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Abstract

We investigate the impact of link and path restoration on the cost of telecommuni-
cation networks. The surprising result is the following: the cost of an optimal network
configuration is almost independent of the restoration concept if (i) the installation of
network elements (ADMs, DXCs, or routers) and interface cards, (ii) link capacities, and
(iii) working and restoration routings are simultaneously optimized.

We present a mixed-integer programming model which integrates all these decisions.
Using a branch-and-cut algorithm (with column generation to deal with all potential
routing paths), we solve structurally different real-world problem instances and show that
the cost of optimal solutions is almost independent of the used restoration concept.

In addition, we optimize spare capacities for given shortest working paths which are
predetermined with respect to different link metrics. In comparison to simultaneous op-
timization of working and restoration routings, it turns out that this approach does not
allow to obtain predictably good results.

Keywords: survivable network design, link and path restoration, branch-and-cut algo-
rithm, hardware configuration, routing

Mathematics Subject Classification (2000): 90C57, 90C11, 68M10

1 Introduction

To secure a network against node and link failures, operators must pick from a variety of
protection and restoration concepts. Each of these has its assets and drawbacks w.r.t. cost,
ease of implementation, maintenance effort and recovery time. A good planning decision has
to be founded on a thorough analysis of the trade-offs between these competing features.

Based on optimal solutions w.r.t. a mathematical model that integrates decisions about
the topology, hardware (network elements, interface cards), link capacities, as well as working
and failure routings, we compare the influence of different restoration concepts on the total
network cost. We consider a generalization of link restoration (also covering node failures)
and path restoration with and without stub release.

Using link restoration, information local to a failing component is sufficient to restore
affected traffic, which makes it easier to implement than path restoration where traffic is
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restored between the end nodes of each affected demand. These two restoration concepts are
illustrated in more detail in Section 2.2.

In our computational study on several real-world problem instances stemming from struc-
turally different planning scenarios of SDH-, WDM-, and leased line networks, we reveal that
the restoration concept has almost no influence on the total cost of an optimal network con-
figuration. This conclusion can be drawn for single link failures, for single node failures and
for the combination of both. In other words, network costs can be a minor criterion in the
choice of the restoration concept.

Several authors already compared the influence of the restoration concept on network
cost and concluded with results different from ours. Two categories of comparisons can be
distinguished: those which solely optimize spare capacity based on predetermined working
paths (usually some shortest path between the demand end nodes) and those which jointly
optimize the working and failure routings. The following literature overview is restricted to
cost comparisons between link and path restoration and does not cover the numerous studies
for a particular restoration concept.

Kennington, Nair, Spiride [11], Poppe, Demeester [17] and Doucette, Grover [7] compare
the spare capacity requirements for given working paths. In [11], modular link capacities
and single link failures are considered. The authors suggest a branch-and-cut-approach based
on an arc-flow formulation for the failure routings. They report that for the eight prob-
lem instances which could be solved to optimality (all of which are artificial networks), link
restoration requires on average 12% more spare capacity than path restoration.

In [17], the problem of installing continuous spare capacities is formulated with so-called
metric inequalities. These inequalities are generated at run-time using a path-flow formu-
lation of the restoration problem that is solved with a column generation procedure. Their
formulation provides an abstraction of the particular restoration concept and does include
node failures. They report on considerably different spare capacity requirements for link and
path restoration, and demonstrate on three real-world networks (with two demand patterns
each) that node failures are less expensive than link failures.

A comparison of various protection and restoration mechanisms is given in [7]. While
link restoration is considered with and without given working paths, the path restoration
version (with stub release) relies on a predetermined shortest path routing. The authors use
a path-flow formulation with arbitrary integer capacities and a predetermined set of paths.
In their comparison based on 18 networks of different density, all originating from the same
master topology, they found link restoration to be at least 10% more expensive than path
restoration with stub release (for given working paths), independent of network density.

Contrary to the previously discussed papers, Murakami [14], Xiong, Mason [18], Cae-
negem, Wauters, Demeester [2], and Iraschko, MacGregor, Grover [9], perform a joint opti-
mization of the working and the failure routing.

In [14], a path-flow formulation with continuous link capacities is used. A column gen-
eration procedure for missing restoration paths is suggested as solution method. Based on
computational tests with four realistic and four artificial networks and generated demand
requirements, the author reports that with predefined shortest working paths, optimal solu-
tions are 5–25% more expensive than those where the working and failure paths are jointly
optimized. The additional cost for link restoration compared to path restoration varies widely
but is beyond 10% of the path restoration cost in most cases. With a predetermined short-
est path routing in the normal operating state, the advantages of path restoration are even
higher. The cost differences between path restoration with stub release and link restoration
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as well as between joint and non-joint working and spare capacity optimization are reported
to be higher for the artificial networks than for the real-world networks.

