
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

FELIX HUPFELD

Hierarchical Structures in
Attribute-based Namespaces and their

Application to Browsing

ZIB-Report 03-06 (March 2003)

 1

Hierarchical Structures in Attribute-based Namespaces
and their Application to Browsing

 Felix Hupfeld

 Zuse Institute Berlin
Takustraße 7, 14195 Berlin,

Germany
 hupfeld@zib.de

ABSTRACT
While attribute-value pairs are a popular method to name
objects, information retrieval from those attribute-based
namespaces is not an easy task. The user has to recall correct
attribute names and values and master the syntax and semantics
of query formulation. This paper describes hierarchical structures
in attribute-based namespaces, shows how to extract them
efficiently and evaluates the quality of these structures in an user
experiment. It proposes an user interface for browsing attribute-
named object sets which makes this task resemble today’s file-
system browsers and compares the usability of this interface to
normal form-based methods in an user study.

TOPIC AREAS
Information Retrieval, Knowledge Management, User Interfaces,
Attribute-based Naming, Attribute-named Data

1. INTRODUCTION
Attribute-value pairs are a popular method for naming objects
and representing meta-data. They are used in digital library
catalogues, for describing properties of objects in component
systems and of network services (“yellow pages”), for tagging
images in image libraries, for metadata in file systems and for
many other applications.

In most cases, retrieval of information from attribute-named data
sets is done via form-based methods. As seen for example with
many library online catalogues, an on-screen form provides a
template where the user can fill in attribute names and values he
wants to restrict his query to.

However, the retrieval of attribute-based data is not an easy task.
It requires the user to be familiar with the syntax and semantic of
query formulation. To be able to query the system, the user has to
recall correct attribute names and values or choose them from a
long list of alternatives and know how to formulate constraints
and how to combine them using boolean expressions.

If the user is not familiar with the attribute namespace, a form-
based query interface does not allow him to just browse the
namespace to find the desired information. This is due to the lack
of an inherent structure of the attribute space, which means that
there is no natural way of browsing an attribute-named data set
by following some given structure. Browsing attribute-named
data with a form interface means iteratively formulating queries
and modifying them while looking at their results.

The query of attribute-based namespaces would be simplified if
the query interface could propose relevant query extensions in
each retrieval step, so that the user does not have to recall valid
attribute names and values or pick them from a huge selection of
mostly irrelevant attributes available in the system. If these query
extension proposals additionally had certain relationships
between each other and the current query (which we will
describe later), they could be used for browsing the attribute-
named object space hierarchically.

In this paper, we will show how to extract attribute-value pairs
from a given object namespace which summarize parts of the
object set. These attribute-value pairs may be used to aid the user
in query formulation and object naming by reducing the choice of
possible query extensions and naming possibilities. Additionally,
they introduce a structure in the object set which allows the
object set to be browsed hierarchically. We will evaluate these
attribute-value pairs in an user experiment in order to find out
whether they provide a reasonable abstraction from the
namespace’s structures. Furthermore, we will present an user
interface which uses this hierarchical structure to provide the
user with an interaction that strongly resembles the file system
browsers of today’s operating systems. An usability test in the
context of file-system browsing shows that it is to be preferred to
form-based interfaces.

2. STRUCTURES IN ATTRIBUTE-BASED
NAMESPACES
2.1 Basic Definitions
We will start with some basic definitions to introduce our
notation.

Def. An attribute A is a tuple (name, value).

Def. An object is a named set of attributes.

Def. A query predicate QP is a tuple (name, operator,
value), where name is an attribute name, operator an
operator appropriate for the value’s type, and value is
an attribute value.

ZIB Report 03-06

 2

Def. The induced set of the query predicate QP, o(QP) is the
set of objects which satisfy the constraint given by the
query predicate.

Def. A query is a set of query predicates. It may be empty.

Def. The induced set of a query Q, o(Q) is the intersection
of the o(QP) for all query predicates QP ∈ Q. o(∅)
is the object set itself.

We assume a recursive retrieval process, ie. the induced subset
of a query on the current object set is the underlying object set of
the next query step.

2.2 Structures in the attribute space
If we visualize some sets induced by various predicates in a Venn
diagram (Figure 1), we observe that they have distinct
relationships to each other. These relationships can be used to
select predicates that could be of more interest to the user for
extending his current query.

Figure 1. An example object set with four result sets

For example, Figure 1 shows the four induced subsets of the
query predicates QP1, QP2, QP3 and QP4. The subsets of QP1 and
QP2 are fully contained inside QP3. QP3 and QP4 intersect, but
are not fully contained in a subset of any other query predicate. If
we would face this situation during a retrieval task and have to
propose some query predicates to extend the user’s query, we can
argue that QP1 and QP2 are not interesting in this retrieval step as
their induced object sets are fully contained inside QP3. They
become important as soon as the user would have extended his
query by QP3.

