
Takustr. 7
14195 Berlin

Germany
Zuse Institute Berlin

SEBASTIAN GÖTSCHEL1, MARTIN WEISER2

Lossy Compression for Large Scale
PDE Problems

1 0000-0003-0287-2120
2 0000-0002-1071-0044

ZIB Report 19-32 (June 2019)

https://orcid.org/0000-0003-0287-2120
https://orcid.org/0000-0002-1071-0044

Zuse Institute Berlin
Takustr. 7
14195 Berlin
Germany

Telephone: +49 30-84185-0
Telefax: +49 30-84185-125

E-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

bibliothek@zib.de
http://www.zib.de

Lossy Compression for Large Scale PDE

Problems

Sebastian Götschel1, Martin Weiser1

July 1, 2019

Abstract

Solvers for partial differential equations (PDE) are one of the corner-
stones of computational science. For large problems, they involve huge
amounts of data that needs to be stored and transmitted on all levels of
the memory hierarchy. Often, bandwidth is the limiting factor due to rel-
atively small arithmetic intensity, and increasingly so due to the growing
disparity between computing power and bandwidth. Consequently, data
compression techniques have been investigated and tailored towards the
specific requirements of PDE solvers during the last decades.

This paper surveys data compression challenges and corresponding so-
lution approaches for PDE problems, covering all levels of the memory
hierarchy from mass storage up to main memory. Exemplarily, we illus-
trate concepts at particular methods, and give references to alternatives.

Keywords: partial differential equation, data compression, floating
point compression, lossy compression
MSC 2010: 65-02, 65M60, 65N30, 68-02, 68P30

1 Introduction

Partial differential equations (PDEs) describe many phenomena mostly in the
natural sciences. Due to their broad spectrum of applications in physics, chem-
istry, biology, medicine, engineering, and economics, ranging from quantum
dynamics to cosmology, from cellular dynamics to surgery planning, and from
solid mechanics to weather prediction, solving PDEs is one of the corner stones
of modern science and economy. The analytic solution of PDEs in form of
explicit expressions or series representations is, however, only possible for the
most simplistic cases. Numerical simulation using finite element and finite vol-
ume methods [17, 66] approximates the solutions on spatio-temporal meshes,
and is responsible for a significant part of the computational load of compute
clusters and high performance computing facilities worldwide.

Achieving sufficient accuracy in large PDE systems and on complex geome-
tries often requires huge amounts of spatial degrees of freedom (up to 109) and
many time steps. Thus, numerical simulation algorithms produce large amounts

1Zuse Institute Berlin, Takustr. 7, 14195 Berlin, {goetschel,weiser}@zib.de

1

2

of data that need to be stored, at least temporarily, or transmitted to other com-
pute nodes running in parallel. Therefore, large scale simulations face two main
data-related challenges: communication bandwidth and storage capacity.

First, computing, measured in floating point operations per second (FLOPS),
is faster than data transfer, measured in bytes per second. The ratio has been
increasing for the last three decades, and continues to grow with each new CPU
and GPU generation. Today, the performance of PDE solvers is mostly lim-
ited by communication bandwidth, with the CPU kernels achieving only a tiny
fraction of their peak performance. This concerns the CPU-memory communi-
cation, the so-called “memory wall” [42, 43], as well as inter-node communica-
tion in large distributed systems [49], and popularized the “roofline model” as
a means to understand and interpret computer performance.

Second, storage capacity is usually a limited resource. Insufficient storage
capacity can affect simulations in two different aspects. If needed for conducting
the computation, it limits the size of problems that can be treated, and thus the
accuracy of the results. If needed for storing the results, it limits the number or
resolution of simulation results that can be used for later interpretation, again
affecting the accuracy of the conclusions drawn from the simulations.

1.1 Compression aspects of PDE applications

PDE solvers have a requirements profile for compression that differs in several
aspects from other widespread compression demands like text, image, video,
and audio compression.

The data to be compressed, mostly coefficient vectors representing, e.g., fi-
nite element functions, consists of floating point numbers. Usually, double pre-
cision is used in order to avoid excessive accumulation of rounding errors during
computation, even if the accuracy offered by 53 mantissa bits is not required
for representing the final result. Due to rounding errors, though, the less signif-
icant mantissa bits are essentially random, and incur a large entropy. Lossless
compression methods are, therefore, not able to achive substantial compression
rates. Lossy compression allows much higher compression rates, but requires
a careful selection of quantization error in order not to compromise the final
result of the computation. Fortunately, quantitative error estimates are often
available for rate-distortion optimization.

Compression plays different roles on all levels of the memory hierarchy, de-
pending on application, problem size, and computer architecture. Compression
of in-memory data aims at avoiding the “memory wall” and reducing the run
time of the simulation (see Sec. 2). The available bandwidth is quite high, even
if not sufficient for saturating the compute units. In order to observe an overall
speedup, the overhead of compression and decompression must be very small,
such that only rather simple compression schemes working on small chunks of
data can be employed.

In distributed systems, compression of inter-node communication can be
employed to mitigate the impact of limited network bandwidth on the run time
of simulations (see Sec. 3). The bandwidth of communication links is about an
order of magnitude below the memory bandwidth, and the messages exchanged
are significantly larger than the cache lines fetched from memory, such that
more sophisticated compression algorithms can be used.

3

Mass storage comes into play when computed solutions need to be stored for
archiving or later investigation. Here, data size reduction is of primal interest,
and not the run time reduction. Complex compression algorithms exploiting
correlations in large data sets can be employed (see Sec. 4).

General purpose floating point compression General purpose lossy com-
pression methods for floating point data are usable as black-box compressors.
However, as they cannot make use of the structure of data from specific appli-
cations, like finite element solutions on unstructured grids, they are typically
outperformed by specialized algorithms. For this reason, instead of giving a
more detailed overview, we briefly discuss two examples. For more details we
refer to the survey [28]. The fpzip algorithm based on [39] traverses floating
point data arrays in some specified order and predicts values based on a sub-
set of already encoded data. The least significant bits are truncated, reducing
the precision. Residuals are encoding by range coding [41]. More recently,
zfp1 [19, 37] was introduced, improving accuracy and throughput compared to
its predecessor fpzip. As fpzip and zfp assume the data to be on a regular
n-dimensional grid (n = 1, . . . , 4), exhibiting spatial correlation, they are not
entirely general purpose compressors. Other recent developments include [56],
who use a series of prediction formulas with adaptive error control, and evaluate
their methods on a various scientific data sets.

2 The memory wall

One of the most important properties of an algorithm determining its actual
performance is its arithmetic intensity, i.e., the number of floating point opera-
tions performed per byte that is read from or written to memory. With respect
to that quantity, the performance can be described by the roofline model [65]. It
includes two main bounds, the peak performance, and the peak memory band-
width, see Fig. 1. Most finite element solvers, in particular those working on
unstructured grids, make heavy use of sparse linear algebra, and are usually
memory bound.

Performance improvements can be obtained by increasing the memory band-
width, e.g., exploiting NUMA architectures or using data layouts favoring con-
tiguous access patterns, or by reducing the amount of data read from and written
to the memory, increasing the arithmetic intensity. Besides larger caches, data
compression is an effective means to reduce the memory traffic. Due to the
reduced total data size, it can also improve cache hit rates or postpone the need
for paging or out-of-core algorithms for larger problem instances.

