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Abstract 1 Introduction

In the dial-a-ride-problem ARP) objects have to beIn the dial-a-ride problemdARP) we are given a
moved between given sources and destinations in a traddmber of transportation requests which have to be
portation network by means of a server. The goal is fndled by means of a server. The server can han-
find a shortest transportation for the server. We study i€ at most one request at a time and moves within a
DARP when the underlying transportation network formgPecified transportation network. The aim is to find a
a caterpillar. This special case is stron§lp-hard in the shortest (closed) tour for the server which serves all
worst case. We prove that in a probabilistic setting thei@duests. Th&®ARP comprises many transportation
exists a polynomial time algorithm which almost surel@nd routing problems in combinatorial optimization
finds an optimal solution. Moreover, with high probabilSuch as the traveling salesman problem.
ity the optimality of the solution found can be certified One of the applications that can be put within the
efficiently. We also examine the complexity of tharp DARP framework is elevator scheduling [2, 18, 21].
in a semi-random setting and in the unweighted case. This corresponds to the special case of Bwrp
where the underlying transportation network forms
a caterpillar (cf. Figure 1). Here, the vertices on the
_ ) backbone correspond to the floors and the edges be-
Keywords: dial-a-ride-problem, —average Casgyeen vertices on the backbone and the feet can be
analysis, MST-heuristic, Steiner trees used to model start- and stopping delays of the ele-
vator. This special case BP-hard, as has already
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lutions but which also react in real-time. over, Eulerian components are rare. The analysis of
A standard way to measure quality of online abalancing causes considerable technical challenges.

gorithms is via competitive analysis [7]. All knownThe key is an appropriate description of the random

competitive algorithms for minimizing the total commodel, namely as a direct product of a random walk

pletion time (makespan) in online dial-a-ride prok&nd the choice of a random permutation.

lems have to solve instances of the (offlinBArRP ~ We complement our algorithmic result with a

during their run [2,4,12]. It is shown in [2] that arhardness result about the solvability of therPin a

offline approximation algorithm for thBArRP with semi-random setting, which, as a byproduct, implies

approximation ratiop implies a c(p)-competitive NP-hardness in the unweighted case.

algorithm for the online version, where(p) =

1 .
4 (4p +l+vlt 8p)' Moreover, as shown in [19’Related Work The DARP is also known as the

20] even for the case of minimizing the MaxIMUgcker-Crane-Problem. In [21] it is shown that the

or average Wa‘tif‘g timg online, an offline algorithrBrobIem isNP-hard even on caterpillars (with ap-
for the DARP which optimizes the length of a tour ropriate edge lengths). An earliiP-hardness re-

proves to be helpul, since it can be used to der'gﬁlt for the DARP on trees is contained in [14]. In
online performance guarantges. [15] the authors present % 5-approximation algo-
We conclude that there is a need to solve thghm for theDarP on general graphs. An improved
(offline-) DARP in real-time, although it is aNP- gi40rithm for trees with performanc®/4 is given
hard problem. in [14]. On paths, thé®ARP can be solved in poly-
nomial time [3]. The paper [21] considers tbaRP
gvhen additional precedence constraints between the

Our Contribution In this paper we address th o
requests are specified.

complexity of theDARP on caterpillars in a prob-

abilistic setting. We show that the so-called MST-

heuristic, a fast and simple algorithm (see Se®©rganisation of the Paper In the rest of this in-

tion 1.2), in most cases solves the problem exacttpduction we give a formal problem statement and

if the transportation requests are chosen uniformlyasynopsis of the results of the paper. The synopsis

random. We expect this result to be of use in vielas pointers to the proof sketches, which are con-

of the real-time issue for online algorithms as metained in the other sections. After some concluding

tioned above. remarks and the bibliography, there is an appendix
Note that our result is also interesting in the cogontaining detailed proofs.

text of the algorithmic theory of random graphs [16]:

th_e D_ARP constitutes_ an(_)ther cqmbinatorial optil_l Problem Statement

mization problem which is hard in the worst-case

and easy on average. The proof that the probleminsthe dial-a-ride problenDARP we are given an

easy on average relies mainly on an analysis of thdge-weighted undirected gragh = (V, E) and

so-called “balancing operation”. Although this opeg list of transportation requesis between the ver-

ation has no effect in the worst case, it turns out thisdes of G. The goal is to find a shortest (closed)

in the average case balancing glues all non-Eulertanr which serves all the requests/in This task can

connected components of requests together. Madbpe-viewed as adding new ares (empty moves) to
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the directed grapllV, L) such that the resulting di-considerG’ = Cato,, where every second back-
rected multi-graptiV, L U A) is Eulerian [3, 14, 21]. bone edge and every second hair had length 0. Then,
We thus statdARP formally in the graph theoreticintroducing a request i’ for every request irG
framework as follows: by replacingp; with 75, andl; with ly;_;, results in

an equivalent problem obeying the stated restriction.
Definition 1 (Dial-a-Ride Problem DARP) An in- Note that the application background suggests that
stance of the dial-a-ride proble@ARP consists of other requests than between feet in fact do not occur.
an undirected grapltz = (V, E) with edge-lengths  Any instance of this problem can be preprocessed
c: E — ]Rar and a listL of pairs of vertices, called by adding to the list. of requests a seB of “arti-
requests A solution is a multi-sef of pairs (u,v) ficial” requests such that the value of an optimal so-
where{u,v} € E such that the directed multi-graphution does not increase. The detis determined as
(V,L U A) is Eulerian. The cost ofl is the total follows. Removing an edge= {u,v} from G gives
length of an Euler tour in(V, L U A), where the a graphG — e that consists of two connected compo-
length of arc(u,v) equals the length of a shorteshentsC; > u andC, > v. If the number of requests
path betweem andv in G with respect ta. starting inC, and ending irC; exceeds the number

of requests starting i@, and ending irCs by d, then

As mentioned before, in this paper we considggdq copies of the request:, v) to B. This opera-

the situation where the undirected graghin the tjon is performed for all edgesc E. After this pro-
DARPis acaterpillar. The caterpillaCat,, (see Fig- cedure, which we calbalancingin the sequel, the

ure 1) consists of a path om verticesps, ..., p, number of requests starting at any vertexquals
andn leavesls, ..., I, wherel; is attached t®;, the number of requests endingiatMoreover, every
i =1,...,n. The edges); := {p;,1;} are called weakly connected component ¢¥, L) becomes a
hairs, the leaved; are calledfeet the edgeifi ‘= strongly connected component(@f, L U B) [3, 21].
{pi; pi+1} are calledbackboneedges. Obviously, Therefore, the graplV, L U B) decomposes into
Caty, Is a tree orgn vertices. several Eulerian components, and the remaining task
backbone is to connect these components at the least possible
PP Pn cost.
by br—1
hy hair 1.2 Results
foot Before we describe our results, we introduce the ran-
dom model considered in this paper. LUef =
Iy Iy L, {1,...,n}.
Figure 1: The caterpillar grapHat,,. Definition 2 Theuniform model for theDARP, is a
list L = L, ,, of requestix, ji) € [n] X [n],k =
1,...,m. Each requestig, ji) is chosen uniformly

We further assume that the requests extend la¢random and independently of all others frmi?.
tween feet of the caterpillar. This is not a restrictiofhis is obviously equivalent to choosing from
of generality, as, instead @ = Cat,, we could [n]?>" uniformly at random.
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Alist L = L, is interpreted as an instance diemma 3, part (ii),D(L) may contain several Eule-
the DARP whereG = (V, E) is a caterpillarCat,,, rian components each of which remains a component
and L is the list of request$(l;, ;) | (¢,j) € L}. of Dg(L).