To illustrate, let the object set be the set of all files in a user’s
home directory, QP4 be the query predicate “filetype=picture”,
QP3 the predicate “filetype=music”, QP1 the predicate
“genre=rock” and QP2 the predicate “genre=hip hop”. If the user
looks for a file, we would present him with the filetype choice,
and ask for the genre as soon he restricted his query to be about
music files.

We will now look at five important structures of query predicates
which can be used to structure the attribute space.

• If the induced set of a query predicate QPA is fully contained
in the induced set of another predicate QPB, we call QPA a
sub-predicate of QPB. In our example, the music genre
predicates are sub-predicates of “filetype=music”.

• If the induced set of a query predicate QPA is equal to the
induced set of a query predicate QPB, we call QPA
synonymous to QPB.

• If the induced set of a query predicate QP is equal to the
whole object set, we call QP a context predicate. All non-
context predicates are sub-predicates of the context
predicates.

• If the induced set of a query predicate QP is empty, we call
QP an out-of-context predicate.

• There are non-context predicates which are only sub-
predicates of context predicates. We call them top-level
predicates (TLPs). Apart from the context predicates, the
induced set of a top-level predicate is not contained in an
induced set of any other query predicate of the chosen set. In
our example, the predicates QP3 and QP4 containing the
filetype are top-level predicates in the situation given. They
are not sub-predicates of any other predicate.

3. EXTRACTION OF HIERARCHICAL
STRUCTURES
In the last section, we defined the relationships of query
predicates by relationships and sizes of their induced sets. The
induced sets of the interesting predicates were either equal or
subsets of others.

A simple way to extract these relationships is to query by the
respective predicates and then compare the resulting object sets
element by element whether they are contained in one another or
whether they are equal. This needs a query per predicate, a
sorting step of O(n log n) if the result set is not already sorted
and a linear comparison.

We can detect those relationships more efficiently by doing
queries on the induced set of a query predicate. Instead of
querying the database directly, the process uses an intermediate
representation of the data set’s contents to be independent from
the physical organization of the data set and to be able to make
use of the CPU’s ability to do fast operations on bitstrings.

3.1 An example
Let us compare the relationship between the predicates QP1 and
QP2. We want to know whether their induced sets are fully
contained in one another or whether they are equal.

If we query the induced set of QP1 by QP2 and vice versa, we can
decide whether one of the five structures is given by looking on
the size of the resulting sets.

If the size of both resulting sets is equal, QP1 is synonymous to
QP2.

Figure 2. The size of the result sets of adjacent queries

Filetype=music

Genre=rock
Year<1920

QP3

 QP2

 QP1 QP4

 3

Assume that if we query the induced set of QP1 by QP2 , the size
of the result set does not change relative to QP1. If we query then
QP2 by QP1 and the result does change relative to QP2, then QP1

is a sub-predicate of QP2.

For example, if we query the set of “genre=rock” by
“filetype=music” in the situation shown in Figure 2, the result
set does not change relative to the query “genre=rock” as all files
with the attribute “genre=rock” are music files. But if we query
the set of “filetype=music” by “genre=rock”, the size of the result
set changes as the “genre=rock” files are a subset of the
“filetype=music” files.

Context predicates can be detected easily as the size of their
induced set is equal to the size of the current object set. Out-of
context predicates are characterized by the fact the size of their
induced set is null.

3.2 Definitions
We will now formally define our observations. First, we
formalize the notion of the size of the result set of a query:

Def. #(Q) of a query Q is |o(Q)|, the number of objects in
o(Q).

Then, we define the notion of querying two predicates and
setting the result in relation to the result of the query of the first
predicate:

Def. p(QP1 | QP2) := #({ QP1, QP2 }) / #({ QP2 }).

We assume a finite set P of chosen query predicates, the
candidate predicates and the object set O.

Def. QP1 is a sub-predicate of QP2, or QP1 < QP2, if
p(QP1 | QP2) = 1 and p(QP2 | QP1) != 1.

Def. QP1 and QP2 are synonymous if p(QP1 | QP2) = 1 and
p(QP2 | QP1) = 1.

Def. QP is a context predicate if #(QP) = |O|.

Def. QP is an out-of-context predicate if #(QP) = 0.

Def. QP is a top-level predicate (TLP) if there is no non-
context predicate QPi ∈ P with QPi > QP.