While compression can reduce the memory traffic such that the algorithm be-
comes compute bound, the overhead of compression and decompression reduces
the budget available for payload flops. This is illustrated in Fig. 1. Sparse
matrix-vector products are usually memory bound with an arithmetic inten-
sity of less than 0.25 flops/byte. Data compression with different compression
schemes by a factor 8 (diamonds) or 16 (circles) increases the arithmetic in-
tensity and moves the computation to the peak floating point roofline. The
(de)compression overhead of one (diamonds) or three flops (circles), respectively,

1 https://computation.llnl.gov/projects/floating-point-compression

https://computation.llnl.gov/projects/floating-point-compression

4

peak floating-point performance

pe
ak

 m
em

ory
 ba

nd
widt

h

arithmetic intensity (flops/byte)

pe
rf

or
m

an
ce

 (
G

flo
ps

/s
)

1 2 4 81/21/4

1

2

3

4
GEMM

SpMV

SpMV
(compressed)

SpMV
(compressed
 + overhead)

Figure 1: Naive roofline model showing achievable performance vs. the arith-
metic intensity. Some computations, e.g., dense matrix-matrix multiplication
(GEMM), perform many flops per byte fetched or written to memory, such that
their execution speed is bounded by the peak floating point performance. Oth-
ers, such as sparse matrix-vector multiplication (SpMV), require many bytes to
be fetched from memory for each flop, and are therefore memory-bound (filled
diamonds). Data compression can reduce the amount of data to be read or
written, and therefore increase the arithmetic intensity (empty markers on top).
The computational overhead of compression and decompression can, however,
reduce the performance gain (empty markers bottom).

per payload flop reduces the performance delivered to the original computation.
Depending on the complexity of the compression scheme, and hence its com-
putational overhead, the resulting performance can even be worse than before.
This implies that for overcoming the memory wall, only very fast and therefore
rather simple compression schemes are beneficial.

2.1 Mixed-precision arithmetics

One particularly simple way of data compression is a simple truncation of man-
tissa and exponent bits, i.e., using IEEE 754 single precision (4 bytes) instead of
double precision (8 bytes) representations [1], or even the half precision format
(2 bytes) popularized by recent machine learning applications. Conversion be-
tween the different formats is done in hardware on current CPUs and integrated
into load/store operations, such that the compression overhead is minimal. Con-
sequently, using mixed precision arithmetics has been considered for a long time,
in particular in dense linear algebra [5] and iterative solvers [4, 34]. Depending
on the algorithm’s position in the roofline model, either the reduced memory
traffic (BLAS level 1/2) or the faster execution of lower precision floating point
operations (BLAS level 3) is made use of.

An important building block of solvers for elliptic PDEs of the type

−div(σ∇u) = f in Ω

nTσ∇u+ αu = β on ∂Ω

5

is the iterative solution of the sparse, positive definite, and ill-conditioned linear
equation systems Ax = b arising from finite element discretizations. For this
task, usually preconditioned conjugate gradient (CG) methods are employed,
often combining a multilevel preconditioner with a Jacobi smoother [17]. For
higher order finite elements, with polynomial ansatz order p > 2, the Jacobi
smoother quickly deteriorates. Then it needs to be replaced by an overlapping
block Jacobi smoother B, with the blocks consisting of all degrees of freedom
associated to cells around a grid vertex. Application of this smoother then
involves a large number of essentially dense matrix-vector multiplications of
moderate size:

B−1 =
∑
ξ∈N

PξA
−1
ξ PTξ

Here, N is the set of grid vertices, Aξ is the symmetric submatrix of A cor-
responding to the vertex ξ, and Pξ distributes the subvector entries into the
global vector. Application of this smoother dominates the solver run time, and
is strictly memory bound due to the large number of dense matrix-vector mul-
tiplications.

Compressed storage of A−1
ξ as Ã−1

ξ by using low precision representation
of its entries has been investigated in [52]. A detailed analysis reveals that
the impact on the preconditioner effectivity and hence the CG convergence is
determined by ‖A−1 − Ã−1‖. This suggests that a uniform quantization of
submatrix entries should be preferable in view of rate-distortion optimization.
Accordingly, fixed point representations have been considered as alternative
to low precision floating point representations. Moreover, the matrix entries
exhibit a certain degree of correlation, which can be exploited by dividing A−1

ξ

into quadratic blocks to be stored independently, and quantizing the difference
of entries c with respect to the block entries’ range [cmin, cmax] as

c 7→

{
b2k c−cmin

cmax−cmin
c, c < cmax

2k − 1, c = cmax.

Decompression can then be performed inline during application of the precon-
ditioner, i.e., during the matrix-vector products. The computational overhead
is sufficiently small as long as conversions between arithmetic data types is per-
formed in hardware, which restricts the possible compression factors to {2, 4, 8},
for which the speedup reaches almost the compression factor, see Fig. 2.

The theoretical error estimates together with typical condition numbers of
local matrices Aξ suggest that using a 16 bit fixed-point representation should
increase the number of CG iterations by not more than 10% due to precondi-
tioner degradation, up to an ansatz order p = 5. In fact, this is observed in
numerical experiments, leading to a speedup of preconditioner application by
a factor of up to 4. With moderate ansatz order p ≤ 6, even 8 bit fixed point
representations can be used, achieving a speedup of up to 6.

Similar results have been obtained for non-overlapping block-Jacobi pre-
conditioners for Krylov methods applied to general sparse systems [3] and for
substructuring domain decomposition methods [25].

We’d like to stress that the bandwidth reduction is the driving motivation
rather than the possible speedup due to faster single precision arithmetics, in
contrast to BLAS level 3 algorithms. Not only is the preconditioner applica-
tion memory bound and hence the data size the bottleneck, but there is also a

6

0

100

200

300

400

500

600

8 16 32 64 128 256

0
2
4
6
8

0

100

200

300

400

500

600

8 16 32 64 128 256

0
2
4
6
8

0

100

200

300

400

500

600

8 16 32 64 128 256

0
2
4
6
8

0

100

200

300

400

500

600

8 16 32 64 128 256

0
2
4
6
8

G
FL

O
P

S ga
in

gemv (n=2048)

block size m�

spmv (n=2048)

block size m�

tpsv (n=2048)

tpmv (n=2048)
FP11,52
FP8,23
FP8,7 (bfloat16)
fixed point 16 bit
fixed point 8 bit
gain over MKL
reference (FP11,52)

Figure 2: Run times of BLAS level 2 operations on 2048 × 2048-matrices for
overlapping Schwarz smoothers with mixed precision. Depending on the access
patterns, a speedup almost on par with compression factor can be achieved [52].

compelling mathematical reason for performing the actual computations in high
precision arithmetics: Storing the inverted submatrices A−1

ξ in low precision re-
sults in a valid, though less effective, symmetric positive definite preconditioner
as long as the individual submatrices remain positive definite. Performing the
dense matrix-vector products in low precision, however, will destroy the precon-
ditioner’s symmetry, and therefore leave the well-understood theory of subspace
correction methods.

2.2 Fixed-rate transform coding

For higher compression rates than achievable with reduced precision storage,
more sophisticated and computationally more expensive approaches are re-
quired. Competing aims are high compression rate, low computational over-
head, as well as transparent and random access. One particularly advanced
approach is transform coding on cartesian grids [36]. Such structured grids,
though restrictive, are used in those areas of scientific computing where no
complex geometries have to be respected and the limited locality of solution
features does not reward the overhead of local mesh refinement.

The straightforward memory layout of the data allows to consider tensor
blocks of values that are compressed jointly. For 3D grids, 4 × 4 × 4 blocks
appear to be a reasonable compromise between locality, necessary for random
access, and compression rate due to exploitation of spatial correlation. These
blocks are transformed by an orthogonal transform. While well-known block
transforms such as the discrete cosine transform [2] can be used, a special trans-
form with slightly higher decorrelation efficiency has been developed in [36].
Such orthogonal transforms can be applied efficiently by exploiting separabil-

7

ity and lifting scheme for factorization, i.e., applying 1D transforms in each
dimensions, and realizing these 1D transforms by a sequence of cheap in-place
modifications. This results in roughly 11 flops per coefficient. The transformed
coefficients are then coded bitplane by bitplane using group testing, similar to
set partitioning in hierarchical trees [50]. This embedded coding schemes allows
to decode data at variable bit rate, despite the fixed-rate compression enforced
by random access ability.

