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Abstract

Analysis of phenomena that simultaneously occur on quite different spatial and tem-
poral scales require adaptive, hierarchical schemes to reduce computational and storage
demands. For data represented as grid functions, the key are adaptive, hierarchical,
time-dependent grids that resolve spatio-temporal details without too much redundancy.
Here, so-called AMR grids gain increasing popularity. For visualization and feature iden-
tification/tracking, the underlying continuous function has to be faithfully reconstructed
by spatial and temporal interpolation. Well designed interpolation methods yield better
results and help to reduce the amount of data to be stored.

We address the problem of temporal interpolation of AMR grid data, e.g. for creation
of smooth animations or feature tracking. Intermediate grid hierarchies are generated by
merging the cells on all refinement levels that are present in the key frames considered.
Utilizing a clustering algorithm a structure of nested grids is induced on the resulting
collection of cells. The grid functions are mapped to the intermediate hierarchy, thus
allowing application of appropriate interpolation techniques.

CR Categories: 1.3.4 [Computer Graphics]: Graphics Utilities—Graphics packages; 1.3.6
[Computer Graphics|: Methodology and Techniques—Graphics data structures and data
types; 1.3.8 [Computer Graphics|: Applications
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1 Introduction

Multi-scale phenomena are abundant in many application fields like material science, fluid
dynamics, geophysics, meteorology and astrophysics. Representing and numerically simu-
lating such processes is a challenging task since quite different scales have to be resolved,
requiring enormous amounts of storage and computational power. Usually hierarchical repre-
sentations are used, like wavelet decompositions or hierarchical grids. An important aspect
is adaptivity, i.e. local adjustment of the spatio-temporal resolution to the details to be
resolved. A standard representation therefore are hierarchical, locally refined grids.

So-called AMR grids, a specific variant of nested structured grids, gain increasing popu-
larity. This grid representation of functions was originally developed by Berger and Oliger
in the context of a numerical multilevel technique for solving hyperbolic partial differential
equations [7]. A variant of this approach, called structured Adaptive Mesh Refinement, is
applied in many domains like hydrodynamics [6], meteorology [3] and in particular astro-
physics [10, 2]. AMR grids are used also on their own: data from experimental sources like
3D image data, e.g. from confocal microscopy, can be efficiently represented using AMR
grids [16].

Locally refined hierarchical grids become imperative, if time-dependent 3D data are consid-
ered. Hence an increasing number of scientists is in need of appropriate analysis techniques
that help to interpret hierarchical time-dependent 3D grid data. For analysis purposes,
like animation, feature identification, or feature tracking, the underlying non-discrete time-
dependent function has to be faithfully reconstructed from the grid function. This is done
by spatial and temporal interpolation.

Appropriate interpolation methods may improve the results of data analysis greatly. Fur-
thermore, they help to further reduce the amount of grid data to be stored and handled. For
instance in large numerical simulations one may store less time steps and nevertheless be
able to create smooth animations that display the underlying process without discontinuities
or cracks. Even if numerical methods are available that provide dense output by maintaining
and evaluating internally some interpolants, one would not store all these data due to the
immense storage requirements. Only information should be stored that can not be recovered
by spatio-temporal interpolation methods.

In this article we describe an approach that allows the generation of dense output for
time-dependent AMR data defined on axis-aligned, structured, hexahedral meshes. The
algorithm is fast and therefore enables a ’on-the-fly’ application during the visualization
session. Although the algorithms are presented in the context of AMR data, they also apply
to axis-aligned, unstructured non-conforming hexahedral meshes, that are used in finite
element (FEM) simulations. This mesh type is supported e.g. by the numerical libraries

deal.Il [4] and UG [5].



2 Related Work

The number of papers dealing with rendering methods for AMR data has increased in the
last couple of years. A back-to-front cell-sorting algorithm for AMR hierarchies utilized
for volume rendering was presented by Max [18]. Norman et al. describe their approach
of resampling AMR data to uniform as well as unstructured grids [19]. Ma presented a
parallel volume renderer for AMR data [17]. Weber et al. proposed an approach for crack-
free isosurface extraction as well as a software and hardware accelerated cell-projection
algorithm for AMR data [25, 24, 26]. Kéahler et al. presented an approach for accelerated
texture based volume rendering of large, sparse datasets by representing non-transparent
regions using AMR data structures [16] and a hardware-supported, texture based volume
rendering algorithm for AMR data that directly employs the hierarchical structure of this
data type [15, 14]. Park et. al. presented a splatting approach in [20]. Techniques for
rendering remote AMR data are described in [13].

