Zuse Institute Berlin

RALF BORNDORFER
ZIENA ELIJAZYFER
STEPHAN SCHWARTZ

Approximating Balanced
Graph Partitions

Takustr. 7
14195 Berlin
Germany

Z1B Report 19-25 (June 2019)

Zuse Institute Berlin
Takustr. 7

14195 Berlin
Germany

Telephone: +49 30-84185-0
Telefax: +49 30-84185-125

E-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

Approximating Balanced
Graph Partitions

Ralf Borndortfer
Ziena Elijazyfer
Stephan Schwartz

Abstract

We consider the problem of partitioning a weighted graph into & € N
connected components of similar weight. In particular, we consider the two
classical objectives to maximize the lightest part or to minimize the heaviest
part. For a partitioning of the vertex set and for both objectives, we give
the first known approximation results on general graphs. Specifically, we
give a A-approximation where A is the maximum degree of an arbitrary
spanning tree of the given graph. Concerning the edge partition case, we
even obtain a 2-approximation for the min-max and the max-min problem,
by using the claw-freeness of line graphs.

1 Introduction

Partitioning a graph into connected subgraphs is a problem arising in many application
areas, such as parallel processing, road network decomposition, and image processing
[LPS93; M6h+07; Bul+16].

The two fundamental ways to partition a graph are vertex partition and edge parti-
tion. The problem of partitioning the vertex set into k& € N connected components is
called connected-vertex-k-partition problem (CVPy). If k is part of the input, the prob-
lem is denoted by CVP. Analogously, the connected-edge-k-partition problem (CEP})
as well as CEP are defined.

For balancing given node weights (or resp. edge weights) among the parts, the
two classical objectives are to maximize the total weight of the minimum part or
to minimize the weight of the maximum part. The CVP with one of these objectives
is also known as the balanced connected partition problem (BCP). On general graphs
both variants of CVPj, are NP-hard [CGMS83], and to the best of our knowledge no
approximation results are known unless for certain classes of graphs [PS81; Bec+01].

In this paper, we give the first approximation result for the CVP on general graphs.
Our contribution is a A-approximation for the min-max CVP, where A is the maximum
degree of an arbitrary spanning tree of the given graph. For the max-min CVP we

Table 1: Contributions of the present paper.

min-max max-min
. . A-approximation
CVP A-approximation w(G)

(1f Wmax S Tk)

2-approximation

. w(G
(if Wmax < 4E)

CEP 2-approximation

obtain the same result, but only for instances where the maximum node weight is
bounded. The approach is based on an algorithm that partitions a tree into subtrees
whose weight is bounded from below and above. Depending on the parameters with
which this algorithm is called, it generates an approximate solution for the min-max
CVP or for the max-min CVP.

We also prove that our algorithm can be extended to provide a 2-approximation, if
the given graph is a line graph. We show that the maximum degree of a spanning tree
for a line graph can be bounded by 3. By exploiting the fact that a connected edge
partition on a graph is equivalent to a connected vertex partition on the corresponding
line graph, we obtain a 2-approximation for both the min-max CEP and the max-min
CEP. Again, for the latter, we impose a constraint on the maximum edge weight.
While we have not found any approximation results for both versions of the CEP,
the 2-approximation we achieve also follows from the work of Chu, Wu, and Chao

[CWC13].

The rest of this paper is organized as follows. In Section 2 we formally describe the
CVP and CEP and review related work. In Section 3 we give a generalized approxi-
mation scheme for the CVP, and present an algorithm to obtain a A-approximation
for both versions of the CVP. Finally, in Section 4 we use line graphs to transform the
CEP into a CVP. Using the claw-freeness of line graphs, we provide a 2-approximation
for both versions of the CEP.

2 Problem formulation

Problem formulation All graphs considered in this paper are assumed to be con-
nected. The main problem we consider is the connected-vertex-partition problem
(CVP) which is defined as follows: Let G = (V,E) be a graph with node weights
w:V — Ryo and let & € N. For V' C V we define w(V’) := > ., w(v) and
for a subgraph § C G we write w(S) := w(V(S)). Furthermore, we denote by

Wmax = MaxXycy w(v) the maximum node weight in G. The min-max CVP is to
find a partition (Vi,...,V,) of V such that G[V;] is connected for ¢ € [k] while min-
imizing max;epy w(V;). Equivalently we are to find trees T1,...,7x C G such that

Vo= Uiep V(T3) and max;e w(7T;) is minimized. The max-min CVP is defined
analogously but with the objective to maximize min;ep) w(7;).