Despite a judicious choice of algorithm parameters, which allow an efficient
integer implementation of the transform using mainly bit shifts and additions,
the compression and decompression are heavily compute bound. The effective
single-core throughput, depending on the rate, is reported to lie around 400
MB/s, which is around a factor of ten below contemporary memory bandwidth.

In conclusion, simple and less effective compression schemes such as mixed
precision approaches appear to be today’s choice for addressing the memory
wall in PDE computations. Complex and more effective schemes are currently
of interest mainly to fit larger problems into a given memory budget. This is,
however, likely to change in future: As the hardware trend to more cores per
CPU socket continues, and thus the gap between computing performance and
memory bandwidth widens, higher complexity of in-memory compression will
pay off.

3 Communication in distributed systems

The second important setting in which data compression plays an increasingly
important role in PDE solvers is communication in distributed systems. The
ubiquitous approach for distribution is to partition the computational domain
into several subdomains, which are then distributed to the different compute
nodes. Due to locality of interaction in PDEs, communication happens at the
boundary shared by adjacent subdomains. A prime example are domain decom-
position solvers for elliptic problems [60].

The inter-node bandwidth in such systems ranges from around 5 GB/s per
link with high-performance interconnects such as InfiniBand down to shared 100
MB/s in clusters made of commodity hardware such as gigabit ethernet. This
is about one to two orders of magnitude below the memory bandwidth. Conse-
quently, distributed PDE solvers need to have a much higher arithmetic density
with respect to inter-node communication than with respect to memory access.
As the volume of subdomains with diameter h and hence the computational
work scales with hd in Rd but their surface and hence communication only with
hd−1, high arithmetic intensity can be achieved by using sufficiently large sub-
domains – which impedes on weak scaling and limits the possible parallelism.
Consequently, communication can become a severe bottleneck.

Data compression has been proposed for increasing the effective bandwidth.
Burtscher and Ratanaworabhan [11] consider lossless compression of floating
point data streams, focusing on high throughput due to low computational
overhead. Combining two predictors based on lookup tables trained online from
already seen data results in compression rates on par with other lossless floating
point compression schemes and general-purpose codes like GZIP, at a vastly
higher throughput. Being lossless and not exploiting the spatial correlation of
PDE solution values limits the compression rate, however, to values between

8

1.3 and 2.0, depending on the size of lookup tables. Filgueira et al. [22] present
a transparent compression layer for MPI communication, choosing adaptively
between different lossless compression schemes. Again, with low redundancy of
floating point data, as is characteristic for PDE coefficients, compression rates
below 2 are achieved.

Higher compression rates can only be achieved with lossy compression. In
contrast to in-memory compression, the inter-node communication bandwidth
is small enough to allow for adaptive selection of quantization tolerances based
on error estimators. Thus, error propagation analysis becomes important for
compression.

3.1 Inexact parallel-in-time integrators

One example is the communication of initial values in parallel-in-time integrators
for initial value problems u̇ = f(u), u(t0) = a, in particular of hybrid parareal
type [24]. Here, the initial value problem is interpreted as large equation system

F (U) =



a −u0(t0)
u̇0 − f(u0)
u0(t1) −u1(t1)

u̇1 − f(u1)
u1(t2) −u2(t2)

. . .


= 0

for a set U = (u0, . . . , uN) of subtrajectories un ∈ C1([tn, tn+1]) on a time
grid t0, t1, . . . , tN+1. Instead of the inherently sequential triangular solve, i.e.,
time stepping, the system is solved by a stationary iterative method with an
approximate solver S:

Uj+1 = Uj + S(F (Uj))

The advantage is, that a large part of the approximate solver S can be paral-
lelized. If the application of S is significantly faster than computing a single
subtrajectory up to discretization accuracy, reasonable parallel efficiencies above
0.5 can be achieved [21].

For a fast convergence, however, the terminal values un(tn+1) have to be
propagated sequentially as initial values of un+1(tn+1) over all subintervals dur-
ing each application of the approximate solver S. Thus, communication time
can significantly affect the overall solution time [23]. Compressed communica-
tion can therefore improve the time per iteration, but may also impede on the
convergence speed and increase the number of iterations. A judicious choice
of compression rate and distortion must rely on error estimates and run time
models.

The worst-case error analysis presented in [23] provides a bound of the type

‖Uj − U∗‖ ≤ cnj
(

1 + ∆C

1−∆C/ρ

)n+2

,

depending on the relative communication accuracy ∆C , the local contraction
rate ρ of S, and factors cnj independent of communication. This can be used
to compute an upper bound on the number J(∆C) of iterations in dependence
of the communication accuracy. The run time of the whole computation is

9

1e-2 1e-1 1e+0 1e+1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1e-11 1e-10 1e-9 1e-8 1e-7 1e-6 1e-5 1e-4 1e-3
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8E E

tC(1) TOL

compressed

uncompressed

compressed

uncompressed

Figure 3: Theoretically estimated parallel efficiency E = Tseq/(NTpar) for vari-
ation of different parameters around the nominal scenario (marked by *). Left:
varying communication bandwidth in terms of the communication time for un-
compressed data. Right: varying requested tolerance.

Tpar = N(tG + tC(∆C)) + J(∆C)(tG + tF), where tG is the time required for
the sequential part of S, tF for the parallel part, and tC the communication
time. Minimizing T can be used to optimize the compression scheme, as long as
the relation between ∆C and tC is known. For finite element coefficients, most
schemes will lead to tC ≈ −c log ∆C , where the constant c depends crucially on
the type of compression.

Variation of different parameters in this model around a nominal scenario of
contemporary compute clusters as shown in Fig. 3 suggest that in many current
HPC situations, the expected benefit for the run time is small. The pronounced
dependence on smaller bandwidth, however, makes this approach interesting
for growing imbalance of compute power and bandwidth. Situations where this
is already the case is in compute clusters with commodity network hardware
and HPC systems where the communication network is nearly saturated due to
concurrent communication going on.

Indeed, using the cheap transform coding discussed in Sec. 3.2 below, over-
all run time reduction by 10% has been observed on contemporary compute
clusters.

3.2 Transform coding on unstructured grids

Due to the larger gap between computing power and bandwidth, transform
coding is more attractive for compressing communication in distributed systems
than for in-memory compression. While for some computations the method
from [36] can be used, many finite element computations are performed on
unstructured grids that do not exhibit the regular tensor structure exploited for
designing an orthogonal transform.

An unstructured conforming simplicial grid covers the computational domain
Ω ⊂ Rd with non-overlapping simplices Ti ∈ T , the corners of which meet in
the grid vertices N = {xi | i = 1, . . . ,m}, see Fig. 10 for a 2D example. The
simplest finite element discretization is then with piecewise linear functions, i.e.,
the solution is sought in the ansatz space Vh = {u ∈ C0(Ω) | ∀T ∈ T : u|T ∈ P1}.

10

nodal basis hierarchical basis

Figure 4: Representation of 1D linear finite element functions uh in nodal and
hierarchical basis.

The ubiquitous basis for Vh is the nodal basis (ϕi)i=1,...,m with the Lagrangian
interpolation property ϕi(xj) = δij , which makes all computations local and
leads to sparse matrices.

The drawback of the nodal basis is, that elliptic systems then lead to ill-
conditioned matrices and slow convergence of Krylov methods. Many finite
element codes therefore use hierarchies of `+1 nested grids for efficient multilevel
solvers [17]. The restriction and prolongation operators implemented for those
solvers realize a frequency decomposition of the solution

uh =
∑̀
l=0

uhl
,

see Fig. 4 for a 1D illustration. Using the necessary subset of the nodal basis on
grid level l for representing uhl

leads to the hierarchical basis. This hierarchical
basis transform allows an efficient in-place computation of optimal complexity
and with low overhead, and is readily available in many FE codes. The trans-
formed coefficients can then be quantized according to the required accuracy
and entropy coded, e.g., using a range coder [41]. Typically, this transform
coding scheme takes much less than 5% of the iterative solution time.