The relation p(|) has one property which allows us to save some
processing steps later. Assume that we have two predicates QP1
and QP2 whose induced sets do no intersect. This implies that
both #({ QP1, QP2 }) = 0 and #({ QP2, QP1 }) = 0 as the
query’s contents are linked with an boolean and which is
commutative. If we now look at the definition of p(|), we see
that this fact implies that if p(QP1 | QP2) = 0 then p(QP2 | QP1) =
0 for any pair QP1, QP2.

3.3 Extracting the top-level predicates
Now we will show how to extract the top-level predicates (TLPs)
in a systematic manner working on a fixed set P of candidate
predicates.

As we have to compare each pair of elements of P, we will work
on a virtual matrix M whose columns c and rows r are labeled
with the elements of P and whose entries are the values of
p(QPr | QPc). As computing p(|) is not a cheap operation, we
will try to keep the number of computed entries of the matrix at a
minimum.

In a first step we compute #(QPi) for each QPi ∈ P to find all
context and out-of-context predicates. We do this so that the
context predicates do not interfere with the detection of the TLPs
as we have to analyze all sub-predicate relationships to find
them. We will not include context predicates in any further
operation. We remove out-of-context predicates too, as they are
not a candidate for being a TLP or being synonymous.

We select a column and process it until we have analyzed all
query predicates. Each column is processed row-wise by
computing p(QPr|QPc) and the corresponding entry p(QPc|QPr).
Of course, all computations are cached, so that no p(|) is
computed twice.

If we detect a sub-predicate relationship for a column, we do not
proceed with the column as it is no longer a candidate for being a
TLP, and we mark the column accordingly.

If we detect two predicates to be synonymous, we note that
property and merge the columns and rows virtually as all of their
entries will be the same and should not be computed twice.

If we are finished with this process, we know the predicates of P
who are TLPs, those who are context and out-of-context
predicates and those who are synonyms.

The process in pseudocode can be seen in Figure 3.

1. Define a set of candidate predicates

2. Remove all context predicates from it

3. Remove all non-context predicates from
it

4. FOR each candidate predicate c

5. IF(c is marked as subordinate)

6. continue with next c

7. FOR each candidate predicate r

8. IF(c == r)

9. continue with next r

10. get p1 = p(QPr | QPc)

11. IF(p1 == 0)

12. continue with next r

13. get p2 = p(QPc | QPr)

14. IF(p1 == 1 and p2 == 1)

15. mark c and r as synonyms

16. IF(p2 != 1 and p1 == 1)

17. mark r as subordinate

18. IF(p2 == 1 and p1 != 1)

19. break inner loop, as c < r

20. IF we checked all r

21. mark c as TLP

Figure 3. The TLP extraction process
This process is quadratic in the number of predicates in P.
Computing p(|) is linear in the number of objects.

 4

3.4 Computing p(|)
For a fast extraction of top-level predicates in wide area of
applications, we will not work on our original data set to
compute p(|).

As stated in the introduction, attribute-based data is used in
many contexts. The choice of physical representation of attribute-
based data is probably as large as its applications; it ranges from
simple record-based structures to RDBMS.

To decouple the speed of our extraction process from the speed
of the data storage to do queries, and to use the processor to do
certain operations, we will work on bitstrings to compute p(|).

For each query predicate QP, we extract a predicate map, which
is an uncompressed word-based bitmap index that contains a bit
for every object in the system. If the induced set of QP includes
the object, its associated bit in the predicate map is 1.

This predicate map is a small cache of the contents of the data
storage. If the data storage is changed, the bitstrings must be
changed accordingly. The size of a predicate map is (number of
objects) / 8 bytes.

For computing p(|), we need the intersection set of the query
predicate’s object sets. With the usage of predicate maps, this is
just the boolean AND of the associated bitstrings.

3.5 Choosing candidate predicates
Our algorithm assumes that we have a fixed set of query
predicates which are candidates for being top-level predicates.
We did not give any detail yet on how we choose these
predicates.

A first possibility is to build the predicates using all available
attribute names, all available attribute values and all defined
operators for the attribute value type. This set of predicates is
huge, and as our algorithm is quadratic in the number of
predicates we want to restrict this number to a feasible amount.

A simple system could use all available attribute names whose
value domain is limited to a small number of values. It builds
predicates out of them by using the “=” operator and all available
values.

A more sophisticated system could look at the distribution of the
values of each attribute and divide it into a small number of
intervals which include the same number of values.

3.6 Examples
To show that the algorithms extract worthwhile results, we will
first show their result sets on simple artificial examples As a first
example, we look on a set of two objects,

• object 1 with the attributes {A,X} and

• object 2 with the attributes {A,Y}.