For the connected-edge-partition problem (CEP) we consider an edge-weighted graph
and a positive integer k. We assume the weight function w to operate on the edge
set I/, and adopt the notation from the node case. The CEP is to find connected
subgraphs G1,...,Gr C G such that F = Uie[k] E(G;). Again, we aim to minimize
max; ey w(G;) for the min-max CEP, or respectively, to maximize min; e, w(G;) for
the max-min CEP.

In both versions of the CVP and CEP we explicitly allow empty sets (or empty
graphs, respectively) in the partition. However, the objective function has a natural
aversion towards empty parts, since for the max-min version this would lead to a worst
possible objective value of 0, and for the min-max version one could potentially split
the heaviest component to reduce the maximum weight.

Related work The literature on partition problems is vast. We are focussed on the
aforementioned CVP and CEP with min-max or max-min objective.

The two versions of CVP are closely related. In fact, for CVPy the two versions
obviously coincide. For larger k£ though, optimal solutions of the two problems can
differ. A simple example for this is presented in Figure 1. While for this instance one
can find a solution that simultaneously optimizes the min-max and max-min objective,
there are also instances that do not admit such a solution (cf. [LPS93]).

Concerning the complexity, already CVPy is NP-hard [CGMS83], even on unit-
weighted bipartite graphs [DF85]. Moreover, it is also hard to approximate. Chataigner,
Salgado, and Wakabayashi [CSWO07] proved that CVPs does not admit a PTAS and
that there is no a-approximation for CVP with a < g, unless P = NP. Earlier,
Chlebikova [Chl96] had given a 3-approximation for CVPs.

(a) optimal solution (b) optimal solution . .
for min-max CVP3 for max-min CVPj3 (c) optlmal solution for
but not optimal for but not optimal for nax CVPs3 and
max-min CVP3 min-max CVP3 max-min CVP3

Figure 1: Comparison of solutions for min-max CVPj and max-min CVPj for an ex-
emplary instance. The numbers indicate node weights.

Focussing on the max-min CVP, more approximation results are known. For CVP3
and CVP, the best known result is a 2-approximation for 3-connected, or respectively
4-connected graphs [CSWO7].

The max-min CVP for special graph classes allows for even better results. For in-
stance, CVP}, is polynomially solvable for trees. For the max-min CVPy this was
proved in [PS81] and for the min-max CVPy in [BPS80]. Earlier, Kundu and Misra
[KM77] had considered a closely related problem and provided an algorithm that can
be employed to solve the min-max CVPj in polynomial time. In 1991, Frederickson
[Fre91] gave linear-time algorithms for both problems. These are particularly impor-
tant, since there are different heuristics that transform the original instance onto a
tree to efficiently solve the problem there [CWC13; Zho+19].

Another graph class for which CVP was investigated are grid graphs. While it was
shown that CVPy is NP-hard for arbitrary grid graphs [Bec+98], the max-min CVPy
can be solved in polynomial time for ladders, i.e., grid graphs with two rows and an
arbitrary number of columns [Bec+01].

For the class of series-parallel graphs, CVPj is also NP-hard. Ito, Zhou, and
Nishizeki [IZNO06] give a pseudo-polynomial-time algorithm for both, the min-max
and max-min CVP. They also show that their algorithm can be extended to graphs
with bounded tree-width.

The min-max CVP has received less attention. It was studied by Zhou et al.
[Zho+19] who give a mixed integer linear program to solve the problem using a flow
formulation to ensure the connection of the subgraphs. Since this approach is only fea-
sible for small instances, they also propose a genetic algorithm as a heuristic approach.
The main idea is to find a proper spanning tree whose optimal partition will also be
optimal for the given graph. While the authors of [Zho+19] perform a computational
study to show that their heuristic performs well, there is no theoretical result that
guarantees the quality of this solution.