Balancing the instance yields an additional Bevf ~ If Dy (L) has more than one component then, as
artificial requests. It is convenient to consider thaentioned in the introduction, tHeARP reduces to
directed multigraph®(L) = (V, L) andDp(L) = connecting the components at the least possible cost.
(V, LUB). To facilitate the analysis of the balancinghe MST-heuristicfor this task works as follows:
operation, we give an equivalent formulation of thiirst, the shortest distance of every pair of compo-
uniform model for theDARP in Section 2. We usenents is computed. According to the distances, a
the notion of connectedness in the digragh§L) minimum spanning tre& on the components is de-
andDp(L) in a non-standard way: a component eérmined. Finally, each edge @f connecting two
D(L) or Dp(L) is a maximal connected subgrapbomponents is replaced by a circuit of twice the
which contains at least one arhis extends to bothedge length, connecting the same components. The
weak and strong connectivity. The reason behind theS T-heuristic is a 2-approximation algorithm for the
concept is that for a solution of the problem isolate@arp on trees [14]. It can be shown that it is optimal
vertices need not be incorporated into the desired Ecase of théDARP on paths [3].

ler tour. The main result of this paper is the following the-

The following lemma summarizes relevant statgrem. The proof is sketched in Section 4.
ments about the components Bf(L) that follow
from the theory of random graphs. See Sectionﬁlleorem 4letl = L

be chosen according to
for the nuts and bolts of the proof. o g

the uniform model. The MST-heuristic finds an opti-

Lemma 3 LetL = L, be chosen according to thd"@! solution with probabilityl — o(1) asm — oo.
uniform model. ’ Moreover, optimality can be certified efficiently.

(i) If m > 10nlnn, then D(L) is weakly con-  The basis of this result is the following key techni-
nected with probabilityl — o(1) asm — oo cal lemma, which states essentially that it is unlikely
as has no isolated vertices. for D(L) to have more than one component, be-

sides those that result from Eulerian components like

(iiy If m ~ ~yn for some fixedy > 0, then the num- in Lemma 3, part (ii):

ber of components d(L) that are directed cy-

cles of lengthk has asymptotically Poisson dis- _
k Lemma5 LetL = L, ,, be chosen according to the

uniform model. With probability — o(1) asm —
oo, all non-Eulerian components éf( L) are part of
one single component &z (L).

tribution with parameter: (m)

(i) If m < norm > n,thenD(L) has no Eu-
lerian component with probability — o(1) as

Thus, in almost every case the balancing operation

If Dp(L) has only one component, then any Ewwonnects all components @¥(L) except the Eule-
ler tour in Dp(L) already is an optimal solution.rian ones. The proof of Lemma 5 is sketched in Sec-
However, matters are not that simple in general: kign 3.
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We complement our positive results about ti2 Random Walks and the Uniform
solvability of theDARPin the average case by ahard-  \odel
ness resultin a semi-random setting, thereby improv-
ing upon the hardness results given in [13, 14, 28iven I, = Ly.m, by di(L) we denote the number
The following semi-random model for constructingf occurences of in L. Clearly, di(L) + --- +
instances of théARP is inspired by a threshold re-j, (1) = 2m. Now letd; € {0,1,2,3,...} for
sult of Feige and Kilian on the complexity of thg — 1 ... n. Let Lpm(d,...,d,) denote the

semi-random independent set problem [10]. Firgyent thatd;(L) = d; for all i. In order to study
alistL = Ly, of m requests is chosen accordhe effect of the balancing operation on the directed
ing to the uniform model. Then, an adversary adﬁfﬁjltigraphD(an(dl, ...,dy)), we shall describe

further requests, thereby producing a list > L. 3 simple random experiment that induces the same
Note that the requests added by the adversarg@treprobability distribution as does the map

randomly chosen. We shall say that a polynomial

time algorithmsolves the semirando(w, m)-DARP Ly m(di,...,dy) > L~ D(L). (1)

if with probability 1 — o(1) asn — oo for any ex-

tensionL’ of the randomly chosen pakt= L,, ,,, on Let

input L’ the algorithm outputs an optimal solution of om

DARP; clearly, probability is taken over the choice ofy,  — (2, ... z,,,)| sz =0,z; € {~1,+1}}
Ly, . Obviously, ifm > nlnn, then the MST algo- =1

rithm solves the semirandofwm, m)-DARP, because

by Lemma 3 with high probability the grapB(L) be the set of all-1-sequences of lengthm contain-
is connected and has no isolated vertices. Con¥i @ many +1's as-1's. Note that the sequence
quentlyD(L') S D(L) is connected. We obtain thet1; - - - » T2m IS an unbiased Random Walk [11], con-
following theorem. ditional on"7" z; = 0. Then

2m
#HW, = ( m ) :
Theorem6 Let L = L, ,, be chosen according to
the uniform model. Ifn > nlnn, then the MST- Letz = (z1,...,22,) € W andj € {1,...,2m}.
heuristic solves the semiranddm, m)-DARP. We let
Conversely, assume that the caterpill@st,, has L:(5) = #{i < jl @i =},
uniform edge lengths. i < nlnn, thenthereis no that is, z; is the I,(j)th occurrence of the value
polynomial time randomized algorithm that solves ;.
the semirandon(n, m)-DARP, unlessRP = NP. Now letQ = W,, x S,,, WhereS,,, is the symmet-
ric group of ordern!. We equipQ2 with the uniform
distribution. For each elemefit, o) € €2, we con-
Note that the case» = 0 also gives a strondP- struct a directed bipartite grapti(x, o) on the ver-
hardness result for the plain worst case, as the edge set{a, ..., a2, } as follows. The arda;,a;)
lengths of the caterpillar are uniform. The proof a§ present if and only iftz; = 1, ; = —1, and
Theorem 6 is sketched in Section 5. ol,(i) = I,(j). Thus, the grapt (z, o) consists



of preciselym directed arcs. Finally, contracting thehe number of components &. The second part is

vertex sets to show that with high probability the components of
B and the non-Eulerian components Bf L) glue
{ar, s aa ) {adis -+ Gayvaz b together to form one large component. In fact, the
o {adi+tdy 415 -5 a2m} probability that both parts hold turns out to be inde-
pendent of the choice af, ..., d,. Thus, Lemma5

gives a directed multigrapP(z, o) of ordern (see
Figure 2 for an illustration).

follows from Lemma 7.