A similar model is presented in [18], but instead of using column generation, a set of
hop-limited path variables is precalculated. The authors compare path restoration without
stub release and link restoration under a single link failure scenario on one artificial and two
realistic networks. With joint working and spare capacity optimization, they obtain almost
the same network cost for link and path restoration in all three test instances; with spare
capacity optimization based on a predetermined shortest path routing in the normal operating
state, they found the difference to be higher (about 5–10%). Both results coincide with our
observations.

In [2], path restoration without stub release and link restoration for single link failures are
compared for given shortest working paths. In contrast to [14] and [18], the admissible link
capacities as well as the flow values are integers. The authors suggest a simulated annealing
algorithm to compute low cost solutions. In order to avoid unacceptably long computation
times, the set of eligible restoration routes is restricted to the 10 shortest paths for each
demand. On one network with two different demand patterns (uniform and estimated) this
heuristic yields results where link restoration is 20-25% more expensive than path restoration.

In [9], the cost of link and path restoration (with or without stub release) for single link
failures is compared both with a predefined shortest path routing and with joint working and
spare capacity optimization. Capacities and flow variables in the path-flow model are allowed
to take any integer value. The authors present computational results on five (real-world based
and artificial) test instances using a predetermined path set. With joint optimization, they
obtain about 5–25% higher cost for link restoration than for path restoration with stub release,
whereas with spare capacity optimization based on a predefined routing, the differences are
generally found to be lower.

As already mentioned, most of these articles report on substantial cost differences between
the restoration concepts, contrary to our results. There are several reasonable explanations
for this discrepancy. To our knowledge, the model presented in this article integrates more
decisions than previously published ones. An accurate model for the modular cost and capac-
ity structure of nowadays hardware and, at the same time, a joint optimization of working
and failure routings has not yet been considered. Furthermore, despite the more complex
mathematical model, we are still able to make our comparison based on optimal solutions
since the branch-and-cut algorithm in conjunction with a column generation procedure (both
implemented in our network planning tool discnet [4]) provides accurate lower bounds for
the minimal network costs. As further difference to most previous publications, we use solely
realistic networks.

An additional computational study presented in this article reveals a slightly stronger
influence of the restoration concept on the network cost for the case of predefined working
paths. However, the cost difference between link and path restoration does rarely exceed 10%
also with a predefined shortest path routing.

How working paths are predefined, however, has a significant impact on the solution
quality. In particular, upon calculation of some shortest working paths, the results heavily
depend on the used link weights and on the implementation of the shortest path algorithm.
In the worst case, a restoration problem with feasible solutions can be made infeasible by a
wrong choice of predefined working paths.

Since it is widespread in the literature to use some predefined shortest path routing, we
compared five different strategies (including shortest hop and shortest length routing) to
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obtain some rule of thumb for finding “good” working paths. Our results reveal that joint
optimization of working and failure paths is a must: the additional cost of using a predefined
shortest path routing ranges between 0 and 164% and is thus more or less unpredictable.
Furthermore, the results using shortest hop routings are rather poor.

This paper is organized as follows. In Section 2, we present a unifying mathematical model
which covers the configuration of hardware and link capacities and which abstracts from both
the restoration concepts and the considered failure scenarios. Parameterizing this model
appropriately, all mentioned restoration concepts (and others like reservation [3] and meta-
mesh [6]) as well as arbitrary network component failures (link-, node-, or multi-failures) can
be formulated. In Section 3, we sketch our branch-and-cut algorithm and briefly describe a
column generation procedure to implicitly deal with all potential routing paths. In Section 4,
we present our quantitative results in more detail and eventually, we conclude with Section 5.

2 Problem and Mathematical Model

We investigate network design problems dealing with an integrated planning of

• a topology,

• a hardware configuration,

• link capacities,

• a routing during normal operation,

• routings for all single link and node failure situations.

The survivable routing must respect one of the restoration concepts under investigation.
Our model consists of two parts, connected by the link capacities: one comprising hardware
constraints (see Section 2.1) and the other formulating routing and restoration restrictions
(see Section 2.2). The objective is to minimize the total cost of installing hardware and link
capacities (see Section 2.3).

2.1 Topology, Hardware Configuration and Link Capacities

Given is a network topology which comprises all potential node locations and all admissible
point-to-point links. The set of considered links depends on the particular planning problem.
For SDH networks it is typically restricted to existing fiber cables, while for leased line
networks all point-to-point links may be admissible. This potential network is modeled by an
undirected supply graph G = (V,E), where V is the set of potential node locations and E is
the set of admissible links.

