

Yoshiko Wakabayashi*

Medians of Binary Relations: Computational Complexity

* Instituto de Mathemática e Estatistica

Universidade de São Paolo
Brazil
This paper was written while the author visited the Konrad-Zuse-Zentrum für Informationstechnik Berlin

Herausgegeben vom
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Heilbronner Str. 10
1000 Berlin 31
Verantwortlich: Dr. Klaus André
Umschlagsatz und Druck: Rabe KG Buch-und Offsetdruck Berlin

MEDIANS OF BINARY RELATIONS: COMPUTATIONAL COMPLEXITY

Yoshiko Wakabayashi
Instituto de Matemática e Estatistica
Universidade de São Paulo
Brazil

Abstract

Let \mathcal{R} be the set of all binary relations on a finite set N and d be the symmetric difference distance defined on \mathcal{R}. For a given profile $\Pi=\left(R_{1}, \ldots, R_{m}\right) \in \mathcal{R}^{m}$, a relation $R^{*} \in \mathcal{R}$ that minimizes the function $\sum_{k=1}^{m} d\left(R_{k}, R\right)$ is called a median relation of Π. A number of problems occuring in the social sciences, in qualitative data analysis and in multicriteria decision making can be modelled as problems of finding medians of a profile of binary relations. In these contexts the profile Π represents collected data (preferences, similarities, games) and the objective is that of finding a median relation of Π with some special feature (representing e. g., consensus of preferences, clustering of similar objects, ranking of teams, etc.). In this paper we analyse the computational complexity of all such problems in which the median is required to satisfy one or more of the properties: reflexitivity, symmetry, antisymmetry, transitivity and completeness. We prove that whenever transitivity is required (except when symmetry and completeness are also simultaneously required) then the corresponding median problem is $\mathcal{N P}$-hard. In some cases we prove that they remain $\mathcal{N} \mathcal{P}$-hard when the profile Π has a fixed number of binary relations.

1. Introduction

In the social choice theory a classical problem that has been largely investigated and whose origin traces back to the late eighteenth century is the problem of aggregating individual preferences (linear orders) into a social preference (a linear order). The notion of consensus of preferences plays an important role in the social sciences, a reason why many efforts have been made to find realistic models to express it (cf. Leclerc [1988a], Day [1988]).

The first mathematical approaches on problems of aggregation of preferences are credited to Borda in 1770 and Condorcet in 1785, both concerned with the design of election procedures. In a recent paper, Young [1988] discusses the model proposed by these two major figures of that time, gives some historical accounts and explains the Condorcet's theory of voting (see also Young \& Levenglick [1978]).

The notion of median relation - a relation minimizing a "remoteness" function defined in terms of the symmetric difference distance - was introduced by Kemeny [1959], who investigated a method to aggregate individual preferences into a collective preference.

His method, although being of metric nature, is in fact equivalent to the CONDORCET's MAJORITY RULE, according to which the winning collective preference should be the one supported by the largest number of votes (Young [1988], Barbut [1967], Fishburn [1977], Michaud [1987]).

In cluster analysis a similar approach was proposed by Régnier [1965], then Mirkin [1974], for solving the problem of aggregating equivalence relations into an equivalence relation (see also Zahn [1964]).

The fact that the symmetric difference distance has been used in problems occurring in many different contexts is not a pure coincidence. Axiomatics supporting its use has been investigated in several cases, cf. Kemeny [1959], Monjardet [1978], Barthélemy [1979] and Barthélemy \& Monjardet [1981]. However, the median approach, as any consensus procedure, has some defects as pointed out by Fishburn [1977], Leclerc [1988a] and Barthélemy \& Monjardet [1988]. This last reference gives also an overview of the developments on the algorithmic approaches and extensions of the notion of median in other structures. The results concerning its algebraic definition that generalizes to any distributive lattice (cf. Barbut [1961], Monjardet [1980]), as well as more recent results on median semilattices, resp. (semi)modular (semi)lattices can be found in Monjardet [1987, 1988], resp. Barthélemy [1981] and Leclerc [1988b]. For a unified treatment on this subject the reader should refer to Barthélemy, Flament \& Monjardet [1982]; Barthélemy, Leclerc \& Monjardet [1986]; Barthélemy \& Monjardet [1988] and Barthélemy [1988].

In this paper we analyse the computational complexity of a class of problems of finding medians with certain properties. This class includes those classical problems such as aggregation of preferences and clustering.

The material is organized as follows. In Section 2 we give the definitions and notations to be used and present the problems to be investigated. In Section 3 the main results on the computational complexity of these problems are presented, and in Section 4 we discuss special cases concerning restricted domains.

2. Definition and Notations

Let N be a finite set with n objects (e. g. alternatives, candidates, teams, states, etc.) and let \mathcal{R} denote the set of all binary relations on N. Consider \mathcal{R} endowed with a metric d, the symmetric difference distance, defined as

$$
d(R, S):=|R \triangle S|:=|R \cup S|-|R \cap S| \text { for all } R, S \in \mathcal{R} .
$$

A profile of relations in \mathcal{R}, or a profile in \mathcal{R}^{m}, is an m-tuple $\Pi=\left(R_{1}, \ldots, R_{m}\right)$ where $R_{k} \in \mathcal{R}$ for $k=1, \ldots, m$. Given a profile $\Pi=\left(R_{1}, \ldots, R_{m}\right)$ in \mathcal{R}^{m} a relation $R^{*} \in \mathcal{R}$ that
minimizes the function

$$
D(\Pi, R):=\sum_{k=1}^{m} d\left(R_{k}, R\right)
$$

is called a median relation of Π.
In this general form the problem of finding a median of a given profile is trivial and not interesting. However, if we require the median to satisfy certain properties the resulting problem becomes interesting and has nice applications. So, according to the desired properties of R^{*} we obtain different problems, and here we consider all those arising when the properties are chosen from the set

$$
P:=\{\text { Reflexive, Symmetric, Antisymmetric, Transitive, Total }\} .
$$

Let us recall some definitions. A relation $R \in \mathcal{R}$ is reflexive (REF) if $(i, i) \in R$ for all $i \in N ; R$ is symmetric (SYM) if $(i, j) \in R$ implies $(j, i) \in R$ for all $i, j \in N ; R$ is antisymmetric (ASY) if $(i, j) \in R$ and $(j, i) \in R$ imply $i=j$ for all $i, j \in N ; R$ is transitive (TRA) if $(i, j) \in R$ and $(j, k) \in R$ imply $(i, j) \in R$ for all $i, j, k \in N ; R$ is total (TOT) if $(i, j) \in R$ or $(j, i) \in R$ for all $i, j \in N$.

To simplify notation we use the abbreviated form of the name
of the property (given in parentheses) to denote also the set of all relations having this property. Thus, for example, TRA denotes the set of all transitive relations in \mathcal{R}. Some relations having more than one of the properties in P are known by special names, not always standard in the literature. Here we adopt the following notation and terminology:
\mathcal{C} denotes the set of all complete preorders, i. e. $\mathcal{C}=T R A \cap T O T$.
\mathcal{T} denotes the set of all tournaments, i. e. $\mathcal{T}=A S Y \cap T O T$.
\mathcal{L} denotes the set of all linear orders, i. e. $\mathcal{L}=A S Y \cap T R A \cap T O T$.
\mathcal{O} denotes the set of all partial orders, i. e. $\mathcal{O}=A S Y \cap T R A$.
\mathcal{E} denotes the set of all equivalence relations, i. e. $\mathcal{E}=R E F \cap S Y M \cap T R A$.
For a subset $\mathcal{M} \in \mathcal{R}$ the median problem relative to \mathcal{M}, denoted by $M P(\mathcal{R}, \mathcal{M})$, is defined as follows.

Instance: Profile $\Pi=\left(R_{1}, \ldots, R_{m}\right)$ of m relations in \mathcal{R}.
Objective: Find a relation $R^{*} \in \mathcal{M}$ such that $D\left(\Pi, R^{*}\right)=\min _{R \in \mathcal{M}} D(\Pi, R)$.
A variant of this problem, that differs only by the fact that the size of the profile is fixed, is denoted by $\operatorname{MP}(\mathcal{R}, \mathcal{M}, m)$. So, in this problem we have

Instance: Profile $\Pi=\left(R_{1}, \ldots, R_{m}\right)$ in \mathcal{R}^{m} where m is inxed.
We expect the reader to be familiar with the basic concepts of graph theory and complexity theory. If not, the definitions not given here can be found in Bondy \& Murty [1976], resp. Garey \& Johnson [1979].

A graph G with node set V and edge set E is denoted by $G=[V, E]$. A digraph (or directed graph) D with node set N and arc set A is denoted by $D=(N, A)$. A graph $G=[V, E]$, resp. digraph $D=(N, A)$, is called complete if $E=\{\{u, v\}: u, v \in V, u \neq v\}$, resp. $A=\{(u, v): u, v \in N, u \neq v\}$. If $D=(N, A)$ is a digraph with $A=N \times N$ then D is called l-complete (i. e. complete with all loops). For a digraph $D=(N, A)$, we call the arcs in $(N \times N) \backslash A$ missing arcs (analogously, missing edges in case of a graph). A digraph is called acyclic if it does not contain any directed cycle.

A clique of a graph is a complete subgraph of G. It needs not be maximal, as is sometimes assumed in the literature. A set of edges A in a graph $G=[V, E]$ is called a clique partitioning of G if there is a partition V_{1}, \ldots, V_{k} of V such that the subgraph induced by each $V_{i}, 1 \leq i \leq k$, is a clique in G and A is the union of all edges in G with both endnodes in the same set of the partition. In this case, if for $1 \leq i \leq k$ the clique induced by V_{i} is denoted by Q_{i}, then we say that $\mathcal{C}(A):=\left\{Q_{1}, \ldots, Q_{k}\right\}$ is the clique set defined by A.

3. Computational Complexity

We assume here that an instance of the median problems $M P(\mathcal{R}, \mathcal{M})$ or $\operatorname{MP}(\mathcal{R}, \mathcal{M}, m)$ consisting of a profile $\Pi=\left(R_{1}, \ldots, R_{m}\right)$ is given by an $\left(m, n^{2}\right)$-matrix $A=\left(a_{i j}\right)$ whose rows are the characteristic vectors of the relations (indexed by the pairs $(i, j) \in N \times N)$. Thus, $a_{k, e}=1$ (resp. $a_{k, e}=0$) if $e \in R_{k}$ (resp. $e \notin R_{k}$) and clearly the size of such an instance is $\mathcal{O}\left(n^{2} m\right)$.

It is well-known that the median problems we are considering can be formulated as $0 / 1$ linear programs or optimization problems on weighted digraphs. In fact, it is easy to prove that

$$
D(\Pi, R)=\sum_{(i, j)} w_{i j} r_{i j}+\sum_{(i, j)} \alpha_{i j}
$$

where

$$
\begin{align*}
\alpha_{i j} & :=\left|\left\{k:(i, j) \in R_{k}\right\}\right| \tag{3.1}\\
w_{i j} & :=m-2 \alpha_{i j} \text { and } \tag{3.2}\\
r & =\left(r_{i j}\right) \text { is the characteristic vector of } R .
\end{align*}
$$

Thus, each given instance of $M P(\mathcal{R}, \mathcal{M})$ can be formulated as the $0 / 1$ linear program:
$\operatorname{minimize} \sum_{(i, j)} w_{i j} r_{i j}$
subject to: $r=\left(r_{i j}\right)$ is the characteristic vector of some relation $R \in \mathcal{M}$.