We begin collecting a bit of notation and some
simple observations. The sé contains only re-
guests along edges 6f = Cat,,. Let

By — {6 c B(G) - there exists a reque?.

alonge in B

Note that two components @ (z, o) are connected
by B if and only if they are connected yz. Thus,
the rest of analysis may be focused on the gt
Let us call a maximal se§ = {b;,b;+1,...,bi+1} C
E'p of consecutive backbone edges iy a back-
Bone segment

Figure 2: lllustration of the reformulated rando
model.
Lemma 8 With high probability, there are at most
O(m®/*) backbone segments.

Lemma 7 The distribution induced by (1) coincidesketch of proof. Leti € {1,...,n — 1}. Observe
with the distribution induced by the mafd > that, unless
(x,0) — D(z,0). O

Ti+. . T4 4d; = Tdy+..+di+1 7+ - T T2 =0,

3 Non-Eulerian Components balancing yields a request alohgand hence),; <
Ep. Then, the number of gaps between backbone

Lemma 5 is equivalent to the statement that the agegments is bounded by the numbgy of passages
ficial requests added by the balancing operation cahrough zero of the random walk, . .., o, i.€.,
nect all non-Eulerian components &f(L). Note by the number of indicepwherez; + - - - +x; = 0.
that Lemma 5 vacuously follows from Lemma 3 if One can show that the expectationzgf, divided
m > 10nInn. We therefore assume for the rest dfy \/m, converges to/m asm — oo. Therefore,
the section thaitn < nlnn. Lemma 8 follows by applying Markov’s inequality.
To prove Lemma 5, the alternative formulation dfl

the uniform model introduced in Section 2 turns out Consider the auxiliary directed bipartite graph
to be adequate. Lek, ..., d, be fixed. Then the setH (z, o) from Section 2. A vertex;; of H belongs
B of balancing requests depends only on the choicethe vertex; of D(x,0), wherei = i(j) is cho-
of x € W,,. The first part of the proof is to boundsen suchthat; +...+d;_1 < j < di+ ...+ d;.
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Itis calledactive if h;;) € Ep, andinactiveother- through hairs inEp and requests ifa;, a;) is an
wise. Observe that the actiug are those that belongedge ofH’, a; is assigned t&, anda; is assigned
to verticesl; of D(z, o) with different indegree andto 5.

outdegree. As there are only requests between feet dfor each backbone segmehtet

G, h; € Ep onIy if b, € Eg orb;_1 € Ep. There-
fore, every hairh; in Eg is incident to a backbone
segmentS, and thus each activg that belongs tg; and

can be assigned 1. The purpose of this assignment m™(S) = {j | a; assigned t& andz; = —1}.
is, that if (a;,a;) is an edge offf (x, o) and both

a; andaj are active, then the backbone segmerftdearly, for each backbone segmefit > {z; |
thata; anda; are assigned to are connected throud assignedt¢} = 0 and hence#m™(S) =

the hairsh(;),hi(;») and the request(;), Li(;)- As #m—(S). As t_he choice ofr only deper_1ds or,
every non-Eulerian component &f(z, o) contains & S|mple' co.untlng argum'ent shows tttt is a uni-

a vertex with different indegree and outdegree, it {@Mly distributed matching ofn™ = Ugm™*(S)
connected to a backbone segment. Thus, to coffith ™ = Usm™(5). _ _

plete the proof of Lemma 5 it suffices to show that The_n the proof of the theorem is complete with the
all backbone segments are connected in the way jiRtowing

described. First we show that the number of actitemma 10 With probability1l — o(1) asm — oo,
vertices ofH (x, o) is large: all backbone segments are in the same component of

Lemma 9 With probabilityl — o(1) asm — oo, we Dp(L).
have#{j | a; is activgf > m/2. Sketch of proof. Assume that there is a collection

Sketch of ¢ Th v b S, ..., S, of backbone components that are not in
etch of proot. The vertexa; can only become o game component dPp(L) as the others. We

inactive if d; ;) is even. The probability attains itsmay assume that = S #m*(S) < m'/2

H . o - i=1 7 ~ ’
mhaX|mum 0‘;1/2 +b0(1) 'ff di(j) = 2. The_reforel, wherem/ > m/2 is the number of active vertices,
the expected number of active vertices IS at 1ea5f ce otherwise we consider the collection of the re-
2m(1/2 — o(1)). Based on the assumppon th_%aining backbone segments. As"(S) > 1 for
m < nlnn, one can verify that the variance '%very backbone segmerit,> k. The probability,

dominated by the square of the expectation, and tt&)ken over the distribution off’, that no edge of

ChﬁbthheVS geq;{aglt);r;[he Ie;_mma fgllow;. h ? | H' connects one of thé; with a backbone compo-
ext, we reduce! to the active verticesinthefol- -~ inSy..... S is B0t 1/(72,). Thus,

) . : : . -
lowing way: for each inactive, with z; = —1let expected number of such collections is at most
7j be such that,; = 1, andi(7j) = i(j). Thisis a 3N ! m3/N iy 1 /avk
perfect matching of the inactive vertices.({f;, a;) o (M )/ () As (M) /() = O(em™V4)F)

is an edge oH whereq; is active andi; is inactive, the lemma follows. .
then H contains another edge:.;/,a;~). Replace

these two edges with the edge;, a;~) and proceed 4  Eulerian Components

until all edges are incident to active vertices. We call

the resulting graphf’. Note that, by the construc-n this section, we first sketch the proof of Lemma 3.
tion, the backbone segmerfisandS” are connected Then we estimate the number of vertices on Eulerian

