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Abstract

About 23% of the German energy demand is supplied by natural gas. Additionally, for about twice
this amount Germany serves as a transit country. Thereby, the German network represents a central
hub in the European natural gas transport network. The transport infrastructure is operated by
so-called transmissions system operators or TSOs. The number one priority of the TSOs is to
ensure security of supply. However, the TSOs have only very limited knowledge of the intentions
and planned actions of the shippers (traders).

Open Grid Europe (OGE), one of Germany’s largest TSO, operates a high-pressure transport
network of about 12.000 km length. With the introduction of peak-load gas power stations, being
able to predict in- and out-flow of the network is of great importance to ensure the necessary
flexibility and security of supply for the German Energy Transition (“Energiewende”).

In this paper we introduce a new hybrid forecast method applied to gas flows at the boundary
nodes of a transport network. The new method employs optimized feature minimization and selec-
tion. We use a combination of an FAR, LSTM DNN and mathematical programming to achieve
robust high quality forecasts on real world data for different types of network nodes.

Keywords: Gas Forecast, Time series, Hybrid Method, FAR, LSTM, Mathematical Optimisation

1. Introduction

About 23% of the German (and European) energy demand is met by natural gas. Additionally,
for about twice the amount Germany serves as a transit country. Thereby, the German network
represents a central hub in the European natural gas transport network. In light of the German
Energy transition (“Energiewende”) with an increasing share of renewable energy sources as well as
the envisioned international transition towards substantially less fossil fuels and related greenhouse
gas emissions, the importance of natural gas will increase even more. A critical task of gas power
plants is to deliver electricity in peak load situations, where electricity from renewable energy
sources is not sufficient to cope with the demands. From the gas network point of view this leads
to huge gas demands on very short notice.
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Figure 1: Map of the gas transmission network operated by Open Grid Europe

2



The gas network is operated by so-called transmissions system operators or TSOs. Their duty is
to operate the long distance transport network and to ensure that all demands are met. Until 2005,
gas transport and supply in Europe was provided by a handful of companies, owning and operating
the natural gas transmission system to do so. To establish a European gas market, in 2005, the
European Union legislated that gas trading and transport had to be done by mutual independent
companies to ensure discriminatory-free access to the transport network for all traders. Before this,
TSOs were part of an integrated organization and could plan the network operation and expansion
together with the traders. Since then, they are independent and need to plan under the uncertainty
regarding the gas-flow situations resulting from trading.

Although on the contractual level all gas transports of a market area have to be balanced, this
needs only to be achieved on average over time. Some outflow might actually only be balanced by
an inflow at a later time.

Despite of these challenges for the TSOs they need to meet all transport demands. It is the
obligation of the TSO to monitor the situation, foresee possible shortages and react accordingly to
ensure safety of supply. Since changes in gas networks happen rather slowly it is therefore extremely
important to have accurate forecasts on the demands and supply of the network to be able to react
on time.

We collaborated with one of the biggest German TSOs, operating a gas network with pipe
length of about 12,000 km in total (see Figure 1), to improve their hourly forecasts for demand and
supply. We aim to:

• Predict as precisely as possible the average hourly gas flows for the upcoming gas day, i.e.,
from 6am to 6am, just before the start of the gas day (at about 5:59am);

• The prediction needs to be appropriate for all different types of nodes ranging from connections
to other networks or countries to industrial users or municipal consumers, leading to very
diverse data characteristics;

To reach these goals, we investigated real data from the transport network operated by Open Grid
Europe. We propose a powerful and robust hybrid forecast model that benefits from the combi-
nation of state of the art forecasting approaches and optimisation, leading to improved forecast
accuracy. We interpreted the most important features that our model automatically selects.

In the following, the next subsections present nomenclature and an overview of related work.
Section 2 describes the data we used in this study. Section 3 gives details on the proposed models.
Section 4 describes the evaluation methodology and the evaluation of computational experiments.
Finally, we draw some conclusions.
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1.1. Nomenclature

Open Grid Europe GmbH OGE
Municipal Power Stations MUN
Power Stations and Industry IND
Storage STO
Transfer Points to other Networks NET
Mathematical Programming MP
Linear Program LP
Mixed Integer Linear Programming MILP
Functional Autoregressive FAR
Long Short Term Memory LSTM
Hybrid model HYB
Heating Day Degree HDD
Baseline forecast(persistance) BAS