The algorithm will identify A as a context-predicate, and X and
Y as top-level predicates. Thus, the object set would be
partitioned by the query predicates X and Y.

In the next step, we add a third object which is named with
attributes as follows:

• object 3 {B,Z}.

The algorithm would recognize B and Z as being synonyms and
return A and B=Z as top-level predicates. X and Y are identified
as being sub-predicates of A. Thus, the user would be presented
with two choices to extend his query: A and B=Z.

The addition of a fourth object named

• object 4 {B,Q}

results in the identification of A and B as top-level predicates.
The user would be presented with these two attributes, each
representing a subset of the current query result. Both can be
used to extend the current query and to investigate one of the
subsets further.

Now we will have a look on the extraction algorithm from the
user’s point of view. Current hierarchical file naming is unable
to represent multi-hierarchical structures, which is a major
burden to use it for naming real-world data. We assume an object
set that uses the attributes ProjectA, ProjectB, Papers,
Sourcecode in a number of files:

• file subset 1 {ProjectA, Papers},

• file subset 2 {ProjectA, Sourcecode},

• file subset 3 {ProjectB, Papers},

• file subset 4 {ProjectB, Sourcecode}.

If we query this object set for ProjectA, we are presented with
the top-level predicates Papers and Sourcecode as choices to
extend our query further. If we query the set for Papers, we get
ProjectA and ProjectB as predicate choices. Each of the files is
part of two hierarchies, the ProjectA hierarchy and the
Papers/Sourcecode hierarchy. Depending on which entry point
we chose, the algorithm allows to user to refine her search using
the respective hierarchy.

4. BROWSING AN ATTRIBUTE-BASED
NAMESPACE
A top-level predicate is a valid abstraction for all objects in its
induced set, as all these object satisfy the constraint given by the
TLP. Furthermore, candidate predicates that are sub-predicates
of a TLP can be assumed as being included by the TLP. Thus,
the TLP is a valid abstraction of its sub-predicates too.

We will now complete the basic notion of top-level predicates
with two definitions to get a complete view of an explored object
set.

4.1 Local objects
If we look at Figure 1, we observe that there are objects in the
object set which are not covered by any predicate. We call these
objects local objects, any refinement of the query using one of
the proposed predicates would exclude them.

Detecting the local objects is done both easily and fast by
subtracting the intersection of all predicates from the current
object set. This can be done using boolean operations on the
predicate maps.

4.2 Important top-level predicates
The number of top-level predicates is not inherently limited. In
the case of each candidate predicate only intersecting with some

 5

other candidates but not being completely included, the set of
candidates is the set of TLPs itself.

Thus, if we have a large number of TLPs, we would like to
reduce it. Often, we can do so by removing a TLP whose induced
set is contained in the remaining set of TLPs.

We call a TLP whose induced set is not covered completely by
other TLPs an important top-level predicate.

We can use this definition to build algorithms which reduce the
set of TLPs to a smaller number. A simple example of an
algorithm would be to start with a new empty set of predicates
and add the TLP which extends the coverage of the new set the
most. We keep on doing this until the new set covers the same
objects as the original set of TLPs, i.e. all important TLPs are
included. This algorithm is shown in Figure 4 in pseudo-code.

We can run this algorithm more than once to get groups of TLPs
covering the same set each, but which have worse intersection
properties.

1. T:= set of TLPs

2. C:= coverage of T

3. G:= new empty set of predicates

4. while o(G) ≠ C
5. move predicate x from T to G with

6. o(x) ∩ o(G) = min. and

7. o(x) \ o(G) = max.

Figure 4. An example for a grouping algorithm

4.3 User interface for browsing
We have now structured our object set in a set of TLPs plus the
remaining local objects. Furthermore, we grouped the TLPs in
groups which provide a “good” coverage of the object set each.

We can use this structure to construct a user interface which
completely hides the syntax and semantic of query formulation. It
provides an interface to hierarchically browsing the object set. In
each browsing step, the user is presented with a set of predicates
(the TLPs) plus a set of local objects. Note that the partitioning
of the current object set into top-level predicates and local
objects is complete in the sense that every object in the current
set is either a local object or included in one of the top-level
predicates. Thus, all the objects are reachable through the query
mechanism.

The user can select a TLP to zoom further into the object set.
This TLP is added to the current query. The user can also zoom
out by selecting an “Up” button, which removes the last
predicate of the current query and thus returns to the previous
object set.

The user does not have to be aware of him modifying a query by
his actions. The clue he is given that he works on a attribute-
based system is the format of the choices. They resemble
attributes, which have formats and use terms that are familiar to
the user.