For each node location v ∈ V , a list of potential node designs D(v) and a list of potential
interface cards M(v) can be specified. Each node design d ∈ D(v) is characterized by its
maximum switching capacity Cd

v , the number of slots Sd for interface cards. At most Mm

d

interface cards of type m ∈ M(v) can be installed at node design d. Each interface card m
provides I i

m interfaces of type i ∈ I (the set of all interfaces) and requires Sm many slots if
used in some node design.
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node  design interface  card link  design

STM−14xSTM−1

(8 slots)

Figure 1: Hardware configuration example.

Similarly, for each admissible link e ∈ E, a list of potential link designs D(e) can be
specified. Each link design d ∈ D(e) consumes a capacity C d

e as well as I i

d
interfaces of type

i ∈ I at each end node of its link.
Example: Figure 1 shows an example of a link design with a capacity of STM-1 which is

attached to an interface card providing 4 STM-1 interfaces. This card is plugged into one out
of 8 slots of the node design.

Using decision variables xd
v ∈ {0, 1} for all v ∈ V and all node designs d ∈ D(v), non-

negative integer variables xm
v ∈ Z+ for the number of interface cards m ∈ M(v) installed at

v, and decision variables xd
e ∈ {0, 1} for all e ∈ E and all link designs d ∈ D(e), the problem

of selecting a topology, including node and link designs, can be stated as follows:

HARDWARE:
∑

d∈D(v)

xd

v ≤ 1 v ∈ V (1)

∑

d∈D(e)

xd

e ≤ 1 e ∈ E (2)

∑

e∈δ(v)

∑

d∈D(e)

I i

dx
d

e −
∑

d∈D(v)

∑

m∈M(v)

I i

mxm

v ≤ 0
v ∈ V ,
i ∈ I

(3)

∑

e∈δ(v)

∑

d∈D(e)

Cd

e xd

e −
∑

d∈D(v)

Cd

v xd

v ≤ 0 v ∈ V (4)

∑

m∈M(v)

Smxm

v −
∑

d∈D(v)

Sdxd

v ≤ 0 v ∈ V (5)

xm

v −
∑

d∈D(v)

Mm

d xd

v ≤ 0
v ∈ V ,
m ∈ M(v)

(6)

Inequalities (1) and (2) state that at most one design must be chosen for each node and
each link; the topology consists of those graph elements where exactly one design is chosen.
Inequality (3) and (4) ensure for each node that enough interfaces of each type are available
and that the switching capacity of the selected node design is sufficient to attach the designs
of the incident links. Eventually, (5) and (6) ensure for each node that the selected node
design provides sufficiently many slots and that the maximum number of admissible interface
cards is not exceeded.

These inequalities can easily be extended to cope with an existing hardware infrastructure
and, in fact, in our network design tool we deal with such enhancements. For the sake of
simplicity, however, we omit these in this paper.
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NOS flow

1 1

Figure 2: Example NOS network.

2.2 Routing and Restoration

In addition to topology and hardware decisions, a feasible survivable network design comprises
a routing for every considered operating state. The set S of operating states is composed of
the normal operating state (NOS) and a subset S∗ of all single node and single link failures,
the so-called failure states. We denote by s = 0 the normal operating state, by s = v the
failure of node v ∈ V , and by s = e the failure of link e ∈ E. Notice that the failure of a node
v ∈ V implicitly induces the failure of all its incident links e ∈ δ(v) . The set V s ⊆ V consists
of all non-failing nodes in operating state s ∈ S. Similarly, Es ⊆ E contains all usable links
in s, where a link is considered usable if neither the link itself nor one of its end nodes fail.

For the normal operating state, a set D of communication demands is given. With each
demand uv ∈ D, two parameters are associated: the demand value duv which must be routed
between the end nodes u and v (assuming a bifurcated routing, i.e., several paths may be used
for one demand), and a path length restriction (also called hop limit) `uv which specifies the
maximum number of links of an admissible path between u and v during normal operation.

Figure 2 shows the normal operating state routing subsequently used to illustrate the
different restoration mechanisms. In this example, one demand of value 2 is routed on two
paths.

Let P be the set of all simple paths in G and let Puv be the subset of admissible paths
to route the demand uv ∈ D in the normal operating state. These are all paths between u
and v satisfying the path length restriction `uv. Using non-negative continuous flow variables
fuv(P ) ∈ R+ for all demands uv ∈ D and all paths P ∈ Puv, the following capacity constraints
(7) and demand constraints (8) formulate the multi-commodity flow problem with path length
restrictions for the normal operating state:

ROUTING (NOS):

∑

d∈D(e)

Cd

e xd

e −
∑

uv∈D

∑

P∈P
uv

e∈P

fuv(P ) ≥ 0 e ∈ E (7)

∑

P∈P
uv

fuv(P ) = duv uv ∈ D (8)

We distinguish in this paper between three different restoration mechanisms to protect
the network against the failure of single network components.
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Link/Local restoration (LR)

Each path routed through a failing component is locally restored. In case of a failing link,
each affected path is restored between the end nodes of the link. In case of a node failure,
it is restored between the two nodes on the path which are adjacent to the failing node. An
example for both cases is provided in Figure 3. Notice that this notion is slightly more general
than the common link restoration concept since node failures are covered as well.

