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Abstract

About 20% of the German energy demand is supplied by natural gas. Ad-
ditionally, for about twice the amount Germany serves as a transit country.
Thereby, the German network represents a central hub in the European natural
gas transport network. The transport infrastructure is operated by so-called
transmissions system operators or TSOs. The number one priority of the TSOs
is to ensure security of supply. However, the TSOs have no knowledge of the
intentions and planned actions of the shippers (traders).

Open Grid Europe (OGE), one of Germany’s largest TSO, operates a high-
pressure transport network of about 12.000 km length. Since flexibility and
security of supply is of utmost importance to the German Energy Transition
(“Energiewende”) especially with the introduction of peak-load gas power sta-
tions, being able to predict in- and out-flow of the network is of great importance.

In this paper we introduce a new hybrid forecast method applied to gas
flows at the boundary nodes of a transport network. The new method employs
optimized feature minimization and selection. We use a combination of an FAR,
LSTM DNN and mathematical programming to achieve robust high quality
forecasts on real world data for different types of network nodes.

Keywords: Gas Forecast, Time series, Hybrid Method, FAR, LSTM,
Mathematical Optimisation

1. Introduction

About 20% of the German (and European) energy demand is met by natu-
ral gas. Additionally, for about twice the amount Germany serves as a transit
country. Thereby, the German network represents a central hub in the Euro-
pean natural gas transport network. In light of the German Energy transition

Email addresses: koch@zib.de (Thorsten Koch), matcheny@nus.edu.sg (Ying Chen)
1Zuse Institute Berlin and Technische Universtität Berlin
2National University of Singapore
3University of Modena and Reggio Emilia

Preprint submitted to Energy June 28, 2019



Figure 1: Map of the gas transmission network operated by Open Grid Europe
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(“Energiewende”) with an increasing share of renewable energy sources as well
as the envisioned international transition towards substantially less fossil fuels
and related greenhouse gas emissions, the importance of natural gas will in-
crease even more. A critical task of gas power plants is to deliver electricity
in peak load situations, where electricity from renewable energy sources is not
sufficient to cope with the demands. From the gas network point of view this
leads to huge gas demands on very short notice.

The gas network is operated by so-called transmissions system operators or
TSOs. Their duty is to operate the long distance transport network and to en-
sure that all demands are met. Until 2005, gas transport and supply in Europe
was provided by a handful of companies, owning and operating the natural gas
transmission system to do so. To establish a European gas market, in 2005, the
European Union legislated that gas trading and transport had to be done by
mutual completely independent companies to ensure discrimination-free access
to the transport network for all traders. Before this, TSOs were part of an
integrated organization and could plan the network operation and expansion
together with the traders. Since then, they are independent and need to plan
under the uncertainty regarding the gas-flow situations resulting from trading.
To ensure discriminatory free access to the network for all traders, there should
be no information flow between shippers (traders) and the TSOs.

Although on the contractual level all gas transports have to be balanced,
i.e., if gas gets out of the network the same amount has to be induced into the
network, the network nodes where the gas is injected might be very far from
the points where it is taken out of the network. Furthermore, the inflow might
actually happen after the outflow. Practically, consumers like municipal power
stations just draw gas out of the network as needed. They are required to also
buy the same amount of gas to supply the network. But this may happen hours
later at distant points of the network.

Despite of these challenges for the TSOs they need to meet all transport
demands. It is the obligation of the TSO to monitor the situation, foresee pos-
sible shortages and react accordingly to ensure safety of supply. Since changes
in gas networks happen rather slow it is therefore extremely important to have
accurate forecasts on the demands and supply of the network to be able to react
on time.

We collaborated with one of the biggest German TSOs, operating a gas
network with pipe length of about 12,000 km in total (see Figure 1), to improve
their hourly forecasts for demand and supply. We aim to:

• Predict as precise as possible the average hourly gas flows for the full the
upcoming gas day, i.e., from 6am to 6am, just before the start of the gas
day (at about 5:59am);

• The prediction needs to be appropriate for all different types of nodes
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ranging from connections to other networks or countries to industrial users
or municipal consumers, leading to very diverse data characteristics;

To reach these goals, we investigated real data from the transport network
operated by Open Grid Europe. We propose a powerful and robust hybrid fore-
cast model that benefits from the combination of state of the art forecasting
approaches and optimisation, leading to to improved forecast accuracy. We in-
terpreted the most important features, that our model automatically selects.

It should be noted that there is the following caveat. The TSO influences the
resulting flow by its actions when controlling the network. Thus, the forecast
includes a prediction of the actions of the dispatchers for whom the forecast
is actually made for to guide their actions. Since based on measured in- and
outflows of the network we cannot distinguish between customer demand and
dispatcher action, for the purpose of this study we will ignore this.

In the following, the next subsections present nomenclature and an overview
of related work. Section 2 describes the data we used in this study. Section
3 gives details on the proposed models. Section 4 describes the evaluation
methodology and the evaluation of computational experiments. Finally, we
draw some conclusions.