The literature on CEP is also sparse. Jiinger, Reinelt, and Pulleyblank [JRP85]
were the first to consider a problem related to the min-max CEP with unit weights.
They study the problem of partitioning the edge set into connected subgraphs of equal
size s (except for the last subgraph which may have size < s).

The min-max CEPj, and max-min CEPj, with unit weights were studied by Wu et al.
[Wu+07], who show that these problems are NP-hard. For trees with unit weights Chu
et al. [Chu+10] give an algorithm that guarantees that the biggest tree has at most
twice as many edges as the smallest tree.

Chu, Wu, and Chao [CWC13] then showed that this result carries over to a general
graph G with non-negative integer edge weights, if wpax < wz(kG). They present an
algorithm to find a given number of connected subgraphs, such that the weight of the
heaviest subgraph is at most twice as large as the weight of the lightest subgraph.
While this is not mentioned by the authors, one can show that this result can be used
to obtain a 2-approximation for the min-max CEP as well as the max-min CEP, if the
edge weights of the respective instance satisfy the mentioned condition.

3 Approximating the CVP

In this section we will give an algorithm to obtain approximative solutions for the
min-max CVP as well as for the max-min CVP. For the latter however, we need to
assume an additional bound for the maximum node weight wp.x. Interestingly, we use
the same algorithm for both problems, while we only adjust a single input parameter
for the respective problem.

In particular, we give a A-approximation for both cases where A is the maximum
degree of a spanning tree of the given graph. This means that if W is the objective
value of our algorithm and W* is the optimal objective value, we guarantee that
W < AW* for the min-max CVP, and W > %W* for the max-min CVP. To the best
of our knowledge this is the first approximation result for CVP on general graphs.

3.1 A general approximation scheme for CVP

We start with a more general approach for the approximation and consider connected
partitions where the weight of every part is bounded from below and above (except
for the last one, which is only bounded from above). This approach is similar to the
one of Ito et al. [Ito+12], but their method is quite different and requires integer node
weights. Specifically, we consider [\, c\)-partitions which are defined as follows.

Definition 1. Let G be a graph with positive node weights w and let A > 0, ¢ > 1.
A connected partition Ty, ..., Ty of V(G) is called [\, c)\)-partition of G if

i) w(T;) € [A\,eX) Vie[m-—1],
it) w(Tm) € (0,cA).

We will see that for certain choices of A, a [\, cA)-partition leads to a c-approximation
for the CVP. The following theorem gives the details.

Theorem 2. Let (G,w,k) be an instance of CVP and let Ty,..., Ty be a [\ cA)-
partition of G.

a) If X := max{wmax, %}, then T4, ..., T, is a c-approzimation for the min-maz
CVP on (G,w, k).
b) If X := wi—G), then Ty, ..., Ty, leads to a c-approximation for the maz-min CVP
on (G,w, k).
Proof.

a) Let T7,..., T} be an optimal partition for the min-max CVP on (G, w,k) and
let W= := max;epp w(T5"). Then w(G) = 3,cpyw(Ty) < kW™ and hence A < W~
because wmax < W* is obvious.

Note that w(T},) > 0 and hence

m—1

w(G) = w(Ty) + Z w(Ty) > w(Tp)+ (m—1)A > o

i=1

-1
k

’UJ(G),

which implies that m — 1 < k or, equivalently, that m < k. As a result 7T1,...,T,, is a
feasible k-partition and w(T;) < cA < ¢W™* for any 4 € [m], which completes the proof
of the first statement.

b) Now let T7,..., T be an optimal partition for the max-min CVP on (G, w, k)
and let W := min;e(g w(T;"). Then w(G) = 3, cp w(T3) = kW™ and consequently
A> L

Since w(T;) < cA for every i € [m], we know that w(G) =3 ¢, w(Ti) < mcA, and

hence k = % < m.

We can easily relabel the trees T1,...,T,,_1 such that Uje{k
Afterwards we define

T} is connected.