Failure flow
NOS flow

1 1

Failure flow
NOS flow

1 1

Figure 3: Link restoration, link and node failure.

Path restoration without stub release (PR-sr)

Each path routed through a failing component is globally restored between the end nodes
of its demand. Link capacities reserved for normal operation are not released and cannot
be used for restoration flow. An example for path restoration of a link and a node failure is
shown in Figure 4.

Path restoration with stub release (PR+sr)

Same as the previous one, but on the non-failing parts (stubs) of failing working paths,
capacity is released and may be re-used for restoration flow.

Failure flow
NOS flow

1 1

Failure flow
NOS flow

1 1

Figure 4: Path restoration, link and node failure.
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Table 1: Restoration dependent settings

Model Cs IPs
c, c ∈ Cs

LR (s = e) {uw : e = uw} {P ∈ P : e ∈ P}

LR (s = v) {uw : uv, vw ∈ δ(v)} {P ∈ P : u, v, w ∈ P}

PR+sr/PR+sr {uv : uv ∈ D, u, v ∈ V s} {P ∈ Puv : s ∈ P}

Now, we present a generic mathematical formulation which is able to cope with all three
restoration mechanisms, if parameterized appropriately. This formulation enables us to si-
multaneously optimize the routing in all operating states (including the normal operating
state). For each failure state s ∈ S∗, we introduce a set Cs of failure commodities. These
are point-to-point demands to be satisfied in failure state s ∈ S∗. Let Ps

c be the set of all
paths between the end nodes of failure commodity c ∈ C s. Furthermore, let IPs

c be the set
of NOS paths which are to be restored by failure commodity c ∈ C s; these are the so-called
interrupted paths. See Table 1 for a precise definition of failure commodities and interrupted
paths for some failure state s ∈ S∗. The stub release parameter γs(P ) ∈ {0, 1} indicates for
every path P ∈ P and every failure state s ∈ S∗ whether capacity has to be reserved on all
non-failing links of P in s. Hence, γs(P ) is always 1 for LR and PR-sr, while for PR+sr,
γs(P ) = 1 if and only if P survives in failure state s.

Using non-negative continuous flow variables f s
c (P ) ∈ R+ for all failure states s ∈ S∗,

all failure commodities c ∈ Cs and all admissible restoration paths P ∈ P s
c , the following

capacity constraints (9) and flow saving constraints (10), which ensure the restorability of the
failing flow, formulate a restoration problem for all failure states s ∈ S ∗:

ROUTING (failure states):

∑

d∈D(e)

Cd

e xd

e −
∑

c∈Cs

∑

P∈Ps
c
:

e∈P

fs

c (P )

−
∑

uv∈D

∑

P∈P0
uv

e∈P

γs(P )fuv(P ) ≥ 0
s ∈ S∗,
e ∈ Es (9)

∑

P∈Ps
c

fs

c (P ) −
∑

uv∈D

∑

P∈IPs
c

fuv(P ) ≥ 0
s ∈ S∗,
c ∈ Cs (10)

Notice that also multiple link and node failures can be formulated within this framework,
as well as other restoration techniques like reservation ( [3, 13, 19]), where the NOS routing
is completely discarded and replanned in case of a failure, and mixtures of link and path
restoration like meta-mesh (see [6]). Furthermore, the model can easily be extended to partial
restoration of the failing flow by adding a suitable coefficient in the flow saving constraints
(10).

2.3 Cost Minimization

We aim at designing cost minimal survivable networks. For each node v ∈ V , the installation
of node design d ∈ D(v) incurs a cost of Kd

v and equipping this node design with an interface
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card m ∈ M(v) incurs a cost of Km
v . Similarly, for each link e ∈ E, the installation of link

design d ∈ D(e) incurs a cost of Kd
e . Putting this together, the objective function is

min
∑

v∈V





∑

d∈D(v)

Kd

vxd

v +
∑

m∈M(v)

Km

v xm

v



 +
∑

e∈E

∑

d∈D(e)

Kd

e xd

e .

Our branch-and-cut algorithm is able to compute optimal solutions w.r.t. the objective
of Section 2.3 and constraints (1)–(10), simultaneously deciding the topology, the hardware
configuration, the link capacities and a routing for the NOS and all failure states.

3 A Branch-and-Cut Algorithm

Our solution approach is similar to Benders decomposition [1]. The central procedure is
a branch-and-cut algorithm (see [16] for a detailed description) based on a relaxation of
the problem described in Section 2. This relaxation includes the hardware configuration
constraints (1)–(6) and an arc-flow formulation of the routing problem in the normal operating
state which relaxes path-length and restoration restrictions.