1.2. Related work

Models on natural gas demand forecasting are mainly focused on long term issues. There are
quite some publications regarding electricity demand forecasting, (see, e.g. [41], [23], [1], [25]) but
electricity behaves very differently from gas. A survey on models to predict natural gas consumption
published between 1949 and 2010 is presented by [36] who evidences that only a few works are
focused on hourly gas flow prediction. A more recent survey ([45]) considers 187 papers published
between 2002 and 2017. The authors point out that the majority of works provide daily predictions
and recognize that neural networks are the most used models. The authors also show that, on the
considered period, most of the works were performed at an aggregated level (i.e. country or city)
and only three papers proposed models to forecast the hourly gas consumption. In [43], two neural
networks were tested to forecast natural gas consumption based on historical data and environmental
variables. The authors found a better prediction accuracy when using the multi-layer perceptron
compared to the radial basis function. In [42], a model similar to radial basis neural network
was proposed to predict gas consumption in a distribution system. In this work input variables
were selected using a genetic algorithm. Residential hourly gas consumption was predicted with
neural networks by [10]. In this work, the heating degree-hour method which considers the gap
between outdoor and indoor temperature was considered. The best hyper-parameters configuration
consisted of 29 neurons, a feed-forward backpropagation algorithm and tangent, sigmoid and linear
functions for the input, hidden and output layers respectively. Similarly, [39] proposed neural
networks to forecast residential natural gas demand. The proposed network consisted of a multi-
layer perceptron with one hidden layer. The input features included calendar (i.e. month, day of
the month, day of the week, hour) and weather (temperature) information. The authors found that
average prediction error was higher during the winter months because gas flow was higher. More
recently, [15] compared several machine learning models to predict residential natural gas hourly
demand and found that recurrent neural network and linear regression were the most accurate
models. The prediction results of monthly gas consumption of residential buildings using Extreme
Learning Machine (ELM), artificial neural networks (ANNs) and genetic programming (GP) was
presented by [16]. The ELM is characterized by higher training speed compared to backpropagation
and it was found to perform better, in terms of RMSE, compared to the other two techniques. In [18]
the authors set up a two stages methodology to predict daily gas consumption of utility companies.

4



In the first stage, two NNs are run in parallel to produce daily forecasts; in the second stage, a
nonlinear transformation of some features of the input vector is performed. The combination of the
two stages is based on several methods such as average forecast, recursive least squares, etc. The
results show that the mix between the two forecasters has higher accuracy although the combination
of the two models increases the complexity. Overall, these works show that the consumer profile is
very important when forecasting gas flow. In this regard, [32] identified seventeen groups profiles,
based on their historical consumption and predicted daily gas demand. The overall prediction was
obtained from the combination of the single predictions.
The backpropagation algorithm optimized with a genetic algorithm was implemented by [47] to
increase the training speed and to achieve a global minimum. The authors predict next day gas
loads based on temperature and weather conditions. Furthermore, the authors tested the algorithm
on a three years real dataset recorded in Shanghai to predict one month and a half gas load.
Similarly, [48] propose a recurrent neural network to predict daily gas flow. The Output-Input-
Hidden Feedback-Elman neural network takes into account, not only the hidden nodes feedbacks
but also considers the output nodes feedbacks. The results improved compared to these obtained
with standard Elman network. However, the authors recognize that further research is needed to
forecast gas demand during holidays. In [3], an adaptive network-based fuzzy inference system
(ANFIS) consisting of a neural network integrated with fuzzy logic was proposed to forecast short
term natural gas demand. The main advantage of this model was its ability to handle uncertainty,
noise and non-linearity in the data and, compared to standard neural network models, provided
more accurate results. Wavelet transform has been deployed by [38] to decompose the hourly gas
demand time series and Bi-LSTM and LSTM are optimized using genetic algorithm. The model was
applied to winter data on which it has shown good prediction accuracy. Several static and adaptive
models have been tested by [30] for short-term gas consumption forecast (random-walk, temperature
correlation model, linear regression model, ARX, adaptive (recursive) linear auto-regressive model
(RARX), neural network (NN), Recurrent NN, Support Vector Regression). They found that the
best performance was obtained by the RARX of order 3. Furthermore, they found that nonlinear
models such as neural networks and support vector machines had a lower generalization capacity
compared to linear models. Finally, they concluded that the adaptive models overall performed
better than static models.

The traditional approaches are regression and econometric models. In this regard, the perfor-
mance of non linear mixed effects, ARIMAX and ARX models to predict gas consumption of 62
residential and small commercial customers was assessed by [8]. The authors forecast daily con-
sumption of an entire month based on the previous 18 months. The time series included zero flows
and missing data which were excluded for the training process. The prediction performance was
similar in terms of daily mean absolute error which was close to zero for all the tested models.
Thus, the authors propose to combine multiple models although they recognize that this might be
a difficult task because of increased computational complexity. Multiple linear regression has been
proposed by [34] who predicted annual gas consumption based on socio-economic variables (GDP
and inflation in the case of Turkey) that have been selected based on their statistical significance.
Based on the forecast, the authors propose alternative energy policies.