1.1. Nomenclature
Open Grid Europe GmbH OGE
Municipal Power Stations MUN
Power Stations and Industry IND
Storage STO
Transfer Points to other Networks NET
Mathematical Programming MP
Linear Program LP
Mixed Integer Linear Programming MILP
Functional Autoregressive FAR
Long Short Term Memory LSTM
Hybrid model HYB
Heating Day Degree HDD
Baseline forecast(persistance) BAS

1.2. Related work

Models on natural gas demand forecasting are mainly focused on long term
issues. There are quite some publications regarding electricity demand forecast-
ing, (see, e.g. [41], [23], [1], [25]) but electricity behaves very differently from gas.
A survey on models to predict natural gas consumption published between 1949
and 2010 is presented by [36] who evidences that only a few works are focused
on hourly gas flow prediction. A more recent survey ([45]) considers 187 papers
published between 2002 and 2017. The authors point out that the majority of
works provide daily predictions and recognize that neural networks are the most
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used models. The authors also show that, on the considered period, most of
the works were performed at an aggregated level (i.e. country or city) and only
three papers proposed models to forecast the hourly gas consumption. In [43],
two neural networks were tested to forecast natural gas consumption based on
historical data and environmental variables. The authors found a better pre-
diction accuracy when using the multi-layer perceptron compared to the radial
basis function. In [42], a model similar to radial basis neural network was pro-
posed to predict gas consumption in a distribution system. In this work input
variables were selected using a genetic algorithm. Residential hourly gas con-
sumption was predicted with neural networks by [10]. In this work, the heating
degree-hour method which considers the gap between outdoor and indoor tem-
perature was considered. The best hyper-parameters configuration consisted of
29 neurons, a feed-forward backpropagation algorithm and tangent, sigmoid and
linear functions for the input, hidden and output layers respectively. Similarly,
[39] proposed neural networks to forecast residential natural gas demand. The
proposed network consisted of a multi-layer perceptrons with one hidden layer.
The input features included calendar (i.e. month, day of the month, day of the
week, hour) and weather (temperature) information. The authors found that av-
erage prediction error was higher during the winter months because gas flow was
higher. More recently, [15] compared several machine learning models to predict
residential natural gas hourly demand and found that recurrent neural network
and linear regression were the most accurate models. The prediction results
of monthly gas consumption of residential buildings using Extreme Learning
Machine (ELM), artificial neural networks (ANNs) and genetic programming
(GP) was presented by [16]. The ELM is characterized by higher training speed
compared to backpropagation and it was found to perform better, in terms of
RMSE, compared to the other two techniques. In [18] the authors set up a two
stages methodology to predict daily gas consumption of utilities companies. In
the first stage, two NNs are run in parallel to produce daily forecasts; in the
second stage, a nonlinear transformation of some features of the input vector is
performed. The combination of the two stages is based on several methods such
as average forecast, recursive least squares, etc. The results show that the mix
between the two forecasters have higher accuracy although the combination of
the two models increase the complexity. Overall, these works shows that the
consumer profile is very important when forecasting gas flow. In this regard,
[32] identified seventeen groups profiles, based on their historical consumption
and predicted daily gas demand. The overall prediction was obtained from the
combination of the single predictions.
The backpropagation algorithm optimized with a genetic algorithm was imple-
mented by [47] to increase the training speed and to achieve a global minimum.
The authors predict next day gas loads based on temperature and weather con-
ditions. Furthermore, the authors tested the algorithm on a three years real
dataset recorded in Shanghai to predict one month and a half gas load. Sim-
ilarly, [48] propose a recurrent neural network to predict daily gas flow. The
Output-Input-Hidden Feedback-Elman neural network takes into account, not
only the hidden nodes feedbacks but also considers the output nodes feedbacks.
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The results improved compared to these obtained with standard Elman network.
However, the authors recognize that further research is needed to forecast gas
demand during holidays. In [3], an adaptive network-based fuzzy inference sys-
tem (ANFIS) consisting of a neural network integrated with fuzzy logic was
proposed to forecast short term natural gas demand. The main advantage of
this model was its ability to handle uncertainty, noise and non-linearity in the
data and, compared to standard neural network models, provided more accurate
results. Wavelet transform have been deployed by [38] to decompose the hourly
gas demand time series and Bi-LSTM and LSTM are optimized using genetic
algorithm. The model was applied to winter data on which has shown good pre-
diction accuracy. Several static and adaptive models have been tested by [30]
for short-term gas consumption forecast (random-walk, temperature correlation
model, linear regression model, ARX, adaptive (recursive) linear auto-regressive
model (RARX), Neural Network (NN), Recurrent NN, Support Vector Regres-
sion). They found that the best performance was obtained by the RARX of order
3. Furthermore, they found that nonlinear models such as neural networks and
support vector machines had a lower generalization capacity compared to linear
models. Finally, they concluded that the adaptive models overall performed
better than static models.