A priori error estimates for compression rates and induced distortion can be
derived for functions in Lebesgue or Sobolev spaces. The analysis in [64] shows
that asymptotically 2.96 bits/value (in 2D, compression factor 21.6 compared
to double precision) are sufficient to achieve a reconstruction error equal to L∞-
interpolation error bounds for functions with sufficient regularity, as is common
in elliptic and parabolic equations. In 3D, the compression factor is slightly
higher, see Fig. 5.

Error metrics. An important aspect of the transform coding design is the
norm in which to measure compression errors. While in some applications point-
wise error bounds are important and the L∞-norm is appropriate, other appli-
cations have different requirements. E.g., if the inexact parallel-in-time method
sketched above is applied to parabolic equations, spatially high-frequent error
components are quickly damped out. There, the appropriate measure of error
is the H−1-norm.

11

0.01

0.1

1

10

100

5 10 15 20 25 30 35

p
er

ce
n
ta

ge
of

F
E

in
te

rp
ol

at
io

n
er

ro
r

(L
∞

)

compression factor

2D
3D

Figure 5: Error vs. compression factor: a-priori estimates for transform coding
of finite element functions with hierarchical basis transform.

Nearly optimal compression rates for given H−1-distortion can be achieved
by replacing the hierarchical basis transform by a wavelet transform, which
can efficiently be realized by lifting [55] on unstructured mesh hierarchies.
Level-dependent quantization can be used for near-optimal compression rates
matching a prescribed reconstruction error in Hs. Rigorous theoretical norm-
equivalence results are available for |s| < 3/2 with a rather sophisticated con-
struction [54]. A simpler finite element wavelet construction yields norm equiv-
alences for −0.114 < s < 3/2 [13], but in numerical practice it works perfectly
well also for s = −1.

Figure 6 shows the quantization errors for the 2D test function f(x) =
sin(12(x0− 0.5)(x1− 0.5)) on a uniform mesh of 16 641 nodes, with a grid hier-
archy of seven levels. Using a wavelet transform almost doubles the compression
factor here, while keeping the same H−1 error bound as the hierarchical basis
transform [26].

A closely related aspect is the order of quantization and transform. In the
considerations above, a transform-then-quantize approach has been assumed.
An alternative is the quantize-then-transform sequence, which then employs an
integer transform. It allows to guarantee strict pointwise reconstruction error
bounds directly, and is therefore closely linked to L∞ error concepts. In contrast,
quantization errors of several hierarchical basis or wavelet coefficients affect a
single point, i.e., a single nodal basis coefficient. The drawback of quantize-then-
transform is that the quantization step shifts energy from low-frequent levels to
high-frequent levels, leading to less efficient decorrelation if error bounds in
Sobolev spaces are important.

12

Figure 6: Comparison of quantization errors yielding the same H−1 error. Left:
hierarchical basis. Right: wavelets.

Adaptive grid refinement. PDE solutions often exhibit spatially local fea-
tures, e.g., corner singularities or moving fronts, which need to be resolved with
small mesh width. Uniform grids with small mesh width lead to huge numbers
of degrees of freedom, and therefore waste effort in regions where the solution is
smooth. Adaptive mesh refinement, based on error estimators and local mesh
refinement has been established as an efficient means to reduce problem size
and solution time, cf. [17].

Of course, a coarser discretization implies the storage of fewer coefficients,
and is therefore, compared to uniform fine grids, also a method for lossy data
compression. This has been explicitly exploited by Solin and Andrs [53] for
image compression by adaptive mesh refinement.

Interestingly, even though adaptive mesh refinement and hierarchical trans-
form coding both compete for the same spatial correlation of data, i.e., smooth-
ness of functions to compress, their combination can achieve better compression
rates for a given distortion than each of the approaches alone. A simple ex-
ample is shown in Fig. 7 with compression rates given in Tab. 1. Using both,
adaptive mesh refinement and transform coding, does not yield the product of
individual compression factors, which tells that there is in fact some overlap
and competition for the same correlation budget. Nevertheless, it shows that
even on adaptively refined grids there is a significant potential for data com-
pression. The compression rate of adaptive mesh refinement as given in Tab. 1
is, however, somewhat too optimistic, since it only counts the number of co-
efficient to be stored. For reconstruction the mesh has to be stored as well.
Fortunately, knowledge about the mesh refinement algorithm can be used for
extremely efficient compression of the mesh structure [29].

Another reason why adaptive mesh refinement and transform coding can be
combined effectively for higher compression rates, is that the accuracy require-
ments for the mesh refinement and the solution storage can be very different.
Thus, one approach may need to retain information that the other can safely ne-
glect, allowing the latter to achieve additional compression on top of the former.
E.g., in time-dependent problems, the mesh refinement affects the accuracy of
all future time steps, whereas the solution storage for later postprocessing af-
fects only one time step. A further example is adjoint gradient computation as

13

Figure 7: Left: highly local peak function. Right: adaptively refined mesh with
4,237 vertices for minimal finite element interpolation error. A uniform grid
with the same local resolution has 263,169 vertices.

discussed in Sec. 4.1 below.

4 Mass storage

The third level in compression hierarchy is mass storage. Often, single hard disks
or complete storage systems are again slower than inter-node communication
links in distributed memory systems. The significantly higher flops/byte ratio
makes more sophisticated and more effective compression schemes attractive,
and in particular allows to employ a posteriori error estimators for a better
control of the quantization tolerance. These schemes are necessarily application-
specific, since they need to predict error transport into the final result, and to
anticipate the intended use of reconstructions as well as the required accuracy.
Examples are adjoint gradient computation in PDE-constrained optimization
problems (Sec. 4.1) and checkpoint/restart for fault tolerance (Sec. 4.2).

In the extreme case, the size of the data to store is the limiting factor, and
to a large extent independent of the compression effort. This is typically the
case in solution archiving (Sec. 4.3).

4.1 Adjoint solutions

Adjoint, or dual, equations are important in PDE-constrained optimization
problems, e.g., optimal control in electrophysiology [27] or inverse problems [9,
38], and goal-oriented error estimation [46]. Consider the abstract variational
problem

find x ∈ X such that c(x;ϕ) = 0 ∀ϕ ∈ Φ, (1)

double transform coding

uniform 1 54
adaptive 62 744

Table 1: Compression factors for adaptive mesh refinement and transform cod-
ing of the peak function shown in Fig. 7.

14

for a differentiable semilinear form c : X ×Φ→ Z with suitable function spaces
X,Φ, Z. Let further be given a functional J : X → R. During the numeri-
cal solution, eq. (1) is typically only fulfilled up to a nonzero residual r, i.e.,
c(x;ϕ) = r. Naturally the question arises, how the residual r influences the
evaluation of J . For instationary PDEs, answering this question leads to solv-
ing an adjoint equation backwards-in-time. As the adjoint operator and/or
right-hand sides depend on the solution x, storage of the complete trajectory is
needed, thus requiring techniques to reduce the enormous storage demand for
large-scale, real-life applications. We note in passing, that, obviously, compres-
sion is not only useful for storage on disk, but can also be used in-memory, thus
allowing to keep more data in RAM and potentially avoid disk access.

Lossy compression for computing adjoints can be done using transform cod-
ing as discussed in Sec. 3.2. In addition to the spatial smoothness, correlations
in time can be exploited for compression. Since the stored values are only ac-
cessed backwards in time, delta encoding can be used. Here, only the quantized
coefficients at the final time are fully stored, encoding the difference to the next
time point at other times. This can be efficiently implemented, requiring only
to keep one additional time step in memory. Instead of predicting values as
constant, linear or even higher order prediction in time can be used as well.
Even the most simple delta encoding can significantly increase – in some cases
double – the compression factor at very small computational cost. For more
details and numerical examples we refer to [28,64].