A hybrid model formed by a grey model and an autoregressive integrated moving average model
has been proposed by [46] to predict monthly shale gas production. The authors conclude that the
results of the combined model are more accurate than the single linear and non linear models.

In [26], Multivariate Adaptive and Conic Multivariate Adaptive Regression Splines were pro-
posed to predict residential daily gas demand. The two models provided better results in terms of
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prediction errors (MAE and RMSE) compared to these obtained with linear regression and neural
networks. In [35], the nonlinear characteristics of the natural gas consumption is modeled with
several Grey models that are compared to predict the yearly natural gas consumption in China.
Non linear programming and genetic algorithm have been proposed by [12] to predict natural gas
consumption in the residential and commercial sectors on a yearly basis. Similarly, [17] proposed
the breeder hybrid algorithm which consists of three steps for natural gas flow demand forecast.
In the first stage, the coefficients of a non linear regression model are estimated. Successively, the
estimates are improved using genetic algorithm. Finally, the optimized coefficients are deployed as
initial solutions for the simulated annealing. Nearest neighbor and local regression were proposed
by [5] to predict gas flow in a small gas network with a 15 minutes resolution. The authors evidence
the importance of environmental variables such as the temperature. Their method allowed to detect
anomalies and the consumption patterns based on one year historical data. In the literature, there
are also combinations of several methods to predict one day-head natural gas consumption. In [27],
the time series was decomposed into low-frequency and high frequency components using Wavelet
transform. In a second step, the genetic algorithm and Adaptive Neuro-Fuzzy Inference System
were deployed to predict each of the decomposed time series. The output was finally fed into a
feed-forward neural network to refine the prediction. The research was focused on different types
of natural gas distribution points. The authors obtained better prediction results using the data of
distribution points located near the city center. Neural networks have been also compared to the
performance of autoregressive models. In [40], for instance, short term natural gas consumption
in Turkey was predicted using SARIMAX model and Neural Networks (Multilayer and Radial Ba-
sis) and multivariate regression. They found that SARIMAX had better prediction performance.
The temperature correlation model, proposed by [37], was compared with several configurations
of ARX, stepwise regression, Support Vector Regression and neural network. The author found
that SVR and NN performed better on the training set, while high order ARX model performed
better on the test set. Support Vector Regression has been deployed with false neighbours filtered
approach to predict short term natural gas consumption ([49]). The local predictor was based on
the nearest neighbour approach so that the Euclidean distance between the training and test data
and the neighbour filter was applied to determine the validity of the predicted values based on
the exponential separation rate. The authors obtained better performance prediction compared to
ARIMA, neural networks and Support Vector Regression.

Overall, the analyzed literature shows that there are few works that are focused on the com-
parison between methods to predict hourly gas flow of different types of nodes in a gas network or
combining the advantages of different forecasting methods to a hybrid model for hourly gas flows.
Therefore, we propose a hybrid model based on optimisation and machine learning and compare its
results to four different models to predict hourly gas flow. To address the heterogeneity of the time
series for the different node types we compare results obtained for four different types of nodes.

2. Data

We consider high-resolution natural gas inflows and outflows in the high- pressure gas pipeline
network operated by Open Grid Europe GmbH (OGE).

The gas transmission network has more then 1000 boundary nodes which can be classified into
four different groups:
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Table 1: Number of nodes and percentage of flow

Type # flow(%)

Network 34 72.95
Municipal 726 16.68
Industry 234 4.26
Storage 14 6.11

• Network Transfer Points (NET) are large nodes with natural gas imported and exported to
other networks mostly outside Germany. These can be entries and/or exits.

• Municipal Utility nodes (labeled MUN) serve residential and small commercial constituents
and are always only exits. They are often temperature dependent, exhibit daily and seasonal
patterns, and simultaneously are influenced by weekends/holidays.

• Industry and Power Stations (IND) represent electricity generation and factory production
nodes. These are also always exits and naturally exhibit weekly patterns due to working
routines.

• Storage nodes (STO) usually have a large number of zero flow hours with some substantial,
often constant transfer in between. The nodes can always both be entries and exits.

While, in principle, we know the above classification, it is proved not to be reliable regarding
the behavior of the nodes, so we will not use this information as part of the forecast, but just to
explain certain behavior.

Table 1 depicts the number of nodes belonging to the different groups and percentage of gas
flow explained by each group.

As illustration, we carefully selected three nodes for each type. The three network nodes we
selected occupy 22% of the whole network flow. The municipal nodes are considered important
by the TSO. The Industry nodes selected represent power plants and play a key role in energy
generation with high renewable energy shares, as they are fast to start and can produce the necessary
energy in times of peak demand. For the representative nodes from the Storage group we selected
the most frequently used nodes in the observed period.

