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Polyhedral investigations on stable multi-sets

Arie M.C.A. Kosterf Adrian Zymolka'*

Abstract

Stable multi-sets are an evident generalization of the well-known stable sets. As
integer programs, they constitute a general structure which allows for a wide appli-
cability of the results. Moreover, the study of stable multi-sets provides new insights
to well-known properties of stable sets. In this paper, we continue our investigations
started in [9] and present results of three types: on the relation to other combinato-
rial problems, on the polyhedral structure of the stable multi-set polytope, and on the
computational impact of the polyhedral results.

First of all, we embed stable multi-sets in a framework of generalized set packing
problems and point out several relations. The second part discusses properties of the
stable multi-set polytope. We show that the vertices of the linear relaxation are half
integer and have a special structure. Moreover, we strengthen the conditions for cycle
inequalities to be facet defining, show that the separation problem for these inequalities
is polynomial time solvable, and discuss the impact of chords in cycles. The last result
allows to interpret cliques as cycles with many chords.

The paper is completed with a computational study to the practical importance
of the cycle inequalities. The computations show that the performance of state-of-
the-art integer programming solvers can be improved significantly by including these
inequalities.

In this paper, we continue our study of stable multi-sets started in [9]. We focus on poly-
hedral properties of the stable multi-set polytope as well as its linear relaxation, addressing
both theoretical and computational aspects. Many of the results are motivated by known
results for the stable set problem, thereby also providing more insights for the latter. As
illustrative example, discussed in Section 3.3, the conditions under which chords do not
influence the strength of cycle inequalities for stable multi-sets show why only odd holes
yield facet defining inequalities for stable sets. Furthermore, the structure of stable sets can
be identified as substructure in many integer programs, and hence the polyhedral properties
of stable sets have been exploited by many software solutions for integer programming. As
generalization, the stable multi-set structure may allow for similar exploitations of their
polyhedral properties.

As introduction, we start this paper with a discussion of set packings and their general-
izations in Section 1, thereby embedding stable multi-sets in a more general framework.

TKonrad-Zuse-Zentrum fiir Informationstechnik Berlin, TakustraBe 7, D-14195 Berlin, Germany.
fCorresponding author. E-mail: zymolka@zib.de — URL: http://www.zib.de/zymolka/
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Correspondences and differences with stable sets guide this presentation. After definitions
and preliminaries in Section 2, Section 3 is devoted to theoretical results on the stable multi-
set polytope. We first characterize the extreme points of the linear relaxation and show
their special structure. For the integer polytope, we strengthen the conditions under which
the cycle inequalities are facet defining, and show that cycles with chords can be facet defin-
ing as well. Moreover, we provide a positive answer to the question stated in [9] whether
a polynomial time algorithm for the separation of the cycle inequalities exists. Section 4
contains the results of a computational study on solving stable multi-set problems. We
demonstrate the profitability of the cycle inequalities within a branch-and-cut framework.
Finally, concluding remarks in Section 5 close the paper.

1 Stable multi-sets

Stable multi-sets have been introduced in [9] as an evident generalization of the well-known
stable sets which are also referred to as independent sets, cocliques, or vertex packings. The
last name already indicates that the stable set problem belongs to the fundamental class
of set packing problems, which play an important role in graph theory and combinatorial
optimization, cf. Schrijver [12]. To establish a theoretical foundation for stable multi-sets,
we classify them as special case of a generalized set packing problem and discuss the relations
between these problems.

1.1 Set packing and generalizations

Formally, set packing consists in the following task. Given a finite master set M =
{1,...,m} of items and a set S C 2M of subsets, each with a weight cg > 0, S € S,
we seek a maximum weighted collection 7 C S of pairwise disjunct subsets, i.e., S1 NSy = ()
V 51,5y € 7,51 # S9. Each such collection 7 is called a packing. Clearly, each item is
covered at most once by any packing, i.e., [{S €7 | j € S} <1 forall j € M. For an
extensive description of the problem and further relations, we refer to Borndérfer [1] and
Schrijver [12].

By introducing binary variables xg for all S € S, the set packing problem can be formulated
as integer linear program by

max ¢z
s.t Ax <1
ze{0,1}°

where ¢ is the vector of subset weights, 1 denotes the vector of all 1’s of appropriate size,
and A is the item-subset incidence matrix, i.e., a;g = 1 if i € S, and 0 otherwise.

Two important specific set packing problems occur if A reflects relations between the vertices
and edges of a graph G. For A being the vertex-edge incidence matrix (i.e., |S| = 2 for
all S € §), the associated problem is known as matching problem, while the edge-vertex
incidence matrix A (ie., [{S € S | j € S}| = 2 for all j € M) yields the stable set



A is general 0-1 matrix

Set Packing |

A is vertex-edge | A is edge-vertex

incidence matrix incidence matrix
(two 1’s per column) (two 1’s per row)
- max c'z
[ Matching | Az <1 [ Stable Set |
z e {0,1}°

Figure 1: Scheme of relations between set packing problems.

problem. These problem relations are depicted in Figure 1. Note that in fact the set packing
problem and the stable set problem are equivalent, since each set packing inequality can
be interpreted as clique inequality for stable sets and split into the single edge inequalities,
and vice versa.

A well-known generalization of matchings is given by (integer) b-matchings in which edges
can be selected multiple times and vertices may be covered up to the bounds stated as b. So
in the context of the integer program, the right hand side is replaced by b, and the variables
can take general integer values. The corresponding integer program reads

max ¢z
s.t. Ax <b
S Nbs

where A is the vertex-edge incidence matrix, ¢ contains the edge weights, and b indexed
by the vertices represents the cover bounds. Stating additional bounds on the number of
times the edges can be selected leads to capacitated b-matchings. An b-matching can also
be interpreted as an edge multi-set, where a multi-set is a set with allowed repetition of
elements and represented by its multiplicity function z : E — Ny.

The same kind of generalization can also be applied to general set packings: we allow to
pick sets from S multiple times as long as the number of times items are packed does not
exceed given bounds. In this case, a solution is a multi-set of the elements of S. Therefore
the resulting problem is denoted as multi-set packing (MSP). The construction also carries
over to stable sets and yields the stable multi-sets (SMS). Both problems have the same
integer program as b-matching, only varying in the incidence structure represented by A.
Figure 2 illustrates these relations of the described problems. Remark that in the context
of (strongly) t-perfectness of graphs, stable multi-sets are also known as b-stable sets [12].
For both SMS and MSP, we consider the capacitated version, i.e., for all variables an upper
bound exists. For MSP, these bounds can be easily included in A. For SMS, stating that
A has at most two 1’s per row instead of exactly two 1’s per row allows for a simple
incorporation of vertex bounds (for stable sets, these are implicitly established by the 1’s
vector).

From a graph-theoretic point of view, a similar interpretation as for b-matchings can be
given for stable multi-sets: vertices can be selected multiple times, and the edges may
be covered up to the stated bounds. The most general multi-set packing indeed requires
the extension to a hypergraph where it represents multiple vertex selections not exceeding



A is general 0-1 matrix

Set Packing |

A is vertex-edge | A is edge-vertex

incidence matrix 1 incidence matrix
(two 1’s per column) i (two 1’s per row)
| Matching | 5 | Stable Set |
! Y !
i |Multi—Set Packing| i
v t
| b-Matching | ~ maxcz | Stable Multi-Set |
Az <b
T € Ng

Figure 2: Extended scheme including problem generalizations.

bounds on the hyperedges (or multiple hyperedges depending on the interpretation of the
matrix A).