Before presenting examples using lossy compression for PDE-constrained
optimization and goal-oriented error estimation, let us briefly mention so-called
checkpointing methods for data reduction in adjoint computations, first intro-
duced by Volin and Ostrovskii [61], and Griewank [32]. Instead of keeping
track of the whole forward trajectory, only the solution at some intermediate
timesteps is stored. During the integration of the adjoint equation, the required
states are re-computed, starting from the snapshots, see, e.g., [33] for details.
This increases the computational cost, for typical settings (compression factors
around 20) by two to four additional solves of the primal PDE. Moreover, due
to multiple read- and write-accesses of checkpoints during the re-computations
for the adjoint equation, the reduction in memory bandwidth requirements is
significantly smaller. We refer the reader to [28] for a more detailed discussion
and additional references.

PDE-constrained optimization. For PDE-constrained optimization, typi-
cally X = Y × U, x = (y, u) in the abstract problem (1), where the influence of
the control u on the state y is given by the PDE. Here, J is the cost functional to
be minimized, e.g., penalizing the deviation of y from some desired state. Espe-
cially in time-dependent problems, often the reduced form is considered: there,
the PDE (1) is used to compute for a given control u the associated (locally)
unique solution y = y(u). With only the control remaining as the optimization
variable, the reduced problem reads minu j(u), with j(u) := J(y(u), u). Com-
putation of the reduced gradient then leads to the adjoint equation for p ∈ Z?

c?y(p; (y, u), ϕ) = −Jy((y, u), ϕ),

where ? denotes the dual operator/dual function spaces, and cy, Jy are the
derivatives of c(y, u;ϕ), J(y, u) with respect to the y-component.

15

Exemplarily, we consider optimal control of the monodomain equations on
a simple 2D unit square domain Ω. This system describes the electrical activity
of the heart and consists of a parabolic PDE for the transmembrane voltage v,
coupled to pointwise ODEs for the gating variable w,

vt = ∇ · σ∇v − Iion(v, w) + Ie in Ω× (0, T)

wt = G(v, w) in Ω× (0, T),
(2)

with

Iion(v, w) = gv
(
1− v

vth

)(
1− v

vp

)
+ η1vw

G(v, w) = η2

(v
vp
− η3w

)
and homogeneous Neumann boundary conditions. In this 2D model σ : R2 →
R2×2 and g, ηi, vp, vth ∈ R+ are given parameters (see, e.g., [14]). For the opti-
mal control problem an initial excitation in some subdomain Ωexi is prescribed.
The external current stimulus Ie(x, t) = χΩc

(x)u(t), where the control u is spa-
tially constant on a control domain Ωc. Defining some observation domain Ωobs,
the objective functional is given by

J(y, u) =
1

2
‖v‖2L2(Ωobs×(0,T)) +

α

2
‖u‖2L2(0,T) , (3)

i.e., we aim at damping out the excitation wave. We use T = 4, and α =
3 · 10−6; for details, see [45]. Solution of the optimization problem with inexact
Newton-CG methods and lossy compression is investigated in [27, 30]; here we
use the BFGS-quasi-Newton method (e.g., [10, 15]). For time discretization we
use a linearly implicit Euler method with fixed timestep size dt = 0.04. Spatial
adaptivity is performed individually for state and adjoint using the hierarchical
DLY error estimator [16], with a restriction to at most 25 000 vertices in space.
The adaptively refines grids were stored using the methods from [62], which
reduced the storage space for the mesh to less than 1 bit/vertex (see [28]).

Lossy compression of state values for adjoint gradient computation results
in inexact quasi-Newton updates. Error analysis [26] shows that BFGS with
inexact gradients converges linearly, if the gradient error eg in each step fulfills

‖eg‖ ≤
ε

κ(B)1/2
‖g̃‖ (4)

for ε < 1
2 . Here, κ(B) is the condition number of the approximate Hessian B,

and g̃ denotes the inexactly computed gradient.
Figure 8 shows the progress of the optimization method. For trajectory

compression, different fixed as well as the adaptively chosen quantization tol-
erances were used. We estimate the spatial discretization error in the reduced
gradient by using a solution on a finer mesh as a reference. Up to discretization
error accuracy, lossy compression has no significant impact on the optimization
progress. The adaptively chosen quantization tolerances for the state values
are shown in Figure 9. In the first iteration, a user-prescribed tolerance was
used. The estimated condition number of the reduced Hessian varies between
200–230. We note that the adaptively chosen tolerances are too restrictive due
to overestimation of the error in the worst case error estimates, and the fixed
tolerance for the discretization.

16

0.0001

0.001

0.01

0.1

1

0 2 4 6 8 10 12

‖j̃
′ (
u

)‖
L

2
(0
,T

)

iteration

reference
adaptive

factor 27.5
factor 38

Figure 8: Optimization progress of BFGS for the monodomain example (2),
(3), using different quantization tolerances for the state trajectory. No delta-
encoding between timesteps was used. The horizontal line shows the approxi-
mate discretization error of the reduced gradient. See also [28].

Goal-oriented error estimation. For goal-oriented adaptivity, we consider
solving the PDE (1) by a Galerkin approximation,

find xh ∈ Xh such that c(xh;ϕh) = 0 ∀ϕh ∈ Φh,

with suitable finite dimensional subspaces Xh ⊂ X,Φh ⊂ Φ, Zh ⊂ Z. Here
the functional J measures some quantity of interest, e.g., the average of the
solution, or in case of optimal control problems the objective functional, with
the aim that

|J(xh)− J(x)| ≤ ε.

The dual weighted residual (DWR) method [7,8] now seeks to refine the approx-
imation (typically the finite element mesh used to discretize the PDE in space)
by weighting (local) residuals with information about their global influence on
the goal functional J [48]. These weights are computed by the dual problem

find p ∈ Z? such that c?x(p;x, ϕ) = Jx(x, ϕ) ∀ϕ ∈ Φ?.

The effect of compression on error estimation is illustrated in Fig. 10. For
simplicity we use a linear-quadratic elliptic optimal control problem here (ex-
ample 3b in [63]), with the objective functional as goal functional. Extension to
time-dependent problems using the method of time layers (Rothe method) for
time discretization is straightforward. Meshes were generated using weights
according to Weiser [63] for estimating the error in the reduced functional
J(y(uh), uh) − J(ȳ, ū), as well as due to Becker et al. [7] for the all-at-once
error J(yh, uh) − J(ȳ, ū). The compression tolerance was chosen such that the
error estimation is barely influenced, resulting in only slightly different meshes.

17

1e-05

0.0001

0.001

0.01

0.1

0 2 4 6 8 10 12

δ

iteration

18.2

21.3

9.5 9.4 9.0

5.6

4.7

5.1

3.4

4.1
3.7

Figure 9: Adaptively chosen quantization tolerances δ and corresponding com-
pression factors for the monodomain example (2), (3) using BFGS. The rel-
atively small adaptive compression factors are due to using worst case error
estimates in (4), as well as a fixed maximum mesh size.

For the final refinement step, i.e., on the finest mesh, compression resulted in
data reduction by a factor of 32. Instead of the ad-hoc choice of compression
tolerances, a thorough analysis of the influence of compression error on the error
estimators is desirable; this is, however, left for future work.

4.2 Checkpoint/restart

In exa-scale HPC systems, node failure will be a common event. Checkpoint/re-
start is thus mandatory, but snapshotting for fault tolerance is increasingly ex-
pensive due to checkpoint sizes. Application-based checkpointing aims at reduc-
ing the overhead by optimizing snapshot times, i.e., when to write a checkpoint,
and what to write, i.e., store only information that cannot be re-computed in a
reasonable amount of time. Moreover, information should only be stored with
required accuracy, which might be significantly smaller than double precision
values.

Lossy compression for fault-tolerant iterative methods to solve large-scale
linear systems is discussed by Tao et al. [57]. They derive a model for the com-
putational overhead of checkpointing both with and without lossy compression,
and analyze the impact of lossy checkpointing. Numerical experiments demon-
strate that their lossy checkpointing method can significantly reduce the fault
tolerance overhead for Jacobi, GMRES, and CG methods.