To strengthen our formulation at each node of the branch-and-cut tree, we try to separate
inequalities violated by the optimal solution of the current relaxation. As cutting planes, we
use band inequalities [3], GUB cover inequalities [20], and generalizations [15, 19] of metric
inequalities [10].

Each time an integer hardware configuration is identified which is feasible for the re-
laxation, it is tested for feasibility w.r.t. the (missing) restoration constraints. If these are
satisfied, a routing respecting the restoration constraints is generated; otherwise, a violated
metric inequality is added to the relaxation in order to cut off the infeasible hardware config-
uration.

The subroutine used to test feasibility of integer hardware configurations and to separate
metric inequalities is based on a linear program consisting of constraints (7)–(10) with fixed
link capacities ( [3,15,19]). Since this formulation has an exponential number of path variables,
we apply a column generation procedure, starting with a small subset of all possible variables.
The initial paths are typically short paths w.r.t. some link metric (hop count, length, etc.).
Further path variables (columns) are generated whenever necessary by computing shortest
(hop-limited) paths w.r.t. link weights derived from an optimal dual solution of the linear
program.

For path restoration without stub release and link restoration, the column generation
problem can be solved exactly, that is, all path variables necessary to prove feasibility of some
link capacities can be identified in polynomial time. For path restoration with stub release,
this problem is NP-hard [15]. When solving the column generation problem approximately,
feasible capacity vectors may accidently be rejected. In a thorough computational study,
however, the best solution value obtained has always been the same for various initializations
of the initial path set, heuristics to set up the link weights, and algorithms to compute short
paths. Consequently, there is a high probability that no optimal capacity vector has been
rejected and a globally optimal solution has been identified, even for path restoration with
stub release.
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Table 2: Characteristics of the test instances

Name |V | |E| |D| d̄ #ld #nd

e1 10 25 29 5.0 2 1

e2 12 18 27 3.0 4 1

e3 15 21 13 2.8 3 1

e4 15 22 105 2.9 7 1

e5 18 21 62 2.3 9 1

e6 18 27 62 3.0 9 1

e7 20 28 119 2.8 6 2

e8 14 21 91 3.0 5 1

e9 12 18 27 3.0 9 6

e10 12 18 27 3.0 5 2

4 Computational Results

In this section, we report on the results of numerical tests on 10 real-world based instances
stemming from SDH-, WDM-, and leased line planning problems. After a short presentation
of the test instances in Section 4.1, we provide in Section 4.2 a comparison of optimal network
costs using link or path restoration. Finally, Section 4.3 shows our results using predetermined
shortest working paths w.r.t. different link weights.

4.1 General

For each test instance, Table 2 shows the number of nodes, links and demands, together
with the average node degree d̄ = 2|E|/|V |, as well as the number of available link designs
(#ld) and node designs (#nd). The number of designs is the same for all links and nodes
of an instance, respectively. The instances reflect the variety of capacity and cost structures
of nowadays technologies. For optical networks, for example, the modularities of WDMs
and OXCs are considered; for SDH-networks, different interface cards (1xSTM1, 4xSTM1,
1xSTM4, or 1xSTM16) and DXCs are taken into account. Eventually, the cost structures
for leased line networks exhibit economies of scale w.r.t. capacity and length of a link. Two
particularities of the test instances are worth mentioning. First, instance e6 is the same as e5
with six additional links, and second, instances e9 and e10 have the same underlying network
and demand pattern as e2, but significantly different cost and capacity structures.

All numerical tests are performed on undirected networks, assuming full restoration of
all single node failures, all single link failures or both. In order to avoid side effects from a
disproportion between the demand values and the capacities of the available node and link
designs, three test series are performed, where all demands are scaled by 0.5, 1.0 or 2.0,
respectively.

The computation times range between a few seconds and several hours; typically, the
problems can be solved to optimality within an hour.
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4.2 Comparison of Optimal Network Costs

Table 3 shows the optimal network cost for all demand scaling factors and for the three
considered restoration concepts: link restoration (LR), path restoration without stub release
(PR-sr) and path restoration with stub release (PR+sr).

For each scaling factor, three columns are presented: for all single node failures, all single
link failures and both. All solution values are scaled such that 100 corresponds to the optimal
network cost without any survivability requirements and demand scaling factor 1.0.

Table 3 allows several interesting observations:

1. The restoration concept has only minor influence on the network cost: in 68 out of
90 cases (75%), the minimal network cost is the same for all restoration techniques.
Furthermore, in only six cases, the most cost-intensive restoration technique is above
5% more expensive than the cheapest one, and in only one out of 90 cases (e6 with
scaling factor 1.0 and all single failures), the difference exceeds 10%.