T; vielk—1],
Sz' =)
Ujeth,omy T =k

From w(T;) > A Vi € [m — 1] we obtain w(S;) > A > 1W* for arbitrary i € [k] and
hence Sy, ..., Sk is the sought approximation. O

3.2 A A-approximation for CVP

The approximation for the CVP instance (G, w, k) is performed in two steps. First we
find a spanning tree T of G, specify a root node r, and denote the maximum degree
of T'by A. Then we use a partition algorithm which operates on a rooted tree with
node weights to find a A-approximation.

While we discuss the choice of the spanning tree later, we are now concerned with
the problem of partitioning a tree into connected parts of similar weight. Lukes [Luk74]
was the first to consider partition problems on trees, but did not demand connectedness
of the parts. Kundu and Misra [KMT77] give an algorithm to partition a tree with node
weights into subtrees of bounded total weight. Since then, various other approaches
have been proposed, e.g. in [BPS80; Fre91; ABP93; Ito+12], but none of them were
employed to construct approximation algorithms for the corresponding problem on
general graphs.

In order to simplify the description of our algorithm, we start by introducing some
notation concerning rooted trees. Let 7" be the tree rooted at node r. With N (v)
we denote the set of child nodes of the node v and N~ (v) is the (unique) parent node
of v # rin T". For v € T" the graph T is the subtree of 7" rooted at v. For instance,
in Figure 2 we have T, = T*. Note that both T, and T" \ T are trees and that
their respective node sets are disjoint, i.e., the edge between v # r and its parent does
neither belong to T nor to T \ 1.

The tree partitioning routine is described in Algorithm 1 and Figure 2 illustrates
how it works. We successively split off rooted subtrees from bottom to top, while
manipulating the original tree T" (cf. line 9). After considering all other nodes, we
process the root node and set T, to be the remaining tree 7.

With the preceding observations, the correctness of Algorithm 1 is clear. Let us
now briefly analyze its computational complexity. Breadth-first search on 7" runs in

Algorithm 1: BalancedTreePartition(7", w, \)

Input: rooted tree T,
w : V(TT) — R>0,
A > Wmax .
Output: trees Ty,...,T,,, CT" with V(T") =
1T+ w,+0 YoeV(T)
2 (@ < list of vertices of T in reversed BFS order
3 for v €) do
if v = r then
return 7 UT"
’UJ,IT; — ’UJ(’U) + ZwéN"’(v) wz
if w], > A then
T« TUly
T« T"\Tr

| V(TY)

i€[m

© 00 N O oo

O(|V(T")|) and afterwards, we process every node in amortized constant time. Thus,
our algorithm has a runtime linear in |V(T')].
The following result is the cornerstone for the A-approximation.

Proposition 3. Let T" be a rooted tree with node weights w and let deg(r) < A, where
A is the mazimum degree of T". Then, for every X > wpax the output Ty, ..., Ty, of
BalancedTreePartition(T",w, \) is a [\, AX)-partition of T".

Proof. For some i € [m] consider the root v of T; and observe that w; < A for all
child nodes x1,...,2; of v in T;. Due to the choice of r we have | < A — 1 and hence

1
w(T;) = w, = w(v)+2w£j < Wmax +IA < AN
j=1

The fact that w(7;) > A Vi € [m — 1] comes from line 7 of the algorithm. O

LSS
a

AT A

i J k l m

Figure 2: Balanced tree decomposition for an exemplary tree rooted at node a with
unit weights and A = 3.

Figure 3: Instance for min-max CVP where Algorithm 1 yields a worst-possible solu-
tion. For k := |V| we obtain A = wpax = 1 + € and the algorithm produces
the solution on the left with objective value A +¢e. On the right, the optimal
solution with objective value 1 + ¢ is depicted.

By combining the results from Theorem 2 and Proposition 3, we obtain the following.

Corollary 4. Let (G,w,k) be an instance of CVP and let T" be a rooted spanning
tree of G. Also assume that A is the mazimum degree of T" and that deg(r) < A.
Then,

a) for X := max{wmax, %}, the output of BalancedTreePartition(T",w, \) is a
A-approzimation for the min-maz CVP on (G,w, k).

b) if A := % > Wmax, BalancedTreePartition(T",w, A) leads to a A-approximation
for the maz-min CVP on (G,w,k).