1.2 Elementary relations
The relations illustrated in Figure 2 directly cause two questions:

(i) Are stable multi-sets and multi-set packings also equivalent?

(ii) Can stable multi-set problems easily be transformed to stable set problems?
The answer to the first question is negative as the following example makes clear.

Example 1.1 Consider the MSP defined by three vertices {a,b,c} and a single hyperedge
covering all vertices with bound 2 as illustrated in Figure 3(a). Each multi-set of vertices
up to a cardinality of 2 is a valid packing. This MSP cannot be written as an SMS on the
same vertices. Since an arbitrary combination of the vertices up to 2 can be taken, the edge
bounds all have to be at least 2, cf. Figure 3(b). However, this allows also for a solution
like x4 = xp = x. = 1 which has cardinality 3.

The equivalence of stable set and set packing is therefore ascribed to the case in which all
bounds are 1.

The second question concerns the relation between stable sets and stable multi-sets. The
following construction describes a transformation of stable multi-sets to stable sets that is
pseudo-polynomial in the input size of the problem.

Consider a stable multi-set instance on a graph G = (V| E) with vertex bounds «, for
all v € V and edge bounds (3, for all vw € E. A corresponding stable set instance
G' = (V',E') is constructed as follows. We replace each vertex v € V by a vertex set
{v],v5,...,v,, }. We interpret choosing v in the stable set as choosing i times v in the
stable multi-set (with none v} chosen meaning that v does neither occur in the stable
multi-set). Hence, at most one vertex v; can be chosen, and thus {v],v5,..., v, } induce a

4



To+Tp+x. <2

(a) MSP

Figure 3: Example for distinction of multi-set packing and stable multi-set.

Figure 4: Transformation of a stable multi-set instance into an appropriate stable set in-
stance.

clique in G'. Finally, for each edge vw € E with bound 3,, we insert all edges vjw’ with
i+ j > Byw- The construction is illustrated in Figure 4 by an example. It is easy to verify
that each stable set 2’ in G’ corresponds to a stable multi-set = in G by z, = > 7" i -z,
Unfortunately, the presented transformation significantly enlarges the graph to consider.
For @ = maxyey aw, n = |V, and m = |E|, the resulting stable set instance has O(na)
vertices and O((n + m)a?) edges. In addition, the solution correspondence does not allow
for an easy adaption of known inequalities and other results for stable sets to the multi-set
case by this transformation.

2 Definitions and preliminaries

In this paper, we use the following notation and refer to [12] for non-explained elementary
graph theoretical notions. An undirected graph G = (V| E) consists of a set of vertices
V and a set of edges E. Throughout the paper, we use n = |V| and m = |[E|. We
assume all considered graphs to be simple, i.e., contain no loops and no multiple edges.
We always use the short notation vw for an edge {v,w} € E. Let N(v) denote the set
of neighbors of v € V| ie., N(v) := {w € V | vw € E}. Moreover, for W C V| let
NW):={veV\W |vw e E,w € W} be the set of vertices that W separates from the



rest of the graph. Usually we denote a cycle by its vertex set C, and the associated edge
set by Fo. Given a subset S C V of vertices, the subgraph of G induced by S is denoted
by G[S]. Similarly, S denotes the vector x restricted to the vertices in S C V. For S CV,
let e¥ € {0,1}V denote the characteristic vector defined by e = 1 if v € S and e = 0
otherwise.

Throughout this paper, we use a graph-oriented definition of stable multi-sets. Let G =
(V,E) be a graph, a,, > 0 and ¢, > 0 integers associated with each vertex v € V, and
Buw > 0 integers associated with each edge vw € E. A stable multi-set (SMS) is a vertex
multi-set defined by a multiplicity vector x € Ng)/ such that 0 <z, < «a,, for all v € V and
Ty + Ty < By for all vw € E. The SMS problem is to find a stable multi-set of maximum

value ) oy Coy.
A number of reduction rules for the SMS problem has been stated in [9]. Without loss of

generality, we assume in the sequel each SMS problem to be irreducible, i.e., max{ay, @y} <
Bow < o + a for all vw € E, and minge () {Bow — aw} =0 for all v € V.

Given a triple G, «, 3, the set of valid stable multi-sets is denoted by
T(Gya,8) ={z eNJ [0< 2z, <a, VW eV, zy+ Ty < fow Yow € E}.

The convex hull of this set is named as T7p(G,a,3) = conv(T(G,a,3)). Moreover,
Trp(G, a, B) refers to the polytope described by the linear relaxation of T'(G, a, 3):

TLp(G,a,ﬂ):{xeRV\OS:UU <ay Y €V, y + 2y < Py Yow € E}.

If there is no danger of confusion, we use T', Trp, and T p as short version of T'(G, a, ),
Trp(G,a, ), and Trp(G, «, 3), respectively.

As a generalization of stable sets, the stable multi-set problem is obviously NP-hard. In [9],
we started the study of valid inequalities that describe facets of T7p. First of all, the
non-negativity inequality =, > 0 defines a facet of T7p for all v € V| whereas the vertex
inequality =, < «, is facet defining if and only if (., > «, for all w € N(v). An edge
inequality x, + T, < Py defines a facet of Trp if and only if for all u € N({v,w}), there
exist integers T, < ay, and Ty, < oy With Ty + Ty = Bow, T < Bou if u € N(v) \ {w}, and
Ty < Buu if u € N(w) \ {v}.

In addition to these classes of model inequalities, two other classes of inequalities have been
identified. Given a cycle C' C V in G, the cycle inequality is defined as

S 4y < [36(0)] &
velC

where 3(C) = >, ¢ £ Bow 18 the sum of edge bounds on the cycle. The cycle inequality
is redundant if |C| is even or even-valued, i.e., 3(C) is even. Moreover, the inequality can
also be redundant for odd-valued odd cycles. Non-redundancy holds if and only if

k
L min Oy, + Zﬂvwzrlviup > L%ﬁ(C)J ) (2)
i=1,...,2k+1 s

In [9] also conditions which characterize facet defining cycle inequalities are provided; a
strengthening of these conditions is presented in Section 3.2. Since the cuts of Chvatal-rank



1 are exactly the cycle inequalities, T7p = T p if and only if all cycles induce redundant
inequalities. Recently, Gijswijt and Schrijver [6] proved that for graphs without bad K4
subdivision®, the system of vertex bounds, edge bounds, and cycle inequalities describes
Trp completely for arbitrary o and (.

The second class of inequalities proposed in [9] concerns so-called [(-cliques. For a clique
Q CVin G with By, = 6 for all v,w € Q, v # w, the B-clique inequality is defined by

3 2, < IQILL6) + (B mod 2).
vEQR

For |Q| > 3, the inequality defines a facet of T7p if and only if o, > (% B for allv € Q, B
is odd, and for all u € N(Q), there exists w € Q with w & N(u) or By > [38] + 1. Notice
that not only maximal S-cliques can fulfill these conditions but also subcliques. In fact, if
G is equivalent to a (-clique satisfying all conditions, T7p is completely described by the
model inequalities and the S-clique inequalities for all subcliques.

3 Polyhedral results

In this section, we discuss new polyhedral results for both T7p and T;p. In Section 3.1,
we study properties of T p, whereas Sections 3.2-3.4 address different aspects of the cycle
inequalities. Consecutively, we revisit the conditions under which cycle inequalities are
redundant and facet defining, we study the influence of chords, and we present a polynomial
time separation algorithm.