If the coefficients $w_{i j}$ are interpreted as being weights associated with the arcs (i, j) of an l-complete digraph D_{n} on the node set N, then the problem becomes that of finding certain minimum weighted subdigraphs in D_{n}. For example, if $\mathcal{M}=\mathcal{L}$ the corresponding digraph problem is a special case of the weighted feedback arc set problem or linear ordering problem, and if $\mathcal{M} \in \mathcal{E}$ we obtain the so-called clique partitioning problem (see Reinelt [1985], Grötschel, Jünger \& Reinelt [1985], Barthélemy, Guenoche \& Hudry [1988], resp. Wakabayashi [1986] and Grötschel \& Wakabayashi [1988]).

From the above reduction one obtains immediately the following result (excluding some trivial non-interesting cases):
(3.4) Proposition. If $\mathcal{M} \in\{S Y M, A S Y, T O T, A S Y \cap T O T\}$ then the problem $\operatorname{MP}(\mathcal{R}, \mathcal{M})$ is polynomially solvable.

We can also make use of the given reduction, in a more specialized way, to show that $M P(\mathcal{R}, \mathcal{M})$ is $\mathcal{N} \mathcal{P}$-hard for other subsets \mathcal{M}. Namely, we first note that the obtained digraph optimization problems are special in the sense that all of its weights $w_{i j}$ are integers having the same parity (cf. (3.1) and (3.2)). Furthermore, we observe that whenever we have such an l-complete weighted digraph $D_{n}=\left(N, A_{n}\right)$ with $m:=\max _{e \in A_{n}}\left|w_{e}\right|$ we can construct a profile $\Pi=\left(R_{1}, \ldots, R_{m}\right)$ in \mathcal{R}^{m} such that for each $(i, j) \in N \times N$ we have $w_{i j}=m-2 \alpha_{i j}$ with $\alpha_{i j}$ as in (3.1). In other words, these special digraph optimization problems are also polynomially reducible to $\operatorname{MP}(\mathcal{R}, \mathcal{M})$ or $M P(\mathcal{R}, \mathcal{M}, m)$.

In order to state more formally the results we introduce first some notations. For any set $\mathcal{M} \subset \mathcal{R}$ we denote by $\operatorname{DOP}(\mathcal{M}, m)$ the following Digraph Optimization Problem relative to \mathcal{M}.

Instance: $\quad l$-complete digraph $D_{n}=\left(N, A_{n}\right)$; weights $w_{e} \in Z$ for each $e \in A_{n}$, all having the same parity and with $\max _{e}\left|w_{e}\right|=m$.
Objective: Find an arc set $A^{*} \subset A_{n}$ such that $A^{*} \in \mathcal{M}$ and $w\left(A^{*}\right):=\sum_{e \in A^{*}} w_{e}$ is minimum.

We denote by $B D O P(\mathcal{M}, \alpha)$ a variant of $\operatorname{DOP}(\mathcal{M}, m)$ in which the objective is the same and the instance is as follows.
Instance: $\quad i$-complete digraph $D_{n}\left(N, A_{n}\right)$; weights $w_{e} \in Z$ for each $e \in A_{n},\left|w_{e}\right|$ even; (fixed) integer α such that $\left|w_{e}\right| \leq n^{\alpha}$.

The reason to introduce these problems is justified by the following result.
(3.5) Theorem. Let $\mathcal{M} \subset \mathcal{R}$ and m, α be positive integers.
(a) If $\operatorname{DOP}(\mathcal{M}, m)$ is $\mathcal{N P}$-hard, then $M P(\mathcal{R}, \mathcal{M}, m)$ is $\mathcal{N P}$-hard.
(b) If $B D O P(\mathcal{M}, \alpha)$ is $\mathcal{N} \mathcal{P}$-hard, then $M P(\mathcal{R}, \mathcal{M})$ is $\mathcal{N} \mathcal{P}$-hard.

Proof. (a): Let $D_{n}=\left(N, A_{n}\right), w$ and m be given as an instance \mathcal{I} of $D O P(\mathcal{M}, m)$. The corresponding instance \mathcal{I}^{\prime} of $\operatorname{MP}(\mathcal{R}, \mathcal{M}, m)$ is constructed as follows. For each pair $(i, j) \in A_{n}$ we determine the number $z_{i j}:=\left(m-w_{i j}\right) / 2$ and set

$$
R_{k}:=\left\{(i, j) \in N \times N: z_{i j} \geq k\right\}, \text { for } k=1, \ldots, m
$$

obtaining this way the profile $\Pi=\left(R_{1}, \ldots, R_{m}\right)$.
Since m is a constant, the construction of the profile Π can be done in $\mathcal{O}\left(n^{2}\right)$ and therefore in time polynomial in the size of \mathcal{I}. The proof that an optimum solution of the instance \mathcal{I}^{\prime} gives an optimum solution of \mathcal{I} is straightforward and will be omitted.
(b): Given an instance $\mathcal{I}=\left(D_{n}, w, \alpha\right)$ of $\operatorname{BDOP}(\mathcal{M}, \alpha)$ we determine first the value $q:=\max _{e}\left|w_{e}\right|$. Since $q \leq n^{\alpha}$ we can construct a profile $\Pi=\left(R_{1}, \ldots, R_{q}\right)$ as in the previous case, here as well in time polynomial in the size of \mathcal{I}. The desired conclusion follows analogous to Case (a).

The decision versions of $\operatorname{DOP}(\mathcal{M}, m)$ and $B D O P(\mathcal{M}, \alpha)$ will be denoted by $D D P(\mathcal{M}, m)$ and $B D D P(\mathcal{M}, \alpha)$, respectively. For technical reasons it will be convenient to work with a slight variant of these problems - denoted by $D D P^{*}(\mathcal{M}, m)$ and $B D D P^{*}(\mathcal{M}, \alpha)$ - where the instances consist of loopless complete digraphs. Furthermore, we consider two other properties, $T R A^{*}$ and $T O T^{*}$, defined as follows. A relation $R \in T R A^{*}$ iff $(i, j) \in R$ and $(j, k) \in R$ imply $(i, k) \in R$ for all $i, j, k \in N, i \neq j \neq k \neq i$; and $R \in T O T^{*}$ iff $(i, j) \in R$ or $(j, i) \in R$ for all $i, j \in N, i \neq j$.

The next lemma shows that if we can prove certain $\mathcal{N P}$-completeness results for $D D P^{*}$ or $B D D P^{*}$ then we can derive analogous results for $D D P$ or $B D D P$.
(3.6) Lemma. Let $\mathcal{M}^{*} \subset T R A^{*}$ and

$$
\mathcal{M} \in\left\{\mathcal{M}^{*}, \mathcal{M}^{*} \cap R E F, \mathcal{M}^{*} \cap T R A, \mathcal{M}^{*} \cap T R A \cap R E F\right\}
$$

(a) If $D D P^{*}\left(\mathcal{M}^{*}, m\right)$ is $\mathcal{N} \mathcal{P}$-complete then $D D P(\mathcal{M}, m)$ is $\mathcal{N P}$-complete.
(b) If $B D D P^{*}\left(\mathcal{M}^{*}, \alpha\right)$ is $\mathcal{N} \mathcal{P}$-complete then $\operatorname{BDDP}(\mathcal{M}, \alpha)$ is $\mathcal{N} \mathcal{P}$-complete.

Proof. (a): Let $D_{n}=\left(N, A_{n}\right), w, m$ and k be an arbitrary instance of $D D P^{*}\left(M^{*}, m\right)$. The corresponding instance of $D D P(\mathcal{M}, m)$, defined by $D_{n}^{\prime}, w^{\prime}, m, k^{\prime}$ is constructed as follows: $D_{n}^{\prime}=\left(N, A_{n}^{\prime}\right)$ is the l-complete digraph obtained from D_{n} by adding to it all the missing loops, the weights w_{e}^{\prime} are defined as:

$$
w_{e}^{\prime}:=\left\{\begin{array}{rll}
w_{e} & \text { if } & e \in A_{n}, \\
0 & \text { if } & e \notin A_{n} \text { and } m \text { is even }, \\
-1 & \text { if } & e \notin A_{n} \text { and } m \text { is odd },
\end{array}\right.
$$

and

$$
k^{\prime}:= \begin{cases}k & \text { if } m \text { is even, }, \\ k-n & \text { if } m \text { is odd } .\end{cases}
$$

We claim that D_{n} has an arc set B such that $B \in \mathcal{M}^{*}$ and $w(B) \leq k$ iff D_{n}^{\prime} has an arc set B^{\prime} with $B^{\prime} \in \mathcal{M}$ and $w^{\prime}\left(B^{\prime}\right) \leq k^{\prime}$.

In fact, given $B \subset A_{n}$ take $B^{\prime}:=B \cup\{(i, i): i \in N\}$; and conversely, given $B^{\prime} \subset A_{n}^{\prime}$ take $B:=B^{\prime} \backslash\{(i, i): i \in N\}$. This proves the claim and establishes the $\mathcal{N P}$-completeness of $D D P(\mathcal{M}, m)$.
(b): The proof will be omitted as it is analogous to case (a). The only difference is that we have to determine first the value $\max _{e}\left|w_{e}\right|$.

For the proof of the next theorem we need the fact that the following problem is $\mathcal{N P}$-complete (cf. Karp [1972]):

Acyclic Subdigraph Problem (ASP)

Instance: Digraph $D=(N, A)$ without loops; positive integer $k \leq|N|$.
Question: Is there a subset $B \subseteq A$ with $|B| \geq k$ such that $H=(N, B)$ is acyclic?

The next lemma (easy to be proved by induction) will be useful in theorem (3.8).
(3.7) Lemma. If $H=(N, B)$ is an acyclic digraph then there exists a graph $H^{\prime}=\left(N, B^{\prime}\right)$ containing H, such that $B^{\prime} \in A S Y \cap T R A \cap T O T^{*}$.

In the subsequent $\mathcal{N P}$-completeness proofs we shall omit the straightforward verification that the considered problems are in the class $\mathcal{N P}$.
(3.8) Theorem. Let

$$
\mathcal{M}^{\prime}=A S Y \cap T R A^{*} \text { and } \mathcal{M}^{\prime \prime}=A S Y \cap T R A^{*} \cap T O T^{*}
$$

(a) For every $m \geq 2, D D P^{*}\left(\mathcal{M}^{\prime}, m\right)$ is $\mathcal{N} \mathcal{P}$-complete.
(b) For every $m \geq 1, D D P^{*}\left(\mathcal{M}^{\prime \prime}, m\right)$ is $\mathcal{N} \mathcal{P}$-complete.