Visualization methods for time-dependent adaptive simulations have been presented by
Polthier et. al. [21], Happe et. al. [12] and Schmidt et. al. [22]. These approaches have
in common that they assume the existence of two unstructured grids and associated grid
functions at each time-step where the underlying grid structure is adapted: the solution
before and after grid refinement, respectively grid coarsening. This ensures that on each
pair of consecutive time-steps the interpolation can be carried out on identical grids.

In principle this approach could also be applied in the case of AMR data. But for realistic
AMR simulations, which often contain dozens of refinement levels, and typically evolve
several scalar and vector quantities, this would result in huge amounts of data between
two root level updates. This is because the update frequency usually doubles between
two consecutive levels of refinement, i.e. increases exponentially. AMR simulations code
therefore often store data only for time-steps that correspond to root level updates. Besides
this storage problem, it is not clear how to proceed for higher order interpolation in time
that require more than keyframes.

We therefore decided to create intermediate grid hierarchies in order to connect keyframes
hierarchies. An imaginable approach is to identify corresponding subgrids present in the
keyframes, for example by utilizing feature tracking algorithms like presented by Silver
et. al. [23], and then interpolate their position and sizes for the intermediate steps. But
this would in general result in overlapping grids on the same levels and it is also not clear
how to proceed in case a subgrid has no corresponding partner on the next frame. Instead
we followed up with an approach that



e gencrates an intermediate grid hierarchy by merging the cells on each refinement levels
that are present in the keyframes,

e uses a clustering algorithm to induce a nested grid structure on the resulting collection
a cells,

e projects the grid functions of each keyframe to such an 'merged’ grid hierarchy and
finally

e gencrates the intermediate grid functions by interpolating between each set of corre-
sponding data samples on these merged hierarchies.

3 AMR Data Structure

Let Q C R? denote the data domain. In general it may be composed of a set of non-
overlapping, aligned rectangular domains. In order to simplify the notation we assume that
Q) consists of just one rectangular region.

3.1 Globally Refinement

Let €2 be discretized by a hierarchy of axis-aligned, structured rectilinear grids (QZ) 1=0.1,....lmas
with decreasing mesh size. Index [ denotes the refinement level, starting with 0 for the
coarsest level. The size of cells on the coarsest grid is given by h” = (A9, h? h9), and the
cell sizes on finer grids are recursively defined by h' := (hi™ /ro, By /ry, B! /ry), where
r = (ro,71,72),7; € NT denotes the so-called refinement factor. In principle the refinement
factor may be different for each refinement level, but in order to ease notation we assume
that it is constant. Let n; + 1 the number of vertices along the i-th coordinate axis of the
coarsest discretization €°. The vertices of Q! are given by
U ol ol gl
Xiji = (ihg, jhy, khy)

with i = 0,1, ..., nor}, and similar for j, k. Note that [ in the expression r{, is an exponent, in
contrast to the rest of this article. Thus the position of a vertex Xéjk € Q' corresponds to

the vertex Xiﬁjmk € Q1. The grid cells Qﬁjk C Q! are defined by

2

m=0



where € = (1,0,0),e! = (0,1,0),e* = (0,0,1) denote the standard basis vectors in R3.
Each coarse cell can be decomposed into a set of cells of the next finer discretization

Qe = |J A withi=riri+1,.ri+r—1

)

i3,k

and similar for 7, k. The cells Qijkl are called a refinement of the coarse cell Qijk

Figure 1: 2D example of an grid hierarchy H with refinement factor r = (2,2). The root
grid T is partially refined by one subgrid I'}, which is further refined by 2 subgrids I's and
.