In the following we will show that our algorithm does not admit a better approx-
imation ratio. Figure 3 shows an example where the approximation bound for the
min-max CVP is tight. Note however, that the example exploits that m < k for the
output of the algorithm, i.e., we only obtain two trees instead of |V| trees. It remains
open if a second stage optimization where we iteratively partition the heaviest tree
can improve the theoretic bound further.

Concerning the max-min CVP, Figure 4 shows an instance where the algorithm
yields a partition with min;cp w(7;) = 1 while W* = A. The example can easily be
extended for arbitrary k.

< I&.

Figure 4: Instance for max-min CVP where Algorithm 1 yields a worst-possible solu-
tion. For k := 2 and unit weights we obtain A = % = 1 and the algorithm
produces the solution on the left with objective value 1. On the right, the

optimal solution with objective value A is depicted.

To end this section, we will briefly discuss the choice of the spanning tree. To obtain
a best possible approximation result, we are interested in finding a spanning tree whose
maximum degree is as small as possible. This problem is known as minimum degree
spanning tree problem. While the problem is NP-hard, Fiirer and Raghavachari [FR92]
give a polynomial time algorithm to find a spanning tree of degree at most A* + 1,
where A* is the maximum degree of an optimal spanning tree. For special classes of
graphs better results can be achieved. For instance, in the next section we will show
that every line graph admits a spanning tree of degree at most 3 (cf. Lemma 5).

4 A 2-Approximation for CEP

In this section we present a 2-approximation algorithm for the min-max CEP as well
as for the max-min CEP. We exploit the fact that a connected edge partition on a
graph is equivalent to a connected vertex partition on the corresponding line graph.
Recall that for an undirected graph G = (V, E) the line graph L(G) has a vertex for
each edge e € E and two vertices in L(G) are adjacent iff the corresponding edges are
incident in G.

In 1970 Beinecke [Bei70] proved a characterization of line graphs in terms of for-
bidden subgraphs. One result is that a line graph cannot contain a claw, i.e., a K 3,
as induced subgraph. This has an interesting implication concerning the minimum
degree spanning tree of line graphs.

Proposition 5. Every line graph has a spanning tree T with A(T) < 3. Furthermore,
every tree found with depth-first search (DFS) has this property.

Proof. Let L be a line graph of some simple graph and let T" be a tree obtained by
depth-first search in L. Assume that T" has a vertex v of degree > 4, then v has at least
three child nodes a, b, c. Since T is a DFS tree, we know that ab, ac,bc ¢ E(L). Thus,
L contains an induced claw on the nodes {v, a, b, ¢}, contradicting the assumption that
L is a line graph. O

With a transformation of the problem to the line graph, this result immediately
gives us a 3-approximation for the min-max CEP and max-min CEP. Of course, the
condition for the max-min CVP translates to the requirement % > Wmax on the
edge-weighted graph.

However, we can use the fact that L(G) is claw-free for an even stronger result.
Namely, we obtain a 2-approximation for both variants of the CEP. The following

lemma lays the foundation.

Lemma 6. Let L be a line graph, let w: V(L) — Rsg and let X be a number satisfying
w(L) > X > Wpax.
Then there exists a tree S C L with w(S) € [\, 2)) such that L\ S is connected.

Proof. The proof is constructive. Consider a depth-first search spanning tree 7" of L
which is rooted at some node r. As L is claw-free, deg(r) < 3. From Proposition 5 we
know that A(T") < 3 and hence, every node in 7" has at most two child nodes.

T e

U ¢

T ¢

be

(a) line graph L (b) DFS spanning tree of L with
highlighted subtree T}, 4 vy

Figure 5: Exemplary transformation from line graph to DFS spanning tree.

If there exists some v € T" such that w(T}) € [A,2A) we are done since L\ T} is
connected. In the remaining case there has to exist a node v with child nodes z and
y such that w(Ty) > 2\ while w(T;) < A and w(7,) < A. In particular, note that
w(T7) < X for every leaf [in T" and that v with w(T))) > 2\ cannot have a single
child node = with w(T%) < A. Consequently, we have

A=2) =A< w(Ty) —w(Ty) = w(T;) +w(v) <A+ A =2)

to prove w(Ty) + w(v) € [A,2)), and analogously we obtain w(T}) + w(v) € [, 2)).
So if v = r, we choose the tree consisting of T extended with the edge vy, which we
denote by S = T, + vy, and find that L\ S is still connected. If v # r, then v has a
parent node u. Because T7 is a DFS tree we know that xy ¢ E(L). Now recall that L
as a line graph is claw-free which implies that ux € F(L) or uy € E(L). W.l.o.g. we
assume the former and conclude that S = T + vy is a sought tree in L. O

This result can be used to define an algorithm for tree partitioning of line graphs
as listed in Algorithm 2. By showing that it yields a [X,2A)-partition, we obtain
2-approximations for both versions of the CEP.