The traditional approaches are regression and econometrics models. In this
regard, the performance of non linear mixed effects, ARIMAX and ARX models
to predict gas consumption of 62 residential and small commercial customers was
assessed by [8]. The authors forecast daily consumption of an entire month based
on the previous 18 months. The time series included zero flows and missing
data which were excluded for the training process. The prediction performance
was similar in terms of daily mean absolute error which was closed to zero for
all the tested models. Thus, the authors propose to combine multiple models
although they recognize that this might be a difficult task because of increased
computational complexity. Multiple linear regression has been proposed by
[34] who predicted annual gas consumption based on socio-economic variables
(GDP and inflation in the case of Turkey) that have been selected based on their
statistical significance. Based on the forecast, the authors propose alternative
energy policies.

A hybrid model formed by a grey model and an autoregressive integrated
moving average model has been proposed by [46] to predict monthly gas shale
production. The authors conclude that the results of the combined model are
more accurate than the single linear and non linear models.

In [26], Multivariate Adaptive and Conic Multivariate Adaptive Regression
Splines were proposed to predict residential daily gas demand. The two models
provided better results in terms of prediction errors (MAE and RMSE) com-
pared to these obtained with Linear regression and Neural Networks. In [35],
the nonlinear characteristics of the natural gas consumption is modeled with
several Grey models that are compared to predict the yearly natural gas con-
sumption in China. Non linear programming and genetic algorithm have been
proposed by [12] to predict natural gas consumption in the residential and com-
mercial sectors on a yearly basis. Similarly, [17] proposed the breeder hybrid
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algorithm which consists of three steps for natural gas flow demand forecast. In
the first stage, the coefficients of a non linear regression model are estimated.
Successively, the estimates are improved using genetic algorithm. Finally, the
optimized coefficients are deployed as initial solutions for the simulated an-
nealing. Nearest neighbor and local regression were proposed by [5] to predict
gas flow in a small gas network with a 15 minutes resolution. The authors
evidence the importance of environmental variables such as the temperature.
Their method allowed to detect anomalies and the consumption patterns based
on one year historical data. In the literature, there are also combinations of
several methods to predict one day-head natural gas consumption. In [27], the
time series was decomposed into low-frequency and high frequency components
using Wavelet transform. In a second step, the genetic algorithm and Adaptive
Neuro-Fuzzy Inference System were deployed to predict each of the decomposed
time series. The output was finally fed into a feed-forward neural network to
refine the prediction. The research was focused on different types of natural
gas distribution points. The authors obtained better prediction results using
the data of distribution points located near the city center. Neural networks
have been also compared to the performance of autoregressive models. In [40],
for instance, short term natural gas consumption in Turkey was predicted us-
ing SARIMAX model and Neural Networks (Multilayer and Radial Basis) and
multivariate regression. They found that SARIMAX had better prediction per-
formance. The temperature correlation model, proposed by [37], was compared
with several configurations of ARX, stepwise regression, Support Vector Re-
gression and Neural Network. The author found that SVR and NN performed
better on the training set, while high order ARX model performed better on
the test set. Support Vector Regression have been deployed with false neigh-
bours filtered approach to predict short term natural gas consumption ([49]).
The local predictor was based on the nearest neighbour approach so that the
Euclidean distance between the training and test data and the neighbour filter
was applied to determine the validity of the predicted values based on the ex-
ponential separation rate. The authors, obtained better performance prediction
compared to ARIMA, Neural Networks and Support Vector Regression.

Overall, the analyzed literature shows that there are few works that are
focused on the comparison between methods to predict hourly gas flow of dif-
ferent types of nodes in a gas network or combining the advantages of different
forecasting methods to a hybrid model for hourly gas flows. Therefore, we pro-
pose a hybrid model based on optimisation and machine learning and compare
its results to four different models to predict hourly gas flow. To address the
heterogeneity of the time series for the different node types we compare results
obtained for four different types of nodes.

2. Data

We consider high-resolution natural gas inflows and outflows in the high-
pressure gas pipeline network operated by Open Grid Europe GmbH (OGE).
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Table 1: Number of nodes and percentage of flow

Type num flow(%)

Network 34 72.95
Municipal 726 16.68
Industry 234 4.26
Storage 14 6.11

The gas transmission network has more then 1000 boundary nodes which
can be classified into four different groups:

• Municipal Power Stations (labeled MUN) are served for residential and
small commercial constituents and contain only inflows as exits. These
are often temperature depend, exhibit daily and seasonal patterns, and
simultaneously are influenced by weekends/holidays.

• Power Stations and Industry (IND) represent electricity generation and
factory production nodes. These are always exits and naturally exhibit
weekly pattern due to working routines.

• Storage (STO) usually have a large number of zero flow hours with some
substantial, often constant transfer in between.

• Transfer Points to other Networks (NET) are large nodes with natural gas
imported and exported via Germany. These can be entries and/or exits.

While in principle, we know the above classification, it is proved not to be
reliable regarding the behavior of the nodes, so we will not use this information
as part of the forecast, but just to explain certain behavior.