Proof. [Transformation from the Acyclic Subdigraph Problem (ASP)]
(i) Assume first that $m \geq 2$ and let $\mathcal{M} \in\left\{M^{\prime}, M^{\prime \prime}\right\}$.

Suppose that $D=(N, A)$ and k are given as an instance of ASP.Then the corresponding instance of $D D P^{*}(\mathcal{M}, m)$, defined by defined by D_{n}, w, m and k^{\prime}, is obtained as follows:
$D_{n}=\left(N, A_{n}\right)$ is the complete digraph obtained from D by adding to it all the missing arcs which are not loops; the weights w_{e} for $e \in A_{n}$ are defined as

$$
w_{e}:= \begin{cases}-m & \text { if } e \in A, \\ -(m-2) & \text { otherwise }\end{cases}
$$

and

$$
k^{\prime}:=-2 k-\binom{n}{2}(m-2) .
$$

We shall prove that D has an acyclic subdigraph $H=(N, B)$ with $|B| \geq k$ iff D_{n} has a subdigraph $H^{\prime}=\left(N, B^{\prime}\right)$ with $B^{\prime} \in \mathcal{M}$ and $w\left(B^{\prime}\right) \leq k^{\prime}$.
a) Let $H=(N, B)$ be an acyclic subdigraph in D with $|B| \geq k$. Since H is also a subdigraph of D_{n}, then by Lemma (3.7) there exists in D_{n} a subdigraph $H^{\prime}=\left(N, B^{\prime}\right)$ containing H such that $B^{\prime} \in \mathcal{M}^{\prime \prime}$. Moreover,

$$
\begin{aligned}
w\left(B^{\prime}\right) & =w(B)+w\left(B^{\prime} \backslash B\right) \\
& \leq|B|(-m)-\left(\binom{n}{2}-|B|\right)(m-2) \leq k^{\prime}
\end{aligned}
$$

b) Let $H^{\prime}=\left(N, B^{\prime}\right)$ be a subdigraph in D_{n} such that $B^{\prime} \in \mathcal{M}$ and $w\left(B^{\prime}\right) \leq k^{\prime}$. Since H^{\prime} is acyclic, by Lemma (3.7) there exists in D_{n} a subdigraph $H^{\prime \prime}=\left(N, B^{\prime \prime}\right)$ containing H^{\prime} with $B^{\prime \prime} \in \mathcal{M}^{\prime \prime}$. Note that $B^{\prime \prime}$ has at least k arcs with weight $-m$. Otherwise, if $B^{\prime \prime}$ has l arcs with weight $-m, l \leq k-1$, then

$$
w\left(B^{\prime}\right) \geq w\left(B^{\prime \prime}\right)=l(-m)-\left(\binom{n}{2}-l\right)(m-2)>k^{\prime}
$$

Thus, if we take $B:=\left\{c \in B^{\prime \prime}: w_{e}=-m\right\}$, clearly $H=(N, B)$ is an acyclic subdigraph of D with $|B| \geq k$.
(ii) If $m=1$ then the above proof also holds for $\mathcal{M}=\mathcal{M}^{\prime \prime}$.

Since ASP is $\mathcal{N P}$-complete and the given transformation is polynomial, the result follows.

We want to prove in the sequel that $\mathrm{DDP}^{*}(\mathcal{M}, m)$ for $\mathcal{M}=S Y M \cap T R A^{*}$ is $\mathcal{N} \mathcal{P}$ complete. For that, we introduce an $\mathcal{N P}$-complete problem called Restricted Clique Partitioning Problem, denoted by RCPP, defined as follows:
Instance: Complete graph $K_{n}=[V, E]$, weights $w_{e} \in\{-1,0,1\}$ for each $\epsilon \in E$, integer k.

Question: Is there a clique partitioning $A \subset E$ such that $w(A) \leq k$? (That is, is there a partition of the node set V_{n} such that the sum of the weights of all edges with both endnodes in the same set of the partition is less or equal to k ?)

As the $\mathcal{N} \mathcal{P}$-completeness proof of RCPP is long, in order not to break the continuity, we shall postpone it to the end of this section (see Theorem 3.14).
(3.9) Theorem. Let

$$
\mathcal{M}=\mathrm{SYM} \cap \mathrm{TRA}^{*}
$$

Then $D^{\prime} P^{*}(\mathcal{M}, m)$ is $\mathcal{N P}$-complete for every $m \geq 1$.
Proof. [Transformation from RCPP]
Note that it suffices to prove for $m=1$. Let $K_{n}=\left[V_{n}, \mathcal{E}_{n}\right], w$ and k be an arbitrary instance of RCPP and assume that $V_{n}=\{1,2, \ldots, n\}$. The corresponding instance of $\mathrm{DDP}^{*}(\mathcal{M}, 1)$ defined by D_{n}, w^{\prime} and k^{\prime}, is constructed as follows: $D_{n}=\left(N, A_{n}\right)$ is a complete digraph with node set $N=V_{n}$, the weights w_{e}^{\prime} for $e \in A_{n}$ are defined as

$$
w_{i j}^{\prime}:=\left\{\begin{aligned}
1 & \text { if }\left(w_{i j}=1\right) \text { or }\left(w_{i j}=0 \text { and } i<j\right), \\
-1 & \text { if }\left(w_{i j}=-1\right) \text { or }\left(w_{i j}=0 \text { and } i>j\right)
\end{aligned}\right.
$$

and $k^{\prime}:=k$.
It is immediate that, if $K_{n}=\left[V_{n}, \mathcal{E}_{n}\right]$ has a clique partitioning A with $w(A) \leq k$, then $B:=\{i j, j i:\{i, j\} \in A\}$, is an arc set in D_{n} such that $B \in \mathcal{M}$ and $w^{\prime}(B)=w(A)$. Conversely, if D_{n} has an arc set $B \in \mathcal{M}$ with $w^{\prime}(B) \leq k^{\prime}$, then it is easy to see that the set $A:=\{\{i, j\}: i j \in B\}$ is a clique partitioning of K_{n} with $w(A)=w^{\prime}(B)$. Since RCPP is $\mathcal{N P}$-complete (cf. Theorem (3.14)), and the given transformation is polynomial, the result follows.

The following theorem combines Lemma (3.6) and the Theorems (3.5), (3.8) and (3.9).
(3.10) Theorem. Let \mathcal{M}^{\prime} and $\mathcal{M}^{\prime \prime}$ be such that

$$
\begin{aligned}
& \mathcal{M}^{\prime} \in\left\{\begin{array}{ll}
A S Y \cap \mathrm{TOT}^{*} \cap \mathrm{TRA}^{*}, & \text { ASY } \cap \mathrm{TOT}^{*} \cap \mathrm{TRA}, \\
S Y M \cap \mathrm{TRA}^{*}, & \mathrm{SYM} \cap \mathrm{TRA}
\end{array}\right\}, \\
& \mathcal{M}^{\prime \prime} \in\left\{\mathrm{ASY} \cap \mathrm{TRA}^{*}, \mathrm{ASY} \cap \mathrm{TRA}\right\} .
\end{aligned}
$$

Then the median problem $M P(\mathcal{R}, \mathcal{M}, m)$ is $\mathcal{N P}$-hard
i) for every $m \geq 1$ and $\mathcal{M} \in\left\{\mathcal{M}^{\prime}, \mathcal{M}^{\prime} \cap R E F\right\}$;
ii) for every $m \geq 2$ and $\mathcal{M} \in\left\{\mathcal{M}^{\prime \prime}, \mathcal{M}^{\prime \prime} \cap R E F\right\}$.

Two more cases need to be analysed. Namely, when $\mathcal{M} \in\{T R A *$, TRA* \cap TOT* $\}$. For these cases, we shall consider the decision problem BDDP*.
(3.11) Theorem. Let

$$
\mathcal{M}=\operatorname{TRA}^{*} \cap \mathrm{TOT}^{*}
$$

Then the problem $\operatorname{BDDP}^{*}(\mathcal{M}, 4)$ is $\mathcal{N P}$-complete.

Proof. By Theorem (3.8), the problem $Q:=\operatorname{DDP}^{*}\left(\mathcal{M}^{*}, 2\right)$ with $\mathcal{M}^{*}=\operatorname{ASY} \cap \operatorname{TRA} \cap$ TOT^{*} is $\mathcal{N P}$-complete. We want to prove that Q is polynomially transformable to $\widetilde{Q}:=$ $\operatorname{BDDP}^{*}(\mathcal{M}, 4)$. Let $D_{n}=\left(N, A_{n}\right), w$ and k be given as an instance of Q. Note that, we may assume that $k<n^{2}$, otherwise Q is trivially solvable. Suppose $N=\{1,2, \ldots, n\}$, $n \geq 2$. The corresponding instance of \widetilde{Q} defined by $\widetilde{D}_{p}, \widetilde{w}$ and \tilde{k} is constructed as follows : $\widetilde{D}_{p}=(\tilde{N}, \tilde{A})$ is the complete digraph of order $p=2 n$ with node set $\widetilde{N}:=\left\{i_{1}, i_{2}: i \in N\right\}$. To define the weights \widetilde{w}_{e} for $e \in \tilde{A}$ we let

$$
R:=\bigcup_{1 \leq i<j \leq n} R_{i j} \text { where } R_{i j}:=\left\{\left(i_{1}, j_{1}\right),\left(j_{1}, i_{2}\right)\right\}
$$

and set

$$
\widetilde{w}_{e}= \begin{cases}0 & \text { if } e=\left(i_{2}, i_{1}\right), i \in N \\ L & \text { if } e=\left(i_{1}, i_{2}\right), i \in N \\ w_{i j} & \text { if } e=\left(i_{1}, j_{1}\right), e \in R \\ w_{j i} & \text { if } e=\left(j_{1}, i_{2}\right), e \in R \\ M & \text { otherwise }\end{cases}
$$

where

$$
M:=4 n^{2} \text { and } L:=2 n^{4}
$$

Observe that $\left|\tilde{w}_{e}\right|$ is even and $\left|\widetilde{w}_{e}\right| \leq p^{4}$ for every $e \in \tilde{A}$.
The parameter \tilde{k} is defined as

$$
\begin{aligned}
\tilde{k} & :=k+C M, \text { where } \\
C & :=\binom{2 n}{2}-n-\binom{n}{2}=3\binom{n}{2}
\end{aligned}
$$

Figure 1

We shall prove that $D_{n}=\left(N, A_{n}\right)$ has a subdigraph $H=(N, B)$ with $B \in \mathcal{M}^{*}$ and $w(B) \leq k$ iff $\widetilde{D}_{p}=(\widetilde{N}, \tilde{A})$ has a subdigraph $\widetilde{H}=(\widetilde{N}, \widetilde{B})$ with $\widetilde{B} \in \mathcal{M}$ and $\widetilde{w}(\widetilde{B}) \leq \tilde{k}$.

It is clear that M, L and \tilde{k} were chosen conveniently so that the above claim can be shown to hold. Before we give the proof, let us explain the idea behind the choice of the values for M, L and \tilde{k}.