Figure 2 shows normalized (to the range of [0, 1]) flows of the nodes considered in this study.
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Figure 2: Normalized flow of selected nodes
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For each node, the gas flows are measured hourly. Additionally, we were given the average daily
temperatures measured at the nodes. Some statistical properties of selected nodes are given in
Table 2. As can be seen from Figure 2 and in the Table 2 some nodes have continuous flow, while
other are active only occasionally. Storage nodes have the highest percentage of zero flows. For the
ones considered in this study hours with zero flow amount for 26% to 53% of the time. Network
nodes show the highest variability and are always inflows. Industry nodes are always outflows and
are clearly not temperature dependent. Municipal nodes are usually temperature dependent and
have a strong daily, weekly and seasonal patterns.

Table 2: Properties of nodes used in the study. We denote inflows as positive and outflows as negative values

Node Type mean std min max zeros (%)

NET1 Network 13546 3177 4063 21092 0.00
NET2 Network 7752 3792 0 19113 0.01
NET3 Network 26241 3506 0 32593 0.06
MUN1 Municipal -171 48 -763 0 2.68
MUN2 Municipal -591 230 -1658 0 0.85
MUN3 Municipal -111 35 -299 0 0.02
IND1 Industry -161 32 -334 0 0.01
IND2 Industry -141 41 -305 0 0.43
IND3 Industry -121 23 -302 0 1.23
STO1 Storage 227 2469 -8013 11850 25.88
STO2 Storage -277 2606 -5453 13972 52.88
STO3 Storage 150 3377 -9940 15017 39.51

3. Methods

Many research studies showed that combining forecasts improves accuracy relative to individual
forecasts [20],[9]. In this Section we will first present three different individual forecasting methods;
Functional AutoRegressive (FAR), Long Short-Term Memory Network(LSTM) and Mathematical
Programming(MP) model. Then we will propose a hybrid model(HYB) based on MP method which
is using output of two other forecasting models, FAR and LSTM, as additional inputs (features).

3.1. Functional AutoRegressive (FAR) model

In this section, we consider the hourly gas flows as discrete observations in continuous daily
flow curves and predict the continuous curves over time with Functional AutoRegressive (FAR)
dynamics. [7] developed Functional AutoRegressive (FAR) model and Yule-Walker estimator for
one series of functional time-dependent data ([6], Kim, [13], [2], [19]). [24] proposed a maximum
likelihood estimation with Fourier expansions. Chen extended the maximum likelihood estimation
with stochastic variations and employed an adaptive approach so that the predictive model can be
directly applicable for both stationary and non-stationary situations. We detail the FAR setup and
show how to obtain the maximum likelihood estimator of the functional parameters, with the help
of Fourier expansion and sieve.

Our interest is to model the dynamic dependence of gas flow curves over time. Let
{
Xt(τ)

}n
t=1

denote a sequence of random curves over a time domain τ ∈ [0, 1]. The curve Xt(τ) is a continuous
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function taken values in the Hilbert space H endowed with its Borel σ-algebra BH at time point
t. Suppose that there exists a Hilbert-Schmidt operator ρt that can be written as ρt =

∑
j λj,t <

·, ej > fj , where {ej} and {fj} are orthonormal bases of H, < ·, · > is the inner product derived
to Hilbert-Schmidt norm || · ||, and {λj , t} is a real sequence such that

∑
j λ

2
j,t <∞, see [7] for the

theory of Hilbertian autoregressive model. The functional autoregressive model of order 1, i.e. the
FAR(1) model, is defined as:

Xt(τ)− µ(τ) =

∫ 1

0

K(τ − s)[Xt−1(s)− µ(s)]ds+ εt(τ), τ ∈ [0, 1], (1)

where µ(τ) is the time-dependent mean function of Xt(τ). The AR operator is represented as a
convolution kernel operator, which is one implementable form of the Hilbert-Schmidt operator. This
choice of convolution kernel operator is very common in the study of functional linear processes
and autoregressive processes, see [31], [24] and [22]. The kernel K ∈ L2([0, 1]) is an even function
with ‖K‖2 < 1 and ‖ · ‖2 denotes the standard L2 norm. The innovation εt(τ) is a strong H-white
noise with zero mean and finite second moment E‖ε(τ)‖2 < ∞ Assume the Fourier coefficients of
the innovation function εt(τ), denoted as a0(εt), ak(εt) and bk(εt), are independent and identically
Gaussian distributed with mean zero and variance σ2

k, we define a transition density as follows:

g(Xt, Xt−1, ρ) =
2π−(2mn+1)/2

σ0
∏mn

k=1 σ
2
k

· exp
{
− 1

2σ2
0

(at,0 − p0 − c0at−1,0)2

−
mn∑
k=1

1

2σ2
k

[
(bt,k − qk −

1√
2
ckbt−1,k)2 + (at,k − pk −

1√
2
ckat−1,k)2

]}
,

and thus the conditional log-likelihood L(X1, ..., Xn; ρ) is

L(X1, ..., Xn; ρ) = log
{ n∏

t=2

g(Xt, Xt−1, ρ)
}

= − (2mn + 1)(n− 1)