The Table 1 shows number of nodes belonging to different groups and per-
centage of gas flow explained by each group.

As illustration, we carefully select three nodes for each type. The three
largest network nodes we selected occupy 22 % percentage of the whole network
flow. The municipal nodes are considered important by TSO with capacity
product issued to market based on the future values. Industry nodes that we
selected represent power plants and play the key role in energy generation. For
the representative nodes from the Storage group we selected most frequently
used nodes in the observed period.

The Figure 2 shows normalized (to the range of [0; 1]) flows of nodes con-
sidered in this study.
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Figure 2: Normalized flow of selected nodes
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For each node, the gas flows are measured hourly. Additionally, we were
given the average daily temperatures measured at the nodes. Some statistical
properties of selected nodes are given in Table 2. As can be seen from Figure 2
and in the Table 2 some nodes have continuous flow, while other are active only
occasionally. Storage nodes have the highest percentage of zero flows, included
between the 26% and 53% of the hours in the considered period. Network
nodes show the highest variability and are always inflows. Industry nodes are
always outflows and are clearly not temperature dependent. Municipal nodes
are usually temperature dependent and have strong daily, weekly and seasonal
patterns.

Table 2: Properties of nodes used in the study

Node Type mean std min max zeros (%)

NET1 Network 13546 3177 4063 21092 0.00
NET2 Network 7752 3792 0 19113 0.01
NET3 Network 26241 3506 0 32593 0.06
MUN1 Municipal -171 48 -763 0 2.68
MUN2 Municipal -591 230 -1658 0 0.85
MUN3 Municipal -111 35 -299 0 0.02
IND1 Industry -161 32 -334 0 0.01
IND2 Industry -141 41 -305 0 0.43
IND3 Industry -121 23 -302 0 1.23
STO1 Storage 227 2469 -8013 11850 25.88
STO2 Storage -277 2606 -5453 13972 52.88
STO3 Storage 150 3377 -9940 15017 39.51

3. Methods

One of the biggest challenges in selection of the best forecasting model is
to choose a single model that represents all the complexity of the environ-
ment which affects behaviour of the dependent variable. Many research studies
showed that combining forecasts improves accuracy relative to individual fore-
casts [20],[9]. In this Section we will first present three different individual fore-
casting methods; Mathematical Programming(MP), Functional AutoRegressive
(FAR) and Long Short-Term Memory Network(LSTM) model. Then we will
propose a hybrid model(HYB) based on MP method which is using output of
two other forecasting models, FAR and LSTM, as additional inputs (features).

3.1. Mathematical Programming (MP) for time series forecasting

In this section, we use Linear Programs (LP) together with Mixed Integer
Linear Programs (MILP) for prediction of the flows - supplies and demands of
the gas network. We have a set of measurements md,h ∈ M for d ∈ D and
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h ∈ H. Let us define Md ⊆ M as a subset of the measurements before day d.
We can approximate gas flow with weighted sum of features

pd,h =
∑
i∈Fh

wh,ifh,i(d) (1)

where pd,h is the flow value which is approximated, wh,i define the weights, and
fh,i are features.
The features i ∈ Fh = {1, . . . , nh} are defined as arbitrary functions of historical
flow values, fh,i(d) : D → Md, i ≤ ph ≤ nh and exogenous variables fh,i(d), i ∈
{ph + 1, . . . , nh}. The approximation error is defined as

ed,h = pd,h −md,h

and the optimal weights are calculated by minimizing the sum of absolute errors
for each day d and hour h

min
∑

d∈D,h∈H

|ed,h|

This problem is not a LP because of the nonlinear absolute value in the
objective function but it can be transformed into a LP. We can rewrite the error
ed,h as the difference of two non-negative variables:

ed,h = e+d,h − e
−
d,h

Then the transformed objective function is

min
∑

d∈D,h∈H

|e+d,h + e−d,h|

It can be proven that in the optimal solution e+d,h ∗e
−
d,h = 0 (ref) so we can write

|e+d,h − e
−
d,h| = |ed,h|+ |e

−
d,h| = e+d,h + e−d,h

and consequently the final LP problem becomes

min
∑

d∈D,h∈H

(e+d,h + e−d,h)

s.t.
∑
i∈F

fh,i(d) · wh,i −md,h = e+d,h − e
−
d,h∀d ∈ D,h ∈ H

e+d,h, e
−
d,h ≥ 0

wh,i ∈ R

Furthermore, we can improve our model by requiring∑
d∈D,h∈H

(e+d,h − e
−
d,h) = 0
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and setting bounds for the weights l ≤ wh,i ≤ u in order to prevent dominance
of a single specific feature.

