each (X, F)-intersecting clique 

with 2 cliques, one being X-included and the other F-included. 

It is also easy to see that C(A) contains no X-included and no F-included cliques. For, 

if H were an X-included clique in C(A) then by replacing the clique Hi with the clique 

Hi U H we could obtain a better clique partitioning in A (since v\ > yi). By symmetry, 

the same holds with respect to F-included cliques. 
p p p „ " • 

Since Yl Xj < $2 Vi < n — \X\ and Y,Vi < l̂ 1> * n e n ^ ( ^ ) m ust contain (X,V)-
i = l i = l i=l 

intersecting cliques, say Hi,..., Hh, h > 1, and (Y, V)-intersecting cliques, say Qi,... ,Qq, 

9 > 1 . 

Let a := U (VHi n X) and /? := |J (^#» n V). 
i = l i = l 

Since a > ß, if h >2 then by Claim 2 the cliques Hi,..., Hh can be replaced with 
h „ 

the clique [j Hi yielding this way a better clique partitioning in A. By symmetry, if q > 2 
i= i 

then a better clique partitioning can also be obtained. Thus, we conclude that h = 1 and 

q = 1, and for simplicity we let H := Hi and Q := Qi. 

If C(A) contains V-included cliques, say H[,... , H\, I > 1, then it is easy to see that 

these cliques can be combined with the clique H giving this way a better clique partitioning. 

It suffices to note that \VH n X\ > \VH n V\ + | U VH'il 
j = i 

Thus, we conclude that C(Ä) = {Hu..,, Hp} U {if, <?}. 

Let Ex := ^ # n X, Äx := | # x | ; # v := VH n 7 , Av := | #v | ; Qy := V £ n Y, 
qY := |Qvh Qv •= VQ Pi V, qv '•= \Qv\- Note that hx > hy and <?y > qy. 

Let us now focus our attention on the cliques H, Q and Hi. 
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(a) (b) 

Figure 6. 

Suppose Vi < hy + y\. 
In this case, let A be the clique partitioning obtained from A by splitting C\ into 

the new cliques G'[VH U Xi] and G'[VQ U Yx U Vi], and preserving the (old) cliques 

H2,...,Hp (see Figure 6.a). Thus, C(Ä) contains p — 1 cliques of Type 2 and io(A) = 

u>(A) - xihy - xxy\ + arjui - j/i?v - uigy + |£(Vi : Q v ) | < w{A) - x^/ iy + j/i - t>i) -

yiqv ~ Vi(qy - qv)-

Since /iv + 2/i — vi > 0 and qy — qv > 0 we conclude that to(A) < w(A) < A;', and 
therefore we have a contradiction to the choice of A. 

Assume now that v\ > hy + Vi-

In this case, let A be a clique partitioning obtained from A by performing a splitting of 

Ci, symmetric to the previous one. That is, A consists of the new cliques G'\VHl}X\ U V*i] 

and G'[VQ U Y\], and the cliques H2,... ,Hp (see Figure 6.b). Thus C(A) contains p — 1 

cliques of Type 2 and 

w(Ä) < w(Ä) - yiqy - xxyx + j/iui - xxhv - vihx + v\hy 

= w(A) - yxqv + yi(ua - xi) + hv(vi - Xi) - vxhx 

= w(A) -yiqv + (yi + kv)(vi - xi) -vxhx • 

Since yi + hy < v\ and v\ > xi , it follows that 

w(A) < w(A) - yiqy + vi(vi - xi) - v-^hx • 

Now using the fact that hx = n - (xt + . . . xp) = (/iy + qy + Vi + .. .vp) — (xx + .. .xp) > 

ui — xi , we obtain that u;(A) < w(A), again a contradiction to the choice of A. 

This completes the proof that p — 0. 

Now let us assume that A' is a best clique partitioning in A and that C(A') contains 
no cliques of Type 2. 
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It is immediate that C(A') must contain at least a clique of Type 1; otherwise we 

would have w(A') > 0 and therefore w(A') > k1, a contradiction. Let Qx be a clique of 

Type 1 contained in C(A'), and assume w.l.o.g. that Qr is (X, V)-intersecting. 