3.1 Extreme points of the linear relaxation
Nemhauser and Trotter [10] characterized the extreme points of the fractional stable set
polytope. Based on this work, we investigate the polytope T p as well.

For the linear relaxation of the stable set polytope, it is known that all components of each

extreme point only take values 0, %, or 1. Applying the same technique, we show for T p

that all components of each extreme point always take half integer values:

Lemma 3.1 Let = be an extreme point of Trp(G,«,3). Then all component values are
non-negative multiples of a half, i.e., for allv € V there exists k, € Ny with x, = %k‘v.

Proof. Let z be an extreme point of T p(G, a, 3) and define the index sets

U = {veV]|IneNy: n<zy,<n+3},
Ui = {veV|IneNy: n+i<z,<n+1}.

A K, subdivision is a graph that can be constructed by subdividing the edges of K4. It is called odd if
each triangle of the K4 subdivision is odd. It is called good, if it is odd and if there are two disjoint edges of
K4 such that these are not subdivided and the other four edges are subdivided to even length paths. Finally
a bad K4 subdivision is a K4 subdivision that is not good, see [5].



Assume U_1 # () or Uy # (). We then set

£ 1= %min{vrenUinl{:cv — |z0] 1, 11}1€11U1}{[mﬂ —CL’U}} >0

vweE:
Ty +zw <Bvw

52::%min{1, min {ﬁuw—@“v_mw}} >0

and € := min{e1, 9} > 0, and define two points y, z by

Ty + ke, ve U, k==1, Ty, — ke, veUg, k==1,
Yy = . Zy = .
r, , otherwise, r, , otherwise.

By assumption, z,y,z are mutually different, and the construction yields z,y,z €

Trp(G,a,3). But x = y;z contradicts = to be an extreme point of T7p(G, «, 3). Hence,

U_1 = () = Uy, which completes the proof. [ |

The next natural step consists in a characterization of all extreme points of the linear relax-
ation. In case of stable sets, Nemhauser and Trotter [10] showed that x is an extreme point
if and only if it can be written as z = e“+ %eT, where S is a stable set, T" induces a subgraph
whose components are non-bipartite, and (S U N(S)) NT = (. Such a (de)composition of
all extreme points is strongly related to the fact that all bounds are 1, which in particular
implies z, = 0 for all v € N(S). In the multi-set case, the edge bounds prohibit such
an implication, and a composition has to take the edge bounds between S and T into ac-
count. However, the decomposition carries over, actually in two alternative ways stated in
Corollary 3.5 and Proposition 3.6.

The first alternative distinguishes vertices with integer and fractional values. The following
lemma is helpful in this context:

Lemma 3.2 Let x € Tpp(G,a,3) and S :={v € V |z, # |xy|}. Then xy + x4y < Byw for
allvw € E withv € S, w € N(95).

Proof. Follows directly from the fact that x, is fractional whereas x,, and (3,,, are integer.
[ |

First, we focus on the vertices with fractional values and show that the point extremity
carries over to a reduced stable multi-set instance induced by the associated part of G:

Lemma 3.3 Let x € Trp(G,a,8) and S == {v € V | xy, # |zy|}. If x is an extreme
point of Trp(G,a, ), then x[S] is an extreme point of Trp(G[S],«,3). Moreover, each
component of G[S] contains an odd-valued odd cycle C that satisfies (2).

Proof. Suppose z[S] is not an extreme point of T7,p(G[S], o, ). Then there exists y[S] # 0
such that z[S] £ y[S] € TrLp(G]S], @, ). By Lemma 3.2, By — 2y — 2y > 0 for all vw € E,
ve S, we N(S). But then ztey € Trp(G, o, B) for some € # 0 and y extended with zeros
to the size of x. Hence, x is not an extreme point of T7p(G, «, 3), a contradiction. Thus,
x[S] is an extreme point of T p(G[S], a, ).



Now, let U induce a component of G[S]. Clearly, z[U] is an extreme point of T, p(G[U], cv, B).
Since z[U] is fractional by construction, we know that Trp(G[U], «, 5) # Trp(G[U], o, ).
By Corollary 2 from [9], this is equivalent to the case when G[U] contains an odd-valued
odd cycle that satisfies (2). |

A similar property holds for the integer valued subgraph:

Lemma 3.4 Let v € Trp(G,a, ) and T := {v € V | x,, integer}. If x is an extreme point
of Trp(G, o, B), then z[T] is an integer extreme point of Trp(G[T], o, ).

Proof. By definition of T, z[T] is integer. Suppose x[T] is not an extreme point of
Trp(G[T],c, ). Then there exists y[T] # 0 such that z[T] £ y[T] € Trp(G[T], e, B).
Again, by Lemma 3.2, it holds that x + ey € Trp(G, «, 3) for some € # 0 and y extended
with zeros to the size of . Hence, z is not an extreme point of T1p(G, «, 3). |

Subsuming both properties yields the following decomposition of extreme points:

Corollary 3.5 Each extreme point x € Trp(G, o, 3) can be written as x = z[S] + z[T],
where x[S| and x[T| have the properties defined in Lemma 3.3 and 3.4.

Unfortunately it is in general not possible to combine arbitrary extreme points z[S] and x[T']
to an extreme point x of T p, since this ignores connecting edge bounds S, for vw € F,
veS,wel.

An alternative decomposition is presented in the following proposition:

Proposition 3.6 Let v € R and S :={v eV |z, # |x,]}. If x is an extreme point of

Trp(G,a, 3), then x can be written as x = 2’ + %65 with

(i) ' an integer extreme point of Tpp(G, o, B') on the reduced instance with o, := o, —eS

for allv €V and ., = Bow — €5es for all vw € E, and

(ii) each component of G[S] contains an odd-valued odd cycle C' that satisfies (2).

Proof. Let z € R’} be an extreme point of Trp(G,a,3) and define ' = |x|. Then
z =2’ + 3e° by Lemma 3.1.

Since z is an extreme point, there exist n linearly independent inequalities (from the canon-
ical description of the polytope) satisfied at equality by z. We show that all of them are
also satisfied at equality by 2’. For non-negativity inequalities, this is clear. Vertex (upper
bound) inequalities which hold at equality need the associated vertex to take its upper
bound value «, = «/,, so 2’ has the same value for this vertex. Finally, for the edge in-
equalities by the definition of ', the fractional part of x, and z,, is subtracted from both
the left and right hand side. As a result, there are n linearly independent inequalities sat-
isfied at equality for 2/, yielding it to be an (integer) extreme point of the reduced instance
Q—VL/P(G7 O/7 ﬁ/)

The second part follows directly from Lemma 3.3. |

Again, this decomposition is not invertible: vectors composed of an arbitrary integer ex-
treme point 2’ of Trp(G,’, ') and an arbitrary set S that has the appropriate properties
does not necessarily lead to an extreme point of T p(G, «, (3).