For each day in the test set(out of sample days that we want to forecast) the
forecasted flow values are computed by first computing the weights via an LP
with 16 weeks of historical data and then using the weighted sum of features (1)
for each hour to forecast the flow values. The bounds for the weights are set to
l = −2 and u = 2. For the computation of the forecasted flow values, it might
be that also forecasted flow values of prior hours are used as input values for
calculating the features, if the corresponding hours do not lie in the past. The
solution of the linear model leads to functions with which we can calculate the
flow values for the different hours of the day which describe a iterative multi-step
ahead multiple-input procedure with exogenous inputs.

Training: Feature Selection

In the training procedure of this method, a slightly different model is used
which chooses for each hour the features which are important, to limit over-
fitting in the LP. Therefore, we add additional binary variables xh,i to the
problem, which determine whether feature i is chosen for hour h, i.e., whether
the weight of feature i and hour h is not equal to zero. Then, we need to link
these variables to the weight variables

xh,i · l ≤ w+
h,i ≤ xh,i · u

and limit the number of chosen features by B∑
i∈F

xh,i ≤ B

The solution of the resulting MILP leads for each hour h to one feature set
Fh which seems to be important for this hour and is therefore chosen for the
weighted sum of features and used in the LP.
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Table 3: List of features

Feature Description

f1(d, h) =

{
m(d, h− 1), if h > 0

m(d− 1, 23) otherwise
Prior hour

f2(d, h) = m(d− 1, 0) First hour yesterday
f3(d, h) = m(d− 1, 23) Last hour yesterday
f4:10(d, h) = m(d− (1, 2, .., 7), h) The same hour 1,2,..,7 days ago
f11:12(d, h) = m(d− 1, 0(h))/m(d− 2, 0(h)) Ratio first(same) hour yester-

day first(same) hour 2 days ago
f13:14(d, h) = m(d− 1, 0(h))−m(d− 2, 0(h)) Difference first(same) hour yes-

terday, first(same) hour 2 days
ago

f15:21(d, h) = 1/24(
∑

h∈H m(d− (1, 2, ..., 7), h)) Mean flow 1,2,..,7 days ago
f22(d, h) = f15(d, h)/f16(d, h) Ratio mean flow yesterday, 2

days ago
f23(d, h) = f15(d, h)/f21(d, h) Ratio mean flow yesterday, 7

days ago
f24(d, h) = f15(d, h)/(1/24(

∑
h∈H m(d− 8, h))) Ratio mean flow yesterday, 8

days ago
f25(d, h) = f15(d, h)− f16(d, h) Difference mean flow yesterday,

2 days ago
f26(d, h) = f15(d, h)− f21(d, h) Difference mean flow yesterday,

7 days ago
f27(d, h) = f15(d, h)− (1/24(

∑
h∈H m(d− 8, h))) Difference mean flow yesterday,

8 days ago

f28(d, h) =

{
0, if h = 0

m(d, 0) otherwise
First hour today

f29(d, h) =

{
0, if h = 0

1/h
∑h−1

i=0 (d, i) otherwise
Mean flow today

f30(d, h) = td − td−1 Difference mean temperature
today and yesterday

f31(d, h) =

{
1, if day ∈ {Saturday, Sunday}
0 otherwise

Weekend

f32(d, h) =

{
1, if day ∈ {Friday, Saturday}
0 otherwise

Evening

f33(d, h) = 1 Offset

The list of features used in this study is presented in Table 3. The whole
set of features F we used consists of 29 different features based on historical
flow values,1 temperature feature and 2 different features describing position
of the predicted gas day in the week and the offset feature. Using sensitivity

13



analysis the number of chosen features was limited to 6. One year of historical
measurements was used for training and selecting optimal set of features for
every node and hour. The Figure 3 is showing the heatmap of selected features
for MP model for each group of nodes summed up for 24 hours.

Figure 3: Heatmap of selected features for different node group

For all nodes the feature representing the flow of previous hour (f1) is mostly
used feature. For all hours except the first predicted gas hour this feature value is
calculated based on the forecasted flow of previous hour when the final forecast
is calculated. The same hour yesterday(f4) is also widely selected among all
groups. As it was expected Weekend (f31), Evening (f32) as well as Mean
temperature difference feature (f30) are usually chosen only for the Municipal
Power Stations since the behaviour of those nodes shows the strong daily, weekly
and seasonal pattern. In the case of Industry nodes the features of Mean flow
of the same and previous day (f29, f15) together with Ratio features f11, f12
are most frequently chosen features. For Transfer Points and Storages features
of mean flow of the same and previous day (f29, f15) are also dominated ones
except for first gas hour where this pattern is not present. The Offset feature
representing bias in the model has also very the high frequency of being selected
for all observed nodes.

Figure 4 shows a scatter plots of flow versus three most frequently chosen
features among different types of nodes for all hours of the day. It can be seen
that flow depends linearly of f4 while other features are showing a nonlinear
dependency.
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Figure 4: Scatter plot of some of frequently chosen features vs flow
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3.2. Functional AutoRegressive (FAR) model

In this section, we consider the hourly gas flows as discrete observations in
continuous daily flow curves and predict the continuous curves over time with
Functional AutoRegressive (FAR) dynamics. [7] developed Functional AutoRe-
gressive (FAR) model and Yule-Walker estimator for one series of functional
time-dependent data ([6], Kim, [13], [2], [19]). [24] proposed a maximum likeli-
hood estimation with Fourier expansions. Chen extended the maximum likeli-
hood estimation with stochastic variations and employed an adaptive approach
so that the predictive model can be directly applicable for both stationary and
non-stationary situations. We detail the FAR setup and show how to obtain
the maximum likelihood estimator of the functional parameters, with the help
of Fourier expansion and sieve.