2
log2π − (n− 1)logσ0 − (n− 1)

mn∑
k=1

logσ2
k

− 1

2σ2
0

n∑
t=2

(at,0 − p0 − c0at−1,0)2

−
n∑

t=2

mn∑
k=1

1

2σ2
k

{
(bt,k − qk −

1√
2
ckbt−1,k)2 + (at,k − pk −

1√
2
ckat−1,k)2

}
.

We implement the FAR modelling to forecast the daily gas flow curves. The gas flow forecast h-
step ahead, denoted as X̂t+h(τ) is directly based on the h-step ahead forecast of the mean function
and the kernel operator:

X̂t+h(τ) = µ̂(τ) +

∫ 1

0

K̂(τ − s)[Xt(s)− µ̂(s)]ds (2)

For each forecast point, we estimate the Fourier coefficients to obtain the estimated mean function
µ̂(·) and kernel operator K̂(·) and the fitted model is then used to compute h = 1− and 2-step
ahead forecasts of the gas flow curves.
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3.2. Long Short-Term Memory Network

In this section, we use Long Short-Term Memory Network (LSTM) to predict gas flow based on
the previous 24-hours. LSTM are a special types of Recurrent Neural Networks (RNN) that have
been introduced in the eighties (i.e. [33], [11]) to model time interrelations by allowing connection
between hidden units with a time delay ([28]). At each iteration, the hidden state vector receives
the input vector and its previous hidden state. The hidden state vector can therefore be seen as a
representation of time sequences ([29]).

Long Short-Term Memory (LSTM) networks, proposed by [14], include a memory gate that
controls what passes through the network and what is blocked so that some of the information that
is feedback to the network is remembered and some other is forgotten. An additional gate keeps
memory and filters out what has to be forgotten. At each time step, the network memorizes the
information and filters out what is not relevant for the prediction. Finally, another set of gates
ignores what is irrelevant. The formulation of the LSTM, as presented in [21], consists of three
layers that are called gates: the input (3), forget (4) and output gates (7), respectively:

i = sig(Wi [̇ht−1, xt] + bi) (3)

f = sig(Wf [̇ht−1, xt] + bf ) (4)

Where ht−1 is the hidden state computed at time t − 1 which is calculated based on previous
hidden state, ht. Each of the gate has a sigmoid function so that the values range between 0 and 1.

The decision on which information will be stored into a cell is based on the input layer (3) and
on a hyperbolic tangent (or sigmoid) function assigned to the layer that returns the set of candidate
values, Ĉ (5):

Ĉt = tanh(WC [̇ht−1, xt] + bC) (5)

To update the cell state Ct−1 into Ct, the old state is multiplied by the forget gate and added
to the new candidate values (6):

Ct = ft ◦ Ct−1 + i ◦ Ĉt (6)

Finally, the output is obtained by passing the cell state Ct to a rectified linear function (or
hyperbolic tangent) function to decide which part of the information is passed to the output 7.
Moreover, the cell state is multiplied by the output of the relu (or tanh) gate (8).

ot = sig(Wo[ht−1, xt] + b) (7)

ht = tahn(Ct) ◦ ot (8)

Thanks to this architecture, LSTM has the ability to look back several time steps and, thus, to
improve the predictions. Also recurrent neural networks can look time steps back but the problem
they incur is called vanishing or exploding gradient for which the results either become very large
or small.

The LSTM deployed to forecast gas flow consisted of one single layer and an early stop function
with patience set to four. This means that the training of the network stops as soon as the value of
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Table 3: Parameters of the LSTM

Node Neurons Dropout Activation Activation Output Batch size

NET1 55 0 Sigmoid Relu 2
NET2 70 0 Sigmoid Tanh 243
NET3 30 0 Sigmoid Relu 2
MUN1 40 0.7 Sigmoid Relu 2
MUN2 30 0.7 Tanh Relu 2
MUN3 30 0.7 Sigmoid Relu 2
IND1 70 0.5 Tanh Relu 12
IND2 70 0.7 Tanh Relu 10
IND3 70 0.7 Tanh Relu 324
STO1 70 0.7 Sigmoid Relu 48
STO2 80 0.7 Tanh Relu 80
STO3 80 0.7 Tanh Relu 80

loss function remains the same after four iterations. In this work, different types of parameters are
manually selected to forecast gas flow depending on the type of node and based on trial and error.