Note that for each pair $i, j, 1 \leq i<j \leq n$, the arcs (i, j) and (j, i) in D_{n} correspond to the arcs $\left(i_{1}, j_{1}\right)$ and $\left(j_{1}, i_{2}\right)$ in \widetilde{D}_{p}, respectively, and that the assigned weights agree correspondingly. See Figure 1. Given a subdigraph $\widetilde{H}=(\widetilde{N}, \widetilde{B})$ in \widetilde{D}_{p} with $\widetilde{B} \in \mathcal{M}$ and $\widetilde{w}(\widetilde{B}) \leq \tilde{k}$, we want to construct a subdigraph $H=(N, B)$ in D_{n} with $B \in \mathcal{M}^{*}$ and $w(B) \leq k$. So we want \widetilde{H} to have exactly one of the $\operatorname{arcs}\left(i_{1}, j_{1}\right),\left(j_{1}, i_{2}\right)$ for each pair $i, j, 1 \leq i<j \leq n$ (so that the corresponding arcs in D_{n} can be set into B). Thus we choose L conveniently (according to \tilde{k}) so that both of $\left(i_{1}, j_{1}\right)$ and $\left(j_{1}, i_{2}\right)$ cannot be in any transitive subdigraph \widetilde{H} with $\widetilde{w}(\widetilde{B}) \leq \tilde{k}$. This can be accomplished by choosing L so that whenever both of these arcs are chosen to be in a transitive subdigraph $\widetilde{H}=(\widetilde{N}, \widetilde{B})$, then the choice of $\left(i_{1}, i_{2}\right)$ forced by the transitivity gives that $\widetilde{w}(\widetilde{B})>\tilde{k}$. The values for \tilde{k} and M are so chosen that \widetilde{H} must be a subdigraph consisting of :
i) all arcs with weight 0 ;
ii) exactly one of the arcs $\left(i_{1}, j_{1}\right),\left(j_{1}, i_{2}\right)$ for each pair $i, j, 1 \leq i<j \leq n$;
iii) exactly $C:=\binom{2 n}{2}-n-\binom{n}{2}$ arcs with weight M.
a) Given a subdigraph $H=(N, B)$ in D_{n} with $B \in \mathcal{M}^{*}$ and $w(B) \leq k$, construct $\widetilde{H}=(\widetilde{N}, \widetilde{B})$ by setting:

$$
\widetilde{B}:=\widetilde{B}_{1} \cup \widetilde{B}_{2} \cup \widetilde{B}_{3},
$$

where

$$
\begin{array}{ll}
\widetilde{B}_{1}:=\left\{\left(i_{1}, j_{1}\right),\left(i_{1}, j_{2}\right),\left(i_{2}, j_{1}\right),\left(i_{2}, j_{2}\right):\right. & 1 \leq i<j \leq n \text { and }(i, j) \in B\}, \\
\widetilde{B}_{2}:=\left\{\left(j_{1}, i_{1}\right),\left(j_{1}, i_{2}\right),\left(j_{2}, i_{1}\right),\left(j_{2}, i_{2}\right):\right. & 1 \leq i<j \leq n \text { and }(j, i) \in B\}, \\
\widetilde{B}_{3}:=\left\{\left(i_{2}, i_{1}\right): \quad i \in N\right\} . &
\end{array}
$$

Notice that $|\widetilde{B}|=\binom{2 n}{2}$ and $\widetilde{B} \in$ TOT *.
For each pair $e=(i, j), 1 \leq i, j \leq n, i \neq j$, let S_{e} be the following basic subdigraph:
$S_{i j}$

Figure 2.
Clearly, $\widetilde{H}=(\widetilde{N}, \widetilde{B})$ is the union of all basic subdigraphs S_{e} each corresponding to an $\operatorname{arc} e \in B$. By inspection, it is easy to see that these subdigraphs S_{e} are transitive. Thus
it remains to be proved that if $e:=\left(i_{r}, j_{s}\right)$ and $f:=\left(j_{s}, l_{t}\right)$, with $r, s, t \in\{1,2\}$, are arcs of \widetilde{B} not in the same basic subdigraph, then $g:=\left(i_{r}, l_{t}\right) \in \widetilde{B}$. Notice that when $i=j$ or $j=l$ then e and f are in a same basic subdigraph. Furthermore, \widetilde{B} has no arcs such as e and f where $i=l$. Therefore we may assume that i, j, l are pairwise distinct.

Since $e:=\left(i_{r}, j_{s}\right) \in \widetilde{B}$, then

$$
\text { if }\left\{\begin{array}{l}
i<j \text { then } e \in \widetilde{B}_{1} \text { and }(i, j) \in B \\
i>j \text { then } e \in \widetilde{B}_{2} \text { and }(i, j) \in B
\end{array}\right.
$$

Similarly, $f:=\left(j_{s}, l_{t}\right) \in \widetilde{B}$ implies that

$$
\text { if }\left\{\begin{array}{l}
j<l \text { then } f \in \widetilde{B}_{1} \text { and }(j, l) \in B, \\
j>l \text { then } f \in \widetilde{B}_{2} \text { and }(j, l) \in B .
\end{array}\right.
$$

Thus, $(i, j) \in B$ and $(j, l) \in B$. Since $B \in \operatorname{TRA}^{*},(i, l) \in B$. If $i<l$ then $g \in \widetilde{B}_{1}$, otherwise $g \in \widetilde{B}_{2}$. Hence, $g \in \widetilde{B}$. This completes the proof that $\widetilde{B} \in \mathrm{TRA}^{*}$.

Now let us prove that $\widetilde{w}(\widetilde{B}) \leq \widetilde{k}$. Notice that $\widetilde{B}_{1}, \widetilde{B}_{2}$ and \widetilde{B}_{3} are pairwise disjoint, $R \cap \widetilde{B}_{3}=\emptyset$ and $|R \cap \widetilde{B}|=\left|R \cap\left(\widetilde{B}_{1} \cup \widetilde{B}_{2}\right)\right|=\frac{|R|}{2}=\binom{n}{2}$.

Thus,

$$
\begin{aligned}
\widetilde{w}(\widetilde{B}) & =\widetilde{w}(\widetilde{B} \cap R)+\widetilde{w}\left(\left(\widetilde{B}_{1} \cup \widetilde{B}_{2}\right) \backslash R\right)+\widetilde{w}\left(\widetilde{B}_{3}\right) \\
& =w(B)+\left(|\widetilde{B}|-\left|\widetilde{B}_{3}\right|-|\widetilde{B} \cap R|\right) M \\
& =w(B)+\left(\binom{2 n}{2}-n-\binom{n}{2}\right) M \leq k+C M=\widetilde{k} .
\end{aligned}
$$

b) Let $\widetilde{H}=(\widetilde{N}, \widetilde{B})$ be a subdigraph of \widetilde{D}_{p} with $\widetilde{B} \in \mathcal{M}$ and $\widetilde{w}(\widetilde{B}) \leq \tilde{k}$. Then the following holds:
$\left(\mathrm{b}_{1}\right) \widetilde{B}$ does not contain an arc e with $\widetilde{w}_{e}=L$.
Suppose \widetilde{B} contains such an arc e. Then

$$
\widetilde{w}(\widetilde{B}) \geq L-\sum_{e \in A_{n}}\left|w_{e}\right|+2\binom{n}{2} M
$$

Since $\sum_{e \in A_{n}}\left|w_{e}\right| \leq 2 n^{2}$, it follows that $\widetilde{w}(\widetilde{B}) \geq 6 n^{4}-4 n^{3}-2 n^{2}$. On the other hand, $\tilde{k}=$ $k+C M<n^{2}+\left(\frac{3 n(n-1)}{2}\right) 4 n^{2}=6 n^{4}-6 n^{3}+n^{2}$ and therefore, $\widetilde{w}(\widetilde{B})>\tilde{k}$, a contradiction. (b_{2}) \widetilde{B} contains all arcs e with $\widetilde{w}_{e}=0$.

This follows immediately from $\left(b_{1}\right)$ and the fact that $\widetilde{B} \in \mathrm{TOT}^{*}$.
(b_{3}) For every pair $(i, j), 1 \leq i<j \leq n,\left|\widetilde{B} \cap R_{i j}\right| \leq 1$.
Suppose there is a pair (i, j) such that \widetilde{B} contains both of $\left(i_{1}, j_{1}\right)$ and $\left(j_{1}, i_{2}\right)$. Since $\widetilde{B} \in \mathrm{TRA}^{*}$, this implies that $\left(i_{1}, i_{2}\right) \in \widetilde{B}$; but as $\widetilde{w}\left(i_{1}, i_{2}\right)=L$, this contradicts $\left(\mathrm{b}_{1}\right)$.
$\left(\mathrm{b}_{4}\right) \widetilde{B}$ contains exactly C arcs with weight M.
Suppose \widetilde{B} has more than C arcs with weight M. Thus

$$
\widetilde{w}(\widetilde{B}) \geq(C+1) M-\sum_{e \in A_{n}}\left|w_{e}\right|>\tilde{k}
$$

a contradiction. So, \widetilde{B} can have at most C arcs with weight M. On the other hand, since $|\widetilde{B}| \geq\binom{ 2 n}{2}$ and \widetilde{B} contains n arcs with weight 0 (by $\left.\left(\mathrm{b}_{2}\right)\right)$, at most $\binom{n}{2}$ arcs of $R\left(\right.$ by $\left.\left(\mathrm{b}_{3}\right)\right)$ and no arcs with weight $L\left(\right.$ by $\left.\left(b_{1}\right)\right)$, then \widetilde{B} must contain at least $\binom{2 n}{2}-n-\binom{n}{2}=: C$ arcs with weight M. Thus \widetilde{B} contains exactly C arcs with weight M.
(b_{5}) For every pair $(i, j), 1 \leq i<j \leq n,\left|\widetilde{B} \cap R_{i j}\right|=1$.
Since $\binom{2 n}{2} \leq|\widetilde{B}|=n+C+|\widetilde{B} \cap R|$, it follows that $|\widetilde{B} \cap R| \geq\binom{ 2 n}{2}-n-C=\binom{n}{2}$. If for some pair $(i, j), 1 \leq i<j \leq n,\left|\widetilde{B} \cap R_{i j}\right|<1$ then by $\left(\mathrm{b}_{3}\right)|\widetilde{B} \cap R|<\binom{n}{2}$, a contradiction. Thus, the statement is proved.
$\left(\mathrm{b}_{6}\right) \tilde{B}$ has no double arcs.
Immediate from (b_{1}), (b_{4}) and (b_{5}).
$\left(\mathrm{b}_{7}\right) \widetilde{w}(\widetilde{B} \cap R) \leq k$.
Clearly, $\widetilde{w}(\widetilde{B})=\widetilde{w}(\widetilde{B} \cap R)+C M$. Thus, $\widetilde{w}(\widetilde{B} \cap R) \leq \tilde{k}-C M=k$.
But $\left(i_{1}, j_{2}\right) \in \widetilde{B} \cap R$ and $\left(j_{2}, j_{1}\right) \in \widetilde{B}$ imply $\left(i_{1}, j_{1}\right) \in \widetilde{B}$. Thus, $\left(i_{1}, j_{1}\right) \in \widetilde{B}$. Analogously, analysing the cases $j<l$ and $j>l$ we conclude that $\left(j_{1}, l_{1}\right) \in \widetilde{B}$.