Our interest is to model the dynamic dependence of gas flow curves over
time. Let

{
Xt(τ)

}n
t=1

denote a sequence of random curves over a time domain
τ ∈ [0, 1]. The curve Xt(τ) is a continuous function taken values in the Hilbert
space H endowed with its Borel σ-algebra BH at time point t. Suppose that
there exists a Hilbert-Schmidt operator ρt that can be written as ρt =

∑
j λj,t <

·, ej > fj , where {ej} and {fj} are orthonormal bases of H, < ·, · > is the inner
product derived to Hilbert-Schmidt norm ||·||, and {λj , t} is a real sequence such
that

∑
j λ

2
j,t <∞, see [7] for the theory of Hilbertian autoregressive model. The

functional autoregressive model of order 1, i.e. the FAR(1) model, is defined as:

Xt(τ)− µ(τ) =

∫ 1

0

K(τ − s)[Xt−1(s)− µ(s)]ds+ εt(τ), τ ∈ [0, 1], (2)

where µ(τ) is the time-dependent mean function of Xt(τ). The AR operator is
represented as a convolution kernel operator, which is one implementable form
of the Hilbert-Schmidt operator. This choice of convolution kernel operator
is very common in the study of functional linear processes and autoregressive
processes, see [31], [24] and [22]. The kernel K ∈ L2([0, 1]) is an even function
with ‖K‖2 < 1 and ‖·‖2 denotes the standard L2 norm. The innovation εt(τ) is a
strong H-white noise with zero mean and finite second moment E‖ε(τ)‖2 <∞
Assume the Fourier coefficients of the innovation function εt(τ), denoted as
a0(εt), ak(εt) and bk(εt), are independent and identically Gaussian distributed
with mean zero and variance σ2

k, we define a transition density as follows:

g(Xt, Xt−1, ρ) =
2π−(2mn+1)/2

σ0
∏mn

k=1 σ
2
k

· exp
{
− 1

2σ2
0

(at,0 − p0 − c0at−1,0)2

−
mn∑
k=1

1

2σ2
k

[
(bt,k − qk −

1√
2
ckbt−1,k)2 + (at,k − pk −

1√
2
ckat−1,k)2

]}
,
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and thus the conditional log-likelihood L(X1, ..., Xn; ρ) is

L(X1, ..., Xn; ρ) = log
{ n∏

t=2

g(Xt, Xt−1, ρ)
}

= − (2mn + 1)(n− 1)

2
log2π − (n− 1)logσ0 − (n− 1)

mn∑
k=1

logσ2
k

− 1

2σ2
0

n∑
t=2

(at,0 − p0 − c0at−1,0)2

−
n∑

t=2

mn∑
k=1

1

2σ2
k

{
(bt,k − qk −

1√
2
ckbt−1,k)2 + (at,k − pk −

1√
2
ckat−1,k)2

}
.

We implement the FAR modelling to forecast the daily gas flow curves. The
gas flow forecast h-step ahead, denoted as X̂t+h(τ) is directly based on the
h-step ahead forecast of the mean function and the kernel operator:

X̂t+h(τ) = µ̂(τ) +

∫ 1

0

K̂(τ − s)[Xt(s)− µ̂(s)]ds (3)

For each forecast point, we estimate the Fourier coefficients to obtain the esti-
mated mean function µ̂(·) and kernel operator K̂(·) and the fitted model is then
used to compute h = 1− and 2-step ahead forecasts of the gas flow curves.

3.3. Long Short-Term Memory Network

In this section, we use Long Short-Term Memory Network (LSTM) to predict
gas flow based on the previous 24-hours. LSTM are a special types of Recurrent
Neural Networks (RNN) that have been introduced in the eighties (i.e. [33],
[11]) to model time interrelations by allowing connection between hidden units
with a time delay ([28]). At each iteration, the hidden state vector receives
the input vector and its previous hidden state. The hidden state vector can,
therefore be seen as a representation of time sequences ([29]).

Long Short-Term Memory (LSTM) networks, proposed by [14], include a
memory gate that controls what passes through the network and what is blocked
so that some of the information that is feedback to the network is remembered
and some other is forgotten. An additional gate keeps memory and filters out
what has to be forgotten. At each time step, the network memorizes the infor-
mation and filters out what is not relevant for the prediction. Finally, another
set of gates ignores what is irrelevant. The formulation of the LSTM, as pre-
sented in [21], consists of three layers that are called gates: the input (4), forget
(5) and output gates (8), respectively:

i = sig(Wi [̇ht−1, xt] + bi) (4)

f = sig(Wf [̇ht−1, xt] + bf ) (5)
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Where ht−1 is the hidden state computed at time t − 1 which is calculated
based on previous hidden state, ht. Each of the gate has a sigmoid function so
that the values range between 0 and 1.