3.2 Facet defining cycle inequalities

In this section, we reconsider the cycle inequalities (1). Let C C V be the vertex set of an
odd cycle C' = {v1,v2,...,v2941} in G. In the sequel, we always interpret the vertex indices
modulo 2k + 1 (in the range 1,...,2k + 1). From [9], we know that

(i) even-valued odd cycles are dominated by model inequalities and hence redundant;

(ii) an odd-valued odd cycle may also be dominated by model inequalities, which is the
case if and only if (2) does not hold;

(iii) if restricting to the odd-valued odd cycle, i.e., G = (C, E¢), the cycle inequality is
facet defining for T7p(G, a, B) if and only if (2) holds and

i=1,... 2k+1

k
max Zﬁui+2p_1vi+2p < L%ﬁ(C’)J . (3)
p=1

At first sight, the two latter properties do not exclude the existence of odd-valued odd cycles
that define a non-redundant inequality which is not a facet of T7p. To disprove this possi-
bility, the main step consists in the following lemma which strengthens the characterization
in (iii):

Lemma 3.7 Let G = (C, E¢) be an odd-valued odd cycle with C = {v1,...,vor11}. If (3)
is violated, then (2) is also violated.

Proof. Let m € {1,...,2k 4+ 1} be an arbitrary index for which the maximum in (3) is
taken, then the precondition reads (with 5(C) odd)

2k+1

k
> Bomiaprvminy > (38O =3 | S Bupuppn — 1
p=1 p=1

By elementary transformations (including index subtitution), we get

k
ﬁ(c) > 2 Z /B'Um+2pvm+2p+1 - 1

p=0

which can, since both sides are integer, be turned into

k k
ﬁ(c) Z 2 Z ﬁvm+2pvm+2p+1 = 2 /vavm+1 + Z ﬁvm+2pvm+2p+l
p=0 p=1

10



Since 3(C) is odd and the right hand side is even, the left hand side can be rounded down
after division by 2. Finally, o, ., < By, Um+1 implies

k k

L%ﬁ(C>J Z ﬂvm”mﬁ»l + Z /va+2pvm+2p+1 avm+1 + Z /va+2pvm+2p+1

p=1 p=1

v

k
= i:lf.l.l.glk—&-l O - Zl Boitap—1visap
p:

as claimed. ]

This finally closes the gap and yields:

Corollary 3.8 Let G = (C, E¢) be an odd-valued odd cycle. Then the cycle inequality (1)
1s either redundant or facet defining.

As a further consequence of Lemma 3.7, we can restate Proposition 4 in [9] as follows:

Proposition 3.9 Let C = {v1,...,vak41} be an odd cycle in G with 3(C) odd. Then the
cycle inequality (1) defines a facet of Trp((C, Ec), o, B) if and only if (2) is satisfied.

Taking a look at the original proof of Proposition 4 in [9], the former condition (3) was
necessary to guarantee that the 2k 4+ 1 uniquely determined integer points satisfying (1)
at equality have non-negative entries. As Lemma 3.7 shows that the condition can be left
out, it follows that these 2k + 1 points are valid for T7p((C, E¢), o, 3) if and only if the
inequality is non-redundant.

3.3 Chords in cycles

Proposition 3.9 specifies whether a cycle inequality is facet defining in case of G = (C, E¢).
Now, we turn to the case of arbitrary graphs. Obviously, the cycle inequality (1) is valid
for each cycle in each graph, and the next natural step is to ask under which additional
conditions it is facet defining in more general cases. A first step in this direction is to
consider cycles with chords, i.e., graphs G = (C, F) with E¢ C E.

Again, we assume that the cycle vertices are consecutively indexed as C' = {v1,...,vo511},
k € N. Any two different vertices v;,,v;, € C are connected by two paths on the cycle, one
of them with an even number of edges, the other with an odd one. In what follows, we focus
on the odd path connecting v;, and vj;,, and assume without loss of generality j; < jo and
72 — j1 odd. Next, the edge bounds on the path are alternatingly added up in two sums,
the first beginning with the first edge on the path and then taking each second one until
the other vertex is reached, i.e.,

Jo—j1—1

2

ﬁodd-f— I E ﬁ

Jijz Vj14+2pVj1 +2p+1
=0

11



and the second by taking all other (intermediate) path edges, i.e.,

Jjo—ij1—1

2
ﬁOdd_ L ﬂ
Jije T E : Vj1+2p—1Yj1+2p *

p=1

For graphs consisting of an odd cycle with chords, it turns out that the cycle inequality
remains facet defining if the chord bounds satisfy a simple condition on these sums:

Theorem 3.10 Let G = (C, E) be an odd-valued odd cycle C = {v1,...,vox+1} together
with a single chord e = vj,vj,, 3 < jo— j1 odd. Then the cycle inequality (1) defines a facet
of Trp(G, o, B) if and only if condition (2) is satisfied, and the chord bound satisfies

dd+ dd—
ﬁ”h”h = ﬁjl]é - ﬂqujz +1. (4)

Proof. From the proof of Proposition 4 in [9], we know that there are exactly 2k + 1
uniquely determined points z', ..., z2**! satisfying the cycle inequality at equality. These
points are given by

wy, = 5(6; = 67 + (=177,
where j — ¢ is taken modulo 2k + 1 (in the range 1,...,2k 4+ 1) and

k k

1 2
ﬁj - Zﬁ”jwpvﬂzpﬂ and 6]’ - Zﬁ”ﬁzl’*“’j“?’ )

p=0 p=1

So, the cycle inequality (1) defines a facet if and only if all these points are feasible for
Trp(G,a, ), i.e., satisfy all vertex and edge bounds on the cycle as well as satisfy the chord
bound. By Proposition 3.9, the condition on the cycle is equivalent to (2). Thus it remains
to show that the condition on the chord bound is equivalent to (4).

Clearly, all points 2!, ..., 22**1 satisfy the chord bound if and only if

ﬁ%% > max {xz + 2! }

i=1,...2k+1 U Y71 Yiz

= i:lr,].(.l.?ﬁﬂ {%( ]1'1 — % + (—1)J'1*i) + %(51j2 — By + (_1)3'27@')}

= 381 = B4+ Bl = o) + 5 _max  {(=1)7 7+ (-1

_ podd+;: . godd—; : 1 -1 J1—1 -1 J2—1t )
B j1j2 — B Jl]2+2i:117¥.1.?«2)§€+1{< T4 (—1)727 )

To evaluate the last maximum, note that for ¢ = j; + 1, jo — ¢ is even and j; — ¢ = 2k
(computed modulo 2k 4 1), and hence also even. Thus, for this index i both exponents are
even (modulo 2k + 1), which yields max;—1  or+1 {(—1)j1_i + (—1)j2_i} = 2, completing
the proof. |
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Note that for the special case of stable sets, condition (4) is always violated: the chord
bound is 1, whereas the right hand side always evaluates to 2. Thus, only odd holes may
yield facet defining cycle inequalities for stable sets, which was proven by Padberg [11].

Of course, Theorem 3.10 is also the key to cycles with several chords as pointed out in the
next corollary:

Corollary 3.11 Let G = (C, E) be a graph with |C| odd and the edges Ec C E define an
Hamiltonian circuit in G- with minimum total edge bound sum Bc. Then the inequality

> @ < [36c]

vel

is wvalid for Trp and defines a facet if and only if Bc is odd, condition (2) holds, and
condition (4) is satisfied for all chords vw € E'\ E¢.