m™(S) = {j | a; assigned t& andz; = +1}

7



components oD(L, ,,,). Both results rely on resultsSketch of proof. If m > 10n1nn, then with high
on the global structure of the random graph ,,; probability D(L) is connected, by Lemma 3. Conse-
see [6] for a detailed exposition. Finally we sketafuently, with high probability there are no Eulerian
the proof of Theorem 4. components at all. Now let us assume thaf4 <
GivenL = L, ,,, we obtain a simple graph(L) m < 10nlnn. Then results on the global structure
on{l,...,n} that consists of all edgels, w}, v # of the random graph imply that with high probability
w, such thatv,w) € L (or (w,v) € L). Note that S(L) has no component of order at lea86 In n and
the connected components$fL) are in one-to-one at mostn?/3. Moreover, there is precisely one com-
correspondence with the connected componentspofient of ordet> n?/3, the so-called giant compo-
the directed multigraptD(L). Since the expectednent. A simple counting argument proves that With
number of loops iND(L) is m/n, and the expectedhigh probability the component @ (L) correspond-
number of multiple edges is m?/n*, the number ing to the giant component ¢f(L) is not Eulerian.
of edges ofD(L) is at leastn/2, with high proba-  Alengthy computation shows that in the case>
bility. 3n/4 the graphD(L) has no Eulerian component of
Suppose that > 10n Inn. Then with high prob- order at most!'/4 that contains more edges than ver-
ability S(L) has at leastn Ilnn edges. Hence thetices. In addition, the number of vertices on compo-
first part of Lemma 3 follows from the fact that witments of D(L) that are directed cycles 3(1). Fi-
high probability the random grapf,, 5,1, is con- nally, in the casen < 3n/4 the expected number of

nected. vertices on Eulerian components@¥1) with high
As for the proof of the second part of Lemma Jrobability. Thus, applying the Markov inequality
denote byX;, the number of connected componentompletes the proof of Lemma 11. O
of D(L) that are directe@-cycles. Then a straight- As for the proof of Theorem 4, note that by
forward computation yields Lemma 5 with high probability there is only one
. componentp in Dp(L) in addition to the Eulerian
B(X)) ~ 1 < gl ) components of)(L). We may assume thatn <
k  \exp(2y) m < 10nInn, as otherwise, by Lemma B8)(L) has

no Eulerian components. Hence by Lemma 11, the

wherey = m/n. Moreover, for therth factorial mper of vertices in the Eulerian components is at

moment ofX}, we have mostm!/8. Thus with high probabilityD (L) has
Er(Xk> 1 the
E(Xy)" ' Property 12 Between any two feétandi;, i < j,

, N . that belong to Eulerian components Bf L), there
Thus, [6, p. 25] entails that the distribution &, is is a footly, i < k < j, that belongs tas.

asymptotically Poisson. Finally, a somewhat tedious

computation proves part (iii). As a conseqguence the distance graph on the compo-
nents corresponds to a star metric where the center

Lemma 1l Let L = L, ,, be chosen according tois Cz. Therefore, the MST heuristic finds an opti-

the uniform model. Then with probability— o(1) mal tour. Observe that Property 12 can be checked in

asm — oo the number of vertices on Eulerian conpolynomial time. Hence it provides the desired cer-

ponents ofD(L) is at mostm /8. tificate for the optimality of the solution produced by



the MST-heuristic, thereby proving Theorem 4. vertexv € {l1,...,0,} \ I the adversary adds the
requestgv, l,,), (I,,v). Let L’ denote the resulting
list of requests. Thei(L') has one large Eulerian
5 A Hardness Result component on the vertex s, ..., I} \ 1.

) For each Steiner vertex and each permuta-
As for the proof of Theorem 6, note that in the casg), ¢ S; the adversary picks a sdb(s) €

m > nlun the graphD(Ly,q) is connected with (7 1 1 'sych that eachl; is used precisely

high probability. Consequently, the MST-heuristi§,.e  Assume thal,(s) consists of the vertices
finds an optimal solution of the semirandom prol;b-6 ..., 1, from left to right and lett, o, t5, 4 be

lem. _ _ the neighbors ofs. The adversary labels, with
Now supposm_z <<_n1n n. Consider an mstancetg(l), vz With t,(2), va With ,(3), andus with t,().

(5, T, E) of the bipartite Steiner tree problem, whergne yerticess, anduvg are not labeled. Finally, for

S denotes the set of Steiner verticgsthe set of ter- gachy ¢ 7 the adversary adds ® a directed cycle

minals, andE is the edge set. The bipartite Stein@lonnecting all vertices that are labeled with.et "

tree problem is NP-hard even in the cake) = 4 jenote the resulting list of requests.

forall s € 5[1,5]. We shall prove that a polyno- |, symmary, théarpinstance constructed by the

mial time algorithm that solves the semirandom d'aal(dversary consists of disjoint cycles, one for each

a-ride-problem optimally yields a randomized alg%rminal, and one giant componefit. containing

rithm for the bipartite Steiner tree problem, implying, randomly chosen requests. Every Steiner vertex

that NP = RP. is represented by! gadgets, each consisting of six
Let L = Ly,m. We shall show how the adversaryirs where the first and the last foot of each gadget

can include the instande, T, E) of the Steiner tree 5re isolated; each of the four feet in the middle lies

problem into the graptD(L) such that an optimal g 4 cycle corresponding to the terminal the foot is
solution of the dial-a-ride-problem gives an optim@}peled with.

Steiner tree. With high probability there are at least

n23/24 vertices in{ly,...,l,} that are not incident fi 13 12 n
with any edge inD(L). Partition the sefly, ..., 1.}
into \/n pieces
{ll,...7lﬁ}7{lﬁ+17...7l2\/ﬁ}7
7{ln—\/ﬁ+177ln}

With high probability there are at least = n'/* Figure 3: InM the Steiner vertex is connected with
pieces, which we denote b, ..., By, starting the terminalg, t,, andts.
with six vertices not incident with arcs iR (L) each.

Let I; denote the set of the first six vertices Bf,

j =1,...,N and let] be the union of the set5. Let M be a Steiner tree i0S, T, E') of costc)y.

We may assume thatS = N/(4!). The following tour in theDARP instance correspond-
First, for each request;, v;) in L,i = 1,...,m, ingto D(L") has costey, + 2#7T + 4 plus the to-

the adversary adds a requést u;). Then, for each tal length of the requests ih”: For everys € S

9



with dy,(s) = k > 0 let the neighbors of in M be interesting to investigate whether our methods carry
t1,...,t,. Leto € S4 be such thav;; is labeled overto more general transportation networks such as
with¢;,i =1,...,k,inI,(s) = {v1,...,v6}. Con- arbitrary trees.

nectvy, ..., vk With a total of4k — 2 requests of  Another potential extension concerns the distribu-
length 1 as indicated in Figure 3. Then the cycléi®n of the requests. This distribution might be bi-
corresponding to the terminals are connected sirased according to given weights < p1,...,pn,

the terminals are connected By. Finally, connect where)". p; = 1. Then the probability that a ran-
C;- with the cycles using 6 requests of length 1. Thom request i§l;, ;) equalsp;p;. Note that the uni-

total length of the added requests is form distribution corresponds to the case= 1/n.
We expect that our methods extend to this biased ran-
6 + Z 4dpr(s) — 2 dom model, though the calculations seem to become
dj(i}lo considerably more complicated.
=6+ 4cy — 2#{s € S | du(s) >0}
=6+ 4epr — 2enp + 24T — 2 References
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Appendix

A Proof of Lemma 7

Fixd = (di,...,d,). Let D, ,,, denote the set of all directed multigraphs on the verteXset ., n} with
preciselym edges. Further, leb,, ,,(d1,...,d,) denote the set of alD € D, ,, such that the vertex
is incident with preciselyl; arcs for alli (a loop contribute® incidences). Letp : L, ,,(d) — Dy m(d)
denote the map (1). Finally, lgt: W,,, x S,;, — Dy, (d) denote the magpr, o) — D(x,0). Then we are
to prove that the distribution8, and P, coincide, where botti,, ,,(d) andW,, x S, are equipped with
the uniform distribution.