The configuration of the parameters of the network for each node is reported in Table 3. The
most influential parameter is the batch size that is the number of training examples that are utilized
in each iteration. The higher the value of this parameter the faster is the training of the network.
Only two types of activation functions are selected for the hidden state, depending on the node:
hyperbolic tangent function (tanh) or sigmoid. The transfer function of the output gate selected
for all nodes, except for one network node, is the Rectified Linear Unit (Relu). Overall for storage
nodes that are characterized by high variability between negative and positive values and by a high
number of hours with zero flows, the batch size was set between 48 and 80 and the number of
neurons between 70 and 80.

3.3. Mathematical Programming (MP) for time series forecasting

In this section, we use Linear Programs (LP) together with Mixed Integer Linear Programs
(MILP) for prediction of the flows - supplies and demands of the gas network. Given a set of
measurements md,h ∈ M for each day d ∈ D and each hour h ∈ H. Let us define Md ⊆ M as
a subset of the measurements before day d. The features i ∈ Fh = {1, . . . , nh} are defined as
arbitrary functions of historical flow values, fh,i(d) : D →Md, i ≤ ph ≤ nh and exogenous variables
fh,i(d), i ∈ {ph + 1, . . . , nh}. We can approximate gas flow with weighted sum of features

pd,h =
∑
i∈Fh

wh,ifh,i(d) (9)

where pd,h is the flow value which is approximated, and wh,i define the weights.
The approximation error is defined as

ed,h = pd,h −md,h

and the optimal weights are calculated by minimizing the sum of absolute errors for each day d and
hour h
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min
∑

d∈D,h∈H

|ed,h|

This problem is not a LP because of the nonlinear absolute value in the objective function but
it can be transformed into a LP. We can rewrite the error ed,h as the difference of two non-negative
variables:

ed,h = e+d,h − e
−
d,h

Then the transformed objective function is

min
∑

d∈D,h∈H

|e+d,h + e−d,h|

For a solution to be optimal regarding to the objective e+d,h · e
−
d,h = 0 (ref) must be true, so we can

write

|e+d,h − e
−
d,h| = |ed,h|+ |e

−
d,h| = e+d,h + e−d,h

and consequently the final LP problem becomes

min
∑

d∈D,h∈H

(e+d,h + e−d,h)

subject to
∑
i∈F

fh,i(d) · wh,i −md,h = e+d,h − e
−
d,h for all ∈ D,h ∈ H

e+d,h, e
−
d,h ≥ 0

wh,i ∈ R

Furthermore, we can force our model to be unbiased by requiring∑
d∈D,h∈H

(e+d,h − e
−
d,h) = 0

and setting bounds for the weights l ≤ wh,i ≤ u to limit the influence of a single specific feature.
For each day in the test set (out of sample days that we want to forecast) the forecasted flow

values are computed by first computing the weights via an LP with 16 weeks of historical data and
then using the weighted sum of features (9) for each hour to forecast the flow values. The lower
and upper bounds for the weights are set to l = −2 and u = 2, respectively. For the computation
of the forecasted flow values, it might be that also forecasted flow values of prior hours are used as
input values for calculating the features, if the corresponding hours do not lie in the past.
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Training: Feature Selection

In the training procedure of this method, a slightly different model is used which automatically
chooses for each hour the B features which are most important, to limit over-fitting in the LP.
Therefore, we add additional binary variables xh,i to the problem, which determine whether feature
i is chosen for hour h, i.e., whether the weight of feature i and hour h is not equal to zero. Then,
we link these variables to the weight variables

xh,i · l ≤ w+
h,i ≤ xh,i · u

and limit the number of chosen features by B∑
i∈F

xh,i ≤ B

The solution of the resulting MILP leads for each hour h to one feature set Fh of at most B features
which are most important for this hour.
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Table 4: List of features

Feature Description

f1(d, h) =

{
m(d, h− 1), if h > 0

m(d− 1, 23) otherwise
Prior hour

f2(d, h) = m(d− 1, 0) First hour yesterday
f3(d, h) = m(d− 1, 23) Last hour yesterday
f4:10(d, h) = m(d− (1, 2, .., 7), h) The same hour 1,2,..,7 days ago
f11:12(d, h) = m(d− 1, 0(h))/m(d− 2, 0(h)) Ratio first(same) hour yester-

day first(same) hour 2 days ago
f13:14(d, h) = m(d− 1, 0(h))−m(d− 2, 0(h)) Difference first(same) hour yes-

terday, first(same) hour 2 days
ago

f15:21(d, h) = 1/24(
∑

h∈H m(d− (1, 2, ..., 7), h)) Mean flow 1,2,..,7 days ago
f22(d, h) = f15(d, h)/f16(d, h) Ratio mean flow yesterday, 2