Since $\widetilde{B} \in T R A^{*}$, then $\left(i_{1}, j_{1}\right) \in \widetilde{B}$ and $\left(j_{1}, l_{1}\right) \in \widetilde{B}$ imply that $\left(i_{1}, l_{1}\right) \in \widetilde{B}$. Thus, if $i<l$ then $\left(i_{1}, l_{1}\right) \in \widetilde{B} \cap R$, and therefore $(i, l) \in B$. Suppose $i>l$. By $\left(\mathrm{b}_{6}\right)\left(i_{1}, l_{1}\right) \in \widetilde{B}$ implies $\left(l_{1}, i_{1}\right) \notin \widetilde{B}$. By $\left(\mathrm{b}_{5}\right)$, if $l<i$ and $\left(l_{1}, i_{1}\right) \notin \widetilde{B} \cap R$ then $\left(i_{1}, l_{2}\right) \in \widetilde{B} \cap R$. But then, $(i, l) \in B$ and therefore $B \in T R A^{*}$.

Since the given transformation is polynomial, it follows that \widetilde{Q} is $\mathcal{N P}$-complete.
A construction similar to the one presented in the proof of Theorem (3.11) leads to the following result.
(3.12) Theorem. Let

$$
\mathcal{M}=T R A^{*}
$$

Then the problem $B D D P^{*}(\mathcal{M}, 6)$ is $\mathcal{N} \mathcal{P}$-complete.

Proof. Let $Q:=\operatorname{DDP}^{*}(\mathcal{M}, 2)$ with $\mathcal{M}^{*}=A S Y \cap T R A^{*} \cap T O T^{*}$ be the \mathcal{N} P-complete problem considered in Theorem (3.8). Our aim is to prove that Q is polynomially transformable to $\widetilde{Q}:=B D D P^{*}(\mathcal{M} ; 6)$. For that, let us assume that $D_{n}=\left(N, A_{n}\right), w$ and k, $k<n^{2}$, are given as an insence of Q, and let us construct the corresponding instance of \widetilde{Q}.

Let $\widetilde{D}_{p}=(\tilde{N}, \tilde{A})$ be the complete digraph of order $p=2 n$ with node set $\widetilde{N}:=$ $\left\{i_{1}, i_{2}: i \in N\right\}$.

To define the weights \widetilde{w}_{e}, set

$$
\begin{array}{ll}
R:=\bigcup_{1 \leq i<j \leq n} R_{i j}, & \text { where } R_{i j}:=\left\{\left(i_{1}, j_{1}\right),\left(j_{1}, i_{2}\right)\right\} \\
\bar{R}:=\bigcup_{1 \leq i<j \leq n} \bar{R}_{i j}, & \text { where } \bar{R}_{i j}:=\left\{\left(j_{1}, i_{1}\right),\left(i_{2}, j_{1}\right)\right\}
\end{array}
$$

Let M be the smallest even integer such that

$$
M>k+2 n^{2}
$$

and set

$$
\begin{aligned}
M^{*} & :=\left(\binom{n}{2}+1\right) M \\
L & :=M+\binom{n}{2}\left(M^{*}+M\right) .
\end{aligned}
$$

Now define \widetilde{w}_{e} for each $e \in \tilde{A}$, as follows :

$$
\widetilde{w}_{e}= \begin{cases}-M^{*} & \text { if } e=\left(i_{2}, i_{1}\right), i \in N \\ L & \text { if } e=\left(i_{1}, i_{2}\right), i \in N \\ w_{i j}-M^{*} & \text { if } e=\left(i_{1}, j_{1}\right), e \in R \\ w_{j i}-M^{*} & \text { if } e=\left(j_{1}, i_{2}\right), e \in R \\ M & \text { if } e \in \bar{R} \\ 0 & \text { otherwise }\end{cases}
$$

Observe that $\left|\widetilde{w}_{e}\right|$ is even and $\left|\tilde{w}_{e}\right| \leq p^{6}$ for every $e \in \tilde{A}$.

Figure 3.
Let

$$
\left.\tilde{k}:=k+\binom{n}{2} M-\binom{n}{2}+n\right) M^{*} .
$$

We claim that $D_{n}=\left(N, A_{n}\right)$ has a subdigraph $H=(N, B)$ with $B \in \mathcal{M}^{*}$ and $w(B) \leq k$ iff $\widetilde{D}_{p}=(\widetilde{N}, \tilde{A})$ has a subdigraph $\widetilde{H}=(\widetilde{N}, \widetilde{B})$ with $\widetilde{B} \in T R A^{*}$ and $\widetilde{w}(\widetilde{B}) \leq \tilde{k}$.
a) Given $H=(N, B)$ in D_{n} with $B \in \mathcal{M}^{*}$ and $w(B) \leq k$, let $\widetilde{H}=(\widetilde{N}, \widetilde{B})$ be the subdigraph of \widetilde{D}_{p} defined by :

$$
\widetilde{B}:=\widetilde{B}_{1} \cup \widetilde{B}_{2} \cup \widetilde{B}_{3}
$$

where

$$
\begin{array}{ll}
\widetilde{B}_{1}:=\left\{\left(i_{1}, j_{1}\right),\left(i_{1}, j_{2}\right),\left(i_{2}, j_{1}\right),\left(i_{2}, j_{2}\right):\right. & 1 \leq i<j \leq n \text { and }(i, j) \in B\}, \\
\widetilde{B}_{2}:=\left\{\left(j_{1}, i_{1}\right),\left(j_{1}, i_{2}\right),\left(j_{2}, i_{1}\right),\left(j_{2}, i_{2}\right):\right. & 1 \leq i<j \leq n \text { and }(j, i) \in B\}, \\
\widetilde{B}_{3}:=\left\{\left(i_{2}, i_{1}\right): \quad 1 \leq i \leq n\right\} .
\end{array}
$$

Then

$$
\begin{aligned}
\widetilde{w}(\widetilde{B}) & =\widetilde{w}(\widetilde{B} \cap R)+\widetilde{w}(\widetilde{B} \backslash R) \\
& =\widetilde{w}(\widetilde{B} \cap R)+\widetilde{w}\left(\widetilde{B_{1}} \cup \widetilde{B}_{2} \backslash R\right)+\widetilde{w}\left(\widetilde{B}_{3}\right) \\
& =w(B)-\binom{n}{2} M^{*}+\binom{n}{2} M-n M^{*} \\
& =w(B)-\left(\binom{n}{2}+n\right) M^{*}+\binom{n}{2} M \\
& \leq k-\left(\binom{n}{2}+n\right) M^{*}+\binom{n}{2} M \leq \tilde{k}
\end{aligned}
$$

Using the fact that $B \in \mathcal{M}^{*}$ it is not difficult to prove that $\tilde{B} \in T R A^{*}$. Indeed, the proof is analogous to the one present for Theorem (3.11), and therefore it will be omitted.
b) Let $\widetilde{H}=(\widetilde{N}, \widetilde{B})$ be a subdigraph of \widetilde{D}_{p} with $\widetilde{B} \in T R A^{*}$ and $\widetilde{w}(\widetilde{B}) \leq \tilde{k}$. Based on \widetilde{H} we want to construct a transitive tournament $H=(N, B)$ in D_{n} with $w(B) \leq k$. For that, we first observe that \widetilde{H} has the following properties :
$\left(\mathrm{b}_{1}\right) \widetilde{B}$ does not contain an arc e with $\tilde{w}_{e}=L$.
Suppose \widetilde{B} contains such an arc e. Then

$$
\begin{aligned}
\widetilde{w}(\widetilde{B}) & \geq L-n M^{*}-\sum_{e \in A}\left|w_{e}\right|-n(n-1) M^{*} \\
& \geq M+\binom{n}{2}\left(M^{*}+M\right)-n M^{*}-2 n^{2}-n(n-1) M^{*} \\
& >k-\binom{n}{2} M^{*}-n M^{*}+\binom{n}{2} M=\tilde{k},
\end{aligned}
$$

a contradiction.
$\left(\mathrm{b}_{2}\right)$ For every pair $(i, j), 1 \leq i<j \leq n,\left|\widetilde{B} \cap R_{i j}\right|=1$.
Suppose there is a pair (i, j) such that $\left|\widetilde{B} \cap R_{i j}\right|=2$. In this case, since $\widetilde{B} \in T R A^{*}$, it follows that $\left(i_{1}, i_{2}\right) \in \widetilde{B}$, contradicting (b_{1}). Thus, $\left|\widetilde{B} \cap R_{i j}\right| \leq 1$ for every pair (i, j), $1 \leq i<j \leq n$. Now suppose there is a pair (i, j) such that $\left|\widetilde{B} \cap R_{i j}\right|=0$. Then

$$
\widetilde{w}(\widetilde{B}) \geq-\left(\binom{n}{2}-1\right) M^{*}-n M^{*}-\sum_{e \in A_{n}}\left|w_{e}\right| .
$$

Using the fact that $\sum_{e \in A_{n}}\left|w_{e}\right| \leq 2 n^{2}$ and making some substitutions we get $\widetilde{w}(\widetilde{B})>$ \tilde{k}. Since this contradicts our assumption, we conclude that $\left(\mathrm{b}_{2}\right)$ holds.
$\left(\mathrm{b}_{3}\right)$ For every $i, 1 \leq i \leq n,\left(i_{2}, i_{1}\right) \in \widetilde{B}$.
Suppose for some $i, 1 \leq i \leq n,\left(i_{2}, i_{1}\right) \notin \widetilde{B}$. Then

$$
\begin{aligned}
\widetilde{w}(\widetilde{B}) & \geq-(n-1) M^{*}-\sum_{e \in A_{n}}\left|w_{e}\right|-\binom{n}{2} M^{*} \\
& \geq\left(\binom{n}{2}+1\right) M-n M^{*}-2 n^{2}-\binom{n}{2} M^{*} \\
& >\binom{n}{2} M+k-\left(\binom{n}{2}+n\right) M^{*}=\tilde{k}
\end{aligned}
$$

a contradiction.