2. Securing a network only against single link failures is often as expensive as securing
it against all single failures, while single node failures are cheapest in most cases. In
fact, single link failure solutions often turned out to be feasible for all single failures as
well. Furthermore, the cost relation between these failure scenarios is not intrinsic to
the network, since it changes significantly with the scaling of the demand values (see
e2, e4 and e8, for instance).

3. Given that 100 corresponds to the optimal network cost without any survivability re-
quirements and demand scaling factor 1.0, the additional cost to achieve full restoration
of single link failures ranges between 25% (e6) and 132% (e4). Thus, it is difficult to
estimate the spare capacity cost relative to the working capacity cost in advance. With
slightly different percentages, the same result can be observed for all failure scenarios.

4. A comparison of those instances with the same underlying network topology and demand
patterns but different capacity and cost structure (e2, e9 and e10) reveals that the only
common property is the invariance of network cost w.r.t. the restoration concept. On
the contrary, the cheapest failure scenario, the increase in network cost when scaling
the demands, and the cost incurred for full restoration vary significantly among these
instances.

The second observation is in accordance with the results of [17] who also observed node
failures to be cheaper than link failures in most cases. On the contrary, our first observation is
in contrast to previously published comparisons, as discussed in Section 1. There are several
possible reasons for this discrepancy:

1. As described in Section 2, our mathematical model covers hardware aspects with discrete
capacity and cost structures as well as joint optimization of working and failure routings.

2. We compare optimal values computed by a branch-and-cut algorithm, combined with
column generation to deal with all possible routing paths, instead of using heuristics
like simulated annealing or fixing a small set of eligible routing paths in advance.

3. We test our algorithm solely on realistic networks and demand patterns, in contrast to
many authors who used artificial networks or generated demands.
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Table 3: Optimal cost using different restoration concepts

Name rest. factor 0.5 factor 1.0 factor 2.0

type node link both node link both node link both

LR 125 128 128 136 138 138 175 186 186

e1 PR-sr 125 128 128 136 136 136 175 180 180

PR+sr 125 128 128 136 136 136 172 177 177

LR 100 112 112 183 140 183 232 233 232

e2 PR-sr 100 112 112 183 140 183 232 233 232

PR+sr 100 112 112 183 140 183 232 233 232

LR 112 112 112 122 148 148 156 199 199

e3 PR-sr 112 112 112 122 139 139 156 217 217

PR+sr 112 112 112 122 139 139 156 199 199

LR 109 98 112 231 232 236 510 508 512

e4 PR-sr 109 96 111 231 232 236 510 508 512

PR+sr 107 96 111 231 232 235 510 508 512

LR 100 100 100 159 160 160 279 309 309

e5 PR-sr 100 100 100 159 160 160 277 309 309

PR+sr 100 100 100 159 160 160 277 309 309

LR 103 103 103 124 128 145 187 207 208

e6 PR-sr 103 103 103 124 128 129 187 207 208

PR+sr 103 103 103 124 125 125 183 207 208

LR 140 163 164 144 173 173 151 202 207

e7 PR-sr 140 163 164 144 173 173 151 202 207

PR+sr 140 163 164 144 173 173 151 202 207

LR 100 101 101 159 149 165 300 301 301

e8 PR-sr 100 101 101 154 147 163 300 301 301

PR+sr 100 101 101 154 147 163 300 301 301

LR 100 100 100 159 142 174 248 216 300

e9 PR-sr 100 100 100 159 142 174 248 216 296

PR+sr 100 100 100 159 142 174 248 216 300

LR 100 103 103 127 137 141 162 170 180

e10 PR-sr 100 103 103 127 137 141 162 170 180

PR+sr 100 103 103 127 137 141 162 170 180
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4.3 Shortest path NOS Routing

An analysis of the solutions presented in Table 3 revealed that most demands are routed on
only one path, few demands on two paths, and almost none on more than two paths. These
paths were often shortest paths w.r.t. the length in kilometers in the final topology of an
optimal network but not necessarily in the original planning topology.

This observation raises the following question: does there exist some link metric for a
shortest working path routing in the planning topology such that spare capacity optimization
based on this routing leads to reliably good solutions compared to joint optimization of
working and spare capacity? An affirmative answer would have several nice implications.
First, such a link metric would give the planner a rule of thumb how to define the working
routing. Second, the computation times for the spare capacity assignment are substantially
smaller than with joint optimization since the routing problem decomposes into one small
subproblem for each considered failure state. Therefore, much larger problem instances could
be solved close to optimality.

Trying to find such a link metric, we first compare link weights ce proposed by other
authors. We set ce to either the length in kilometers l(e) of a link (shortest length path) or to
uniform lengths 1 (shortest hop path). All values have been calculated with unscaled demands
(factor 1.0) and full failure path pricing, that is, the obtained spare capacity assignment is
optimal w.r.t. the given NOS routing. The values in Table 4 are scaled by the same factors
as in Table 3, such that 100 is the minimal network cost without survivability requirements.