The decision on which information will be stored into a cell is based on the
input layer (4) and on a hyperbolic tangent (or sigmoid) function assigned to
the layer that returns the set of candidate values, Ĉ (6):

Ĉt = tanh(WC [̇ht−1, xt] + bC) (6)

To update the cell state Ct−1 into Ct, the old state is multiplied by the forget
gate and added to the new candidate values (7):

Ct = ft ◦ Ct−1 + i ◦ Ĉt (7)

Finally, the output is obtained by passing the cell state Ct to a rectified
linear function (or hyperbolic tangent) function to decide which part of the
information is passed to the output 8. Moreover, the cell state is multiplied by
the output of the relu (or tanh) gate (9).

ot = sig(Wo[ht−1, xt] + b) (8)

ht = tahn(Ct) ◦ ot (9)

Thanks to this architecture, LSTM has the ability to look back several time
steps and, thus, to improve the predictions. Also recurrent neural networks can
look time steps back but the problem they incur is called vanishing or exploding
gradient for which the results either become very large or small.

The LSTM deployed to forecast gas flow consisted of one single layer and an
early stop function with patience set to four. This means that the training of
the network stops as soon as the value of loss function remains the same after
four iterations. In this work, different types of parameters are manually selected
to forecast gas flow depending on the type of node and based on trial and error.

The configuration of the parameters of the network for each node is reported
in Table 4. The most influential parameter is the batch size that is the number
of training examples that are utilized in each iteration. The higher is the value
of this parameter the faster is the training of the network. Only two types of
activation functions are selected for the hidden state, depending on the node:
hyperbolic tangent function (tanh) or sigmoid. The transfer function of the
output gate selected for all nodes, except for one network node, is the Rectified
Linear Unit (Relu). Overall for storage nodes that are characterized by high
variability between negative and positive values and by a high number of hours
with zero flows, the batch size was set between 48 and 80 and the number of
neurons between 70 and 80.
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Table 4: Parameters of the LSTM

Node Neurons Dropout Activation Activation Output Batch size

NET1 55 0 Sigmoid Relu 2
NET2 70 0 Sigmoid Tanh 243
NET3 30 0 Sigmoid Relu 2
MUN1 40 0.7 Sigmoid Relu 2
MUN2 30 0.7 Tanh Relu 2
MUN3 30 0.7 Sigmoid Relu 2
IND1 70 0.5 Tanh Relu 12
IND2 70 0.7 Tanh Relu 10
IND3 70 0.7 Tanh Relu 324
STO1 70 0.7 Sigmoid Relu 48
STO2 80 0.7 Tanh Relu 80
STO3 80 0.7 Tanh Relu 80

3.4. Hybrid model

The main advantage of the mathematical programming method(MP) pro-
posed in this paper is flexibility in the sense that adding new features when they
are available in order to improve the forecast is very simple.

In this section we propose a hybrid model, combining mathematical pro-
gramming (MP) with two other proposed methods by adding the outputs from
LSTM and FAR model as an exogenous inputs to MP model. The optimal sets
of features chosen for every node and hour were kept from previous MP training
and extended with the forecasts from the LSTM and FAR model as an addi-
tional features. The final forecast is calculated as weighted sum of all features
from extended features set:

pd,h = pd,h =
∑
i∈F

fh,i(d) · wh,i + LSTM(d, h) · wh,LSTM + FAR(d, h) · wh,FAR

New optimal weights are calculated by running an LP:

min
∑

d∈D,h∈H

(e+d,h + e−d,h)

s.t.pd,h −md,h = e+d,h − e
−
d,h∀d ∈ D,h ∈ H

pd,h =
∑
i∈F

fh,i(d) · wh,i + LSTMh(d) · wh,LSTM + FARh(d) · wh,FAR

e+d,h, e
−
d,h ≥ 0

wh,i, wh,LSTM , wh,FAR ∈ R

where LSTMh(d) and FARh(d) represent forecasted values obtained from
LSTM and FAR model respectively.

19



4. Testing and Results

4.1. Influence of temperature

The temperature is one of the most important factors that influence gas
consumption. When the natural gas is consumed for heating and cooking such
as in residential areas, the temperature usually has an inverse relationship with
gas consumption which is also dependent on other environmental data such
as the time of day, the day of week, the season, etc. Overall, the forecast
error is higher during the winter months because the demand for gas is higher.
Furthermore, temperature and time of day are the factors that mostly impact
the forecast error ([39]).

The majority of models presented in the literature are focused on residential
and small commercial consumer at individual or aggregate level.

Several authors have considered the temperature (i.e. [26], [27], [12]) or
meteorological data ([40]) in their models to forecast gas flow and reduce the
prediction error.