Thus, letG € D, ,,(d). We have to show that

#1(G) _ #9H(G)
HWp X Sy #Lpm(d)’

Suppose thatr has precisely; arcs of multiplicityi, i = 1,2, ..., and thaty is the number of loops af.
Indeed, let

Ei={l,... e}

be the set of all arcs of multiplicity. Then we can count the inverse imagestbtinder the map as
follows:

e Choose one of the: positions in the lisin for e(l).

e Choose one of the remaining — 1 positions fore(l).

e Choose a set afremaining positions foeg.i).

Thus,
=TI (" 50 )=
0 v,
i=1 j=0 Hi:l v

In order to determinety)—1(G), let A(i) denote the set of all arcs that are incident with veitelxet us
first count the number of maps

oi:{1,...,d;} — E(3)
such that#o; ' (e) equals the multiplicityl/ (e) of e for all e € E(i). Let E(i) = {e1, ..., eq, }. Obviously,

the number of such maps is
H ( di = 32321 Vien) ) _
Vie;) [T52, V(ey)!



Therefore, the number of tuples= (o1, ...,0,) IS

HeEE(l) V(e)‘ o HBGE(n) V(e)‘ Hzoil 312vi

Note that each tuple = (o1,...,0,) gives precisel [, i!"i inverse images ofF under the mapp,
because for each arc of multiplicityfrom vertexxz to vertexy there are precisely! ways to map the
correspondingt1s to the corresponding1s. Moreover, each element ¢f ! (G) is counted precisely
once.

Finally, observe that

#HWp X S :<

and that

_( 2m 2m —d1 2m—dy — - —dy—1 ) _  (2m)!
#L"vm(d)_<d1>< ds )( d, >_d1!---dn!'

We conclude that
#~HG) _dy!e-dy!m! #o71(G)
H#W X S (2m)! B #L,m(G)’

thereby proving the lemma.

B Proofs for Section 3

In this section we give full proofs of Lemma 8 and of Lemma 9. ket= z; + ... + z; and D; :=

Lemma 8 The missing detail in the sketch of the proof of Lemma 8 is the statemenEfbgal = /7m.
This can be deduced from the so-cal&d sine lawfor the unbiased random walk. L&t , X, ... bei.i.d.
withP(X; =1) =P(X; = —1) = 1/2and letS; = 3, X;. DefineTy,, to be the largest indeXi < 2m
with Sy; = 0. Thearc sine law for last visit to origiil7, p.80] states that
P(Tgm = 2i) = P(Sgi = O) P(Szm_gz‘ = O) .
Note that Rz + ...+ 295 = 0) = P(S2; = 0| S, = 0) and that
P(ng =0 | ng = 0) = P(Sszzj = 0).
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Therefore

E[Zm] = P(l'1—|—...—|—33‘2j:0)
j<m
= P(S2; =0 | Som = 0)
j<m
P(S2; = 0)
= P (S2m = 0] S2; = 0)
= P(Som = 0)
P(S2; = 0)
= P(Som_2i =0
j<m P (S2, = 0) (Szm-—2; = 0)
1
= P(Tym =2
P(SQ’I’VL_O)]<m (2 ])
_ 1
 P(S9, =0)’

where RS2, = 0) ~ 1/y/mm.

Lemma 9 The following lemma implies that, by the assumption that« nlnn, we can assume that
max; d; < nl/2.

Lemma 13 Suppose thatn < n®*. Then with high probability there is no vertex of degteen!/? in
D(Ly, ).

Proof. The probability that a fixed vertexhas degred is

< h > (2n = 1) (n = 1> Dn72m < <%§Zb>d'

Consequently, the expected number of vertices of degréés
2. [ 2em )\’ 2em’\ ¢ dn
< < .
_ngl(jn) _n<dn) dn — 2em

By our assumptiom: < n°/4, in the casel = n'/? the right hand side is(1), whence with high probability

there are no vertices of degreen!/2. ]
Assume thatl; = 2k. A vertexa; in H(x,0) wherei(j) = i is inactive iff the indegree df, in D(z, o)

equals its outdegree, i.ep, — sp, , = 0. The probability of this event is the same as the probability that

54, = 0, which is
~GHee)

()
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To bound this probability we may assume by symmetry thatm /2. We first observe that

k+1) 2j+1 —j 11 1 1 1
et _2itl meg oo Lol L o oL
f(k) j+12m—2j—1 j+172 T am—45—2 2/ +2 2m—2j—1

The last term is less than 14f< m/2 — 1, thus f(k) is maximal fork = 1:

OCnY)
(Qm) 2m —1

m

f(k) < f(1) = =1/2+o(1). (2)

Let the random variabl@” be the number of active vertices add = 2m — Y be the number of
inactive vertices. Denote by; the event thatsp, — sp, , # 0. Then, by the previous computa-
tion, E(Y) = >I" ;P(v;)di > m — O(1). Therefore, by Chebychev’s inequality,(P < m/2) <
(4 + o(1))Var (Y) /E(Y)?. To bound this further, let

Var(Y) = Var (V) =E (V%) —E(Y)* = A + B,

where
A=>"did;(P(v; Awy) — P(0i) P(;))
i#£]
and
B = Zd?(P(ﬁi) —P(5;)?).
i<n
We compute

J
. . m 2 m—d; m—d;
Sy iy (3) (3) (2m) 72 (B (2o )
G i)
g (20m=d)) (2m=dy))

m—di mfdj

1/\/7r2m(m—di—dj)
O - 9
(U%ﬂWw%Mm—%)l>

ey < DN [N - COn) (o)

IN

where the last equality follows from Stirling’s formula. By the assumptionitiiat;<,, d; < m'/2, we get

that
(m — di)(m — d;) did; \/72
max — 1 =max4/1+ —1<q/1+ 2 —1<1/m
i#j \/ m(m — d; — dj) i#] m(m — d; — d;) = m <1/
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and, with (2),4/E (Y)? < A/E (}7)2 = O(1/m). For B, we simply note that

= icn d;P (vi) P (v:) d;P(v;)

We conclude that V') /E (Y)? = O(1/,/m) and thusy” > m/2 with high probability.