3.2 Local Spatial Refinement

In the AMR approach the whole computational domain is covered by a coarse grid I'? := Q°,
usually called root grid since the whole hierarchy is represented by a tree. The equations
are initially approximated on this coarse grid and the coarse solution is inspected by an
error estimator detecting cells that require higher resolution. These cells are clustered into
disjoint, axis-aligned rectangular regions, which define new subgrids, consisting of cells of the
next finer discretization Q. Unlike in the FEM approach these subgrids do not replace, but
overlap the coarser cells, giving rise to a level-of-detail representation of the interesting parts
of the computational domain. Then the equations are evolved on the finer subgrids and this
refinement procedure recursively continues until all cells fulfill the simulation specific error
criteria. Notice that cells are either totally refined by cells of the next finer grid, or remain
totally unrefined, and that adjacent cells may differ by more than one refinement level. Let
the m-th subgrid on €' be denoted by

I = {Qijk CQ i=pr, ...,pi 4+ nd and similar for 7, k} ,



where p™ is the integer offset vector of this subgrid, and n)* defines the number of cells
per coordinate axis i. The union of level | subgrids is denoted as A' := J"_,T%,. By

construction these unions are nested, i. e. At C Al C Q! The grid hierarchy H is defined
as the union of all levels H := Ufzg”” A'. Fig. 1 shows a 2D example.

Associated with each refinement level are one or more grid functions. We restrict the
discussion to real-valued scalar functions in the following, since the generalization of the
following to complex or vector-valued functions is straightforward. The functions are usually
defined per vertex (vertezr centered)

FLoAb =R with xéjk c A — ]—“l(xijk) = iljk,
or per cell (cell-centered)

1
ijk-

FoAN-R with O, eN—F(©Q,)=7F

If not explicitly distinguished, F* will be used to denote both cases in the following.

physical time

Figure 2: Order of temporal evolution of a grid hierarchy with an overall temporal refinement
factor of r;, = 2.

3.3 Temporal Refinement

Besides the refinement in space, adaptive numerical schemes usually also perform a refine-
ment in time. This means that the spatially refined levels are updated more frequently.
A temporal refinement factor 7, € NT between a pair of two consecutive refinement levels
(AL, A™1) indicates that Al is evolved one large step At;, and next Al is evolved r; times
with step sizes of At/r, see Figure 2. In the following we denote by A" and H' the union
of level [ subgrids and the grid hierarchy respectively at time ¢.

In general the time steps of the refined levels do not have to be equally distant, but it has
to be ensured that after an integer number of updates the coarse and the fine level match up



again. After the coarse level is evolved according to its step size, the spatial refinement and
regridding procedure described above is carried out on the next finer levels. This implies
that the topology of the grid hierarchy usually changes with respect to time. In general the
structure of the whole grid hierarchy (except for the root grid) may change after a time step
corresponding to the coarsest level.

4 Grid Generation

It is this change of the underlying grid structure that complicates the interpolation of inter-
mediate time steps during the visualization phase. We can propose the problem as follows

Given grid hierarchies and associated grid functions (H tm,j’:ll’:tgfwm ) at discrete time
steps to, t1, ..., tmaz, With different topology in general, generate intermediate grid hier-

archies H' and interpolated grid functions F* for ¢ €]t;, t;1].

We will now describe the construction of the intermediate grid hierarchies. The number
of keyframes required for this depends on the order of the interpolation function that is
applied to obtain the associated grid function, see Section 5. In the following we make to
assumptions which are usually fulfilled by the numerical schemes:

e the root grid structure A% remains constant for all time-steps,

e the spatial refinement factors between two consecutive unions of subgrids (Abf, A1)
do not change with respect to time.

The first assumption is not essential and might be omitted as long as it is guaranteed that the
cells on the coarsest discretizations Q%' at the given time steps are not shifted or rotated
with respect to each other. The intermediate grid hierarchy for some time step is generated
by merging the level [ subgrids for each refinement level in the keyframe hierarchies:

H' = H'"™UH'"™"U..JH"mr
[maz
= |J (AU At g U A

=0

where [,,q, denotes the maximum number of refinement levels present in the set of time-steps
considered. However, by merging the corresponding levels, in general we loose the structure
of disjoint subgrids present in the keyframe hierarchies, as illustrated in Figure 3.