This interaction can be made nearly indistinguishable from the
accustomed interaction with a hierarchical file system. Figure 5
shows a prototype interface where the interaction with the
attribute-based namespace is embedded in the Microsoft

Windows Explorer as a Namespace Extension. The data stems
from an attribute-based file system which accumulates normal
file metadata along with file-type specific metadata like
document titles and authorship. The extracted predicates are
grouped by their attribute names.

5. EVALUATION
To evaluate the quality of the extracted hierarchy and to test the
usability of the proposed browsing interface, we conducted a
controlled user experiment which applied the extraction
procedure of Section 3 to an attribute-named file system.

We compared the user’s interaction with three user interfaces.
The first one is a basic form-based query interface (“Traditional-
UI”, Figure 6) which lets the user choose from all available
attribute names and values. The second one is a form-based
interface which proposes query extensions with the algorithms of
Section 3 (“Enhanced-UI”, Figure 6). The third one is a file
system browser like interface which mimics the interaction of
current desktop file browsers (“Explorer-UI”, Figure 7) and
makes use of the techniques described in Section 3 and 4.

Figure 5. Hierarchical browsing of attribute-based data

The Traditional-UI and the Enhanced-UI differ only in the
attribute names and values the user can choose from. Thus,
differences in the user’s performance can be accounted to the
number and quality of the proposed attribute names and values.

The Enhanced-UI and the Explorer-UI provide the same choices
for extending a query, but do so with a different look and
interaction. Here, differences in the user’s performance can be
accounted to the differing presentation.

 6

5.1 Interfaces
The basic form-based query interface (“Traditional-UI”) allows
the user to formulate queries dynamically. Each part of the query
consists of the attribute name and a value to restrict the attribute
to. With the respective button, the user can delete the whole
query to start over or add an extension to the query. When
selecting a value, the result set in the lower half of the window
changes instantaneously. To simulate a large object set, only
result sets of less than seven objects are displayed, otherwise a
line saying “Too many files” is shown in order to force the user
to refine the query.

In each query step, the user can choose from all known attribute
names with the left pull-down menu. When the user has chosen
an attribute name, the right menu lets the user choose from all
known values of this attribute. Only the lowermost query
predicate line is editable.

The enhanced form-based interface (“Enhanced-UI”) works like
the basic one, but restricts a query step’s choice of attribute
names and values to the top-level predicates of the current result
set. When the user adds a new query restriction, or query line,
the system extracts the top-level predicates of the current result
set, divides them into attribute names and values and inserts
them accordingly. The lower list shows the local files of the
current query instead of its whole result set.

The third interface embeds the query extension extraction in a
desktop file-browser-like interface (“Explorer-UI”, Figure 7) as
proposed in Section 4.3. The two buttons at the top allow the
user to remove the last query predicate (“Up”) and to clear the
current query to start over (“New Query”). The “Query:”-line
displays the current query. The list in the middle of the window
shows the extracted top-level predicates of the current query’s
result set. A click on one if its items extends the query
accordingly. The lower list shows the local files of the current
query. Note that the Explorer-UI displays exactly the same
information and gives the user the same choices as the Enhanced-
UI, it only uses a different presentation.

Figure 6. Form-based UI (“Traditional-UI”, “Enhanced-UI”)

Figure 7. Hierarchical browser (“Explorer-UI”)

5.2 Methodology
The experiments were conducted with a laptop equipped with an
optical mouse on which the interfaces were running. An
instructor was attending who quickly demonstrated each interface
with one retrieval task, but didn’t provide any further help or
answers afterwards.

The subjects were told as a background that they were an
assistant to a professor who asked them to find certain
documents on his computer for him. They were given tasks
which contained keywords that were similar to or matched object
metadata (see Figure 8).

We prepared three task sets of eight tasks each. The tasks were
structurally equivalent among the task sets but differed in the
task’s keywords and exact phrasing. To exclude any influence of
the tasks’ difficulty on the result, we kept the order of
structurally equivalent tasks consistent between the tasks sets.
For each interface, the users had to complete the tasks of one
task set. This results in 24 tasks per subject on three interfaces.
The mapping between task sets and interfaces was fully balanced
which results in six different orders of interfaces. A task was
counted as successfully solved when the subject clicked on the
right document to open it. Unsuccessful tasks were those where
the subject did not want to continue searching.

“Prof. X worked on project together with IBM in 1999. Find
the project report.”

“Look for a presentation on information visualization, which
Prof. X did for his company in 2000.”

“Prof. X wants to create a research poster for which he needs
the university’s logo.”

“Prof. X has to give marks for the Java exercises. Find Peter’s
Java program of the winter term 2001.

