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Abstract

About a fifth of the whole energy demand of Germany is supplied by
natural gas. Additionally, there is a huge amount of gas just transiting
Germany to other countries. However, the network operators, responsible
for transporting the gas, have no knowledge of the intentions and planned
actions of the gas traders. Thus, the number one priority of the network
operators is to ensure security of supply.

We worked with one of Germany’s largest network operators to im-
prove the hourly forecast of gas flow at each node during the next 24
hours. Some of the nodes have intermitted gas flows and have therefore
the additional challenge to decide whether they have flow at all besides
the prediction of the amount of flow.

This article will report a method to predict zeros and one to predict gas
flows. Furthermore it will combine both methods to predict intermitted
gas flows.

1 Introduction

Since 2005 the transport and trading of natural gas has to be conducted by sep-
arate independent companies. The duty of the network operators is to operate
the long distance transport network as well as ensuring the security of the net-
work, i.e., that all demands are met. On the contractual level all gas transports
have to be balanced, i.e., if gas gets out of the network the same amount has to
be induced into the network. Due to the virtual trading point market model,
the network nodes where the gas is injected might be very far from the points
where it is taken out of the network. Furthermore, the inflow might be actually
happen after the outflow. However, since gas flows really slow through the net-
work, the network can act as a buffer. Additionally, consumers like municipal
power stations just draw gas out of the network as needed. Nevertheless, they
are indentured to also buy the same amount of gas to supply the network.

To ensure security of supply it is important for the network operator to
have a precise forecast of the upcoming situation. When a local shortage seems
to appear, balancing energy should be bought by the network operator. The
situation is going to become worse, once the future gas driven peak load power
stations go online, delivering electricity in peak load situations. This means a
huge amounts of gas might be drawn from the network on short notice. It is the
obligation of the operators to monitor the situation, foresee possible shortages



and react accordingly to ensure safety of supply. Since changes in gas networks
happen rather slow it is therefore extremely important to have accurate forecasts
on the demands and supply of the network to be able to react on time.

We worked together with one of Germany’s biggest network operators to
improve the hourly forecast for demand and supply of the next 24 hours.

Most literature related to forecasting gas demands is focusing on long term
issues. There are quite some publications regarding electricity demand forecasts,
(see, e.g. [Taylor, 2003], [Mirasgedis et al., 2006],[Alfares and Nazeeruddin, 2002|,
[Nguyen and Nabney, 2010]) but electricity behaves very different from gas. A
survey on works related to natural gas forecast and published between 1949
and 2010 is presented by [Soldo, 2012] who evidences that there are only a few
authors that propose models to predict hourly gas flow.

The article is structured as follows: The next section describes the data that
was used in this study. Section [3] will give details on the forecast methods we
used, and Section {4| will give our reasoning how to evaluate the results as well
as our computational experiments. Finally, we try to draw some conclusions.

2 Data

Open Grid Europe GmbH (OGE) supplied us with almost two years of recent
hourly measurements of all exit and entry points to the system. Additionally,
we were given average daily temperatures as measured at the nodes. And of
course we know the day of the week for the nodes.

The nodes in the network can have totally different behavior. They can

e be either entries, exits, or both

have typically daily or seasonal patterns, or no patterns at all

e have different behavior on workdays, weekend, or holidays

be temperature dependant

have a large number of zeros or none at all

show a high variability

In this study, gas flows are not scaled and, for this reason, nodes with higher
flows have higher prediction errors. As can be seen in Figure[I] some nodes have
almost continuous flow, while other are active only occasionally.

Especially, once the amount of zero flow hours is above 50%, the question
whether there is flow at all becomes a question of its own.

For this study, we choose all nodes with 30 - 80 % of zeros for which the
behavior does not change too much during the time. The chosen nodes are
shown in

3 Methods

Let us denote the set of hours by H = {1, ..., 24}, the set of days by D, the
set of measured values by mq; € M, and the temperatures by ¢4 € T'.



Figure 1: Percentage of zero flows of the nodes
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Our goal is to predict flow values pg,1 to pg,24 for a given d € D. Of course
only data for days before d can be used.

3.1 Zero Detection

To detect zeros we use Nonlinear Autoregressive Networks with exogenous in-
puts (NARX). These are recurrent dynamic networks with feedback connections
enclosing several layers of the network. Dynamic Neural Networks represent a
class of Artificial Neural Nerworks many times proven to be well suited for
modeling nonlinear systems, especially for time series due to their capability
of accommodating the dynamic and complex nature of real-world time series
prediction problems. ([Menezes and Barreto, 200§], [Xie et al., 2009]).

The NARX model is based on the linear ARX model, which is commonly
used in time-series modeling.