Algorithm 2: BalancedLineGraphPartition(L, w, \)
Input: line graph L
w: V(L) = Rso,
A 2> Wmax .
Output: trees Ty,...,T,,, C L with V(L) = JV(T})
T:=9
while w(L) > 2\ do
S := tree in L as constructed in Lemma 6
T:=TUS
L:=L\S

S := spanning tree of L

return 7 U S

N O Gk W N =

10

Proposition 7. Let L be a line graph with positive node weights w and let A > wmpax-
Then, the output of BalancedLineGraphPartition(L,w,\) is a [\, 2)\)-partition of L.

Proof. Let Th,..., T, be the output of BalancedLineGraphPartition(L,w, A). From
Lemma 6 we know that w(T;) € [\, 2)) for all i € [m — 1] and due to the condition in
line 2 of the algorithm we have w(T,,) < 2. O

This result paves the way for the 2-approximation of the CEP. First, we transform a
CEP into a CVP on the line graph to apply Algorithm 2. Since every connected vertex
k-partition on a line graph can easily be converted into a connected edge k-partition
of the original graph, we are done. The following corollary summarizes the results.

Corollary 8. Let (G,w', k) be an instance of CEP and let (L, w, k) be the correspond-
ing CVP on the line graph L = L(G). Then,

a) for X := max{wWmax, %}, Algorithm 2 leads to a 2-approzimation for the min-
maz CEP on (G,w', k).

b) if A= wé,f) > Wmax, Algorithm 2 leads to a 2-approximation for the maz-min

CEP on (G,w', k).

We end this part with an analysis of the computational complexity of Algorithm 2. In
the present form we have to compute a number of DFS trees depending on A. However,
one can modify the algorithm to work in a similar way as Algorithm 1, such that its
runtime is linear in the size of the line graph. Note that the size of the line graph
can be quadratic in the size of the original graph of the CEP. For implementational
purposes, however, the line graph can be handled implicitly to achieve a linear running
time for the approximative solution of the CEP.

References

[ABP93] Eliezer Agasi, Ronald I Becker, and Yehoshua Perl. “A shifting algorithm
for constrained min-max partition on trees”. In: Discrete Applied Mathe-
matics 45.1 (1993), pp. 1-28.

[BPS80] Ronald T Becker, Yehoshua Perl, and Stephen R Schach. “A shifting al-
gorithm for min-max tree partitioning”. In: International Colloquium on
Automata, Languages, and Programming. Springer. 1980, pp. 64-75.

[Bec+01] R Becker, Isabella Lari, Mario Lucertini, and Bruno Simeone. “A polynomial-
time algorithm for max-min partitioning of ladders”. In: Theory of Com-
puting Systems 34.4 (2001), pp. 353-374.

[Bec+98] Ronald Becker, Isabella Lari, Mario Lucertini, and Bruno Simeone. “Max-
min partitioning of grid graphs into connected components”. In: Networks:
An International Journal 32.2 (1998), pp. 115-125.

[Bei70] Lowell W. Beineke. “Characterizations of derived graphs”. In: Journal of
Combinatorial Theory 9.2 (1970), pp. 129 —135.

11

[Bul+16]

[CGMS83]

[CSWO07]

[CWC13]

[Ch196]

[Chu+10]

[DF85)

[FR92]

[Fre91]

[1ZNO6]

[Tto+12]

[JRP85]

[KM77]

Aydin Bulug, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Chris-
tian Schulz. “Recent advances in graph partitioning”. In: Algorithm Engi-
neering. Springer, 2016, pp. 117-158.