The resulting intermediate unions of level [ subgrids could be stored with explicit connec-
tivity information. But in terms of memory efficiency and performance it is advantageous



TO Tl

\ T < T < Tl /

Figure 3: Top: Coarse grid and level 1 subgrids of two keyframes. Bottom: Coarse grid
and level 1 union of subgrids for intermediate time-steps (in general created by merging
corresponding level [ subgrids of each keyframe).

to also subdivide these unions of level [ subgrids into sets of disjoint rectangular subgrids,
since the rendering algorithms work faster on blocks with implicitly given (trivial) connec-
tivity. So for each A" we demand a partition into axis-aligned, non-overlapping rectangular
subgrids (Fl-’t)l-zomkl, such that A;; C Ufl:() Fé’t.

7

4.1 The Clustering Algorithm

An efficient and fast algorithm for clustering cells into axis-aligned regions was suggested
by Berger et. al. [8], adopting signature-based methods used in computer vision and pattern
recognition. We will describe the basic ideas briefly in this section. For more details the
reader might refer to [8].

Assume that the information about which cells of subgrid I': shall be clustered is encoded
by the binary function defined on the index domain of T"! :

S pgts - py gl x [y x Py, ] — {0,1}

with S(i,7,k) = 1 if Qﬁjk is marked for clustering. For each slice perpendicular to the 7_j,
i_k and j_k planes the number of cells that need refinement is computed and stored in so
called signature lists. For example the entry for slice number i parallel to the j_k plane is
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Figure 4: 2D exzample of the clustering procedure: (a) In a first step signa-
ture lists are computed. (b) Exterior rows and columns with zero entries
are pruned off. (c¢) Interior zero entries and inflection points indicate
splitting edges.

given by

p+nT) (pyr+ny')

S s

7 p1 —pg

and similarly for the two other orientations. A 2D example is shown in Figure 4 a. In the
next step exterior zero-entries in these lists are detected and pruned off in order to place
a minimal bounding box around the marked cells (Figure 4 b). Any interior zero entry in
these lists indicates a potential splitting index, i. e. a position at which the given volume is
subdivided into two smaller subregions. If all signatures are non-zero, the discrete Laplacian
second derivative

Aj k(i) = Sja(i +1) = 28;4(1) — Sj(i — 1),

and similar for A; x(j), A;j(k), of each signature list is computed and the biggest inflection
point is taken as the splitting plane (see Figure 4 ¢). This procedure is repeated recursively
on the newly created subregions until one of the following halting criteria is satisfied:

e The subregion exceeds some efficiency ratio, i. e. the ratio of the number of its cells
tagged for clustering to its total number of cells is greater than a preselected threshold.

e Further subdivision of the region would result in grid dimensions smaller than some
manimal extension.

Notice that according to these criteria the clusters usually contain a number of cells that
are not marked, in order to keep the number of created subgrids low. Usually an efficiency



Figure 5: Left and right: keyframes of an AMR simulation portraying the
evolution of the first stars in the universe. Middle: interpolation between
these keyframes.

ratio of 95% and a minimal extension of 4 yields good results in terms of number of grids
and additional memory overhead for theses additional cells, see Section 6.

In principle the clustering procedure could be applied at once to all subgrids on the same
level, but this would result in high memory requirements for the signature lists, due to the
huge number of cells contained in the minimal bounding box enclosing the higher resolved
levels. Thus we perform the clustering procedure per subgrid rather than per level. Per
assumption the root level remains unchanged, and the root grid of the intermediate grid
hierarchy is given by T)" := A%'m = = AO%tm+n Now suppose we want to generate the
subgrids of a grid I' é’t C Abt. The signature list is initialized as follows:

S(i,j, k) = {1, if Qfﬂ—:i]rk‘ c (It n (U:::: AHHLE))

0, otherwise.