B/E(Y)

C Proofs for Section 4

In this section, we shall prove Lemma 3 and the assertions made in section 4. Though the proofs turn out to
be quite technical and rather lengthy, we give all arguments in full detail. The first part of Lemma 3 follows
from Lemma 16. The second part of Lemma 3 is Lemma 28 below. The third part follows from the proofs
of Lemma 23 and Lemma 25. Lemma 11 summarizes the results of this section up to Lemma 22 (the case
of so-called complex components) and Lemmas 23, 24, and 25 (the case of directed cycles). The fact that
Property 13 is valid almost surely is a consequence of Corollary 27.

LetL = L, .,. WecallI C {1,...,m} ak-fold edgef #I = k and the following conditions hold.

(i) Foralli,j € I theith entry(x;,y;) and thejth entry(z;, ;) of L coincide up to the direction, i.e.
(i) There is no proper supersétD I that satisfies 1.

Let vi (L) denote the number df-fold edges ofL.
A loop of L is an index; such that for theth entry(z;, y;) of L we haver; = y;. By vo(L) we denote
the number of loops of. Furthermore, we put

v(L) = (vo(L),v1(L),v2(L),...).
Conversely, ifv = (v4)r=0.1.2..., thenL, denotes the set of all € L,, ,,, such thav(L) = v. Put
m(v) = Z v(k).
g

Lemma 14 Given a sequence, the mapS|L, : L, — G, ) Maps the uniform distribution oh, onto
the uniform distribution on the spacg, (., of all simple graphs wit vertices andn(v) edges.

Proof. First observe that the map

(a1,b1) {a1,b1}
S —
(amvbm) {am’bm}
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maps the uniform distribution oh,, onto the uniform distribution on its imagg (L,) For any element of
S1(Ly) has precisel™ " inverse images.
Further, we claim that the map

Sy : : —{e1,...,em}
Em

maps the uniform distribution o6 (L,) onto the uniform distribution o,, ,,,(,). First observe thas,

is well-defined, becausgS2(S1(L)) = m(v) forall L € L,. Now let E be a set ofn(v) edges. Then
there aren(v)! tuples(ei, . .., () such thattl = {ey, ..., en (., }. Each such tuple gives an element of
Sgl(E) by writing down one copy of each of the first entries of(ey, . . ., e,,,(,,)), 2 copies of each of the
following v(2) entries, and so on. Finally, insert loops into the remaisipipces. Thus, each tuple gives

rise to
vj
n lo—o[ i—[ ( —ij =S ru(r) > _ n®(m)m—s
7=1 =0 ‘7 H;)il'j!vj
inverse images in the above manner. Since two tu@les . ., e,,,y) and(ey, ... el ) give rise to the
same inverse images if and only if the tuples coincide up to the order in that the edges that bdotane
edges occur, each skthas precisely
n(m)m—sm(v)!
H(;; v(j)!5!v
inverse images. Because the quantity (3) does not depend on the particular chBiceehave shown
that.Se maps the uniform distribution onto the uniform distribution. Finally, observe that theSivapis
simply the composite af; and.Ss. O

3)

Lemma 15 The expected number of loopsiip ,,, is m/n. The expected number kffold edgesk > 3, is
< m?3/n?*, providedm < n?.

Proof. The probability that théth entry of L = L,, ,, is a loop is

nn2(m71)

= 1/n.

Thus, the expected number of loopsrign.
Let] c {1,...,m} be a set of cardinalit{. Then the probability thak is ak-fold edges is

2, 2(m—k
n?(m=F) _ o —=2(k—1)
om =N .
n

Thus, the expected number loffold edges is



Thus, the expected number/offold edgesk > 3, is

> mk m > m m
< D a0 S Gt Dk S i
k=3

Lemma 16 Suppose that: > 10n Inn. Then with high probability the grapP(L,, ,,,) is connected.

Proof. Let us first assume that = 10n In n. Then, by the lemma before, with high probability the number
of loops in L, ,, is at mostm/100. Moreover, with high probabilityL,, ,, has no> 3-fold edges. The
expected number of double edges is at mo$t(2n?) < m/100. Thus, with high probability we have

m(v(Lnm)) > m/2 > 5nlnn.

ConsequentlyS(L,, ) is connected with high probability, whené¥L,, ,,,) is connected with high prob-
ability.

If m > 10nInn, then decomposg,, ,,, into pieces of siz&0n Inn. With high probability at least one of
these pieces connects all verticeddfL,, ). O

Lemma 17 There exists a functiofin) = o(1) such that in the cases > 3n /4 with probability> 1— f(n)
the graphD(L,, ,,) has no (weak) component of order100Inn and < n2/3,

Proof. By the pervious lemma, we may assume that< 10nlnn. Then almost al = L, ,, satisfy
m(v(L)) > 5n/8. Thus, the assertion follows from [6, p. 137]. O

Lemma 18 There exists a functiofi(n) = o(1) such that for allm > 3n/4 with probability> 1 — f(n)
the graphD(L,, ,,) has precisely one component of ordemn?/? (the so called “giant component”).

Proof. Again, we may assume that < 10n Inn. Then the assertion follows from [6, p. 142]. O

Lemma 19 Suppose tha8n/4 < m < 10nlnn. There exists a functioffi(n) = o(1) such that with
probability 1 — f(n) the giant component dd(L,, ,,,) is not Eulerian.

Proof. Let C be the giant component @ (L), L = Ly, ,,. ThenC' is of order> n?/3 almost surely. With
high probability, the number of edges of multiplicity 1 in D(L,, ) is < n'/2. ConsequentlyC has
Q(n?/?) edge of multiplicityl. Assume thaC' is Eulerian. Then changing the direction of precisely one
edge of multiplicityl in L that is mapped int@” gives a new list.’ € L, ,,, such that the giant component
of L' is not Eulerian. Conversely, giveld, it is obvious how to recovek. Therefore, eaclh with Eulerian
giant component’ givesQ(n2/3) elements of.,, ,,, with non-Eulerian giant components. O

Lemma 20 Suppose that» > n. Then with high probability the grapP (L, ,,,) has no Eulerian compo-
nent of order< nl/4 that contains more arcs than vertices.