Paolo M Camerini, Giulia Galbiati, and Francesco Maffioli. “On the com-
plexity of finding multi-constrained spanning trees”. In: Discrete Applied
Mathematics 5.1 (1983), pp. 39-50.

Frédéric Chataigner, Liliane RB Salgado, and Yoshiko Wakabayashi. “Ap-
proximation and inapproximability results on balanced connected parti-
tions of graphs”. In: Discrete Mathematics and Theoretical Computer Sci-
ence 9.1 (2007), pp. 177-192.

An-Chiang Chu, Bang Ye Wu, and Kun-Mao Chao. “A linear-time algo-
rithm for finding an edge-partition with max-min ratio at most two”. In:
Discrete Applied Mathematics 161.7-8 (2013), pp. 932-943.

Janka Chlebikova. “Approximating the maximally balanced connected
partition problem in graphs”. In: Information Processing Letters 60.5
(1996), pp. 225-230.

An-Chiang Chu, Bang Ye Wu, Hung-Lung Wang, and Kun-Mao Chao.
“A tight bound on the min-ratio edge-partitioning problem of a tree”. In:
Discrete Applied Mathematics 158.14 (2010), pp. 1471-1478.

Martin E Dyer and Alan M Frieze. “On the complexity of partitioning
graphs into connected subgraphs”. In: Discrete Applied Mathematics 10.2
(1985), pp. 139-153.

Martin Fiirer and Balaji Raghavachari. “Approximating the minimum de-
gree spanning tree to within one from the optimal degree”. In: Proceedings
of the third annual ACM-SIAM symposium on Discrete algorithms. Soci-
ety for Industrial and Applied Mathematics. 1992, pp. 317-324.

Greg N Frederickson. “Optimal algorithms for tree partitioning”. In: SODA.
Vol. 91. 1991, pp. 168-177.

Takehiro Ito, Xiao Zhou, and Takao Nishizeki. “Partitioning a graph of
bounded tree-width to connected subgraphs of almost uniform size”. In:
Journal of discrete algorithms 4.1 (2006), pp. 142-154.

Takehiro Ito, Takao Nishizeki, Michael Schroder, Takeaki Uno, and Xiao
Zhou. “Partitioning a weighted tree into subtrees with weights in a given
range”. In: Algorithmica 62.3-4 (2012), pp. 823-841.

Michael Jinger, Gerhard Reinelt, and William R Pulleyblank. “On par-
titioning the edges of graphs into connected subgraphs”. In: Journal of
Graph Theory 9.4 (1985), pp. 539-549.

Sukhamay Kundu and Jayadev Misra. “A linear tree partitioning algo-
rithm”. In: STAM Journal on Computing 6.1 (1977), pp. 151-154.

12

[LPS93]

[Luk74]

[M&h+07]

[PS81]

[Wu+07]

[Zho+19)]

Mario Lucertini, Yehoshua Perl, and Bruno Simeone. “Most uniform path
partitioning and its use in image processing”. In: Discrete Applied Math-
ematics 42.2-3 (1993), pp. 227-256.

Joseph A. Lukes. “Efficient algorithm for the partitioning of trees”. In:
IBM Journal of Research and Development 18.3 (1974), pp. 217-224.

Rolf H Mohring, Heiko Schilling, Birk Schiitz, Dorothea Wagner, and
Thomas Willhalm. “Partitioning graphs to speedup Dijkstra’s algorithm”.
In: Journal of Experimental Algorithmics (JEA) 11 (2007), pp. 2-8.
Yehoshua Perl and Stephen R. Schach. “Max-Min Tree Partitioning”. In:
J. ACM 28.1 (Jan. 1981), pp. 5-15.

Bang Ye Wu, Hung-Lung Wang, Shih Ta Kuan, and Kun-Mao Chao. “On

the uniform edge-partition of a tree”. In: Discrete Applied Mathematics
155.10 (2007), pp. 1213-1223.

Xing Zhou, Huaimin Wang, Bo Ding, Tianjiang Hu, and Suning Shang.
“Balanced connected task allocations for multi-robot systems: An exact

flow-based integer program and an approximate tree-based genetic algo-
rithm”. In: Expert Systems with Applications 116 (2019), pp. 10 —20.

13