That is, a cell in Fff is marked for clustering, if it is refined by the next finer level in at least
one of the time-steps t,,, ..., tmen. This signature list is passed to the clustering algorithm
that generates a set of subgrids Féﬂ’t, Fl1+1’t, ... contributing to the next level A1t This
procedure is recursively repeated for each of the newly created subgrids, until the maximum
level is reached, which is defined as the maximum of the number of levels for Ht ..., Hm+n,

5 Data Interpolation

In this section we describe how the intermediate grid functions Fb': Ab* — R, respectively

F'AM s R associated with the hierarchy H' are constructed. Two cases have to be
distinguished for each for each cell Qéjk € Al



Figure 6: Comparison of three different time interpolation schemes for an
analytical dataset showing a damped cosine wave traveling along the x-axis
with constant velocity. For linear interpolation oscillations occur, whose
minimal peak amplitude during the considered time interval is depicted
by the semi-transparent plane. The oscillations decrease for the hermite
interpolation and vanish for the flux-based approach. The cell-centered
data are rendered using constant spatial interpolation.

o (ngk € AWV ty € [ty oo tngn)s

e Jts € [ty oy binin] with (Ql, ¢ Al,ts)'

ijk

In the first case the value leji can be obtained as a function of the given functions values

le]'; at the n 4+ 1 keyframes. Since in the second case in at least one of the given hierar-

chies no corresponding cell on the refinement level [ exists, we have to apply some form of
interpolation on the grid function on the coarser levels of resolution. Let us assume that

this is the case for A" in the following. Because of the nesting property of the levels, the

cell is covered by at least one coarser cell. Let Qéjl:: denote the cell on the finest level I < [

that contains Q! ,. In the cell-centered case we perform a nearest neighbor interpolation,

ijk*
o ghts s . : . : :
i e. fi;k =F" (Q%k) In the vertex-centered case ffj?j is obtained by trilinear interpolation
within the cell QL.

15k’
So for each cell at the intermediate grid hierarchy it has to be determined which of the two

cases holds and the associated data samples have to be obtained. For larger hierarchies this
can be an expensive operation, even if data structures like kD-trees are employed to speed
up this procedure. In order to accelerate this procedure we resample the grid functions Fts
onto a grid with the topology of the intermediate hierarchy in a first step. This involves
some interpolation in order to obtain data values for fine cells or vertices that are not present
in the given set of hierarchies. After this preprocessing the grid function can be computed



quite fast, since now for each subgrid I'“! there exists a corresponding subgrid I'“*s. This is
especially advantageous if more than one time-step for the same subset of keyframes has to
be be generated.

We employ three different schemes for the interpolation in time. The first one is piecewise
linear, i .e.

tsi1 — 1 ts —1
Lt s+1 lLits S Lits+1

ot = 2T fats 2 f© 1

fz]k ts+1 . ts fzyk ts . ts+1 fzyk ( )
The second one is C! continuous cubic hermite interpolation, see for example [11]. So besides
the function values for ¢, and ¢4, also the first derivatives at these time steps are taken

into account. This uniquely determines a polynomial of degree 3, that can be written as

d
l7 PR— l7 S l7 K
fij?c = fij);c H(t) + ai ij?c H(t) +

d
Fa ™ HY() + o fiet H(),
where {H3, ..., H3 } are the cubic Hermite Polynomials. Since the first derivatives of the grid
functions are usually not available during the visualization phase, we estimate them using
the osculatory method [9]. The value of the first derivative at t, is approximated by the
slope of the unique polynomial of degree 2 that takes the function values at ts_q,%s,ts11.
This implies that we need the grid function values for 4 successive time-steps in order to
obtain an approximation of the first derivatives at ¢, and ¢, ;.

It is possible to obtain more precise values for the first derivatives of the grid functions in
the case that the grid function represents some conserved quantity that fulfills a conservation
law of the form

9 p(.1) = div (1), 2)
where p(#,t) denotes the density of the conserved quantity and j(Z,t) is the associated
current. An common example is the case of mass conservation in hydrodynamic simulations.
Here p(#,t) denotes the mass density and the current is computed from the density and
the velocity field v (7, t) via j = po. Since usually in hydrodynamic simulations besides the
mass, respectively density fields, also the associated velocity vector-fields are stored, one can
compute the derivative of the scalar field according to Eq. 2. The divergence of the current
is approximated by the flux of the mass through each of the cells faces

5
pi Ai 1 U;
0

1
‘/cell i

—

div j = div (p )



Figure 7: Three interpolated frames from a simulation describing a super-
nova explosion visualized by texture-based volume rendering.

where p;, ¥ denote the density and velocity fields evaluated at the i-th face and A;, V.o, 7;
the face area, its volume and the outward-oriented face normals.