Figure 8. Examples of tasks
After the experiments the subjects were given a questionnaire
which asked them about their computer, internet and information
retrieval experience. Then they were asked to order the user
interfaces according to their personal preference, how much the

 7

reduction of choices in the Enhanced-UI helped them when
compared to the Traditional-UI, and how much the query
extension proposals of the Enhanced-UI and the Explorer-UI met
their expectations on how to continue with their query.

We recruited 12 subjects for our experiments, all being students
of a wide range of university programs. All had experience with
using Microsoft Windows GUIs, had been using computers on
the usual level for web browsing and word processing, and were
familiar with form-based queries from libraries’ web interfaces.

During the experiment, we logged the user interactions (mouse
clicks, list choices and list selections) along with exact
timestamps.

5.3 Data set
The file set consisted of 231 files named with 15 attribute names,
which had between zero (“tag attributes”) and 14 values. These
appeared in the choices of the Traditional-UI. For the empty
result set, there were nine top-level predicates of four distinct
attribute names (these were displayed initially in the upper pane
of the Explorer-UI and in the attribute choice of the Enhanced-
UI). The size of the metadata set was chosen so that it is not too
big for list selection, which is needed in the traditional interface
and not too small for mining. Figure 8 shows a part of the
extracted hierarchy. Each block of predicates shows the TLPs of
the respective subset of object set, with the TLPs for the whole
object set on the left. A link symbolizes the query extension with
the respective predicate and leads to the TLPs of the result set of
the query. For each result set, the complete list of TLPs is shown,
but only a subset of the possible query extensions are followed.

In all three systems, the query processing and mining times were
negligibly short.

5.4 Results
From our log files, we extracted the ratio of successfully solved
tasks (Table 1). The differences between the means are
statistically significant (F(2, 22) = 4.661, p < 0.021).

Table 1. Successful tasks (out of 8)

Number of solved
Tasks

Mean Standard
Deviation

(SD)

Standard
Error
(SE)

Traditional 7.17 1.34 0.39

Enhanced 8.00 0.00 0.00

Explorer 8.00 0.00 0.00

Table 2 shows the mean times for the task completion. These
numbers include tasks that could not be solved, they were
counted with 200 seconds, an artificial time limit which is among
the highest times for successfully solved tasks. The differences
between mean times are statistically significant (F(2,22) =
17.385, p < 0.0005).

Table 2. Retrieval Times

Retrieval Time (sec.) Mean SD SE

Traditional 58.88 50.40 5.14

Enhanced 39.02 35.52 3.63

Explorer 17.27 9.22 0.94

The logging of interactions were used to calculate the number of
query refinement steps, which includes the steps backwards
(Table 3). The differences between the means are not statistically
significant.

Table 3. Number of Query Refinements

Refinement Steps Mean SD SE

Traditional 3.59 2.23 0.23

Enhanced 3.88 2.11 0.22

Explorer 3.52 1.17 0.12

Filetype=Email
Company
Filetype=Address
Filetype=Image
Filetype=Document
Filetype=Slides
University
Year=2000
Year=2001

Company
University

Company
University
Year=2000
Year=2001

Filetype=Email
Company

Filetype=Email
Filetype=Address
Filetype=Image
Filetype=Document
Filetype=Slides
Year=1999
Year=2000
Year=2001

Filetype=Email
Filetype=Address
Filetype=Image
Filetype=Document
Filetype=Slides
Java
Term=Summer 1999
Term=Summer 2000
Term=Summer 2001

Year=1999
Year=2000
Year=2001
Contracts
Reports

Author=… (11 times)
Filetype=Hypertext
Term=Summer 1999
Summary

(Filetype=Document)

Contracts
Reports

Year=1999
Year=2000
Year=2001

Company
University

Year=1999
Year=2000
Year=2001

Term=Summer 1999
Term=Summer 2000
Term=Summer 2001
Term=Winter 1999
Term=Winter 2000
Term=Winter 2001

To=... (5 times)
Year=2000
Year=2001

Figure 8. A part of the extracted hierarchy of the experiment’s namespace

 8

We continue with the results of the post-experiment
questionnaire. The first question asked for the personal
preferences (Table 4).

Table 4. Personal Preference

Explorer > Enhanced > Traditional 10 out of 12

Explorer > Traditional > Enhanced 1 out of 12

Enhanced > Explorer > Traditional 1 out of 12

The next question asked how helpful the user considered the
preselection of attributes for the form-based interface
(Traditional vs. Enhanced-UI, Table 5) on a scale of 1 (not
helpful) to 6 (very helpful).