Calhoun et al. [12] investigate using lossy compression to reduce checkpoint
sizes for time stepping codes for PDE simulations. For choosing the compression
tolerance they aim at an error less than the simulation’s discretization error,

18

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

 100 1000 10000

e
rr

o
r

degrees of freedom

bkr est
ws est

bkr est comp
ws est comp

Figure 10: Goal-oriented error estimation: generated meshes with (left) and
without (middle) compression (with compression factor up to 32) for example
3b in [63]. Meshes were generated using weights according to Weiser [63]. Esti-
mated errors (right) are shown for weights due [63] (ws) and to Becker et al. [7]
(bkr), both with and without compression.

which is estimated a priori using information about the mesh width of the space
discretization and order of the numerical methods. Compression is performed
using SZ [18,56]. Numerical experiments for two model problems (1D-heat and
1D-advection equations) and two HPC applications (2D Euler equations with
PlacComCM, a multiphysics plasma combustion code, and 3D Navier-Stokes
flow with the code Nek5000) demonstrate that restart from lossy compressed
checkpoints does not significantly impact the simulation, but reduces checkpoint
time.

For a parallel-in-time simulation application (see Sec. 3.1) and using the
notation in Tab. 2, we derive a simple model relating probability of failure and
checkpoint times to the overall runtime of the application, T = TC + nTCP +
TRSNRS. Note that the time for actual computation TC depends on the number
of cores used. With time for restart TRS = 1

2
T
n + TR consisting of the average

required re-computation from the last written checkpoint to the time of failure
and time to recover data structures, and NRS = pRSTN , the overall runtime is
given as

T (n) =
n
(
b−

√
b2 − 2

npRSN(TC + nTCP)
)

pRSN
,

n number of checkpoints TC time for actual computation
N number of nodes TCP time to write/read a checkpoint
pRS probability of failure TDS time to recover data structures

per unit time and node TR recovery time = TCP + TDS

NRS number of restarts TRS time for restart
T overall runtime (wall clock)

Table 2: Notation used for optimal checkpointing.

19

0 10 20 30

checkpoints

110000

120000

130000

to
ta
l
ru
nt
im

e

25000 50000 75000 100000

computation time

50000

100000

150000

200000

to
ta
l
ru
nt
im

e

25000 50000 75000 100000
computation time

50000

100000

150000

200000

to
ta

l
ru

nt
im

e

1
4TCPW TCPW 4TCPW

Figure 11: Influence of TCP. Left: overall runtime vs. number of checkpoints
for N = 4 and TC = 100000s. Right: overall runtime vs. actual computation
time for N = 100. In both cases pRS = 7.74 · 10−7, TCP = 245.583s and
TR = 545.583s were used. The parameters were estimated for the parallel-
in-time solution of a 3D heat equation on the HLRN-III Cray XC30/XC40
supercomputer (www.hlrn.de).

with b := 1− TRpRSN . For the existence of a real solution the condition

b2 ≥ 2

n
pRSN(TC + nTCP) =

2

n
pRSNTc + 2pRSNTCP

has to be satisfied. Given parameters of the HPC system and the application, an
optimal number of checkpoints can be determined by solving the optimization
problem

min
n
T (n).

This can be done analytically, yielding

nopt =
TC
(
2pRS N TCP + b

√
2pRS N TCP

)
2TCP (b2 − 2N pRS TCP)

.

In this model the only influence of lossy compression is given by the time to
read/write checkpoints and to recover data structures. While a simple model
for time to checkpoint is given, e.g., in [12], here we just exemplarily show
the influence in Fig. 11. Reducing checkpoint size by lossy compression, thus
reducing TCP, TDS has a small but noticeable effect on the overall runtime. Note
that this model neglects the impact of inexact checkpoints on the re-computation
time, which might increase, e.g., due to iterative methods requiring additional
steps to reduce the compression error. For iterative linear solvers this is done
in [57]; a thorough analysis for the example of parallel-in-time simulation with
hybrid parareal methods can be done along the lines of [23].

www.hlrn.de

20

4.3 Postprocessing and archiving

Storage and postprocessing of results from large-scale simulations require tech-
niques to efficiently handle the vast amount of data. Assuming that compu-
tation requires higher accuracy than needed for postprocessing (due to, e.g.,
error propagation and accumulation over time steps), lossy compression will be
beneficial here as well. In the following, we briefly present examples from three
application areas.

Crash simulation. Simulation is a standard tool in the automotive industry,
e.g., for the simulation of crash tests. For archiving data generated by the
most commonly used crash simulation programs, the lossy compression code
FEMzip2 [59] achieves compression factors of 10–20 [44,58], obviously depending
on the prescribed error tolerance. More recently, correlations between different
simulation results were exploited by using a predictive principal component
analysis to further increase the compression rate, reporting an increase by a
factor of 4.4 for a set of 14 simulation results [44].

Weather and climate. Today, prediction of weather and climate is one major
use of supercomputing facilities, with tremendous amount of data to be stored3.
Thus, using compression on the whole I/O system (main memory, communi-
cation, storage) can significantly performance [35]. Typically, ensemble simu-
lations are used, allowing to exploit correlations. Three different approaches
are investigated in [20]. The most successful one takes forecast uncertainties
into account, such that higher precision is provided for less uncertain variables.
Naturally, applying data compression should not introduce artifacts, or change,
e.g., statistics of the outputs of weather and climate models. The impact of
lossy compression on several postprocessing tasks is investigated in [6], e.g.,
whether artifacts due to lossy compression can be distinguished from the inher-
ent variability of climate and weather simulation data. Here, avoiding smooth-
ing of the data due to compression via transform coding can be important,
favouring quantize-then-transform methods or simpler truncation approaches
like fpzip [39].

Computational fluid dynamics. Solution statistics of turbulent flow are
used in [47] to assess error tolerances for lossy compression. Data reduction
is performed by spatial transform coding with the Discrete Legendre Trans-
form [40], which matches the spectral discretization on quadrilateral grids. For
turbulence statistics of turbulent flow through a pipe, they report a reduction
of 98% for an admissible L2 error level of 1%, which is the order of the typi-
cal statistical uncertainty in the evaluation of turbulence quantities from direct
numerical simulation data [47].

For illustration, we consider laminar flow around a circular obstacle in a
rectangular domain of 6× 12m at Reynolds number Re = 100, a test case along
the lines of the unsteady 2D benchmark problem from [51]. The Navier-Stokes
equations are numerically solved using the finite element toolbox Kaskade 7 [31].

2https://www.sidact.com/femzip0.html; FEMzip is a registered trademark of
Fraunhofer Gesellschaft, Munich.

3In 2017, ECMWF’s data archive grew by about 233 TB per day https://www.ecmwf.
int/en/computing/our-facilities/data-handling-system [20].

https://www.sidact.com/femzip0.html
https://www.ecmwf.int/en/computing/our-facilities/data-handling-system
https://www.ecmwf.int/en/computing/our-facilities/data-handling-system

21

Figure 12: Left: Reconstructed velocity magnitude of the flow at t = 2.5s, com-
pression factor 11 (color coding: blue 0m/s to red 2m/s). Right: compression
error (range 0 to 10−4m/s). Only the left half of the computational domain is
shown.

For space discretization, Taylor-Hood elements (quadratic for velocities u, v and
linear for pressure p) are used on a triangular mesh consisting of nearly 120 000
cells. In time, a linearly implicit Euler method with stepsize 0.0025s is used.
Inflow condition on the left boundary is a parabolic velocity profile, which is
scaled linearly from zero until a maximum of u = 1.5m/s, v = 0 is reached at
t = 1s. On the top and bottom boundary, no-slip conditions u = v = 0, on the
right p = 0 are prescribed.

The data has been compressed using the hierarchical basis transform coding
described in Sec. 3.2. Fig. 12 shows the reconstruction at t = 2.5s from com-
pressed storage with compression factor 11 (compression tolerance: absolute
error 10−4, leading to a relative error of 5 · 10−5), as well as a plot of the com-
pression error. Here, no difference between reconstructed and original solution
is noticeable.