So, in general also inequalities for odd cycles with chords can define facets of the stable
multi-set polytope and hence are of interest for efficient algorithms. In contrast to stable
sets, it does not suffice for strongly t-perfect graphs to add only odd hole inequalities to the
model inequalities to get a complete description of T7p(G, a, 3). Moreover, Corollary 3.11
turns out to be valuable in an unexpected way. In [9], we stated the open problem to find
a right hand side for general clique inequalities, i.e., cliques with non-uniform § values.
The idea now is: Cliques are just cycles with many chords. So, the minimum Hamiltonian
circuit always provides a valid right hand side for the clique inequality, which indeed defines
a facet if the conditions in Corollary 3.11 apply. If they do not, but only one of the points
zl, ..., 2?** 1 is valid, ¢ is the best right hand side for this clique. This partly answers the
open question.

3.4 Separation of cycle inequalities

To strengthen the linear relaxation of the stable multi-set polytope, the inclusion of cycle
inequalities is beneficial from both a theoretical and practical point of view. However, the
number of cycle inequalities to be taken into account can be exponentially large, and thus
it is not recommended to add all those inequalities to the linear program. Instead, we aim
at separating violated cycle inequalities over the stable multi-set polytope. This separation
problem reads:

STABLE MULTI-SET CYCLE SEPARATION
Instance: A stable multi-set problem instance (G, «a, 3) and = € Trp.
Question: Does there exist an odd-valued odd cycle C' in G violating (1), i.e., with

x> [38(0)]) 7

veC

As pointed out in [9], there is a polynomial time separation algorithm for cycle inequalities
for the stable set problem proposed by [7]. In the following, we provide a generalization of
this algorithm for the polynomial time separation of cycle inequalities in the stable multi-set
case.
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Figure 5: Construction of the auxiliary graph H for the separation of cycle inequalities for
stable sets.

First, we recall the stable set case. For a fractional solution x € T p, an auxiliary graph
H = (W, F) is constructed by W = {v.,v, | v € V} and F = {vew,, wev, | vw € E},
i.e., H consists of two copies V., V, of V and two copies of each edge e € E connecting
the associated vertices from both vertex sets (see Figure 5). Moreover, each edge vw € E
is assigned the value zy, = 1 — x, — x4, and the edges in H overtake this value from the
corresponding edge in G, i.e., 2y w, = 2w, = 2ow for all vw € E.

Clearly, H is bipartite, thus any path from V. to V, has an odd number of edges. Since v,
and v, correspond to the same vertex v € V, any path p from v, to v, in H indicates an
odd cycle C, through v in G. Note that C}, need not to be simple even if p is, since p can
visit both vertices u,, u, in H for a vertex u € V' \ {v}, and consequently C}, contains u
twice. But in any case, C) is odd and thus can be decomposed into even cycles and at least
one simple odd cycle C' (not necessarily containing v).

For separating cycle inequalities, a shortest path from v, to v, in H is computed for any
v € V. By the construction of H and the weights z, such a path with total weight smaller
than 1 indicates a simple odd cycle C'in G (possibly, by the decomposition mentioned above,
as subcycle of the cycle C), corresponding to p) for which the cycle inequality is violated,
since

San=d Y otew) =5 Y () = 510 Yz > S(C-1) = [2el] -

velC vweEc vweEc vweEEbc

The main idea behind this construction is that for a path starting in V,, the index of any
reached vertex indicates whether the path so far has an even or odd number of edges, or in
other words, any path from v, to v, in H has odd length.

For stable multi-sets, this construction can be extended to reflect that both values have
to be odd, the path length and the sum of its edge bounds. Instead of two copies of the
vertices, four copies are introduced for odd/even-valued odd/even paths. These copies can
be indexed Ve, Veo, Voe, and V,,, where for a path starting in V.., the first index indicates
whether the number of edges of the path so far is even or odd, and the second index does

14



H

Figure 6: Construction of the auxiliary graph H for the separation of cycle inequalities for
stable multi-sets.

the same for the path edge bound sum. In addition, each edge vw € E is copied four
times connecting the appropriate vertices depending on the parity of 3,,. Finally, these
edge copies overtake the weight 2z, = Byw — Ty — T from their original vw € E. As
result, a path from v to vy, in this bipartite graph represents a (not necessarily simple)
odd-valued odd cycle. For paths with total weight smaller than 1, it can be shown that
this cycle contains at least one simple odd-valued odd cycle with total weight smaller than
1 which again corresponds to a violated cycle inequality. An approach very similar to this
construction has been independently developed by Cheng and de Vries [2].

The separation of cycle inequalities for stable multi-sets however can also be viewed from
another perspective resulting in a shortest path computation on a graph with only 2n
vertices. Recall that from the stable multi-set perspective, each edge in a stable set instance
has edge bound 1. Hence, a path from v, to v, in H is not only a path of odd length, but
also of odd edge bound sum. By introducing edges among the vertices in V. and V, for
edges with even bound, this construction can be generalized to the stable multi-set case.
Formally, we consider the auxiliary graph H = (W, F) defined by

W = {ve,v,|veEVY,

F = {vewe,vow, | vw € E, Byw even} U {vews, Vowe | vw € B, Byy odd} .

This construction is exemplary depicted in Figure 6. For each edge vw € E in G, we define
a weight Zyw = Byw — Tw — T > 0, which is carried over to the associated edges in H.

Obviously, each violated odd-valued odd cycle inequality translates to a path from v, to v,
with total Z-weight smaller than 1. The following lemma shows that odd-valued even cycles
do not:

Lemma 3.12 Letx € Trp and C be an odd-valued even cycle in G. Then ) Zow > 1.

vweEEkc
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odd-valued
even cycle

even-valued
odd cycle

C

Figure 7: A non-simple odd-valued odd cycle C), can decompose in an odd-valued even cycle
and an even-valued odd cycle.

Proof. Let C' be an odd-valued even cycle. Then

Z va: Z <5Uw_xv_xw):/8(c)_22~fvZﬂ(c)_QL%ﬁ(C)J =L

vweEkc vweEEbc veC
Here the > sign holds since the cycle inequalities are redundant for 17 p for even cycles. W

Hence, each such path p corresponds to an associated odd-valued odd cycle C}, in G, but
this cycle need not to be simple as mentioned before. Similar as for stable sets, non-simple
cycles can be decomposed into simple cycles, but this time we have to be more careful, due
to the doubled parity:

Proposition 3.13 Let p be a path from ve to v, in H with total Z-weight smaller than 1.
Then C, contains at least one simple odd-valued odd cycle (not necessarily containing v)
for which the cycle inequality (1) is violated.

Proof. Each path p from v, to v, in H is odd-valued by construction. By Lemma 3.12,
this path is also odd. If C}, is simple, we have found an odd-valued odd cycle for which the
inequality (1) is violated. It remains to show that in case of a non-simple cycle, C, contains
at least one simple odd-valued odd cycle with total zZ-weight smaller than 1.

Assume that C), does not contain a simple odd-valued odd cycle. Then C}, decomposes into
at least one simple odd-valued even cycle and one simple even-valued odd cycle, cf. Figure 7.
However, from Lemma 3.12 we know that the total z-weight of each odd-valued even cycle
adds up to at least 1, a contradiction. Hence, C), contains at least one simple odd-valued
odd cycle. Since Z,, > 0 for all vw € FE, the total zZ-weight of this cycle remains smaller
than 1, and thus implies a violated inequality (1). [ |

Note that Proposition 3.13 in addition states that the class of odd-valued odd circuit (i.e.,
non-simple cycle) inequalities separated by Cheng and de Vries [2] in fact reduces to the
class of odd-valued odd cycle inequalities. For the latter, we directly get:

Theorem 3.14 For the stable multi-set problem, cycle inequalities can be separated in poly-
nomial time.