(b_{4}) For every pair $(i, j), 1 \leq i<j \leq n,\left|\tilde{B} \cap \bar{R}_{i j}\right|=1$.
By $\left(b_{2}\right)$, for every pair $(i, j), 1 \leq i<j \leq n$, exactly one of the arcs $\left(i_{1}, j_{1}\right)$ or $\left(j_{1}, i_{2}\right)$ is in \widetilde{B}. If $\left(i_{1}, j_{1}\right) \in \widetilde{B}$, since $\left(i_{2}, i_{1}\right) \in \widetilde{B}$, it follows that $\left(i_{2}, j_{1}\right) \in \widetilde{B}$. Analogously, if $\left(j_{1}, i_{2}\right) \in \widetilde{B}$ then $\left(j_{1}, i_{1}\right) \in \widetilde{B}$. Thus, $\left|\widetilde{B} \cap \bar{R}_{i j}\right| \geq 1$. Now suppose there is a pair (i, j),
$1 \leq i<j \leq n$, such that $\left|\widetilde{B} \cap \bar{R}_{i j}\right|>1$. This implies that \widetilde{B} has more than $\binom{n}{2}$ arcs with weight M and therefore

$$
\begin{aligned}
\tilde{w}(\widetilde{B}) & \geq\left(\binom{n}{2}+1\right) M-\sum_{e \in A_{n}}\left|w_{e}\right|-\binom{n}{2} M^{*}-n M^{*} \\
& >\binom{n}{2} M+k-\left(\binom{n}{2}+n\right) M^{*}=\tilde{k}
\end{aligned}
$$

a contradiction. So, we have proved that $\left(\mathrm{b}_{4}\right)$ holds.
(b_{5}) $\widetilde{w}(\widetilde{B} \cap R) \leq k-\binom{n}{2} M^{*}$.
This follows from the fact that $\tilde{w}(\widetilde{B} \cap R)=\widetilde{w}(\widetilde{B})+n M^{*}-\binom{n}{2} M$ and $\widetilde{w}(\widetilde{B}) \leq \tilde{k}$.
Now let $H=(N, B)$ be the subdigraph of D_{n} with

$$
\begin{aligned}
B:= & \left\{(i, j):\left(i_{1}, j_{1}\right) \in \widetilde{B} \cap R, \quad 1 \leq i<j \leq n\right\} \quad \cup \\
& \left\{(j, i):\left(j_{1}, i_{2}\right) \in \widetilde{B} \cap R, \quad 1 \leq i<j \leq n\right\} .
\end{aligned}
$$

We claim that $B \in \mathcal{M}^{*}$ and $w(B) \leq k$. Note that $|B|=|\widetilde{B} \cap R|=\binom{n}{2}$. Furthermore, $w(B)=\widetilde{w}(\widetilde{B} \cap R)+\binom{n}{2} M^{*}$. Thus, by $\left(\mathrm{b}_{5}\right)$ it follows that $w(B) \leq k$. The definition of B and fact (b_{2}) yield immediately that $B \in A S Y \cap T O T^{*}$. So it remains to be shown that $B \in T R A^{*}$.

Let (i, j) and (j, l) be arcs of $B, i \neq j \neq l \neq i$. If $i<j$ and $(i, j) \in B$ then $\left(i_{1}, j_{1}\right) \in \widetilde{B} \cap R$. If $i>j$ and $(i, j) \in B$ then $\left(i_{1}, j_{2}\right) \in \widetilde{B} \cap R$. In the latter case, since $\left(j_{2}, j_{1}\right) \in \widetilde{B}$ and $\widetilde{B} \in T R A^{*}$, it follows that $\left(i_{1}, j_{1}\right) \in \widetilde{B}$. From an analogous analysis of cases $j<l$ and $j>l$, we conclude that $\left(j_{1}, l_{1}\right) \in \widetilde{B}$. Thus, $\left(i_{1}, j_{1}\right) \in \widetilde{B}$ and $\left(j_{1}, l_{1}\right) \in \widetilde{B}$, and therefore $\left(i_{1}, l_{1}\right) \in \widetilde{B}$. If $i<l$, then $\left(i_{1}, l_{1}\right) \in \widetilde{B} \cap R$, and hence $(i, l) \in B$. Suppose $l<i$. Then $\left(i_{1}, l_{1}\right) \in \widetilde{B} \cap \bar{R}$, and therefore by $\left(\mathrm{b}_{4}\right)$ it follows that $\left(l_{2}, i_{1}\right) \notin \widetilde{B}$. In this case, $\left(l_{1}, i_{1}\right) \notin \widetilde{B}$; otherwise $\left(l_{2}, l_{1}\right) \in \widetilde{B}$ and $\left(l_{1}, i_{1}\right) \in \widetilde{B}$ would imply $\left(l_{2}, i_{1}\right) \in \widetilde{B}$, a contradiction. But if $\left(l_{1}, i_{1}\right) \notin B$, by $\left(\mathrm{b}_{2}\right)$ we conclude that $\left(i_{1}, l_{2}\right) \in \widetilde{B}$. Thus $(i, l) \in B$, and this proves that $B \in T R A^{*}$.

Clearly, the transformation of Q to \widetilde{Q} is polynomial and therefore \widetilde{Q} is $\mathcal{N P}$-complete.
The next theorem summarizes the results implied by the last two theorems together with Lemma (3.6) and Theorem (3.5).
(3.13) Theorem. Let $\mathcal{M}^{\prime} \in\left\{T R A^{*} \cap T O T^{*}, T R A \cap T O T^{*}, T R A^{*}, T R A\right\}$ and

$$
\mathcal{M} \in\left\{\mathcal{M}^{\prime}, \mathcal{M}^{\prime} \cap R E F\right\}
$$

Then the median problem $\operatorname{MP}(\mathcal{R}, \mathcal{M})$ is $\mathcal{N} P$-hard.

In Table 4 we give an overview of the obtained results. Each row of the table corresponds to a median problem $\operatorname{MP}(\mathcal{R}, \mathcal{M})$, where \mathcal{M} is the intersection of the sets specified by the boxes marked with heavy lines. The traced lines in the boxes corresponding to the column REF indicate that this property may be included or not, without changing the complexity status of the problem. In the cases indicated with " \dagger " we have shown that the restricted version $\operatorname{MP}(\mathcal{R}, \mathcal{M}, m)$ is also $\mathcal{N} P$-hard.

TABLE 4.

To close this section we present the $\mathcal{N P}$-completeness proof of the Restricted Clique Partitioning Problem, needed to prove Theorem (3.9). We shall base our proof on the transformation from the following well-known $\mathcal{N P}$-complete problem (cf. Garey,Johnson \& Stockmeyer [1976]) :

Simple Max-Cut Problem (SMCP)

Instance: Graph $G=[V, E]$, positive integer k.
Question: Does G have a cut of size at least k ?
(3.14) Theorem. The Restricted Clique Partitioning Problem (RCCP) is $\mathcal{N} \mathcal{P}$-complete.

Proof. [Transformation from the Simple Max-Cut Problem (SMCP)]
Let $G=[V, E]$ and k be given as an instance of SMCP, and assume that $|V|=n$. Let $G^{\prime}=\left[V^{\prime}, E^{\prime}\right]$ be a complete graph of order $3 n$ obtained from G by adding to it $2 n$ more
nodes and completing it with all the missing edges, which are not loops. Assume that $V^{\prime}:=V \cup X \cup Y$, where $|X|=|Y|=n$. Assign weights w_{e} to each edge $e \in E^{\prime}$ by setting

$$
w_{e}:=\left\{\begin{aligned}
1 & \text { if } \quad e \in E \cup(X: Y), \\
-1 & \text { if } \quad e \in(V: X \cup Y), \\
0 & \text { otherwise } ;
\end{aligned}\right.
$$

and let

$$
k^{\prime}:=|E|-k-n^{2} .
$$

We claim that G has a cut C with $|C| \geq k$ iff G^{\prime} has a clique partitioning A with $w(A) \leq k^{\prime}$.
a) Assume that $C=E\left(V_{1}: V \backslash V_{1}\right)$ is a cut in G with $|C| \geq k$, and let $V_{2}:=V \backslash V_{1}$. Then the edge set $A:=E^{\prime}\left(V_{1} \cup X\right) \cup E^{\prime}\left(V_{2} \cup Y\right)$ is a clique partitioning of G^{\prime} with

$$
\begin{aligned}
w(A) & =w\left(E^{\prime}\left(V_{1} \cup X\right)\right)+w\left(E^{\prime}\left(V_{2} \cup Y\right)\right) \\
& =-\left|\left(V_{1}: X\right)\right|-\left|\left(V_{2}: Y\right)\right|+|E \backslash C| \\
& =-n^{2}+|E|-|C| \leq-n^{2}+|E|-k=: k^{\prime} .
\end{aligned}
$$

b) Assume that G^{\prime} has a clique partitioning A with $w(A) \leq k^{\prime}$. We want to prove that G has a cut C with $|C| \geq k$. Let us assume for the moment that the following holds :
Claim 1: $\quad G^{\prime}$ has a clique partitioning A^{\prime} with $w\left(A^{\prime}\right) \leq k^{\prime}$ and $\mathcal{C}\left(A^{\prime}\right)=\left\{Q_{1}, Q_{2}\right\}$, where Q_{1} and Q_{2} are such that $V Q_{1}=X \cup V_{1}$ and $V Q_{2}=Y \cup V_{2}$ for some nonempty subsets V_{1} and V_{2} of V.

Note that, in this case, $w\left(A^{\prime}\right)=w\left(E Q_{1}\right)+w\left(E Q_{2}\right)=-n^{2}+\left|E\left(V_{1}\right)\right|+\left|E\left(V_{2}\right)\right|=$ $-n^{2}+|E|-\left|E\left(V_{1}: V_{2}\right)\right|$, and since $w\left(A^{\prime}\right) \leq k^{\prime}=-n^{2}+|E|-k$, it follows that $\mid E\left(V_{1}:\right.$ $\left.V_{2}\right) \mid \geq k$, and therefore $C:=E\left(V_{1}: V_{2}\right)$ defines the desired cut C in G.

Thus, in order to complete the proof it remains to be shown that Claim 1 holds. Before that, for notational convenience, let us give names to the different types of cliques we shall consider. According to its intersection with the sets V, X, Y, a clique $H=[V H, E H]$ may be of one of the following types (see Figure 5) :

Figure 5.

Type 1:
(X, V)-intersecting (if $V H \cap X \neq \emptyset, V H \cap V \neq \emptyset$ and $V H \cap Y=\emptyset$) or (Y, V)-intersecting (if $V H \cap Y \neq \emptyset, V H \cap V \neq \emptyset$ and $V H \cap X=\emptyset)$.
Type 2 :

$$
(X, Y, V) \text {-intersecting (if } V H \cap X \neq \emptyset, V H \cap Y \neq \emptyset \text { and } V H \cap V \neq \emptyset) .
$$

Type 3 :
V-included (if $\emptyset \neq V H \subseteq V$).
Type 4:
X-included (if $\emptyset \neq V H \subseteq X$) or $\quad Y$-included (if $\emptyset \neq V H \subseteq Y$).
Type 5:

$$
(X, Y) \text {-intersecting (if } V H \cap X \neq \emptyset, V H \cap Y \neq \emptyset \text { and } V H \cap V=\emptyset) \text {. }
$$

Note that according to the given definitions the desired clique partitioning A^{\prime} of Claim 1 must be such that $\mathcal{C}\left(A^{\prime}\right)=\left\{Q_{1}, Q_{2}\right\}$, where Q_{1} and Q_{2} are both of Type 1 .

For simplicity, we say that a clique partitioning A_{1} is better than a clique partitioning A_{2} if either $w\left(A_{1}\right)<w\left(A_{2}\right)$, or $w\left(A_{1}\right)=w\left(A_{2}\right)$ and $\left|\mathcal{C}\left(A_{1}\right)\right|<\left|\mathcal{C}\left(A_{2}\right)\right|$.