5 Conclusions

Data compression methods are valuable tools for accelerating PDE solvers, ad-
dressing larger problems, or archiving computed solutions. Due to floating-point
data to be compressed, only lossy compression can be expected to achieve rea-
sonable compression rates – which matches perfectly with the fact that PDE
solvers incur discretization and truncation errors. An important aspect is to
model and predict the impact of quantization errors on the ultimate use of the
computed data, in order to be able to achieve high compression rates while
meeting the accuracy requirements. This, in turn, calls for problem-specific
approaches.

Utility and complexity of such methods are largely dictated by their position
in the memory hierarchy. Sophisticated compression schemes are available and
regularly used for reducing the required storage capacity when archiving solu-
tions. On the other hand, accelerating PDE solvers by data compression is still
in the active research phase, facing the challenge that computational overhead
for compression can thwart performance gains due to reduced data transmis-
sion time. Thus, simpler compression schemes dominate, in particular when

22

addressing the memory wall. Consequently, only a moderate but nevertheless
consistent benefit of compression has been shown in the literature.

The trend of growing disparity between computing power and bandwidth,
which could be observed during the last three decades and will persist for the
foreseeable future of hardware development, makes data compression methods
more important over time. Thus, we can expect to see a growing need for data
compression in PDE solvers in the next years.

Acknowledgements. This work has been partially supported by the German
Ministry for Eduction and Research (BMBF) under project grant 01IH16005
(HighPerMeshes). We thank Florian Wende for implementing mixed-precision
preconditioners, Alexander Kammeyer for implementation and testing of check-
point/restart, and Thomas Steinke for many helpful discussions.

References

[1] 754-2008 – IEEE standard for floating-point arithmetic. IEEE, 2008.

[2] N. Ahmed, T. Natarajan, and K. R. Rao. Discrete cosine transform. IEEE
Transactions on Computers, C-23(1):90–93, Jan 1974.

[3] H. Anzt, J. Dongarra, G. Flegar, N. Higham, and E. Quintana-Ort́ı. Adap-
tive precision in block-Jacobi preconditioning for iterative sparse linear
system solvers. Concurrency and Computation: Practice and Experience,
31(6):e4460, 2019.

[4] H. Anzt, P. Luszczek, J. Dongarra, and V. Heuveline. GPU-accelerated
asynchronous error correction for mixed precision iterative refinement. In
C. Kaklamanis, T. Papatheodorou, and P. Spirakis, editors, Euro-Par 2012
Parallel Processing, volume 7484 of Lecture Notes in Computer Science.
Springer.

[5] M. Baboulin, A. Buttari, J. Dongarra, J. Kurzak, J. Langou, J. Langou,
P. Luszczek, and S. Tomov. Accelerating scientific computations with mixed
precision algorithms. Compu. Phys. Comm., 180(12):2526–2533, 2009.

[6] A. H. Baker, D. M. Hammerling, S. A. Mickelson, H. Xu, M. B. Stolpe,
P. Naveau, B. Sanderson, I. Ebert-Uphoff, S. Samarasinghe, F. De Simone,
F. Carbone, C. N. Gencarelli, J. M. Dennis, J. E. Kay, and P. Lindstrom.
Evaluating lossy data compression on climate simulation data within a large
ensemble. Geoscientific Model Development, 9(12):4381–4403, 2016.

[7] R. Becker, H. Kapp, and R. Rannacher. Adaptive finite element methods
for optimal control of partial differential equations: basic concepts. SIAM
J. Control Optim., 39:113–132, 2000.

[8] R. Becker and R. Rannacher. A feed-back approach to error control in
finite element methods: Basic analysis and examples. East-West J. Numer.
Math., 4:237–264, 1996.

[9] C. Böhm, M. Hanzich, J. de la Puente, and A. Fichtner. Wavefield com-
pression for adjoint methods in full-waveform inversion. GEOPHYSICS,
81(6):R385–R397, 2016.

23

[10] A. Borźı and V. Schulz. Computational Optimization of Systems Governed
by Partial Differential Equations. Computational Science and Engineering.
SIAM, Philadelphia, 2012.

[11] M. Burtscher and P. Ratanaworabhan. FPC: A high-speed compressor
for double-precision floating-point data. IEEE Trans. Comp., 58(1):18–31,
2009.

[12] J. Calhoun, F. Cappello, L. Olson, M. Snir, and W. Gropp. Exploring the
feasibility of lossy compression for pde simulations. The International Jour-
nal of High Performance Computing Applications, 33(2):397–410, 2019.

[13] A. Cohen, L. M. Echeverry, and Q. Sun. Finite element wavelets. Technical
report, Université Pierre et Marie Curie, Paris, 2000.

[14] P. Colli Franzone, P. Deuflhard, B. Erdmann, J. Lang, and L. Pavarino.
Adaptivity in space and time for reaction-diffusion systems in electrocar-
diology. SIAM J. Sci. Comput., 28(3):942–962, 2006.

[15] J. E. Dennis, Jr. and J. J. Moré. Quasi-Newton methods, motivation and
theory. SIAM Rev., 19(1):46–89, 1977.

[16] P. Deuflhard, P. Leinen, and H. Yserentant. Concepts of an adaptive hier-
archical finite element code. IMPACT Comput. Sci. Engrg., 1:3–35, 1989.

[17] P. Deuflhard and M. Weiser. Adaptive numerical solution of PDEs. de
Gruyter, 2012.

[18] S. Di and F. Cappello. Fast error-bounded lossy HPC data compression
with SZ. In 2016 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pages 730–739. 2016.

[19] J. Diffenderfer, A. Fox, J. Hittinger, G. Sanders, and P. Lindstrom. Error
analysis of zfp compression for floating-point data. SIAM J. Sci. Comput.,
41:A1867–A1898, 2019.

[20] P. D. Düben, M. Leutbecher, and P. Bauer. New methods for data storage
of model output from ensemble simulations. Monthly Weather Review,
147(2):677–689, 2019.

[21] M. Emmett and M. Minion. Toward an efficient parallel in time method for
partial differential equations. Comm. Appl. Math. Comp. Sci., 7(1):105–
132, 2012.

[22] R. Filgueira, D. Singh, J. Carretero, A. Calderón, and F. Garćıa. Adaptive-
compi: Enhancing MPI-based applications’ performance and scalability by
using adaptive compression. The International Journal of High Perfor-
mance Computing Applications, 25(1):93–114, 2011.

[23] L. Fischer, S. Götschel, and M. Weiser. Lossy data compression reduces
communication time in hybrid time-parallel integrators. Comput. Vis. Sci.,
19(1):19–30, 2018.

24

[24] M. Gander. 50 years of time parallel time integration. In T. Carraro,
M. Geiger, S. Körkel, and R. Rannacher, editors, Multiple Shooting and
Time Domain Decomposition Methods, volume 9 of Contributions in Math-
ematical and Computational Sciences, pages 69–113. Springer, 2015.

[25] L. Giraud, A. Haidar, and L. Watson. Mixed-precision preconditioners
in parallel domain decomposition solvers. In U. Langer, M. Discacciati,
D. Keyes, O. Widlund, and W. Zulehner, editors, Domain Decomposition
Methods in Science and Engineering XVII, volume 60 of Lecture Notes in
Computational Science and Engineering, pages 357–364. Springer, 2008.

[26] S. Götschel. Adaptive Lossy Trajectory Compression for Optimal Control
of Parabolic PDEs. Phd thesis, Freie Universität Berlin, Dept. Math. and
Comp. Sci., 2015.

[27] S. Götschel, N. Chamakuri, K. Kunisch, and M. Weiser. Lossy compression
in optimal control of cardiac defibrillation. J. Sci. Comp., 60(1):35–59,
2014.