As can be seen from Table 4, the quality of the solutions obtained by fixing a shortest
length or shortest hop routing is often poor compared to the optimal values from Table 3. The
additional cost from fixing a shortest working path routing (defined as (shortest-path-result
– joint) / joint) ranges from 0% (for e5, e9) up to 164% (for e1), with an average of 24%
(without e1: 12%). Otherwise stated, although it is possible to obtain a globally optimal
configuration with a predefined shortest hop or shortest length routing, the results are far
from being predictable.

Instance e1 illustrates that this approach can yield arbitrarily bad results: with both
shortest hop and shortest length routing, overall network cost is far more than twice the
optimal value using joint optimization! In this network, only about half of the available links
are actually needed in a cost optimal solution. However, a shortest hop or shortest length
routing (as any other shortest path routing w.r.t. link weights defining a metric on the nodes)
always chooses the direct link between two demand nodes if available, leading to some positive
capacity on every link. Similar observations hold for e6.

Even though with our test instances, the cost of link and path restoration is still the same
in about two out of three cases with a predefined shortest path routing, it is interesting to
note that the cost difference tends to be higher than with joint working and spare capacity
optimization. This confirms the corresponding results of [9] and [18]; at the same time, it
could explain why other authors who optimized spare capacity w.r.t. a given NOS routing
found link restoration to be usually more expensive than path restoration.

Given that the solution quality with a shortest hop or shortest length routing is quite
unpredictable, we now try other (non-metric) link weights. Let avg := 1/|E|

∑

e∈E
l(e) be

the average length and M := 5maxe∈E l(e). With these definitions, we test the link weights

1. ce := (1 + l(e))2,

2. ce := (1 + l(e))3,
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Table 4: Cost with predefined shortest path NOS routing

Name rest. ce := l(e) ce := 1 ce := (1 + l(e))2

type node link both node link both node link both

LR 360 360 360 296 296 296 189 184 189

e1 PR-sr 360 360 360 296 296 296 187 169 187

PR+sr 360 360 360 296 296 296 187 169 187

LR 206 152 206 195 161 206 199 156 199

e2 PR-sr 195 152 206 195 161 206 195 156 199

PR+sr 195 152 206 195 161 206 195 152 195

LR 129 167 167 152 184 184 145 163 177

e3 PR-sr 129 148 148 152 184 184 145 161 162

PR+sr 129 147 147 152 184 170 145 161 162

LR 249 261 266 240 264 250 274 285 285

e4 PR-sr 248 243 254 240 244 246 265 258 268

PR+sr 241 243 253 233 239 239 254 254 265

LR 160 176 176 160 167 167 166 176 176

e5 PR-sr 160 160 160 160 160 160 160 160 160

PR+sr 160 160 160 160 160 160 160 160 160

LR 173 174 174 172 172 172 156 166 166

e6 PR-sr 173 173 173 172 172 172 156 156 156

PR+sr 173 173 173 172 172 172 156 156 156

LR 180 185 186 190 197 197 170 174 176

e7 PR-sr 179 185 186 190 197 197 169 174 176

PR+sr 179 184 186 190 197 197 169 173 176

LR 178 162 178 178 162 178 178 162 178

e8 PR-sr 178 162 178 178 162 178 178 162 178

PR+sr 178 162 178 178 162 178 178 162 178

LR 159 142 174 172 162 186 160 156 188

e9 PR-sr 159 142 174 172 162 186 160 142 174

PR+sr 159 142 174 172 162 186 160 142 174

LR 129 140 142 139 142 145 128 142 144

e10 PR-sr 129 140 142 139 142 145 128 140 142

PR+sr 129 140 142 139 142 145 128 140 142
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3. ce := M + l(e) if l(e) > avg, ce := l(e) else.

The first two choices are just meant to make the link weights non-metric while still reflecting
the length in kilometers of a link. The choice M + l(e) is intended to make long links even
longer, with the argumentation that if a shortest path algorithm chooses a long direct link
with these link weights, it does so to avoid a really long detour. In such cases, it may be
advisable to use a long link.

In our computational studies, the link weights (1 + l(e))2 and l(e) performed best on
average. Hence, the third column of Table 4 shows the results for ce := (1+ l(e))2; the values
for the other link weights are omitted here.

In three cases (e3, e4 and e9), l(e) is clearly the best choice, which holds as well for
(1 + l(e))2 (e1, e6 and e7). In all instances, at least one of these two link weights is among
the best choices. In particular, neither a shortest hop routing nor the link weights M + l(e)
or (1 + l(e))3 clearly outperform the other link weights in any case.

Altogether, none of the tested link weights can be used to obtain predictably good solu-
tions. On average, however, the link weights l(e) or (1+ l(e))2 seem to be a better choice than
a shortest hop routing. Hence, given the short computation times with a fixed NOS routing,
it is advisable to try different link weights and to take the best one.