Clearly, C(A') contains no (X, Y)-intersecting cliques. It is also immediate that C(A') 
contains no X-included cliques, since they could all be combined with Qx giving this way 
a better clique partitioning. 

If C(A') contains other (X, V)-intersecting different from Qx, say Hi,..., Hh, then by 
Claim 2, if we set Qi := Qi U Hi U . . . U Hh, then we obtain a better clique partitioning. 
Thus, we conclude that C(A') contains a unique (X, F)-intersecting. 

If C(') contains a ^-included clique, say H, then (since n = \VQi H X\ > \VQi D V\) 

we can set Qi := Qi U H and obtain a better clique partitioning. 

If C(A') contains no (F, V)-intersecting cliques, then it consists of the clique Qi = 

G'[X U V] and some y-included cliques, and therefore w(A') = —n2 + \E\ > k', a contra­

diction. Thus, let Qi be a (Y, V)-intersecting clique in'C(A'). If C(A') contains y-included 

cliques and/or other (Y, y)-intersecting cliques, by performing analogous transformations 

to the ones we defined with respect to Qi, we can construct a better clique partitioning. 

Hence, we conclude that Q2 is the unique (Y, V)-intersecting 'clique in C(A') and therefore, 

C(A') = {Qi, Q2} with Qi and Q2 both of Type 1. 

Thus, we have proved that Claim 1 holds, and therefore we have completed the proof 

of the theorem. 

• 

4. The case of restricted domains 

In the preceding section we have proved the MV -hardness of MP(7£, M) or MP(7£, M, m) 

for certain subsets M. C 71. One may now ask whether the following special cases of these 

problems have also the same complexity: Instead of 71 (an unrestricted domain of the 

relations in the profile II), we may have that the given relations are endowed with some 

properties from P. In this case, instead of 7?., we have a subset M! C 7Z and we are lead 

to the problems MP(M',M) and MP(M',M,m) defined analogously. In other words, 

when we consider that the domain is 71, this means that we have no information about 

the properties of the input relations, and if specify a subset M' C 71 this means that the 

input relations are known to be in M' (they belong to a restricted domain). 

When M! = M = C (the given relations are linear orders and the objective relation 

is also a linear order), Orlin [1981] (in an unpublished manuscript) and Bartholdi, Tovey 

and Trick [1988] proved that MP(£ ,£ ) is jVP-hard. Note that this implies that the more 

general problem MP(7£, C) is A^-hard, but not that MP(7£, C, m) is A^-hard — the result 
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we have shown. So it remains now to settle whether MP(£ ,£ ,m) is MP-hsxd or not for a 

fixed m > 2. 
Let us turn now to the case of equivalence relations. Kfivanek and Moravek [1986] 

proved that MP(SYM,£,1) is AfV-h&rd. This result yields as a corollary the fact that 

MP(K,£,m) is AfV-hard (Theorem 3.9). Furthermore, from it one can also derive that 

MP(£, £) is MV-hzxd. The reduction given by Kfivanek and Moravek is from a problem 

on hierarchical-tree clustering, whose NV -completeness proof is very laborious. For the 

sake of completeness of the class of results covered in this paper we have included our 

weaker result. We should observe however, that in this case rather than the MV -hardness 

of MP(7£,£,ra), the interest lies more on the Theorem 3.14 from which the result could 

be derived. 

There remains a number of open problems concerning the computational complex­

ity status of MP(M',M,m) for some combinations of M and M1. Let us recall that 

the problems we know to be A/^-hard are MP(7l,£,ra) , MPC^T^m) for m > 2, and 

MP(SYM,£, m). It would certainly be interesting to establish the complexity of the prob­

lems: M P ( T , £ , m ) , M P ( £ , £ , m ) and MP(£,£ ,m) . 
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