[28] S. Götschel, C. von Tycowicz, K. Polthier, and M. Weiser. Reducing mem-
ory requirements in scientific computing and optimal control. In T. Car-
raro, M. Geiger, S. Körkel, and R. Rannacher, editors, Multiple Shooting
and Time Domain Decomposition Methods, pages 263–287. Springer, 2015.

[29] S. Götschel, C. von Tycowicz, K. Polthier, and M. Weiser. Reducing mem-
ory requirements in scientific computing and optimal control. In Multi-
ple Shooting and Time Domain Decomposition Methods, pages 263–287.
Springer, 2015.

[30] S. Götschel and M. Weiser. Lossy compression for PDE-constrained op-
timization: Adaptive error control. Comput. Optim. Appl., 62:131–155,
2015.

[31] S. Götschel, M. Weiser, and A. Schiela. Solving optimal control problems
with the Kaskade 7 finite element toolbox. In A. Dedner, B. Flemisch, and
R. Klöfkorn, editors, Advances in DUNE, pages 101–112. Springer, 2012.

[32] A. Griewank. Achieving logarithmic growth of temporal and spatial
complexity in reverse automatic differentiation. Optim. Methods Softw.,
1(1):35–54, 1992.

[33] A. Griewank and A. Walther. Evaluating derivatives: principles and tech-
niques of algorithmic differentiation. SIAM, Philadelphia, 2008.

[34] R. Grout. Mixed-precision spectral deferred correction. Preprint CP-2C00-
64959, National Renewable Energy Laboratory, 2015.

[35] M. Kuhn, J. M. Kunkel, and T. Ludwig. Data compression for climate
data. Supercomputing Frontiers and Innovations, 3(1):75–94, 2016.

[36] P. Lindstrom. Fixed-rate compressed floating-point arrays. IEEE Trans.
Vis. Comp. Graphics, 20(12):2674–2683, 2014.

[37] P. Lindstrom. Error distributions of lossy floating-point compressors. In
Joint Statistical Meetings, volume 2017, pages 2574–2589, 2017.

25

[38] P. Lindstrom, P. Chen, and E.-J. Lee. Reducing disk storage of full-3d seis-
mic waveform tomography (f3dt) through lossy online compression. Com-
puters & Geosciences, 93:45–54, 2016.

[39] P. Lindstrom and M. Isenburg. Fast and efficient compression of floating-
point data. IEEE Trans. Visual. Comput. Graphics, 12(5):1245–1250, 2006.

[40] O. Marina, M. Schanena, and P. Fischer. Large-scale lossy data compression
based on an a priori error estimator in a spectral element code. Technical
report, 2016. ANL/MCS-p6024-0616.

[41] G. Martin. Range encoding: an algorithm for removing redundancy from
a digitised message. Presented at Video & Data Recording Conference,
Southampton, 1979.

[42] J. D. McCalpin. Memory bandwidth and machine balance in current high
performance computers. IEEE Technical Committee on Computer Archi-
tecture (TCCA) Newsletter, Dec 1995.

[43] S. McKee. Reflections on the memory wall. In Conf. Computing Frontiers,
pages 162–167, 2004.

[44] S. Mertler, S. Müller, and C. Thole. Predictive principal component anal-
ysis as a data compression core in a simulation data management system.
In 2015 Data Compression Conference, pages 173–182, April 2015.

[45] C. Nagaiah, K. Kunisch, and G. Plank. Numerical solution for optimal con-
trol of the reaction-diffusion equations in cardiac electrophysiology. Com-
put. Optim. Appl., 49:149–178, 2011. 10.1007/s10589-009-9280-3.

[46] J. T. Oden and S. Prudhomme. Goal-oriented error estimation and adap-
tivity for the finite element method. Computers & Mathematics with Ap-
plications, 41(5-6):735–756, 2001.

[47] E. Otero, R. Vinuesa, O. Marin, E. Laure, and P. Schlatter. Lossy data
compression effects on wall-bounded turbulence: bounds on data reduction.
Flow, Turbulence and Combustion, 101(2):365–387, 2018.

[48] R. Rannacher. On the adaptive discretization of PDE-based optimization
problems. In M. Heinkenschloss and et al., editors, PDE Constrained Op-
timization. Springer, 2006.

[49] D. Reed and J. Dongarra. Exascale computing and big data. Comm. ACM,
58(7):56–68, 2015.

[50] A. Said and W. Pearlman. A new, fast, and efficient image codiec based on
set partitioning in hierarchical trees. IEEE Trans. Circ. Syst. Video Tech.,
6(3):243–250, 1996.

[51] M. Schäfer, S. Turek, F. Durst, E. Krause, and R. Rannacher. Benchmark
computations of laminar flow around a cylinder. In Flow simulation with
high-performance computers II, pages 547–566. Vieweg+Teubner, 1996.

26

[52] J. Schneck, M. Weiser, and F. Wende. Impact of mixed precision and
storage layout on additive schwarz smoothers. Report 18-62, Zuse Institute
Berlin, 2018.

[53] P. Solin and D. Andrs. On scientific data and image compression based on
adaptive higher-order FEM. Adv. Appl. Math. Mech., 1(1):56–68, 2009.

[54] R. Stevenson. Locally supported, piecewise polynomial biorthogonal
wavelets on nonuniform meshes. Constr. Approx., 19(4):477–508, 2003.

[55] W. Sweldens. The lifting scheme: A construction of second generation
wavelets. SIAM J Math. Anal., 29(2):511–546, 1998.

[56] D. Tao, S. Di, Z. Chen, and F. Cappello. Significantly improving lossy
compression for scientific data sets based on multidimensional prediction
and error-controlled quantization. In 2017 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pages 1129–1139, May 2017.

[57] D. Tao, S. Di, X. Liang, Z. Chen, and F. Cappello. Improving performance
of iterative methods by lossy checkponting. In Proceedings of the 27th Inter-
national Symposium on High-Performance Parallel and Distributed Com-
puting, HPDC ’18, pages 52–65, New York, NY, USA, 2018. ACM.

[58] R. I. Teran, C.-A. Thole, and R. Lorentz. New developments in the com-
pression of LS-DYNA simulation results using FEMZIP. 6th European
LS-DYNA Users’ Conference, 2007.

[59] C.-A. Thole. Compression of LS-DYNA3DTM simulation results using
FEMZIP c©. 3. LS-DYNA Anwenderforum, 2004.

[60] A. Toselli and O. Widlund. Domain Decomposition Methods – Algorithms
and Theory, volume 34 of Computational Mathematics. Springer, 2005.

[61] Y. M. Volin and G. M. Ostrovskii. Automatic computation of derivatives
with the use of the multilevel differentiating techniques—1. algorithmic
basis. Comput. Math. Appl., 11(11):1099–1114, 1985.

[62] C. von Tycowicz, F. Kälberer, and K. Polthier. Context-based coding of
adaptive multiresolution meshes. Computer Graphics Forum, 30(8):2231–
2245, 2011.

[63] M. Weiser. On goal-oriented adaptivity for elliptic optimal control prob-
lems. Optim. Meth. Softw., 28(13):969–992, 2013.

[64] M. Weiser and S. Götschel. State trajectory compression for optimal control
with parabolic PDEs. SIAM J. Sci. Comp., 34(1):A161–A184, 2012.

[65] S. Williams, A. Waterman, and D. Patterson. Roofline: an insightful visual
performance model for multicore architectures. Comm. ACM, 52(4):65–76,
2009.

[66] O. Zienkiewicz, R. Taylor, J. Zhu, and N. P. The finite element method.
Elsevier Butterworth-Heinemann, 2005.

	Introduction
	Compression aspects of PDE applications

	The memory wall
	Mixed-precision arithmetics
	Fixed-rate transform coding

	Communication in distributed systems
	Inexact parallel-in-time integrators
	Transform coding on unstructured grids

	Mass storage
	Adjoint solutions
	Checkpoint/restart
	Postprocessing and archiving

	Conclusions