Proof. Let C be an odd-valued odd cycle for which the inequality (1) is violated. For
v € C, the shortest path from v, to v, in H has total weight smaller than 1. This path
implies a violated cycle inequality (1) (not necessarily the one implied by C).
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Hence, n shortest path computations detect violated cycle inequalities as long as some exist.
This procedure clearly takes polynomial time. |

Note that the polynomial time separation algorithm presented in the proof above heavily
depends on the fact that x € Trp. If ¢ € Trp, Lemma 3.12 cannot be applied anymore, and
C) could indeed decompose into an odd-valued even cycle and an even-valued odd cycle.

Finally, [9] points out that the stable multi-set polytope is completely described by the model
and all cycle inequalities for strongly t-perfect graphs which has been shown by Gerards and
Schrijver [4]. Recently, Gijswijt and Schrijver [6] showed that for the superclass of graphs
that does not contain a bad K4 subdivision, T7p has Chvatal rank at most 1. Together
with Theorem 3.14, we conclude:

Corollary 3.15 The stable multi-set problem is polynomial time solvable for graphs without
a bad K, subdivision.

4 Computational results

In this section, we report on computational studies on the impact of the valid inequalities
known for stable multi-sets. Since the (-clique inequalities turned out to be of minor
computational importance, we focus on the class of cycle inequalities. We first describe the
setting and the instances, before we present the results of two comparisons on the benefit
of separating odd-valued odd cycles.

4.1 Setting and instances

To evaluate the impact of cycle inequalities, we implemented a branch-and-cut algorithm
for the stable multi-set problem with C++ as programming language. ILOG’s Concert
Technology has been used as a general framework for the implementation of the branch-
and-cut algorithm, together with CPLEX, version 7.5 [8] as (integer) linear programming
solver. All computations have been carried out on a PC with a 2.53 GHz Intel Pentium 4
processor, 2 GB Internal Memory, and Linux as operating system.

For this computational study, we adapted stable set instances to stable multi-sets. Since
a maximum stable set corresponds to a maximum clique in the complement of the graph,
the so-called DIMACS maximum clique instances [3] are frequently used for computational
studies on stable sets. This set contains 66 graphs ranging from 28 upto 3361 vertices
(cf. Table 1 for the exact sizes of the graphs). Stable multi-set instances have been generated
from these instances in four steps:

(i) complement the graph,

(ii) randomly generate values «,, € {5,6,...,15} for all vertices v € V,
(iii) randomly generate values [y, € {max{ay, a},...,a, + ay — 1} for all vw € E,
(iv) apply reduction rules to generate irreducible instances.
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Note that by steps (ii) and (iii) most reduction rules of [9] have already been considered.
Only the reduction of o, by min,epn () (Bow — ) could lead to lower bounds and graph
modifications. However, for the used instances no vertices have been removed by this
reduction. Moreover, we set ¢, = 1 for all v € V' in our study, i.e., we solve the maximum
cardinality stable multi-set problem.

4.2 Computational comparison

We report on two comparisons which show the potential of cycle inequalities. First of all, we
compute the value of the linear programming relaxation with and without cycle inequalities,
indicating the progress towards the solution value. Our second comparison concerns the
performance of some integer programming algorithms to find integer solutions.

LP relaxation By the addition of cycle inequalities to the linear relaxation, the gap be-
tween LP and IP can be reduced substantially. In fact, from Corollary 3.15 we know that
this gap can be closed completely for graphs without a bad K, subdivision. To test their
impact in general, we have computed the LP value before and after the separation of the
cycle inequalities. The results are presented in Table 1. Here, zyp refers to the value of
the linear relaxation, zzrp to the LP value including the cycle inequalities, zyp to the value
of the optimal integer solution (or best known solution in case the optimal solution is not
known), and the column “gap closed” refers to the percentage by which the gap between
LP value and IP value is closed due to the inserted cycle inequalities, i.e., reflects the value
%. Finally, the columns “# ineq.” and “# rnds” list respectively the total number
of inequalities separated and the number of separation rounds, i.e., the number of times the
LP has been resolved until no violated inequalities could be found anymore.

9

For six instances, no violated cycle inequalities could be found, and thus we can conclude
that for these instances the LP solution is integral. For five other instances, some violated
inequalities have been generated although the optimal solution value is already attained by
the LP solution. Moreover, Table 1 shows that for 37 of the 55 remaining instances the
gap is completely closed by the cycle inequalities. In these cases, the number of separation
rounds is typically small. For the remaining instances, the gap is closed by 85% on average
with a minimum of 57%. Altogether, we can conclude that the cycle inequalities are indeed
effective to improve the LP relaxation of the stable multi-set polytope.

Integer solutions Our second comparison is on the performance of the MIP solver with
and without odd-valued odd cycle separation. Herefore, a total of three scenarios has been
considered:

BB represents the usual branch-and-bound method in which no cycle inequalities are sep-
arated at all;

CPBB denotes the method in which cycle inequalities are separated only in the root node
of the search tree, then continuing with branch-and-bound to explore the tree;

BC applies the branch-and-cut method, separating cycle inequalities in each node of the
search tree.
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instance n m ZLp ZZ_P zrp  gap closed # ineq. # rnds
MANN-a9 45 72 185.5 184.00 184 100.00 3 2
MANN-a27 378 702  1516.0  1500.00 1500 100.00 32 2
MANN-a45 1035 1980  4240.5  4199.00 4199 100.00 92 2
MANN-a81 3321 6480 13297.0 13164.00 13164 100.00 274 2
brock200-1 200 5066 923.5 923.00 923 100.00 43 2
brock200-2 200 10024 957.0 955.00 955 100.00 136 3
brock200-3 200 7852 969.5 969.00 969 100.00 3 2
brock200-4 200 6811 948.0 948.00 948 — 65 2
brock400-1 400 20077  1928.0  1927.00 1927 100.00 11 2
brock400-2 400 20014  1935.0  1934.00 1934 100.00 42 3
brock400-3 400 20119  1937.0  1930.00 1930 100.00 636 11
brock400-4 400 20035  1945.0  1945.00 1945 — 1 2
brock800-1 800 112095  3871.0  3856.00 3856 100.00 817 14
brock800-2 800 111434  3811.5  3798.25 3798 98.15 608 11
brock800-3 800 112267  3813.0  3795.76 3795 95.78 730 10
brock800-4 800 111957  3874.5  3861.31 3861 97.70 451 11
c-fat200-1 200 18366 974.5 973.00 973 100.00 33 2
c-fat200-2 200 16665 968.5 967.00 967 100.00 54 5
c-fat200-5 200 11427 930.0 930.00 930 — 44 2
c-fat500-1 500 120291  2415.0  2394.06 2391 87.25 445 8
c-fat500-2 500 115611  2350.0  2329.08 2324 80.46 601 13
c-fat500-5 500 101559  2369.5  2347.33 2344 86.94 845 13
c-fat500-10 500 78123  2412.0  2398.33 2398 97.64 566 12
hamming6-2 64 192 257.0 257.00 257 — 0 1
hamming6-4 64 1312 301.0 301.00 301 — 1 2
hamming8-2 256 1024 1187.0 1187.00 1187 — 0 1
hamming8-4 256 11776  1255.5  1252.00 1252 100.00 232 8
hamming10-2 1024 5120  4593.0  4593.00 4593 — 0 1
hammingl10-4 1024 89600  4864.0  4850.00 4850 100.00 1086 8
johnson8-2-4 28 168 127.0 127.00 127 — 0 1
johnson8-4-4 70 560 336.0 335.00 335 100.00 2 2
johnsonl6-2-4 120 1680 600.0 599.00 599 100.00 45 3
johnson32-2-4 496 14880  2468.0  2467.00 2467 100.00 139 2

continued on next page

In order to have a fair comparison, the scenarios have been run with the default CPLEX
parameters. Only a computation time limit of two hours (for the solution including sepa-
ration) has been set. Note that the CPLEX default MIP parameters include the automatic

separation of Gomory and other cuts.