The equations for the NARX model are:

Pa.p = fo(Ma—1,Uaq—1,Vy) (1)
with
Mg_1 = {md—1,247 mdq—1,23,--- ,md—im,jm}v
Ug—1 = {Uqg—1,24,Ud—1,23, - - -, Ud—in ju }»

Vd = {’()1,...7’052}

where the next value of the dependent output pg is calculated based on
the previous values of the output and the previous values of exogenous inputs
u and v. For detecting zero flow for nodes with high percentage of zero flow
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hours we implemented this equation by using a feed forward neural network to
approximate the underlaying functions fp,.

The parameters of the NARX model as well as several exogenous inputs
were chosen based on the sensitivity analysis. The obtained model has 2 hidden
layers both with 100 neurons and 2 lags for output and exogenous inputs. For
the transfer function Tansig function is chosen, number of Epoch is 600 and
the training function is Scaled Conjugated Gradient Backpropagation (SCG).
The final model is the multiple-input multiple-output model with 24 outputs,
each one representing forecast of hourly flow in the next 24 hours. Using the
multiple output model we avoided the accumulation of errors that will be made
by multi-step ahead recursive strategy and at the same time we benefit from
modeling the stochastic dependency between predicted values of the time se-
ries ([Taieb et al., 2010]). For the exogenous inputs we used the binary feature
defined by:

07 if mda.n = 0
Ud,p = .
1, otherwise

Also, we used 52 exogeneous features describing the date: Month (12 binary
variables), Day of the month (31 binary variables), Day of the week (7 binary
variables), Weekend (1 binary variable), Holiday (1 binary variable).

3.2 Predicting Gas Flows

To predict flows—supplies and demands of the gas network—we use a weighted

sum of features
Pan =Y whifni(d) (2)
i€Fp

where wy, ; define the weights, and f, ; are our features. Part of the features
i € F, ={1,...,n} are defined as historical flow values, the other features are
exogenous variables, like mean flow values or temperatures. We use a different
set of features for each hour of the day h € H = {1,...,24}.

For each day in the test set the forecasted flow values are computed by first
computing the weights via a linear program and then using the weighted sum
of features for each hour to forecast the flow values. The linear program
uses historical data of the last 16 weeks to forecast historical flow values, com-
pares these forecasted values to the real historical flow values and minimizes the
absolute error. For the computation of the forecasted flow values, it might be
that also forecasted flow values of prior hours are used as input values, if the
corresponding hours do not lie in the past.

In the linear program for each h € H the error ey of the prediction is
calculated by

Z fhi(d) - whni —man = eqn
icF
where wy, ; € [—2,2].

For each hour h € H the best weights are chosen by taking the ones which

minimize the sum of the absolute errors:

min Z leq.nl

deD,he H



Furthermore, we want to reduce the over- and under-estimation of the flow

values:
E led,n

deD,heH

<e

The solution of the linear model leads to functions with which we can cal-
culate the flow values for the different hours of the day. It describes a iterative
multi-step ahead multiple-input procedure with exogenous inputs.

Training: Feature Selection

In the training procedure of this method, a slightly different model is used which
chooses for each hour the features which are important, so that we do not get
the problem of over-fitting in the linear program. Therefore, we add additional
binary variables x}, ; to the problem, which determine whether feature ¢ is chosen
for hour h, i.e., whether the weight of feature ¢ and hour A is not equal to zero.
Then, we need to link these variables to the weight variables

—2-xp; Swpy <2

and limit the number of chosen features by B

th,i <B

=
for all hours h € H. The solution of the resulting mixed integer program leads
for each hour h to one feature set Fj, which will be used in the linear program.

4 Testing and Results

We will compute for each predicted node the following 4 values to compare the
performance of the predictions.
Information on the zero/non-zero behavior of the node

e Zero-Hit-rate: Percentage of hours where both the measurement and the
prediction are both not more than a given threshold away from zero.

e Non-Zero-Hit-rate: Percentage of hours where both the measurement and
the prediction are both outside the given threshold around zero in the
same direction.

Those two numbers give a good idea regarding the zero-flow behavior.

Here, the Non-Zero-Hit-rate is more important than the Zero-Hit-rate, be-
cause all Non-Zero-Hits are forecasted as zero and can’t be corrected by another
prognosis.

The errors are only computed on hours that are a hit regarding the non-
zero-hit-rate for all prognosis methods. These are:

e Mean Absolute Error
MAE :=1/n ZhGH,dGD [Pd,p — M,

e Mean Absolute Percentage Error
MAPE :=1/nY ¢y e p 221 100

[ma,n|

This gives us 4 values describing the performance of our prognosis.



4.1 Results

5 Conclusions
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