Table 5. Helpfulness of preselection

 Mean SD SE

Form, Helpfulness 4.33 1.30 0.38

The third and fourth question asked how well the proposed query
extensions met the user’s expectation on how to continue with
their further search for both the Enhanced-UI and the Explorer-
UI (Table 6) on scale from 1 (not representative for expectation)
to 6 (very representative). The differences between the means are
statistically significant (F(1, 11) = 2.67, p < 0.013).

Table 6. Representativeness of proposed query extensions

 Mean SD SE

Enhanced-UI 4.67 0.78 0.22

Explorer-UI 5.33 0.65 0.19

5.5 Discussion
The experiment was conducted to get answers to two research
questions. Our first thesis is that the extracted query extension
proposals are a good abstraction of the underlying object set and
aid a user in refining a query.

The results of the experiment show that the user is able to solve
more tasks (Table 1), and needs less time per task (Table 2) and
per refinement step (Table 2 and 3) when restricting the choices
in the form-based interface to the top-level predicates of the
current result set. The post-experiment questionnaire reveals that
the users considered the restriction of possible query extensions
helpful when compared to the presented set of query extensions
in the Traditional-UI (Table 5). Furthermore, they considered the
presented query extensions as representative for their further
query (slightly dependent of their presentation, Table 6).

The general problem here is the one of menu selection. For each
query refinement, the user has to choose from a list of refinement
alternatives. The time needed for this grows with the length of
the list and can be optimized with the use of hierarchical menus
[7]. Thus it seems that the relative lower number of choices
between the Traditional-UI and the Enhanced-UI could be the
cause for the better user performance, independent of the quality

of the proposed quality. This, however, only takes the selection
times of single refinement steps into account. When the quality
of the proposed alternatives was bad, it would result in more
refinement steps, more errors and a longer overall time, of which
none is the case. Thus we can conclude by our measurements that
top-level predicates are a good abstraction of the underlying
object set. This thesis is supported by the user’s personal
observations (Table 4, 5, 6).

Our second thesis is that a file-browser like interface (Section
4.3) is preferable over a form-based interface for retrieving
objects from an attribute-based namespace. While the success
rate is not improved further, the Explorer-UI enables the user to
solve the tasks in less time per task (Table 2) and per extension
step (Table 2 and 3). Furthermore, most users prefer the usage of
the file-browser like Explorer-UI over the form-based Enhanced-
UI (Table 4) and even have the impression that the quality of
query extension proposals is better (Table 6) while they are
actually the same.

The research of menu selection can also be applied to explain the
differences between the Enhanced-UI and the Explorer-UI, which
both present the same choices in a different way. While the
Enhanced-UI introduces one artificial hierarchy layer (choice of
attribute, then choice of value), the Explorer-UI displays these
choices as a flat list. When applied to a short list, the
introduction of an additional menu layer lengthens the time
needed to make the overall selection. [7]. This is the case here,
and explains the better performance of the file-browser like
presentation in the experiment along with the facts that one
additional mouse click is needed for opening the pull-down
choice, and the two pull-down choices give less overview than
one list with all alternatives. Combined with the users’
preference of the Explorer-UI, our thesis that an file-browser like
presentation is favorable over a form-based interface for
presenting top-level predicates and local files to the user is
supported.

6. RELATED WORK
6.1 Query formulation
Current user interfaces for querying attribute-based data sets are
mostly variations of the standard model of forming constraints on
attributes using boolean operators. While early systems like the
Semantic File System [4] demanded the user to do this manually
using a command line, newer systems use form-based methods or
even interfaces for direct manipulation (Dynamic Queries [5],
Filter-Flow [10], Presto [3]) to embed the syntax and semantics
in a graphical interaction.

Form-based methods especially benefit from limiting the number
of choices of attribute names and values or from a limited
number of proposed alternatives.

Early systems let the user choose from all attribute names and
possible values [4], newer systems restrict that choice to attribute
names and values that are actually present in the queried object
set [9] as those result in the only reasonable extensions to the
query extensions. If textual entry of attribute names and values is
possible, one can let the system try guessing the anticipated entry
or use fuzzy search methods to find the real attribute name or
value.

 9

6.2 Hierarchical structures
Not every search for information starts with a clear goal in mind.
If the user has a rather vague idea of what he’s searching for or if
he’s not yet familiar with the system or the dataset, it is
beneficial to be able to browse a data set without having to
explicitly formulate exact queries or having to be familiar with
query formulation.

6.2.1 Attribute-based data
KnownSpace [1] analyzes user access patterns and clusters the
objects to be able to map the object set in a multi-dimensional
space. However, [1] gives no details on the used cluster method.