18



Proof. If m > 10nlnn, then with high probabilityD(L,, ,,) is connected. Thus, let us assume that
m < 10nInn. Puty = m/n. Givenl > 1, we can bound the expected number of Eulerian components of
orderk < n'/* and sizek + [ as follows:

nl/4

Z < Z ) (m)k+lkk+l(n _ k)2(mflfl)n72m

k=1
< o3 () ()
< >1 kak( >l<n;k>2(mkl)nk
< (27) 1/227 ( ) < ))1/2<n;k)2(m—k—l) <nik>n_k
< 1/22 (10klnn> (nﬁkyl (n;]{;>2(m—k)—(n—k)
- kz/:<10kn1nn) <k+:_k>k<n;k>m_k

054\ m—k
< <20n21> Zexp(k(m —k)/n) <1 - 7]2)

k=1
20Inn ] 20Inn " 1/4
k=1
Summing ovel = 1,...,m gives the estimate
Z( 1374 >n = Z 3h
20lnn 20lnn\'  40lnn
SV Z( n3/4 > s —p < 1

which proves the lemma. O

Lemma 21 Suppose thadn/4 < m < n. Then with high probabilityD(L,, ,,,) has no Eulerian component
of order < n!/4 that consists of more arcs than vertices.
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Proof. We use the same notations as in the pervious lemma. Welhave > 3/4, whenc&m —n > n/2.
Thus,

nl/4

Z ( Z ) (m)k+lkk+l(n _ k)Z(mfkfl)nf2m

k=1

oS (0 () ()

2(m—k—I
ke <" - k?) ( )nf(kJrl)

n

IN

IN IN
i o
— 3
N~—
N |
— =
3 IS
| <§ =~ 3
N — =
e )
~_ P
= 3
IA <
:‘L o~
=
— )
3 x
@ [
~
>~ ol
~— —
-3
|
x>
~_
I
N
3|
~

Thus, summing ovet, we can bound the expected number of Eulerian components as in the lemma by
4/nt/4, O

Lemma 22 Suppose thatn < 3n/4. Then the expected number of vertices in Eulerian components of
D(Ly, ) is at most 3.

Proof. Givenk, there are< n*(m);/k possibilities for a Eulerian component containing precigesycs.
If the component has ordér< k, then there arén — 1)2(™—*) possibilities for the remaining graph. Thus,
the expected number of vertices in Eulerian components is

m—1 ]{ m—1 m k
< Znk -2k < <—) <3
< Q) pnt(m)pn™ < > o) =3
k=1 k=1
as stated. O

In summary, we have shown the followinghere is a functiory(m) = o(1) such that the probability
that > m!/® vertices belong to such Eulerian component®¢L.,, ,,,) that contain more arcs than vertices
is < f(m). The remaining task is to estimate the number of vertices that lie on isolated directed cycles.

Lemma 23 Suppose that, > n. Then the expected number of vertices that lie on isolated directed cycles
isO(1).
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Proof. Puty = m/n. Then the expected number of vertices on isolated directed cycles can be bounded as

follows:
n—1 k)13 n—1 i k 2(m—k)
k(n)e(m)k(n — k) T <y "y (1 - n)
k=1 k=1
Rk om— k) )\ 20m=k)
n n n
k=1
il m—k\"*
< L _ _
< > <1 +— ) exp(—2(m — k)k/n)
k=1
n—1 n—1
< exp((m — k)k/n —2(m — k)k/n) = Zexp(—k(m—k)/n)
k=1 k=1
[n/2] (/2]
< 2)  exp(—k(m—k)/n) <2 exp(—k(n—k)/n)
k=1 k=1
[n/2] [n/2]
< 2 Z exp(—k(n —n/2)/n) =2 Z exp(—k/2) = O(1).
k=1 k=1
Note that in the case: > n it drops out that the above expectatior<sl. O

Lemma 24 Suppose that/2 < m < n. Then the expected number of vertices on isolated directed cycles

isO(1).

Proof. The expectation is

k=1
m—1 m k( k>2(m_k) m—1
< — - — < exp(—2(m — k)k/n
k:1<n> - 3 exp(=2(m — k)h/m)
m/2| m—1
< 2 ) exp(—2k(m —k)/n) <2 exp(—2km/(2n))
k=1 k=1
[m/2]
< 2 ) exp(=k/4) =0(1)
k=1
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Lemma 25 Suppose thatn < n/2. Then the expected number of vertices on isolated directed cycles is
O(1).

Proof. Puty = m/n < 1/2. Then the expectation is

m—1 m—1 k 2(m—k)
k(n)g(m)g(n — k)2m=R) =1y =2m N <1 — )

<
n
k=1 k=1
m—1
< Y =0(1)
k=1
Note that in the case < 1 the last sum is< 1. O

If L =L,,, ando € S, is a permutation, then we defimel € L, ,, in the natural way. We equip
the space.,, ,, x S,, with the uniform distribution. Obviously, the mdg., o) — oL maps the uniform
distribution onto the uniform distribution.

Lemma 26 There exists a functiofi(m) = o(1) such that in the spacg,, ,,, x S, the following event has
probability < f(m): There isk € {1,...,n} such thatinD(cL) the verticest andk + 1 both belong to
Eulerian components.

Proof. Let X be the number of vertices in Eulerian component®df ). Let the random variabl&(y,
take valuel if £ belongs to an Eulerian componentidfo L) and0 otherwise. Lety” = ZZ;% XpXky1.
Conditioning onX < z, we obtain

(x —1)(n—2)! - z?

T
P(X X =1)< .
(X Xki1 ) < n! “n(n—-1)

ConsequentlyE(Y) < z?/n. Therefore, ifz < n'/4, thenY = 0 with high probability. However, the
eventX < n!/* occurs with high probability, as seen above. O

Corollary 27 There is a functionf(m) = o(1) such that the following event has probabilty f(m):
There isk € {1,...,n — 1} such that the vertice and k& + 1 both belong to Eulerian components of
D(Ly, ).

Let us examine the number of small Eulerian components in thereased (n) more closely.

Lemma 28 Let L = L, ,,,, wherem = ~/n for some fixedy > 0. Then the number of isolated directed
cycles of lengttk converges in law to the Poisson distributiéfi)), A = % (e%)]c
Proof. Let X be the number of directed isolatgecycles inD(L,, ,,,). Then
(n)k(m)(n — k)*(m=~)
ken2m :

B(X) =
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Furthermore, theth factorial moment ofX is

(1) ke (M) (0 — kr)Q(m—"”’) |

En(X) = krp2m
Consequently,
E/(X) (0 (m)r  (n— kr)Xmknp2mr
BT (W (m) (0 k)2
(M (M) (n — kr)?m n2mr (n — k)2kr
T () (m)p nPm (n—k)2 (0 — kr)2kr

Sincek, r are fixed, we have

kr kr
1Z(n)m2 n—kr+1 _ 1_kr+1 1 asn — co.
) n n
n—=k

2kr
Similarly, (m),/(m);, — 1 and (nfkr) — 1 asn — oo Moreover, for any fixed > 0

—k 2m
exp(—2(1 +e)kry) < <n T> < exp(—2kry)
n
for largen. Similarly, because
n 1 1
n—k 1-E exp(—2(1+eo)k) exp(2(1 +€)k),
we have
—2mr 2mr
exp(2kry) < n-k = n < exp(2(1 + e)kry).
- n n—=~k -
Consequently,

n— kr 2m n 2mr
— < <
exp(—2krye) < ( - > (n — k:) < exp(2krye),

whencelim,, ., F.(X)/E(X)" = 1. Finally, we note that

B(x)= L. e <n - k)z(mk)7

k. nk mk n

wherelim % =1, lim ™k — 4k and

mF

. 2(m—k) 2vn —2k
(n k) = <1 - k) (1 - Zz) — exp(—2k~v) asn — co.

n n

Thus,

1 k

EX)— —- 7 =Jasn — oo.
ko \exp(2y)

From [6, p. 23] our assertion follows.
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D Proofs for Section 5

In Section 5 we claimed that there should4e #S5 pieces out of,/n of length/n that start with six
isolated feet and are otherwise biconnected jth This follows from Lemma 30, assuming that =
n'/8 > 41. #5, and connecting superfluous isolated verticels to

Lemma 29 Suppose thatn < nlnn. Lete > 0. Then with high probability there are at least —¢
isolated feet inD (L, ).