days ago
f23(d, h) = f15(d, h)/f21(d, h) Ratio mean flow yesterday, 7

days ago
f24(d, h) = f15(d, h)/(1/24(

∑
h∈H m(d− 8, h))) Ratio mean flow yesterday, 8

days ago
f25(d, h) = f15(d, h)− f16(d, h) Difference mean flow yesterday,

2 days ago
f26(d, h) = f15(d, h)− f21(d, h) Difference mean flow yesterday,

7 days ago
f27(d, h) = f15(d, h)− (1/24(

∑
h∈H m(d− 8, h))) Difference mean flow yesterday,

8 days ago

f28(d, h) =

{
0, if h = 0

m(d, 0) otherwise
First hour today

f29(d, h) =

{
0, if h = 0

1/h
∑h−1

i=0 (d, i) otherwise
Mean flow today

f30(d, h) = td − td−1 Difference mean temperature
today and yesterday

f31(d, h) =

{
1, if day ∈ {Saturday, Sunday}
0 otherwise

Weekend

f32(d, h) =

{
1, if day ∈ {Friday, Saturday}
0 otherwise

Evening

f33(d, h) = 1 Offset

The list of features used in this study is presented in Table 4. The whole set of features F
we used consists of 29 different features based on historical flow values, one temperature feature
and two different features describing position of the predicted gas day in the week and the offset
feature. Using sensitivity analysis the number of chosen features was limited to six. One year of
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historical measurements was used for training and selecting optimal set of features for every node
and hour. The Figure 3 is showing the heatmap of selected features for MP model for each group
of nodes summed up for 24 hours.

Figure 3: Heatmap of selected features for different node group

For all nodes the feature representing the flow of the previous hour (f1) is the mostly used
feature. For all hours except the first predicted gas hour this feature value is calculated based
on the the forecasted flow of previous hour when the final forecast is calculated. The same hour
yesterday(f4) is also widely selected among all groups. As it was expected Weekend (f31), Evening
(f32) as well as Mean temperature difference feature (f30) are usually chosen only for the Municipal
utilities since the behaviour of those nodes shows strong daily, weekly and seasonal patterns. In the
case of Industry nodes the features of Mean flow of the same and previous day (f29, f15) together
with the Ratio features f11, f12 are the most frequently chosen features. For Transfer Points and
Storages features of mean flow of the same and previous day (f29, f15) are also dominating ones
except for first gas hour where this pattern is not present. For all observed nodes the Offset feature
(representing the bias in the model) is selected very frequently.

Figure 4 shows a scatter plot of flow amount versus the three most frequently chosen features
among different types of nodes for all hours of the day. It can be seen that the flow depends linearly
on f4 while other features are showing a nonlinear dependency.
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Figure 4: Scatter plot of some frequently chosen features vs flow
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3.3.1. Hybrid model

The main advantage of the mathematical programming method (MP) proposed in this paper
is flexibility in the sense that adding new features when they are available in order to improve the
forecast is very simple.

In this section we propose a hybrid model, combining mathematical programming (MP) with the
two other proposed methods by adding the outputs from LSTM and FAR model as an exogenous
inputs to the MP model. The optimal sets of features chosen for every node and hour were kept from
previous MP training and extended with the forecasts from the LSTM and FAR model as additional
features. The final forecast is calculated as weighted sum of all features from the extended features
set:

pd,h = pd,h =
∑
i∈F

fh,i(d) · wh,i + LSTM(d, h) · wh,LSTM + FAR(d, h) · wh,FAR

New optimal weights are calculated by running an LP:

min
∑

d∈D,h∈H

(e+d,h + e−d,h)

subject to pd,h −md,h = e+d,h − e
−
d,h for all d ∈ D,h ∈ H

pd,h =
∑
i∈F

fh,i(d) · wh,i + LSTMh(d) · wh,LSTM + FARh(d) · wh,FAR

e+d,h, e
−
d,h ≥ 0

wh,i, wh,LSTM, wh,FAR ∈ R

where LSTMh(d) and FARh(d) represent the forecasted values obtained from the LSTM and
FAR models, respectively.

4. Testing and Results

4.1. Influence of temperature

The temperature is one of the most important factors that influence gas consumption. When
the natural gas is consumed for heating such as in residential areas, the temperature usually has
an inverse relationship with gas consumption which is also dependent on other environmental data
such as the time of day, the day of week, the season, etc. Furthermore, temperature and time of
day are the factors that mostly impact the forecast error ([39]).

The majority of models presented in the literature are focused on residential and small com-
mercial consumer at individual or aggregate level.

Several authors have considered the temperature (i.e. [26], [27], [12]) or meteorological data
([40]) in their models to forecast gas flow and reduce the prediction error.