6.2.2 Text corpora
Much work has been conducted in the field of extracting
hierarchical structures from text corpora.

Sanderson and Croft [6, 8] present a method to extract
subsumption hierarchies of terms. They use term relationships to
find a hierarchy of concepts in a document set. After extraction of
a set of terms, the system uses a heuristic to find hierarchical
structures between them. The heuristic is based on the relative
frequency of occurrence of the terms x and y in each other’s
context:

P(x|y) = 1 and P(y|x) < 1.

However, the definition fails in the case when a few y do not co-
occur with the term x. Therefore they relaxed the condition to be:

P(x|y) ≥ 0.8 and P(y|x) < P(x|y)

The value 0.8 was chosen through informal analysis of term
pairs.

Note that our sub-predicate definition has the same structure as
the one used by Sanderson and Croft [8] to characterize
subsumptions between terms of documents in text corpora.
Whereas they compare the co-occurrence of terms extracted
directly from text corpora, we compare the relationships of
metadata associated with objects. As the relationship of terms in
natural language text corpora is not always clean, they relax their
original definition to be able to recognize subsumption
relationships that have a few violations in the text corpora (see
related work section). We stay with the sharper definition as we
work on metadata which is already an abstracted version of the
object set. Note that this is no restriction of generality as our
method works with a weaker sub-predicate definition as well.

Scatter/Gather [2] is a method to hierarchically browse data sets.
In each retrieval step, the current data set is clustered and the
cluster’s contents are summarized. These summaries allow the
user to restrict the current data set by choosing a cluster and then
reiterate. Scatter/Gather has been applied to text corpora but
there has been no published attempt yet to apply it to attribute-
based data.

7. Conclusion
We identified properties of query predicates which allowed us to
structure the attribute namespace hierarchically. We presented a
process to extract this structure from an object set, which
resulted in a set of so-called top-level predicates (TLPs).

Applied to a traditional form-based query interface, the top-level
predicates allow the user to extend a query by choosing from a
relatively small number of alternatives.

We introduced the notions of important top-level predicates and
local files, which, in conjunction with the hierarchical “zooming
property” of top-level predicates, allow for browsing of attribute-
named object sets. This was applied to create an user interface
which hides the syntax and semantics of query formulation and
allows the user to browse an attribute-named data set
hierarchically.

A controlled user experiment confirmed the quality of the set of
top-level predicates as a valid abstraction from the underlying
object set and showed that the proposed browsing interface is
preferable to form-based interfaces for querying an attribute-
named object set.

8. REFERENCES
[1] Baeza-Yates, R. Jones, T. Rawlins, G. New Approaches to

Information Management: Attribute-Centric Data Systems.
In Proceedings of the 7th IEEE International Symposium on
String Processing Information Retrieval (SPIRE'00), 2000.

[2] Cutting, D. Karger, D. Pedersen, J. Tukey, J.
Scatter/Gather: A Cluster-based Approach to Browsing
Large Document Collections. In Proceedings of the 15th
ACM SIGIR ’92. Denmark, 1992.

[3] Dourish, P., Edwards, K., Lamarca, A., Salisbury, M.
Presto: An Experimental Architecture for Fluid Interactive
Document Spaces. In ACM Transactions on Computer-
Human Interaction. Vol.6, No.2, June 1999. 133-161.

[4] Gifford, D., Jouvelot, P., Sheldon, M., O’Toole, Jr J.
Semantic File System. In Proceedings of the 13th ACM
Symposium on Operating Systems Prinici, CA. October
1991. ACM Press. 16-25.

[5] Liao, H.S., Osada, M., Shneiderman, B. Browsing Unix
Directories With Dynamic Queries: An Evaluation of Three
Information Display Techniques. Technical Report CS-TR-
2841. Dept. of Comp. Sci., U. of Maryland. February 1992.

[6] Lawrie, D.J. Croft, W.B. Discovering and comparing
concept hierarchies. In Proceedings of the 24nd ACM SIGIR
’01.

[7] Norman, K.L. The Psychology of Menu Selection: Designing
Cognitive Control at the Human/Computer Interface. Ablex
Publishing Corporation, 1991.

[8] Sanderson, M. Croft, W.B. Deriving concept hierarchies
from text. In Proceedings of the 22nd ACM SIGIR ’99.

[9] Wills, E., Giampaolo, D., Mackovitch, M. Experience with
an Interactive Attribute-Based User Information
Environment. Technical Report WPI-CS-TR-94-2.
Worcester Polytechnic Institute, Worcester, MA. 1994.

[10] Young, D. Shneiderman, B. A graphical filter/flow model
for Boolean queries: An implementation and experiment.
Journal of the American Society for Information Science,
44(6):327-339, July 1993.