As already pointed out by Table 1, for many instances the LP (with/without cycle inequal-
ities) is already integral. Therefore, we subdivided the set of instances into three subsets

according to their difficulty:

(i) instances for which the integer optimal solution is already found in the root node by

BB (28 graphs, including 11 for which zpp = z7p),
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instance n m ZLp zz'P zZrp gap closed # ineq. # rnds
continued from previous page

keller4 171 5100 846.0 845.00 845 100.00 75 3
kellerb 776 74710  3693.5  3689.00 3689 100.00 306 3
keller6 3361 1026582 15966.5 15815.41 15708* 58.45 7642 17
p-hat300-1 300 33917  1469.0  1465.00 1465 100.00 135 3
p-hat300-2 300 22922  1486.5  1481.00 1481 100.00 211 4
p-hat300-3 300 11460  1429.5  1429.00 1429 100.00 18 2
p-hat500-1 500 93181  2320.0  2298.30 2297 94.35 619 10
p-hat500-2 500 61804  2329.5  2321.00 2321 100.00 381 4
p-hat500-3 500 30950  2406.0  2403.00 2403 100.00 339 7
p-hat700-1 700 183651  3350.5  3322.21 3317 84.45 645 10
p-hat700-2 700 122922  3348.5  3334.47 3334 96.76 632 12
p-hat700-3 700 61640  3364.0  3357.00 3357 100.00 998 3
p-hat1000-1 1000 377247  4720.5  4661.26  4642* 75.46 1581 11
p-hat1000-2 1000 254701  4766.0  4730.46 4728 93.53 1104 12
p-hat1000-3 1000 127754  4816.5  4798.06 4797 94.56 1297 14
p-hat1500-1 1500 839327  7040.0  6924.81  6838* 57.02 3323 14
p-hat1500-2 1500 555290  7031.5  6949.24  6923* 75.82 3083 13
p-hat1500-3 1500 277006  7183.5  7148.97 7144 87.42 1771 13
san200-0.7-1 200 5970 978.5 978.00 978 100.00 12 2
san200-0.7-2 200 5970 948.0 947.00 947 100.00 97 2
san200-0.9-1 200 1990 952.0 952.00 952 — 0 1
san200-0.9-2 200 1990 927.0 926.33 926 67.00 8 2
san200-0.9-3 200 1990 934.0 933.00 933 100.00 97 3
san400-0.5-1 400 39900  1902.5  1899.00 1899 100.00 267 4
san400-0.7-1 400 23940  1946.0  1945.00 1945 100.00 220 3
san400-0.7-2 400 23940  1897.0  1896.00 1896 100.00 24 2
san400-0.7-3 400 23940  1959.0  1958.00 1958 100.00 35 2
san400-0.9-1 400 7980  1878.0  1878.00 1878 — 0 1
san1000 1000 249000  4740.5  4703.00 4703 100.00 1268 8
sanr200-0.7 200 6032 952.0 951.00 951 100.00 97 4
sanr200-0.9 200 2037 928.0 928.00 928 — 107 2
sanr400-0.5 400 39816  1968.5  1968.00 1968 100.00 74 2
sanr400-0.7 400 23931  1965.5  1965.00 1965 100.00 22 2

* Value of best known solution.

Table 1: Improvement of the LP value by cycle inequalities.

(ii) intances with an integer optimal solution found in the root node by CPBB (28 graphs),
and

(iii) all remaining instances (10 graphs).

For the first set of instances, the automatic separation of Gomory cuts and the CPLEX-
internal heuristic already solve the problem. Therefore, these instances are left out in our
further considerations.

For the second set of instances, the results of the comparison between BB and CPBB are
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instance BB CPBB

time (sec.)  nodes left value  gap time (sec.) sep. time (sec.) # ineq. value
MANN-a81 7371.41 1969753 1932849 13164 0.40 2.44 2.15 274 13164
brock200-2 5.79 18 0 955 0 1.39 0.47 132 955
brock400-2 3.33 1 0 1934 0 4.25 1.96 44 1934
brock400-3 55.14 24 0 1930 0 33.53 9.44 828 1930
brock800-1 752.27 1926 0 3856 0 211.63 97.16 766 3856
brock800-2 356.50 1035 0 3798 0 210.46 86.48 541 3798
brock800-3 1674.50 7784 0 3795 0 310.18 94.53 710 3795
brock800-4 288.69 447 0 3861 0 189.58 135.14 460 3861
c-fat200-1 3.36 5 0 973 0 1.40 0.35 33 973
c-fat200-2 3.24 5 0 967 0 1.62 0.48 44 967
c-fat500-10 445.22 1617 0 2398 0 72.39 33.60 505 2398
hamming8-4 4.80 5 0 1252 0 4.55 2.08 238 1252
hamming10-4 7285.03 52415 1332 4850 0.02 282.74 90.64 1007 4850
johnson32-2-4 6.39 1 0 2467 0 2.69 0.95 120 2467
keller4 0.88 2 0 845 0 0.53 0.26 70 845
keller5 57.63 8 0 3689 0 38.91 9.73 296 3689
p-hat300-1 6.39 2 0 1465 0 5.76 1.82 110 1465
p-hat300-2 29.44 36 0 1481 0 7.27 2.04 260 1481
p-hat500-1 7282.35 40059 40006 2294 0.22 167.96 71.62 730 2297
p-hat500-2 135.13 44 0 2321 0 40.77 18.06 350 2321
p-hat500-3 85.72 12 0 2403 0 28.04 17.01 342 2403
p-hat700-2 467.38 1573 0 3334 0 245.51 131.10 544 3334
p-hat700-3 259.44 8 0 3357 0 120.79 20.27 1020 3357
p-hat1000-3 2436.63 7670 0 4797 0 1430.24 192.46 1560 4797
san200-0.9-3 0.99 5 0 933 0 0.28 0.15 100 933
san400-0.5-1 46.28 11 0 1899 0 14.07 4.06 281 1899
san1000 7280.00 12234 12181 4689 0.43 588.35 281.47 1126 4703
sanr200-0.9 0.75 2 0 928 0 0.18 0.08 107 928

Table 2: Results for instances of subset (ii): CPBB solves the problem already in the root node.



summarized in Table 2, whereas the results for the remaining instances are presented in
Tables 3 and 4. For the search tree, Table 2/3 lists the total number of explored nodes
(“nodes”) and the number of nodes left (“left”) after two hours of computation, the best
solution value found so far (“value”), and the final gap in each of the scenarios (“gap”).
In addition, Table 2/4 discusses the CPU time needed for each scenario (“time”), and in
case of CPBB and BC, the total time spent for separation (“sep. time”) as well as the total
number of cycle inequalities that have been separated (“# ineq.”). For BC, the column
“new” refers to the new inequalities that are separated in addition to those in the root node
of the branch-and-cut tree.