Since each clique partitioning A is bijectively associated with the clique set $\mathcal{C}(A)$, when we refer to a clique partitioning B obtained from A by replacing some of the cliques in $\mathcal{C}(A)$ with others, we are in fact defining how $\mathcal{C}(B)$ is constructed and therefore defining in this way the arc set B.

Now consider the following Claim 2 to be used in the proof of Claim 1.
Claim 2: Let Q be a clique partitioning of G^{\prime} and assume that $Q_{1}, \ldots, Q_{l}, l \geq 2$, are cliques in $\mathcal{C}(Q)$ all of which are (W, V)-intersecting, where $W=X$ or $W=Y$. Let $\alpha:=$ $\sum_{i=1}^{l}\left|V Q_{i} \cap W\right|$ and $\beta:=\sum_{i=1}^{l}\left|V Q_{i} \cap V\right|$. If $\alpha \geq \beta$, then the clique partitioning Q^{\prime} obtained from Q by replacing the cliques Q_{1}, \ldots, Q_{l} with the clique $G^{\prime}\left[V Q_{1} \cup \ldots \cup V Q_{l}\right]$ is such that $w\left(Q^{\prime}\right)<w(Q)$.

The proof of Claim 2 will be omitted as it can be obtained without any difficulty by induction on l. (For $l \geq 3$ prove that there exist two cliques Q_{i} and $Q_{j}, 1 \leq i<j \leq l$, such that $\left|\left(V Q_{i} \cup V Q_{j}\right) \cap W\right| \geq\left|\left(V Q_{i} \cup V Q_{j}\right) \cap V\right|$.)

Proof of Claim 1

Let \mathcal{A} be the set of the clique partitionings \tilde{A} of G with $w(\tilde{A}) \leq k$ and such that $\mathcal{C}(\tilde{A})$ contains the smallest number possible p of cliques of Type 2. Clearly, $\mathcal{A} \neq \emptyset$ and $p \geq 0$. Our aim is to prove first that $p=0$, and then show the existence of the desired clique partitioning A^{\prime}.

Let us start by assuming that $p \geq 1$. Now let \hat{A} be a best clique partitioning in \mathcal{A}, and let H_{1}, \ldots, H_{p}, be the cliques of Type 2 contained in $\mathcal{C}(\hat{A})$.

For $1 \leq i \leq p$ let

$$
\begin{array}{ll}
X_{i}:=V H_{i} \cap X, & x_{i}:=\left|X_{i}\right|, \\
Y_{i}:=V H_{i} \cap Y, & y_{i}:=\left|Y_{i}\right|, \\
V_{i}:=V H_{i} \cap V, & v_{i}:=\left|V_{i}\right| .
\end{array}
$$

Suppose $\mathcal{C}(\hat{A})$ contains a clique $H_{i}, 1 \leq i \leq p$, such that $v_{i} \leq x_{i}$. Then we can split H_{i} into a clique of Type $1, G^{\prime}\left[X_{i} \cup V_{i}\right]$, and a clique of Type $4, G^{\prime}\left[Y_{i}\right]$, obtaining this way a clique partitioning \tilde{A} with $w(\tilde{A}) \leq w(\hat{A})$ and with $\mathcal{C}(\tilde{A})$ containing $p-1$ cliques ot Type 2. Since this contradicts the choice of \hat{A}, we conclude that $v_{i}>x_{i}$ for $i=1, \ldots, p$.

By symmetry, we also conclude that $v_{i}>y_{i}$ for $i=1, \ldots, p$.
It is immediate that $\mathcal{C}(\hat{A})$ contains no (X, Y)-intersecting cliques. Otherwise, a better clique partitioning could be obtained from \hat{A} by replacing each (X, Y)-intersecting clique with 2 cliques, one being X-included and the other Y-included.

It is also easy to see that $\mathcal{C}(\hat{A})$ contains no X-included and no Y-included cliques. For, if H were an X-included clique in $\mathcal{C}(\hat{A})$ then by replacing the clique H_{1} with the clique $H_{1} \cup H$ we could obtain a better clique partitioning in \mathcal{A} (since $v_{1}>y_{1}$). By symmetry, the same holds with respect to Y-included cliques.

Since $\sum_{i=1}^{p} x_{i}<\sum_{i=1}^{p} v_{i} \leq n=|X|$ and $\sum_{i=1}^{p} y_{i}<|Y|$, then $\mathcal{C}(\hat{A})$ must contain (X, V) intersecting cliques, say $\widetilde{H}_{1}, \ldots, \widetilde{H}_{h}, h \geq 1$, and (Y, V)-intersecting cliques, say $\widetilde{Q}_{1}, \ldots, \widetilde{Q}_{q}$, $q \geq 1$.

Let $\alpha:=\bigcup_{i=1}^{h}\left(V \tilde{H}_{i} \cap X\right)$ and $\beta:=\bigcup_{i=1}^{h}\left(V \tilde{H}_{i} \cap V\right)$.
Since $\alpha \geq \beta$, if $h \geq 2$ then by Claim 2 the cliques $\widetilde{H}_{1}, \ldots, \widetilde{H}_{h}$ can be replaced with the clique $\bigcup_{i=1}^{h} \widetilde{H}_{i}$ yielding this way a better clique partitioning in \mathcal{A}. By symmetry, if $q \geq 2$ then a better clique partitioning can also be obtained. Thus, we conclude that $h=1$ and $q=1$, and for simplicity we let $H:=\widetilde{H}_{1}$ and $Q:=\widetilde{Q}_{1}$.

If $\mathcal{C}(\hat{A})$ contains V-included cliques, say $H_{1}^{\prime}, \ldots, H_{l}^{\prime}, l \geq 1$, then it is easy to see that these cliques can be combined with the clique H giving this way a better clique partitioning. It suffices to note that $|V H \cap X|>|V H \cap V|+\left|\bigcup_{i=1}^{l} V H_{i}^{\prime}\right|$.

Thus, we conclude that $\mathcal{C}(\hat{A})=\left\{H_{1}, \ldots, H_{p}\right\} \cup\{H, Q\}$.
Let $H_{X}:=V H \cap X, h_{X}:=\left|H_{X}\right| ; H_{V}:=V H \cap V, h_{V}:=\left|H_{V}\right| ; Q_{Y}:=V Q \cap Y$, $q_{Y}:=\left|Q_{Y}\right| ; Q_{V}:=V Q \cap V, q_{V}:=\left|Q_{V}\right|$. Note that $h_{X}>h_{V}$ and $q_{Y}>q_{V}$.

Let us now focus our attention on the cliques H, Q and H_{1}.

Figure 6.
Suppose $v_{1} \leq h_{V}+y_{1}$.
In this case, let \tilde{A} be the clique partitioning obtained from \hat{A} by splitting C_{1} into the new cliques $G^{\prime}\left[V H \cup X_{1}\right]$ and $G^{\prime}\left[V Q \cup Y_{1} \cup V_{1}\right]$, and preserving the (old) cliques H_{2}, \ldots, H_{p} (see Figure 6.a). Thus, $\mathcal{C}(\tilde{A})$ contains $p-1$ cliques of Type 2 and $w(\tilde{A})=$ $w(\hat{A})-x_{1} h_{V}-x_{1} y_{1}+x_{1} v_{1}-y_{1} q_{V}-v_{1} q_{Y}+\left|E\left(V_{1}: Q_{V}\right)\right| \leq w(\hat{A})-x_{1}\left(h_{V}+y_{1}-v_{1}\right)-$ $y_{1} q_{V}-v_{1}\left(q_{Y}-q_{V}\right)$.

Since $h_{V}+y_{1}-v_{1} \geq 0$ and $q_{Y}-q_{V}>0$ we conclude that $w(\tilde{A})<w(\hat{A}) \leq k^{\prime}$, and therefore we have a contradiction to the choice of \hat{A}.

Assume now that $v_{1}>h_{V}+y_{1}$.
In this case, let \tilde{A} be a clique partitioning obtained from \hat{A} by performing a splitting of C_{1}, symmetric to the previous one. That is, \tilde{A} consists of the new cliques $G^{\prime}\left[V H \cup X_{1} \cup V_{1}\right]$ and $G^{\prime}\left[V Q \cup Y_{1}\right]$, and the cliques H_{2}, \ldots, H_{p} (see Figure 6.b). Thus $\mathcal{C}(\tilde{A})$ contains $p-1$ cliques of Type 2 and

$$
\begin{aligned}
w(\tilde{A}) & \leq w(\hat{A})-y_{1} q_{V}-x_{1} y_{1}+y_{1} v_{1}-x_{1} h_{V}-v_{1} h_{X}+v_{1} h_{V} \\
& =w(\hat{A})-y_{1} q_{V}+y_{1}\left(v_{1}-x_{1}\right)+h_{V}\left(v_{1}-x_{1}\right)-v_{1} h_{X} \\
& =w(\hat{A})-y_{1} q_{V}+\left(y_{1}+h_{V}\right)\left(v_{1}-x_{1}\right)-v_{1} h_{X} .
\end{aligned}
$$

Since $y_{1}+h_{V}<v_{1}$ and $v_{1}>x_{1}$, it follows that

$$
w(\tilde{A})<w(\hat{A})-y_{1} q_{V}+v_{1}\left(v_{1}-x_{1}\right)-v_{1} h_{X} .
$$

Now using the fact that $h_{X}=n-\left(x_{1}+\ldots x_{p}\right)=\left(h_{V}+q_{V}+v_{1}+\ldots v_{p}\right)-\left(x_{1}+\ldots x_{p}\right)>$ $v_{1}-x_{1}$, we obtain that $w(\tilde{A})<w(\hat{A})$, again a contradiction to the choice of \hat{A}.

This completes the proof that $p=0$.
Now let us assume that A^{\prime} is a best clique partitioning in \mathcal{A} and that $\mathcal{C}\left(A^{\prime}\right)$ contains no cliques of Type 2.

It is immediate that $\mathcal{C}\left(A^{\prime}\right)$ must contain at least a clique of Type 1 ; otherwise we would have $w\left(A^{\prime}\right) \geq 0$ and therefore $w\left(A^{\prime}\right)>k^{\prime}$, a contradiction. Let Q_{1} be a clique of Type 1 contained in $\mathcal{C}\left(A^{\prime}\right)$, and assume w.l.o.g. that Q_{1} is (X, V)-intersecting.

Clearly, $\mathcal{C}\left(A^{\prime}\right)$ contains no (X, Y)-intersecting cliques. It is also immediate that $\mathcal{C}\left(A^{\prime}\right)$ contains no X-included cliques, since they could all be combined with Q_{1} giving this way a better clique partitioning.

If $\mathcal{C}\left(A^{\prime}\right)$ contains other (X, V)-intersecting different from Q_{1}, say H_{1}, \ldots, H_{h}, then by Claim 2, if we set $Q_{1}:=Q_{1} \cup H_{1} \cup \ldots \cup H_{h}$, then we obtain a better clique partitioning. Thus, we conclude that $\mathcal{C}\left(A^{\prime}\right)$ contains a unique (X, V)-intersecting.