5 Conclusion

We have presented a mixed-integer programming model for the network restoration problem
which integrates topology, hardware, capacity and routing decisions for all operating states
simultaneously. Based on a branch-and-cut algorithm together with a column generation
procedure, we have given a comparison of optimal network cost for 10 real-world problem
instances using link or path restoration (with or without stub release), for different failure
scenarios.

Our main observation is that the optimal network cost is almost independent of the
restoration concept. From a practical point of view, this implies that the technological decision
for a particular concept should be dominated by other criteria.

In addition, we optimized spare capacity based on a given shortest working path routing
with respect to different link weights. However, none of the tested link weights led to reliably
good results compared to joint working and spare capacity optimization.

Acknowledgments

This work was supported by the DFG Research Center “Mathematics for key technologies”
(FZT86), Berlin.

References

[1] J. Benders: “Partitioning procedures for solving mixed-variables programming prob-
lems,” Numerische Mathematik 4(1): pp. 238-252, 1962.

[2] B. Van Caenegem, N. Wauters and P. Demeester: “Spare capacity assignment for differ-
ent restoration strategies in mesh survivable networks.” IEEE International Conference
on Communications 1997, pp. 288-292

15



[3] G. Dahl and M. Stoer: “A Polyhedral Approach to Multicommodity Survivable
Network Design,” Numerische Mathematik 68(1) pp. 149-167, ZIB-Report SC-93-09,
www.zib.de, 1993.

[4] discnet: “Network planning and configuration engine.” atesio GmbH, www.atesio.de,
2000-2003.

[5] warning J. Doucette, W. D. Grover and R. Martens: “Modularity and Economy-of-
Scale Effects in the Optimal Design of Mesh-Restorable Networks,” IEEE Canadian
Conference on Electrical & Computer Engineering, Edmonton, vol. 1, pp. 226-231.,
1999.

[6] J. Doucette and W.D. Grover: “Increasing the Efficiency of Span-Restorable Mesh Net-
works on Low-Connectivity Graphs,” 3rd International Workshop on Design of Reliable
Communication Networks (DRCN 2001), Budapest, pp. 99-106, 2001.

[7] J. Doucette and W.D. Grover: “Comparison of Mesh Protection and Restoration
Schemes and the Dependency on Graph Connectivity.” 3rd International Workshop
on Design of Reliable Communication Networks (DRCN 2001), pp. 121-128, October
2001.

[8] R. Doverspike and B. Wilson: “Comparison of capacity efficiency of DCSS network
restoration routing techniques,” J. Network and System Management, vol. 2, no. 2,
pp. 99-106, 1994.

[9] R. Iraschko, M. MacGregor, W.D. Grover: “Optimal capacity placement for path
restoration in STM or ATM mesh survivable networks,” IEEE/ACM Transactions on
Networking vol. 6, no. 3, pp. 325-336, 1998.

[10] M. Iri: “On an extension of the maximum-flow minimum-cut theorem to multicommod-
ity flows,” Journal of the Operations Research Society of Japan, 13(3):129-135, 1971.

[11] J.L. Kennington, V.S.S. Nair and G. Spiride: “Optimal Spare Capacity Assignment
for Path Restorable Mesh Networks: Cuts Decomposition, and an Empirical Analy-
sis,” Technical Report 98-CSE-11, Dept. of Comp. Sci. and Eng., Southern Methodist
University, Dallas, 1998.

[12] A. Kröller: “Network optimization: Integration of Hardware Configuration and Capac-
ity Dimensioning,” Diploma thesis, TU Berlin, 2003.

[13] M. Minoux: “Optimum synthesis of a network with non-simultaneous MCF require-
ments,” Studies on Graphs and Discrete Programming, P. Hansen (ed.), pp. 269-277.
North Holland Publishing Company 1981.

[14] K. Murakami: “Survivable network management for high-speed ATM networks,” PhD
thesis, Carnegie-Mellon University, 1995.

[15] S. Orlowski: “Local and global restoration of node and link failures in telecommunica-
tion networks,” Diploma thesis, TU Berlin, 2003.

[16] M. Padberg, G. Rinaldi: “A branch and cut algorithm for the resolution of large-scale
symmetric traveling salesman problems,” SIAM Review no. 33, pp. 60-100, 1991.

16



[17] F. Poppe and P. Demeester: “Economic Allocation of Spare Capacity in Mesh-
Restorable Networks: Models and Algorithms,” 6th Int. Conf. on Telecommunication
Systems, Modeling and Analysis, Nashville, pp. 77-86, March 1998.

[18] Y. Xiong, L. Mason: “Restoration Strategies and Spare Capacity Requirements in Self-
Healing ATM Networks,” IEEE Infocom ’97, pp. 353-360, 1997.
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