In [44], the authors pointed out that the nonlinear characteristics of temperature has been
assessed long time ago and gas consumption is proportional to the Heating Degree Day (HDD)
([4]). This proportionality is evidenced when plotting the average daily temperature versus the gas
consumption.

The scatter plots of daily changes of temperature versus daily changes of gas flow of the nodes
considered in this work are shown in Figure 5. Storage nodes have a high percentage of zero flows,
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Figure 5: Scatter plot of gas consumption vs temperature
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those are the nodes that better approximate the non linear relationship expressed by the HDD. As
expected, the Municipal nodes present a positive correlation between the flow and the temperature.
Among the network nodes, one of them presents a negative relationship with the temperature. The
remaining nodes appear to be independent from the temperature.

4.2. Results

4.2.1. Objectives, setup and evaluation metrics

In this paper we observed a data set of hourly gas flow time series from twelve nodes with 17.520
observations (two years).

Our goal is to predict values pd,0 to pd,23 for a given d ∈ D. Of course only data for days d− 1
and earlier can be used. All proposed methods are tested on the last 60 days of the data set.

Our basis comparison are the mean absolute deviation (MAD) between the hourly forecast and
the measured flow during one day (24h) ahead forecast, defined as

MADd := 1/h
∑
h

|ph −mh| (10)

and mean absolute percentage error (MAPE) defined as

MAPEd := 1/h
∑
h

|(ph −mh)/mh| (11)

All results are also compared to a baseline (BAS) forecast defined as

p̂h,d := mh,d−1 (12)

4.2.2. Forecasting Results

Mean MAD and MAPE (over 60 days in the test set) achieved by proposed models are presented
in the Table 5.

Table 5: Comparison of mean daily performance

MAPE MAD

MP FAR LSTM HYB BAS MP FAR LSTM HYB BAS

NET1 0.128 0.131 0.035 0.033 0.133 1269 1350 357 331 1366
NET2 0.176 0.195 0.075 0.088 0.211 727 828 328 378 901
NET3 0.084 0.096 0.056 0.055 0.098 1855 2245 1439 1393 2168
MUN1 0.032 0.101 0.09 0.030 0.069 6.36 19.03 29.02 5.97 11.47
MUN2 0.327 0.370 0.588 0.324 0.355 65.67 72.90 101.18 64.8 71.1
MUN3 0.064 0.088 0.071 0.064 0.089 5.36 7.37 5.16 5.61 7.41
IND1 0.131 0.137 0.109 0.114 0.171 19.37 19.99 15.64 16.66 25.5
IND2 0.035 0.028 0.057 0.030 0.034 3.85 3.19 6.24 3.71 3.76
IND3 0.103 0.135 0.087 0.086 0.142 9.78 12.32 7.48 7.45 13.44
STO1 0.550 0.689 0.313 0.291 0.764 609.28 753.42 313.79 294.09 681.31
STO2 0.298 0.343 0.226 0.205 0.411 428.24 560.78 384.33 329.54 624.38
STO3 0.895 0.970 0.475 0.502 0.997 895 1155 909 816 1442
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It can be seen that between individual forecasting methods the LSTM model is the most robust
one and obtained the best results for nodes from all 4 behavior groups. The MP model achieved
the best results for all Municipal utilities, and the performance is especially good for MUN2 node
where all models had a particularly high MAPE. FAR model outperformed others for the Industry
node IND2. Even though FAR errors are slightly higher than other two proposed models (MP and
LSTM) it can be seen that for most of the nodes the performance is very similar. For Storage nodes
with intermittent behaviour none of the proposed individual methods has demonstrated adequate
accuracy. The Hybrid model showed an improvement for all 4 groups nodes. The improvement is
especially significant for Storage nodes, where the average MAPE is lower for more than 2(%) for
nodes STO1 and STO2. For node STO3 the LSTM model has the lowest MAPE but the lowest
MAD is achieved by the HYB model.

Figure 6 shows calculated 24 hours ahead forecast and the measured flow of all proposed models
for a one week period.
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Figure 6: 24 hours ahead forecast for one week test set
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5. Conclusions

In this paper we proposed a robust and powerful hybrid forecast model combining Mathematical
Programming with Functional AutoRegressive and Long Short Term Neural Network model for
forecasting gas flows at the boundary nodes of gas transport network. Our experiments are based on
real world data from one of Germany’s largest transmission system operators, Open Grid Europe.
We showed that the proposed method is appropriate for choosing optimal set of features and
forecasting various behaviours from different nodes groups in the complex gas transmission network.
From obtained results it is clear that even though in some specific cases single forecast models
outperform the Hybrid model, the proposed method can achieve stable accuracy close to the best
individual model and in some cases brings a significant improvement to the forecast quality.
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