If $\mathcal{C}\left({ }^{\prime}\right)$ contains a V-included clique, say H, then (since $\left.n=\left|V Q_{1} \cap X\right|>\left|V Q_{1} \cap V\right|\right)$ we can set $Q_{1}:=Q_{1} \cup H$ and obtain a better clique partitioning.

If $\mathcal{C}\left(A^{\prime}\right)$ contains no (Y, V)-intersecting cliques, then it consists of the clique $Q_{1}=$ $G^{\prime}[X \cup V]$ and some Y-included cliques, and therefore $w\left(A^{\prime}\right)=-n^{2}+|E|>k^{\prime}$, a contradiction. Thus, let Q_{2} be a (Y, V)-intersecting clique in $\mathcal{C}\left(A^{\prime}\right)$. If $\mathcal{C}\left(A^{\prime}\right)$ contains Y-included cliques and/or other (Y, V)-intersecting cliques, by performing analogous transformations to the ones we defined with respect to Q_{1}, we can construct a better clique partitioning. Hence, we conclude that Q_{2} is the unique (Y, V)-intersecting clique in $\mathcal{C}\left(A^{\prime}\right)$ and therefore, $\mathcal{C}\left(A^{\prime}\right)=\left\{Q_{1}, Q_{2}\right\}$ with Q_{1} and Q_{2} both of Type 1.

Thus, we have proved that Claim 1 holds, and therefore we have completed the proof of the theorem.

4. The case of restricted domains

In the preceding section we have proved the $\mathcal{N P}$-hardness of $\operatorname{MP}(\mathcal{R}, \mathcal{M})$ or $\operatorname{MP}(\mathcal{R}, \mathcal{M}, m)$ for certain subsets $\mathcal{M} \subset \mathcal{R}$. One may now ask whether the following special cases of these problems have also the same complexity: Instead of \mathcal{R} (an unrestricted domain of the relations in the profile Π), we may have that the given relations are endowed with some properties from P. In this case, instead of \mathcal{R}, we have a subset $\mathcal{M}^{\prime} \subset \mathcal{R}$ and we are lead to the problems $\operatorname{MP}\left(\mathcal{M}^{\prime}, \mathcal{M}\right)$ and $\operatorname{MP}\left(\mathcal{M}^{\prime}, \mathcal{M}, m\right)$ defined analogously. In other words, when we consider that the domain is \mathcal{R}, this means that we have no information about the properties of the input relations, and if specify a subset $\mathcal{M}^{\prime} \subset \mathcal{R}$ this means that the input relations are known to be in \mathcal{M}^{\prime} (they belong to a restricted domain).

When $\mathcal{M}^{\prime}=\mathcal{M}=\mathcal{L}$ (the given relations are linear orders and the objective relation is also a linear order), Orlin [1981] (in an unpublished manuscript) and Bartholdi, Tovey and Trick [1988] proved that $\operatorname{MP}(\mathcal{L}, \mathcal{L})$ is $\mathcal{N P}$-hard. Note that this implies that the more general problem $\operatorname{MP}(\mathcal{R}, \mathcal{L})$ is $\mathcal{N} \mathcal{P}$-hard, but not that $\operatorname{MP}(\mathcal{R}, \mathcal{L}, m)$ is $\mathcal{N} \mathcal{P}$-hard - the result
we have shown. So it remains now to settle whether $\operatorname{MP}(\mathcal{L}, \mathcal{L}, m)$ is $\mathcal{N} \mathcal{P}$-hard or not for a fixed $m \geq 2$.

Let us turn now to the case of equivalence relations. Krivánek and Morávek [1986] proved that $\operatorname{MP}(S Y M, \mathcal{E}, 1)$ is $\mathcal{N P}$-hard. This result yields as a corollary the fact that $\operatorname{MP}(\mathcal{R}, \mathcal{E}, m)$ is $\mathcal{N} \mathcal{P}$-hard (Theorem 3.9). Furthermore, from it one can also derive that $\operatorname{MP}(\mathcal{E}, \mathcal{E})$ is $\mathcal{N P}$-hard. The reduction given by Krivánek and Morávek is from a problem on hierarchical-tree clustering, whose $\mathcal{N P}$-completeness proof is very laborious. For the sake of completeness of the class of results covered in this paper we have included our weaker result. We should observe however, that in this case rather than the $\mathcal{N P}$-hardness of $\operatorname{MP}(\mathcal{R}, \mathcal{E}, m)$, the interest lies more on the Theorem 3.14 from which the result could be derived.

There remains a number of open problems concerning the computational complexity, status of $\operatorname{MP}\left(\mathcal{M}^{\prime}, \mathcal{M}, m\right)$ for some combinations of \mathcal{M} and \mathcal{M}^{\prime}. Let us recall that the problems we know to be $\mathcal{N P}$-hard are $\operatorname{MP}(\mathcal{R}, \mathcal{L}, m), \mathrm{MP}(\mathcal{R}, \mathcal{P}, m)$ for $m \geq 2$, and $\operatorname{MP}(\mathrm{SYM}, \mathcal{E}, m)$. It would certainly be interesting to establish the complexity of the problems: $\operatorname{MP}(\mathcal{T}, \mathcal{L}, m), \operatorname{MP}(\mathcal{L}, \mathcal{L}, m)$ and $\operatorname{MP}(\mathcal{E}, \mathcal{E}, m)$.

References

BARBUT, M.[1961], Médiane, distributivité, éloignement, reprod. 1980 in Mathématiques et Sciences Humaines 70, 5-31.

BARBUT, M. [1967], Médianes, Condorcet et Kendall, reprod. 1980 in Mathématiques et Sciences Humaines 69, 5-13.

BARTHÉLEMY, J.P.[1979], Caractérisations axiomatiques de la distance de la différence symétrique entre des relations binaires, Mathématiques et Sciences Humaines 67, 85 118.

BARTHÉLEMY, J.P.[1981], Trois propriètés de la médiane dans un treillis modulare, Mathématiques et Sciences Humaines 75, 89-91.

BARTHÉLEMY, J.P.[1988], Social welfare and aggregation procedures: combinatorial and algorithmic aspects, in: Applications of Combinatorics and Graph Theory to the Biological and Social Sciences.

BARTHÉLEMY, J.P., FLAMENT, C. and MONJARDET, B. [1982], Ordered Sets and Social Sciences, in: Ordered Sets (I. Rival, ed.), D. Reidl, Dordrech, 721-758.
BARTHÉLEMY, J.P., GUENOCHE, A. and HUDRY, O. [1988], Median linear orders: heuristics and a branch-and-bound algorithm, manuscript in preparation.

BARTHÉLEMY, J.P., LECLERC,B. and MONJARDET, B. [1986], On the use of ordered sets in problems of comparison and consensus classifications, Journal of Classification 3, 187-224.

BARTHÉLEMY, J.P. and MONJARDET, B. [1981], The median procedure in cluster analysis and social choice theory, Mathematical Social Sciences 1, 235-267.

BARTHÉLEMY, J.P. and MONJARDET, B. [1988], The median procedure in data analysis: new results and open problems, in: Classification and Related Methods of Data Analysis (H.H. Bock ed.) North Holland, Amsterdam, 309-916.

BARTHOLDI, J.J. III, TOVEY, C.A. and TRICK, M.A. [1988], Voting schemes for which it can be difficult to tell who won the election, Social Choice and Welfare.

BONDY,J.A. and MURTY, U.S.R. [1976], Graph Theory with Applications, Macmillan, London.

DAY, W.H.E. [1988], Consensus methods as tools for data analysis, in: Classification and Related Methods of Data Analysis (H.H. Bock ed.) North Holland, Amsterdam.

FISHBURN, P.C. [1977], Condorcet social choice functions, SIAM Journal of Applied Mathematics 33, 469-489.

GAREY, M.R. and JOHNSON, D.S. [1979], Computers and Intractability: A Guide to the Theory of NP-completeness, Freeeman, San Francisco, 1979.

GAREY, M.R. and JOHNSON, D.S. and STOCKMEYER, L. [1976], Some simplified NP-complete graph problems, Theoretical Computer Science 1, 237-267.

GRÖTSCHEL, M., JÜNGER, M. and REINELT, G. [1985], A cutting plane algorithm for the linear ordering problem, Operations Research, vol. 32 (6), 1195-1220.

GRÖTSCHEL, M. and WAKABAYASHI, Y. [1988], A cutting plane algorithm for a clustering problem, Mathematical Programming 45 (1), 59-96.

KARP, R.M. [1972], Reducibility among combinatorial problems, in: Complexity of Computer Computations (R.E. Miller and J.W. Thatcher eds.) Plenum Press, N.Y., 85 103.

KEMENY, J.G. [1959], Mathematics without numbers, Daedalus, 88, 577-591.
KŘIVÁNEK, M. and MORÁVEK, J. [1986], NP-hard problems in hierarchical-tree clustering, Acta Informatica 23, 311-323.

LECLERC, B. [1988a], Consensus Applications in the Social Sciences, in: Classification and Related Methods of Data Analysis (H.H. Bock ed.) North Holland, Amsterdam.

LECLERC, B. [1988b], Medians and majorities in semimodular lattices, Research Report C.A.M.S.- P.031, CAMS-EHESS, Paris.

MICHAUD, P. [1987], Condorcet - a man of the avant-garde, Applied stochastic models and data analysis, Vol.3, 179-189.

MIRKIN, B.G. [1974], The problems of approximation in space of relations and qualitative data analysis, Automatika i Telemechanica, translated in: Information and Remote Control 35 (9), 1424-1431.

MONJARDET, B. [1978], An axiomatic theory of tournament aggregation, Math. Oper. Research 3 (4), 334-951.

MONJARDET, B. [1980], Théorie et applications de la médiane dans les treillis distributifs finis, Annals of Discrete Math. 9, 87-91.

MONJARDET, B. [1987], Arrowian characterization of latticial federation consensus functions, Research report C.A.M.S. - P.030, CAMS-EHESS, Paris.

ORLIN, J.B. [1981], unpublihed manuscript.
RÉGNIER, S. [1965], Sur quelques aspects mathématiques des problèmes de classification automatique, I.C.C. Bulletin 4, 175-191, reprod. 1983 in Math. Sci. Hum. 82, 13-29.

REINELT, G. [1985], The linear ordering problem: algorithms and applications, Research and Exposition in Mathematics 8, Heldermann Verlag, Berlin.

WAKABAYASHI, Y. [1986], Aggregation of binary relations: algorithmic and polyhedral investigations, Thesis; Universität Augsburg, Germany.

YOUNG, H.P. [1988], Condorcet's theory of voting, to appear in American Political Science Review.

YOUNG, H.P. and LEVENGLICK, A. [1978], A consistent extension of Condorcet"s election principle, SIAM J. Appl. Math. 35, 285-300.

ZAHN, C.T. [1964], Approximating Symmetric Relations by Equivalence Relations, SIAM J. Appl. Math. 12, 840-847.