Proof. Let X denote the number of isolated verticesiofL,, ,,,). The probability that a given foat is

isolated is
(n—1>2m < 1>2m <2m 2m>
=(1—-— > exp —— = |-
n n n n

Similarly, the probability that two given feet# w are isolated is

(20 () e (),

Thus,
1\*" 2m
EX)=n-{1-— >n-exp|——(1+1/n)
n n
and
Var(X) = Z P(bothv, w are isolategl— P(v isolated P(w isolated
vFEW

+) _ P(visolated — P(v isolated?

v

> {exp <—47T> — exp (—4?:1(1 + 1/n)> } + 21,: P(v isolated

vFEwW
4 4

n? exp <_m> (1 — exp (—T)) + nexp(—2m/n),
n n

wherev, w range over the feet of the caterpillar. Consequently,

IN

IN

Var(X) _ nesp (<4) (1 - exp (=) + nexp (-2)
BT n?exp (57) exp (= 75)

n2

4
= exp (?) —1+4+2exp(2m/n)/n < 1.
n
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Thus, by Chebyshev’s inequality with high probability we have
X >E(X)/2>n'"F,
wheres > 0 is arbitrary. O

Lemma 30 Suppose thatr < nInn. Then with high probabilityD(L,, ,,,) contains at leash!/® pieces of
lengthn!/2 starting with 6 consecutive isolated feet.

Proof. Split the backbone of the caterpillar inigieces of equal length. Note that the operation of the
symmetric groub,, leaves the distribution oh,, ,, invariant. Let us for a moment work under the condition
that the number of isolated feetin= L,, ,,, is N > n!~¢. Then the probability thak has isolated vertices
at K given positions after applying € S,, is precisely

(g))f N Ih JZ—_ j - @)K

J=0

providedK is constant. Thus, the expected number of pieces that starfiisiolated vertices is

)

In order to estimate the variance, we ;ftake valuel if the ith piece starts witli isolated vertices and
otherwisej =1,...,l. Let X = >" X;. Then

E(X?) = + E(X),
(n)ax
and ) ) )
B(X)? = Il - 1)§N)K n Z(N)QK > (- 1)§N)K
(n)% (n)% (n)%
Thus,
varr) U= (G - GF) +BOO
E(X)? ~ E(X)?
(Nor(m)ie ., 1 _ 1
S ke TR B T

Now put K = 6 andl = n'/2, ¢ = 1/100. ThenE(X) > n?/®. Thus, with high probabilityX > n'/8,
provided that the number of isolated verticezigV. Taking into account the previous lemma, our assertion
follows. O
The last claim in Section 5 is that any solution to berP instance constructed in Section 5 can be
transformed to a solution of at most the same cost which has certain propeotiesmlized solution
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Lemma 31 Let L” be the instance of thBARP on Cat,, that has been constructed in Section 5. [kt
be the edges of a solution other than requests. Theronsists of Eulerian componerds, ..., C;, ...
induced on the feet and the following assumptiongdocan be ensured without increasing the cost of the
solution:

(i) EachC; visits only feet of a singlé; and, possibly, neighboring feet bf\ 1

(i) For each Steiner vertexat most one of thé, (s), o € S,,, is visited by &;. If C; visits a labeled foot
I, € I; then it also visits the labeled fegte I; wherel > k

(i) There is only on€; that visits a foot o \ I

Proof. The fact thatD consists of Eulerian components follows directly from the fact ffaand D U L”
are Eulerian. Observe that balancing does not yield any additional request and that all2aare dietween
feet, because all af” are. Note that all vertices outside= Uj I; make up one large Eulerian component
M. As a consequence, if@; visits M twice, this can safely be short cut to one visit.

If an Euler tour of aC; crosses all of3; \ I; for somej, then this crossing must be both ways. It can
therefore be split and short cut to the first and the last fodgof 7;. As the distance between these two
feet is almost,/n this shortens the total length &f dramatically. This proves assertion (i) of the lemma.

Let s € S and assume that; connectsk feet of I, (s) while Cy connectd feet of I,/(s) (0,0’ € S,)
and these sets of feet share a label. Then the length &f at leasttk — 2 and the length o’ is at least
4¢ —2. On the other hand, thereise S,, such that the set of labels of the feetiipandC, are contained in
the labels ofva, . . ., voi, Wherel (s) = {vg,...,v1}. ThusC; andC; can be replaced with a component
C' on I. with length4/ + 4k — 6, short cuttingD. Observe that this procedure also work€&'ifor C visit
additionally a foot ofi” \ I and that it can be achieved that this foot lies to the right.

If C7 and(;, visit feet with disjoint labels then we may assume that a fod@tiinsay with labek, has a
neighboring foot with labet, of Cs, possibly changing appropriately. Then, increasing the length(gf
by 4, labelt; can also be visited bg;. On the other hand, iy there is already another path between labels
t; andty. Say, the next label on this pathtisand the connection between labelandts is in component
Cs. Again we may assume, that the labglsandts are neighboring irCs, andt; is leftmost. Then the
connection can be split, saving a length of 4Jn This proves assertion (ii) of the lemma.

Assume that there are two componefitsandCs, that both visit a foot i/ \ I, and lett; andt, be labels
visited byC; andCs, respectively. Split oft”; from V' \ I, saving a length of 6 (Note that the labeled feet
are separated froii \ I by an unlabeled foot). If this split® into two connected components, thenZgt
andT; be the sets of labels reachable frojrandt,, respectively. AS.S, T, E) is connected there must be
t) € Ty andt}, € T, that share a neighbare S. With an appropriate, t; andt}, are the two rightmost
labels inI,(s) and can thus be connected at a cost of 6. This proves assertion (iii) of the lemma. O

The solution as provided by Lemma 31 can be turned into a Steiner t(8elh E') by connecting € T
to s € Siff label ¢ is visited in a component ofy(s) for someo.

26