The results allow for several remarks. First of all, the tables show that a substantial
performance increase could be gained by including the cycle inequalities in the root of the
branch-and-cut tree. The most impressive example is the instance MANN-a81 for which
almost 2 million nodes were explored by BB and a similar number still has to be explored,
whereas after a single round of separation in the root node by CPBB, the integer optimal
solution was found in about two seconds. In total 14 instances could not be solved within
two hours with BB, but nine of them are solved by CPBB within two hours. Thereby, the
number of nodes explored by CPBB is only a fraction of the number explored by BB.

Even for instances that are solved by BB within two hours, the incorporation of cycle
inequalities provides significant improvements. For the 24 instances of subset (ii) that BB
solved, the computation time can be reduced by 58% on average. The number of inequalities
that has been separated adds up to several thousands for the larger instances. Note that
these values are typically smaller than in Table 1 since Gomory cuts are generated as well.
Hence, the cycle inequalities are very effective, but not found by the cut generation routines

of CPLEX.

Separation of the inequalities in nodes other than the root node is less effective. Although
the number of nodes needed by the branch-and-cut algorithm is reduced further, the sepa-
ration is relatively time consuming, resulting in longer overall running times. The majority
of the inequalities is typically separated in the root node. For those instances that cannot
be solved within two hours of computing time, far less nodes are explored by BC than by
CPBB. Note that for instance keller6 the exploration of the root could not be finished within
two hours of computation, whereas for p-hat-1500-1 and p-hat1500-2 the computation is
truncated after separation in the root is finished but before branching applied. Hence, the
results of CPBB and BC do not differ for these 3 instances.

Therefore, we run all scenarios that could not be solved by BC within two hours for ten
hours of CPU time. Since the root relexation of keller6 in CPBB and BC is still not solved
within this period, we also run the algorithms for this instance for 24 hours. The results can
be found in Table 5 and Table 6. Again, the gap is reduced significantly by inclusion of the
cycle inequalities. Instance p-hat-1500-3 could be solved by CPBB in about 8 hours using
a fraction of the number of nodes explored (and left) by BB. In scenario BC, separation
consumes a substantial part of the CPU time. As a consequence, p-hat-1500-3 could not be
solved by BC within the 10 hours.
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instance BB CPBB BC opt.
nodes  left value gap nodes left wvalue gap nodes left wvalue gap value
c-fat500-1 45041 34533 2391 0.06 90 0 2391 0 33 0 2391 0 2391
c-fat500-2 33486 23905 2324 0.11 244 0 2324 0 139 0 2324 0 2324
c-fat500-5 28968 28946 2340 0.30 38 0 2344 0 24 0 2344 0 2344
keller6 847 837 15708 1.55 — — — — — — — — —
p-hat700-1 22090 22050 3313 0.29 222 0 3317 0 162 0 3317 0 3317
p-hat1000-1 9127 9122 4609 1.67 400 376 4637 0.40 79 74 4635 0.56 —
p-hat1000-2 13471 13461 4715 0.53 27 0 4728 0 23 0 4728 0 4728
p-hat1500-1 2644 2614 6809 2.85 — — 6811 1.67 — — 6811 1.67 —
p-hat1500-2 5531 5527 6892 1.51 — — 6923 0.38 — — 6923 0.38 —
p-hat1500-3 12400 12396 7134  0.34 59 54 7143 0.05 21 19 7142 0.09 7144
Table 3: Results for instances of subset (iii): branch-and-cut statistics.
instance BB CPBB BC
time (sec.) time (sec.) sep. time (sec.) # ineq. time (sec.) sep. time (sec.) # ineq. new
c-fat500-1 7295.20 287.60 63.55 537 416.37 207.88 715 178
c-fat500-2 7280.71 389.79 54.13 550 882.45 472.16 1091 541
c-fat500-5 7267.80 293.84 78.93 778 395.70 174.25 886 108
keller6 7391.98 7264.02 546.46 1540 7265.92 546.01 1540 0
p-hat700-1 7292.55 843.55 120.98 722 2125.75 1314.91 1216 494
p-hat1000-1 7286.09 7237.26 478.65 1758 7272.47 4489.66 2789 1031
p-hat1000-2 7283.78 1673.02 341.02 1108 2174.63 900.08 1350 242
p-hat1500-1 7296.98 7254.65 2151.03 3697 7257.63 2137.16 3697 0
p-hat1500-2 7295.38 7236.74 1272.23 3438 7236.76 1265.90 3438 0
p-hat1500-3 7285.27 7239.42 686.59 2049 7257.27 3054.47 2733 684

Table 4: Results for instances of subset (iii): CPU time and Separation statistics.
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instance BB CPBB BC opt.

nodes  left value  gap nodes left  value gap nodes left value gap value
keller6 (10h) 7991 7981 15708 1.52 — — — — — — — — —
p-hat1000-1 52192 52145 4617 1.40 5035 4994 4640 0.27 599 575 4639 0.33 —
p-hat1500-1 21106 21076 6809 2.71 346 323 6838 1.21 99 99 6820 1.54 —
p-hat1500-2 36400 36396 6892 1.41 360 356 6923 0.29 131 122 6918 0.41 —
p-hat1500-3 67745 67741 7134 0.31 519 0 7144 0 135 53 7144 0.02 7144
keller6 (24h) 20649 20639 15708 1.51 43 43 15698 0.75 7 7 15698 0.75 —

Table 5: Results with 10/24 hours of computation: branch-and-cut statistics.

instance BB CPBB BC

time (sec.) time (sec.) sep. time (sec.) # ineq. time (sec.) sep. time (sec.) # ineq. new
keller6 (10h) 36572.81 — — — — — — —
p-hat1000-1 36455.69 36177.98 477.24 1758 36250.47 21730.67 4688 2930
p-hat1500-1 36420.11 36137.91 2220.73 3697 36233.13 17829.62 5037 1340
p-hat1500-2 36465.49 36137.33 1320.81 3438 36308.75 22359.38 6023 2585
p-hat1500-3 36448.44 29381.05 682.23 2049 36154.01 11746.67 4243 2194
keller6 (24h) 87972.95 86696.74 7589.31 7881 86889.86 14384.74 9602 1721

Table 6: Results with 10/24 hours of computation: CPU time and Separation statistics.



5 Concluding remarks

Stable multi-sets are a generalization of stable sets like b-matchings generalize matchings.
Multi-set packings complete this analogy as generalization of set packing. In contrast to the
equivalence of set packings and stable sets, stable multi-sets and multi-set packings differ
fundamentally.

Although not all (cf. Section 3.1), many of the results for the stable set polytope can be
imaged to the stable multi-set polytope. In this way, new insights can be gained, not only for
the stable multi-set polytope but also for the well-studied stable set polytope. For example,
the separation of cycle inequalities elucidates that not the length of the cycle, but in fact
the bounds on the edges are the critical factor for the correctness of the algorithm. Another
insight concerns chords in cycles. The result for stable multi-sets explains why chords rule
out facets in the stable set case.

The polyhedral structure of the stable multi-set polytope is not only of theoretical inter-
est, but also of computational importance. State-of-the-art integer programming solvers
automatically separate clique inequalities for the binary variables in an integer program as
Gomory cuts. Our computational results show that these cuts do not suffice in case of stable
multi-sets. Significant improvements can be gained by the separation of cycle inequalities.
Since the structure of stable multi-sets is likely to appear in more general integer programs,
incorporation of this separation is worthwhile to consider.
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