In [44], the authors pointed out that the nonlinear characteristics of temper-
ature has been assessed long time ago and gas consumption is proportional to
the Heating Degree Day (HDD) ([4]). This proportionality is evidenced when
plotting the average daily temperature with versus the gas consumption.

The scatter plots of daily changes of temperature versus daily changes of
gas flow of the nodes considered in this work are showed in Figure 5. Storage
nodes have high percentage of zero flows, those are the nodes that better ap-
proximate the non linear relationship expressed by the HDD. As expected, the
Municipal nodes present a positive correlation between the flow and the temper-
ature. Among the network nodes, one of them presents a negative relationship
with the temperature. The remaining nodes appear to be independent from the
temperature.

4.2. Results

4.2.1. Objectives, setup and evaluation metrics

In this paper we observed a data set of hourly gas flow time series from
twelve nodes with 17.520 observations (two years).

Let us denote the set of hours by H, the set of gas days by D, the set of
measured values by mdh ∈M , the temperatures by td ∈ T .

Our goal is to predict values pd,0 to pd,23 for a given d ∈ D. Of course only
data for days d − 1 and earlier can be used. All proposed methods are tested
on the last 60 days of the data set.

Our basis comparison are the mean absolute deviation (MAD) between the
hourly forecast and the measured flow during one day (24h) ahead forecast,
defined as

MADd := 1/h
∑
h

|ph −mh| (10)

and mean absolute percentage error (MAPE) defined as
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Figure 5: Scatter plot of gas consumption vs temperature
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MAPEd := 1/h
∑
h

|ph −mh/mh| (11)

All results are also compared to a baseline (BAS) forecast defined as

p̂h,d := mh,d−1 (12)

4.2.2. Results

Mean MAD and MAPE (over 60 days in the test set) achieved by proposed
models are presented in the Table 5.

Table 5: Comparison of mean daily performance

MAPE MAD
MP FAR LSTM HYB BAS MP FAR LSTM HYB BAS

NET1 0.128 0.131 0.035 0.033 0.133 1269 1350 357 331 1366
NET2 0.176 0.195 0.075 0.088 0.211 727 828 328 378 901
NET3 0.084 0.096 0.056 0.055 0.098 1855 2245 1439 1393 2168
MUN1 0.032 0.101 0.09 0.030 0.069 6.36 19.03 29.02 5.97 11.47
MUN2 0.327 0.370 0.588 0.324 0.355 65.67 72.90 101.18 64.8 71.1
MUN3 0.064 0.088 0.071 0.064 0.089 5.36 7.37 5.16 5.61 7.41
IND1 0.131 0.137 0.109 0.114 0.171 19.37 19.99 15.64 16.66 25.5
IND2 0.035 0.028 0.057 0.030 0.034 3.85 3.19 6.24 3.71 3.76
IND3 0.103 0.135 0.087 0.086 0.142 9.78 12.32 7.48 7.45 13.44
STO1 0.550 0.689 0.313 0.291 0.764 609.28 753.42 313.79 294.09 681.31
STO2 0.298 0.343 0.226 0.205 0.411 428.24 560.78 384.33 329.54 624.38
STO3 0.895 0.970 0.475 0.502 0.997 895 1155 909 816 1442

It can be seen that between individual forecasting methods LSTM model is
the most robust one and obtained the best results for nodes from all 4 behavior
groups. The MP model achieved the best results for two Municipal Power
Stations, and the performance is especially good for MUN2 node where all
models had a particularly high MAPE. FAR model outperformed others for the
Industry node IND2. Even though FAR errors are slightly higher than other
two proposed models(MP and LSTM) it can be seen that for most of the nodes
the performance is very similar. For Storage nodes with intermittent behaviour
none of the proposed individual methods has demonstrated adequate accuracy.
The Hybrid model showed an improvement for all 4 groups nodes. Nodes NET1
and NET3 The improvement is especially significant for Storage nodes, where
the average MAPE is lower for more than 2(%) for nodes STO1 and STO2. For
node STO3 LSTM model has the lowest MAPE but the lowest MAD is achieved
by HYB model.

Figure 6 shows calculated 24 hours ahead forecast and the measured flow
of all proposed models for one week period.
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Figure 6: 24 hours ahead forecast for one week test set
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5. Conclusions

In this paper we proposed a robust and powerful hybrid forecast model com-
bining Mathematical Programming with Functional AutoRegressive and Long
Short Term Neural Network model for forecasting gas flows at the boundary
nodes of gas transport network. Our experiments are based on real world data
from one of Germany’s largest transmission system operators, Open Grid Eu-
rope. We showed taht the proposed method is appropriate for choosing optimal
set of features and forecasting various behaviours from different nodes groups
in the complex gas transmission network. From obtained results it is clear that
even though in some specific cases single forecast models outperform the Hy-
brid model, the proposed method can achieve stable accuracy close to the best
individual model and in some cases brings the significant improvement to the
forecast quality.
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