60 Results & Discussion

The algorithm has been implemented in Amira [1], an object-oriented, expendable 3D data
visualization system developed at ZIB. We applied the algorithm to three time-dependent
AMR datasets. The performance was tested on a SGI Onyx3 on a single 500 MHz MIPS
R14000 processor.

Dataset I is a result from a cosmological simulation of the formation of stars in the early
universe with a root grid resolution of 128° cells, 8 levels of refinement and about 2000
grid per time-step. Dataset II depicts a supernova explosion with 8 levels of refinement
and about 1600 grids per time step. We took 10 data dumps and generated 8 intermediate
frames for each pair using linear and Hermite interpolation, with estimated first derivatives,
see Section 5. Figure 5 and 7 show some volume rendered images of the sequences. The
resulting animations show slight oscillations in some parts for linear interpolation, which
decrease for Hermite interpolation. Besides that the resulting animations are smooth.

For illustrating the differences of animation quality of the different interpolation schemes
we choose an analytical example as dataset III. It shows a damped cosine oscillation that
moves along the x-axis with constant velocity. The 64 x 32 x 32 root grid is refined two times
and contains about 1100 sub grids at each of the 20 keyframes. We compared the animation
quality of linear, Hermite and flux-based interpolation by generating 8 intermediate frames
per pair of data steps. Figure 6 show some volume rendered images of the resulting sequences.



increase # cells | grid generation | interpolation
Dataset I (linear) % 3.4 sec 0.2 sec
Dataset I (Hermite) 12% 6.6 sec 0.8 sec
Dataset II (linear) 11% 2.2 sec 0.1 sec
Dataset II (Hermite) 15% 3.5 sec 0.3 sec
Dataset III (linear) 20% 1.8 sec 0.1 sec
Dataset III (Hermite) 30% 4.2 sec 0.3 sec
Dataset III (flux-based) 20% 3.5 sec 2.0 sec

Figure 8: The first two columns denote the increase in the number of cells for the intermediate
time steps relative to the given keyframes. The third column states the times for generating
the intermediate grid and projecting the given grid functions. This has to be carried out only
if the keyframes change. The last column gives the time for interpolation of the intermediate
grid function.

The resulting animation show disturbing oscillations for linear interpolation. The oscillations
decrease for Hermite interpolation with estimated derivatives and vanish for the flux-based
interpolation, where the knowledge of the velocity vector fields are taken into account, as
described in Section 5.

Information about performance and memory requirements is given in Figure 8. The num-
ber of sub grids in the merged hierarchies is decreased by about 20 % compared to the number
of subgrids present in the stored hierarchies. As can be seen in the table the amount of addi-
tional memory requirements and the times for grid generation where highest for the Hermite
interpolation, since 4 keyframes had to be merged in this case. But the space increase was
still less than 30 % in all examples. The middle row depict the times for grid generation and
keyframe projection, which has to be carried out only if the keyframes change. Again it was
highest for Hermite interpolation, but with less than 7 sec even for the 2000 grid data set
it still admits a on-the-fly generation during the visualization phase. Due to the keyframe
projection step the times for the interpolation (right row) are short, which is advantageous
if more than one intermediate frame is generated for a constant set of keyframes.

7 Conclusions & Future Work

In this paper we addressed the problem of temporal interpolation of AMR grid data, e.g. for
creation of smooth animations or feature tracking. In order to handle the problem of varying
grid topology during time evolution, intermediate grid hierarchies are generated by merging
the grids on the corresponding refinement levels. In a second step a nested grid structure



is induced, employing a clustering algorithm. Finally the grid functions are mapped to the
intermediate hierarchy and interpolated using different schemes, like linear, Hermite or flux-
based interpolation. The algorithms are fast and allow on-the-fly generation of interpolated
frames.

There are several ways to extend the presented algorithm. Higher order interpolation
schemes could be implemented for spatial interpolation during the prolongation step. Further
it would be interesting to combine the presented approach with feature tracking algorithms.
Also it seems promising to adapt the order of temporal interpolation to the rate of change
of the underlying data. It might be beneficial to use lower order temporal interpolation for
subgrids with slowly varying data and higher order interpolation for subgrids with rapidly
changing data (which is usually the case for the higher resolved levels).
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